VMMK-3803-TR1G [AVAGO]

3 - 11 GHz UWB Low Noise Amplifier in SMT Package; 3 - 在SMT封装11 GHz的超宽带低噪声放大器
VMMK-3803-TR1G
型号: VMMK-3803-TR1G
厂家: AVAGO TECHNOLOGIES LIMITED    AVAGO TECHNOLOGIES LIMITED
描述:

3 - 11 GHz UWB Low Noise Amplifier in SMT Package
3 - 在SMT封装11 GHz的超宽带低噪声放大器

放大器
文件: 总9页 (文件大小:911K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
VMMK-3803  
3 - 11 GHz UWB Low Noise Amplifier in SMT Package  
Data Sheet  
Description  
Features  
The VMMK-3803 is a small and easy-to-use, broadband, •ꢀ 1 x 0.5 mm surface mount package  
low noise amplifier operating in various frequency bands  
from 3 to 11 GHz with typical noise figure of 1.5 dB. It is  
housed in the Avago Technologies’ industry-leading and  
•ꢀ Ultrathin (0.25 mm)  
•ꢀ Wide frequency range  
revolutionary sub-miniature chip scale package (GaAsCap •ꢀ Self-Biasing: 3 to 5 V  
wafer scale leadless package) which is small and ultra thin  
yet can be handled and placed with standard 0402 pick  
•ꢀ In and output match: 50 ohm  
and place assembly equipment. The VMMK-3803 provides  
a typical gain of 20 dB with good linearity of 0.9 dBm  
typical IIP3 and input and output return losses and can be  
operated from 3 to 5 V power supply. It is fabricated using  
Avago Technologies unique 0.25 μm E-mode PHEMT  
technology which eliminates the need for negative gate  
biasing voltage.  
Specifications  
(6 GHz, Vdd = 3 V, Vpd = 3 V, Zin = Zout = 50 )  
•ꢀ Low noise figure: 1.5 dB typ.  
•ꢀ Small signal gain: 20 dB typ.  
•ꢀ Output Power at 1dB compression = 7 dBm  
Applications  
WLP0402, 1 mm x 0.5 mm x 0.25 mm  
•ꢀ 3.1-10.6 GHz UWB LNA  
•ꢀ 3.5 and 5-6 GHz WLAN and WiMax  
•ꢀ 10.5 GHz PMP  
•ꢀ 802.16 & 802.20 BWA systems  
•ꢀ Radar and ECM systems  
•ꢀ Generic IF amplifier  
Pin Connections (Top View)  
Input  
Output/Vdd  
OY  
Attention: Observe precautions for  
handling electrostatic sensitive devices.  
ESD Machine Model = 60 V  
ESD Human Body Model = 200 V  
Refer to Avago Application Note A004R:  
Electrostatic Discharge, Damage and Control.  
Input  
Output/Vdd  
Amp  
Note:  
“O= Device Code  
“Y= Month Code  
Electrical Specifications  
[1]  
Table 1. Absolute Maximum Rating  
Symbol  
Vdd  
Parameters/Condition  
Unit  
V
Absolute Max  
Supply Voltage (RF Output)  
Power Down Voltage  
7
Vpd  
V
7
Idd [2]  
Pin, max  
Pdiss  
Supply Current  
mA  
dBm  
mW  
°C  
45  
[3]  
CW RF Input Power (RF Input)  
Total Power Dissipation  
Max Channel Temperature  
Thermal Resistance  
15  
315  
+150  
90.6  
Tch  
θjc [4]  
°C/W  
Notes  
1. Operation of this device above any one of these parameters may cause permanent damage  
2. Bias is assumed DC quiescent conditions  
3. With the DC (typical bias) and RF applied to the device at board temperature Tb = 25° C  
4. Thermal resistance is measured from junction to board using IR method  
[1]  
Table 2. DC and RF Specifications  
T = 25° C, Z = Z = 50 , Freq = 6 GHz, Vdd = 3 V, Vpd = 3 V (unless otherwise specified)  
A
in  
out  
Symbol  
Idd [2]  
Idd_Off [2]  
Ga [2,3]  
NF [2,3]  
S11 [4]  
Parameters/Condition  
Supply Current  
Unit  
mA  
μA  
Minimum  
Typical  
20  
Maximum  
14  
26  
Leakage Current (Vpd = 0 V)  
Gain  
0.1  
20  
dB  
17  
23  
Noise Figure  
dB  
1.5  
15  
1.9  
Input Return Loss  
dB  
S22 [4]  
Output Return Loss  
Input 3rd Order Intercept Point  
Output Power at 1dB Compression  
dB  
9
IIP3 [4,5]  
P-1dB [4]  
Notes  
dBm  
dBm  
0.9  
7
1. Losses of the test system have been de-embedded from final data  
2. Measured data obtained from wafer-probing using a G-S, S-G pyramid probe  
3. Ga and NF obtained from Noise Figure Analyzer  
4. S-parameters, P1dB, and IIP3 data obtained using 300 μm G-S-G probing on PCB substrate  
5. IIP3 test condition: Center frequency = 6 GHz, 2 tone offset = 10 MHz, Pin = -20 dBm  
2
Product Consistency Distribution Charts at 6.0 GHz, Vdd = 3 V, Vpd = 3 V unless specified.  
Measured data obtained from wafer-probing using a G-S, S-G pyramid probe.  
LSL  
USL  
LSL  
USL  
0.011  
0.015  
0.018  
0.021  
0.024  
0.027  
0.03  
17  
18  
19  
20  
21  
22  
23  
24  
Idd @ Vdd = 3 V, Vpd = 3 V, Mean = 20 mA, LSL = 14 mA, USL = 26 mA  
Ga @ 6 GHz, Mean = 20 dB, LSL = 17 dB, USL = 23 dB  
(Data obtained using Noise Figure Analyzer)  
USL  
Notes:  
Distribution data based on 48 Kpcs part sample size from MPV lots.  
Future wafers allocated to this product may have nominal values  
anywhere between the upper and lower limits.  
1
1.1 1.2  
1.4  
1.6  
1.8  
2
2.1  
NF @ 6 GHz, Mean = 1.5 dB, USL = 1.9 dB  
3
VMMK-3803 Typical Performance  
T = 25° C, Vpd = 3 V, Z = Z = 50 Ωꢀ(unless noted); data obtained using 300 μm G-S-G probing on PCB substrate &  
A
in  
out  
broadband bias tees, losses calibrated out to the package reference plane.plane.  
-20  
-25  
-30  
-35  
-40  
-45  
-50  
-55  
-60  
24  
20  
16  
12  
8
3 V  
4 V  
5 V  
6 V  
3 V  
4 V  
5 V  
6 V  
4
0
0
3
6
9
12  
15  
18  
0
3
6
9
12  
15  
18  
Frequency (GHz)  
Frequency (GHz)  
Figure 1. Small Signal Gain over Vdd  
Figure 2. Reverse Isolation over Vdd  
0
-5  
0
-5  
-10  
-15  
-20  
-10  
-15  
-20  
-25  
-30  
3 V  
4 V  
5 V  
6 V  
3 V  
4 V  
5 V  
6 V  
-25  
-30  
-35  
0
3
6
9
12  
15  
18  
0
3
6
9
12  
15  
18  
Frequency (GHz)  
Frequency (GHz)  
Figure 3. Input Return Loss over Vdd  
Figure 4. Output Return Loss over Vdd  
2.5  
2
2.5  
2
1.5  
1
1.5  
1
3 V  
4 V  
5 V  
3 V  
4 V  
5 V  
0.5  
0.5  
2
4
6
8
10  
12  
2
4
6
8
10  
12  
Frequency (GHz)  
Frequency (GHz)  
Figure 5. Noise Figure (50 ohm) over Vdd  
Figure 6. NFmin over Vdd  
4
VMMK-3803 Typical Performance  
Z
= Z = 50 , Vpd = 3 V, T = 25° C for varying Vdd data, Vdd=3V for varying Temp data; obtained using 300 μm G-S-G  
out A  
in  
PCB substrate & broadband bias tees, losses calibrated out to the package reference plane.  
12  
10  
8
8
6
4
2
6
0
-2  
-4  
-6  
-8  
4
3 V  
4 V  
5 V  
3 V  
4 V  
5 V  
2
0
2
4
6
8
10  
12  
2
4
6
8
10  
12  
Frequency (GHz)  
Frequency (GHz)  
Figure 7. Output P1dB over Vdd  
Figure 8. Input IP3 over Vdd  
3
2.5  
2
25  
20  
15  
10  
5
25° C  
-40° C  
+85° C  
1.5  
1
25° C at 3 V  
-35° C at 3 V  
+85° C at 3 V  
0.5  
0
0
0
2
4
6
8
10 12 14 16 18 20  
2
3
4
5
6
7
8
9
10 11 12  
Frequency (GHz)  
Frequency (GHz)  
Figure 9. S21 over Temp  
Figure 10. Noise Figure over Temp  
12  
10  
8
8
6
4
2
6
0
-2  
-4  
-6  
-8  
4
25° C  
-40° C  
85° C  
25° C  
-40° C  
85° C  
2
0
2
4
6
8
10  
12  
2
4
6
8
10  
12  
Frequency (GHz)  
Frequency (GHz)  
Figure 11. Output P1dB over Temp  
Figure 12. Input IP3 over Temp  
5
Typical Scattering Parameters and Noise Parameters  
T = 25° C, Vdd = 3 V, Vpd = 3 V, Z = Z = 50 ; data obtained using 300 μm G-S-G probing on PCB substrate & broad-  
A
in  
out  
band bias tees, losses calibrated out to the package reference plane.  
S11  
S21  
S12  
S22  
Freq  
(GHz)  
(dB)  
(mag)  
(ang)  
(dB)  
(mag)  
(ang)  
(dB)  
(mag)  
(ang)  
(dB)  
(mag)  
(ang)  
0.5  
1
-1.071 0.884  
-1.068 0.8843  
-1.151 0.8759  
-2.194 0.7768  
-3.833 0.6432  
-5.869 0.5088  
-8.099 0.3936  
-10.46 0.3  
-17.999 15.88  
-28.599 16.228  
-64.841 19.703  
6.2228  
6.4776  
9.6641  
91.657  
-39.83 0.0102  
25.085  
-5.979  
0.5024  
-32.091  
54.832  
-40.72 0.0092  
-5.7032 -7.5392 0.4198  
-21.41  
2
-0.2142 -61.94 0.0008  
26.203  
94.308  
80.488  
67.726  
57.244  
48.809  
41.646  
37.431  
31.778  
26.223  
20.235  
14.279  
11.758  
3.8768  
-3.334  
-6.6846 0.4632  
-6.9512 0.4492  
-7.8145 0.4067  
-8.6172 0.3708  
-9.1311 0.3495  
-30.788  
-42.359  
-50.364  
-54.537  
-57.475  
-60.009  
-62.991  
-67.759  
-72.539  
-78.294  
-85.286  
-93.407  
-100.46  
-109.34  
-119.64  
-130.1  
2.5  
3
-82.84  
-100.89 20.494  
-116.6 20.166  
20.424  
10.5006 -26.683 -44.73 0.0058  
10.5852 -50.965 -39.49 0.0106  
10.1931 -72.011 -36.71 0.0146  
3.5  
4
-129.96 19.68  
-141.47 19.205  
9.6383  
9.1254  
8.6649  
8.317  
-90.299 -35.19 0.0174  
-106.48 -34.11 0.0197  
4.5  
5
-9.35  
0.3408  
0.3455  
0.3455  
-12.98 0.2243  
-15.61 0.1658  
-18.59 0.1176  
-21.86 0.0807  
-150.4  
18.755  
-121.1  
-33.43 0.0213  
-9.231  
-9.231  
5.5  
6
-160.11 18.399  
-166.04 18.111  
-167.23 17.923  
-160.39 17.775  
-149.66 17.709  
-142.86 17.606  
-140.76 17.709  
-152.95 17.786  
-135.11 -32.69 0.0232  
-148.18 -32.22 0.0245  
-160.97 -31.67 0.0261  
-173.68 -31.24 0.0274  
8.0454  
7.8735  
7.7401  
7.6816  
7.5906  
7.6817  
7.7502  
7.8006  
7.8542  
7.8828  
7.7516  
7.179  
-9.0199 0.354  
-8.7328 0.3659  
-8.4272 0.379  
-8.1787 0.39  
-8.1809 0.3899  
-7.6181 0.416  
-7.3711 0.428  
6.5  
7
-24.5  
0.0596  
7.5  
8
-25.11 0.0555  
-25.75 0.0516  
-22.45 0.0754  
-20.23 0.0974  
-18.22 0.1228  
173.48  
160.8  
-30.84 0.0287  
-30.75 0.029  
-29.95 0.0318  
-29.58 0.0332  
-29.34 0.0341  
-29.24 0.0345  
-29.12 0.035  
-29.37 0.034  
-30.31 0.0305  
-32.58 0.0235  
8.5  
9
147.9  
134.22  
120.1  
9.5  
10  
10.5  
11  
12  
13  
14  
15  
16  
17  
18  
-169.1  
174.25  
156.38  
137.68  
100.89  
65.61  
17.843  
17.902  
17.934  
17.788  
17.121  
15.39  
-11.824 -7.1844 0.4373  
-20.194 -6.9803 0.4477  
-29.569 -6.8455 0.4547  
-40.032 -6.9454 0.4495  
-63.682 -7.4568 0.4238  
-89.863 -9.1485 0.3488  
-115.26 -11.258 0.2736  
-141.77 -13.159 0.2198  
-16  
0.1584  
105.21  
89.54  
-141.68  
-154.5  
-13.79 0.2043  
-11.97 0.2521  
73.292  
38.405  
3.9724  
-167.89  
162.538  
127.677  
97.5178  
70.0208  
42.6539  
17.9161  
-3.435  
-8.92  
0.3581  
-6.614 0.467  
-5.764 0.515  
-5.333 0.5412  
-5.106 0.5555  
-5.002 0.5622  
-5.002 0.5622  
5.8818  
4.6006  
3.5095  
2.6777  
2.0714  
1.6291  
38.532  
17.245  
13.256  
10.905  
-25.269 -36.42 0.0151  
-50.943 -40.09 0.0099  
-73.397 -45.04 0.0056  
-93.815 -43.88 0.0064  
-112.86 -41.31 0.0086  
-0.6043 8.5552  
-15.312 6.3253  
-28.024 4.239  
163.4  
-14.462 0.1892  
-14.699 0.1841  
-14.485 0.1887  
123.41  
86.597  
Freq (GHz)  
2
Fmin (dB)  
0.93  
1.02  
0.98  
1.06  
1.33  
1.36  
1.45  
1.52  
1.69  
1.77  
1.93  
1.94  
1.91  
2.06  
2.4  
Rn  
Γopt (mag)  
0.504  
0.440  
0.574  
0.378  
0.304  
0.306  
0.234  
0.141  
0.143  
0.108  
0.111  
0.113  
0.113  
0.082  
0.165  
Γopt (ang)  
35.48  
Associated gain (dB)  
23.81  
0.279  
0.241  
0.168  
0.169  
0.152  
0.156  
0.142  
0.120  
0.120  
0.117  
0.122  
0.162  
0.142  
0.220  
0.260  
2.5  
3
41.07  
22.90  
33.56  
20.48  
4
54.74  
20.17  
5
80.24  
19.46  
5.5  
6
86.48  
19.07  
88.16  
18.92  
7
126.58  
126.9  
18.80  
8
18.88  
9
152.56  
-161.83  
-141.3  
-151.1  
-61.09  
-58.95  
19.22  
10  
10.5  
11  
12  
13  
19.38  
19.50  
19.17  
18.16  
16.77  
6
VMMK-3803 Applications Information  
Biasing and Operation  
Table 3. VMMK-3803 Demo Board BOM  
Component  
Value  
TheVMMK-3803 is biased with a positive supply connected  
to the output pinVd through an external user supplied bias  
decoupling network. Typical bias is 3 V at 20 mA. The “on”  
state also requires that the input port of the VMMK-3803  
also be biased at 3 V for normal gain operation. 0V on the  
input puts the VMMK-3803 in the “offstate.  
DUT  
C1  
C2  
R1  
VMMK-3803  
100 pF  
100 pF  
10 kohm  
0.1 μF  
C5  
C6  
L1  
An example of simple user supplied bias tees is shown in  
Figure 13. The output bias decoupling network feeding  
Vdd consists of a shunt 6.8 nH inductor. At the input, a 10  
Kohm resistor is needed to feed the power-down control  
voltage. The input and output dc blocking capacitors are  
each 100 pF. The “on” and “o” S Parameters shown in the  
preceding tables reflect the operation of the circuit shown  
in Figure 14.  
100 pF  
6.8 nH  
The input and output bias decoupling network can be  
easily constructed using small surface mount compo-  
nents. The value of the shunt inductors can have a major  
effect on both low and high frequency operation. The  
demo board uses small value inductors that have self  
resonant frequencies higher than the maximum desired  
frequency of operation. If the self-resonant frequency of  
the inductor is too close to the operating band, the value  
of the inductor will need to be adjusted so that the self-  
resonant frequency is significantly higher than the highest  
frequency of operation.  
Typically a passive component company like Murata does  
not specify S parameters at frequencies higher than 5 or  
6 GHz for larger values of inductance making it difficult  
to properly simulate amplifier performance at higher fre-  
quencies. It has been observed that the Murata LQW15AN  
series of 0402 inductors actually works quite well above  
their normally specified frequency.  
Figure 13. Demo Board (available to qualified customers upon request)  
The parallel combination of the 100 pF and 0.1 μF bypass  
capacitors provide a low impedance in the band of  
operation and at lower frequencies and should be placed  
as close as possible to the inductor. The low frequency  
bypass provides good rejection of power supply noise  
and also provides a low impedance termination for  
third order low frequency mixing products that will be  
generated when multiple in-band signals are injected into  
any amplifier.  
Vpd  
0.1 µF  
Vdd  
0.1 µF  
100 pF  
10 K  
6.8 nH  
Output  
Input  
Amp  
100 pF  
100 pF  
Input  
Pad  
Ground Output  
Pad Pad  
50 Ohm line  
50 Ohm line  
Figure 14. Example demonstration circuit of VMMK-3803 for broadband  
operation (3GHz to 11GHz).  
A layout of a typical demo board is shown in Figure 15.  
Figure 15. Biasing the VMMK-3803  
7
S Parameter Measurements  
ESD Precautions  
The S-parameters are measured on a 0.016 inch thick Note: These devices are ESD sensitive. The following pre-  
RO4003 printed circuit test board, using G-S-G (ground  
signal ground) probes. Coplanar waveguide is used to  
provide a smooth transition form the probes to the device  
under test. The presence of the ground plane on top of  
the test board results in excellent grounding at the device  
under test. A combination of SOLT (Short – Open – Load  
– Thru) and TRL (Thru – Reflect – Line) calibration tech-  
niques are used to correct for the effects of the test board,  
resulting in accurate device S parameters.  
cautions are strongly recommended. Ensure that an ESD  
approved carrier is used when die are transported from  
one destination to another. Personal grounding is to be  
worn at all times when handling these devices. For more  
detail, refer to Avago Application Note A004R: Electro-  
static Discharge Damage and Control.  
Ordering Information  
Devices Per  
Package and Assembly Note  
Part Number  
Container  
Container  
Antistatic Bag  
7Reel  
VMMK-3803-BLKG  
VMMK-3803-TR1G  
100  
For detailed description of the device package, handling  
and assembly, please refer to Application Note 5378.  
5000  
Package Dimension Outline  
D
Dimensions  
E
Symbol  
Min (mm)  
Max (mm)  
0.585  
E
0.500  
1.004  
0.225  
D
A
1.085  
A
0.275  
Note:  
All dimensions are in mm  
Reel Orientation  
Device Orientation  
USER FEED DIRECTION  
REEL  
4 mm  
8 mm  
USER  
FEED  
TOP VIEW  
END VIEW  
CARRIER  
TAPE  
DIRECTION  
Notes:  
“O= Device Code  
“Y= Month Code  
8
Tape Dimensions  
T
Note: 2  
P2  
Note: 1  
Po  
Do  
B
B
5° (Max)  
A
A
P1  
D1  
Ao  
Symbol  
Ao  
Spec.  
0.73 0.05  
R0.1  
5° (Max)  
Ko  
Bo  
1.26 0.05  
Ko  
0.35 + 0.05  
- 0  
K1  
Po  
P1  
4.0 0.10  
4.0 0.10  
2.0 0.05  
1.55 0.05  
0.5 0.05  
1.75 0.10  
3.50 0.05  
40.0 0.10  
8.0 0.20  
0.20 0.02  
Scale 5:1  
AꢀA SECTION  
P2  
Do  
D1  
E
F
Po  
W
T
Unit: mm  
Notes:  
1. 10 Sprocket hole pitch cumulative tolerance is 0.1 mm.  
2. Pocket position relative to sprocket hole measured as true position of pocket not pocket hole.  
3. Ao & Bo measured on a place 0.3 mm above the bottom of the pocket to top surface of the carrier.  
4. Ko measured from a plane on the inside bottom of the pocket to the top surface of the carrier.  
5. Carrier camber shall be not than 1 m per 100 mm through a length of 250 mm.  
For product information and a complete list of distributors, please go to our web site: www.avagotech.com  
Avago, Avago Technologies, and the A logo are trademarks of Avago Technologies in the United States and other countries.  
Data subject to change. Copyright © 2005-2012 Avago Technologies. All rights reserved.  
AV02-2920EN - December 26, 2012  

相关型号:

VMMP10BK

MICRO VIDEO PATCH CD

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
ETC

VMMP10BL

MICRO PTCHCORD BLUE

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
ETC

VMMP10GN

MICRO VIDEO PATCH CD

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
ETC

VMMP10GY

MICRO VIDEO PATCH CD

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
ETC

VMMP10O

MICRO VIDEO PATCH CD

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
ETC

VMMP10P

MICRO VIDEO PATCH CD

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
ETC

VMMP10R

MICRO VIDEO PATCH CD

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
ETC

VMMP10Y

MICRO VIDEO PATCH CD

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
ETC

VMMP1BK

MICRO PTCH CRD BLK 1

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
ETC

VMMP1BL

MICRO VIDEO PATCH CR

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
ETC

VMMP1GN

MICRO PTCH CRD GRN

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
ETC

VMMP1GY

MICRO PTCH CRD GRAY

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
ETC