AW36413CSR [AWINIC]

High Efficiency, Dual 1.5A Flash LED Driver;
AW36413CSR
型号: AW36413CSR
厂家: AWINIC    AWINIC
描述:

High Efficiency, Dual 1.5A Flash LED Driver

文件: 总37页 (文件大小:2656K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
AW36413  
July 2018 V1.4  
High Efficiency, Dual 1.5A Flash LED Driver  
FEATURES  
GENERAL DESCRIPTION  
Support Flash and Indicator 2in1 application  
The AW36413 is a dual LED flash driver that  
provides a high level of adjustability within a small  
solution size. The AW36413 utilizes a 2MHz or  
Support Dual Color Temperature Flash LED  
Application  
4MHz  
fixed-frequency  
synchronous  
boost  
1.5A Total Allowed LED Current During Operation  
(ILED1+ILED21.5A)  
converter to provide power to the dual 1.5A  
constant current LED sources. The dual 128 levels  
current sources provide the flexibility to adjust the  
current of LED1 and LED2 in Flash/Torch/IR  
modes. The total allowed LED Current during  
operation is 1.5A (ILED1+ILED2 1.5A). The  
AW36413 provides three IVFM protection modes  
to prevent system reset or shutdown under low  
battery condition.  
Flash11.35mA~1.5A128 levels  
11.72mA/level  
Torch2.55mA~372mA128 levels  
2.91mA/level  
Indicator0.02mA~372mA128*128 levels  
0.02mA/level  
Flash Timeout40ms~1.6s16 levels  
Flash/Torch/Indicator/IR Mode  
The AW36413 is controlled via an I2C-compatible  
interface. The main features of the AW36413  
include: flash/torch current, flash timeout duration,  
IVFM, TX interrupt, and NTC thermistor monitor.  
The AW36413 also provides hardware flash and  
hardware torch pins (STROBE and TORCH/TEMP)  
to control Flash/Torch events.  
High Efficiency: 85%  
Optimized Flash LED Current During Low Battery  
Conditions (IVFM)  
Hardware Strobe Enable (STROBE)  
Hardware Torch Enable (TORCH/TEMP)  
Remote NTC Monitoring  
The 2MHz or 4MHz switching frequency options,  
overvoltage protection (OVP), and adjustable  
current limit allow for the use of tiny, low-profile  
inductors and 10-µF ceramic capacitors. The  
device operates over a 40°C to +85°C ambient  
temperature range.  
Synchronization Input for RF Power Amplifier  
Pulse Events (TX)  
400kHz I2CAW36413I2C Address=0x6B)  
0.4mm PitchCSP-12 Package  
Compatible with AW3643, AW3644, AW36414  
The AW36413 is available in small 0.4mm pitch  
1.626mm×1.332mm CSP-12 package.  
APPLICATION  
Smartphone Camera Flash  
TYPICAL APPLICATION CIRCUIT  
L 1μH 3A  
VIN  
CIN  
10μF  
IN  
SW  
10V  
OUT  
COUT  
10μF  
10V  
AW36413CSR  
TORCH/TEMP  
LED1  
STROBE  
HWEN  
TX  
SDA  
SCL  
D1  
D2  
Flash  
LED  
MCU  
LED2  
GND  
Flash  
LED  
Fig 1  
Typical Application Circuit of AW36413  
All trademarks are the property of their respective owners.  
www.awinic.com.cn  
1
Copyright © 2017 SHANGHAI AWINIC TECHNOLOGY CO., LTD  
AW36413  
July 2018 V1.4  
PIN CONFIGURATION AND TOP MARK  
AW36413CSR Pin Configuration  
(Top View)  
AW36413CSR Top Mark  
(Top View)  
GND  
SW  
IN  
SDA  
SCL  
A
B
C
D
STROBE  
HWEN  
TORCH  
/TEMP  
OUT  
LED2  
TX  
LED1  
1
2
3
343AAW36413CSR  
XXXXManufacture Tracking Code  
Fig 2  
Pin Configuration and Top Mark  
PIN DEFINITION  
No.  
NAME  
TYPE  
DESCRIPTION  
Ground  
A1  
GND  
Ground  
Input voltage connection. Connect IN to GND with a 10µF or larger ceramic  
capacitor.  
A2  
IN  
Power  
Serial data input/output of the I2C interface.  
Switch pin of the step-up DC-DC convertor.  
I/O  
A3  
B1  
SDA  
SW  
Power  
Active high hardware flash enable. Drive STROBE high to turn on Flash pulse.  
Internal pull down resistor of 300kΩ between STROBE and GND.  
B2  
B3  
C1  
STROBE  
SCL  
I/O  
I/O  
Serial clock input of the I2C interface.  
Step-up DC-DC converter output. Connect a 10µF ceramic capacitor between  
OUT and GND.  
OUT  
Power  
Active high enable pin. High = Standby, Low = Shutdown/Reset. Internal pull  
down resistor of 300kΩ between HWEN and GND.  
C2  
HWEN  
I/O  
Torch terminal input or threshold detector for NTC temperature sensing and  
current scale back.  
C3  
D1  
D2  
D3  
TORCH/TEMP  
LED2  
I/O  
Power  
I/O  
High-side current source output for flash LED2.  
Power amplifier synchronization input. Internal pull down resistor of 300kΩ  
between TX and GND.  
TX  
Power  
LED1  
High-side current source output for flash LED1.  
www.awinic.com.cn  
2
Copyright © 2017 SHANGHAI AWINIC TECHNOLOGY CO., LTD  
AW36413  
July 2018 V1.4  
ORDERING INFORMATION  
Moisture  
Sensitivity  
Level  
Part  
Number  
Environmental  
Information  
Temperature  
Package  
Marking  
Delivery Form  
AW36413  
CSR  
3000 units/  
1.626mm×1.332mm  
CSP-12  
343A  
MSL1  
ROHS+HF  
-40°C 85°C  
XXXX  
Tape and Reel  
AW36413  
Shipping  
R: Tape & Reel  
Package Type  
CS: CSP  
AWINIC FLASH LED DRIVER SERIES  
Product  
Channels  
Type  
Description  
Package  
High Efficiency, Dual Independent 1.5A Flash LED  
Driver  
AW3644  
2
Boost  
CSP-12  
High Efficiency, Dual Independent 1.5A Flash LED  
Driver  
AW36414  
AW3643  
2
2
2
1
1
1
1
1
1
Boost  
Boost  
Boost  
Boost  
Boost  
CSP-12  
CSP-12  
CSP-12  
CSP-12  
CSP-9  
High Efficiency, Dual 1.5A Flash LED Driver  
High Efficiency, Dual 1.5A Flash LED Driver  
High Efficiency, 1.5A Flash LED Driver  
High Efficiency, 1.5A Flash LED Driver  
AW36413  
AW3648  
AW3642  
Charge  
Pump  
Flash Current & Flash Timer Programmable 1A Flash  
LED Driver  
AW3641E  
AW36402  
AW36404  
AW36406  
DFN-10L  
DFN-6L  
DFN-8L  
DFN-8L  
Current  
Sink  
200mA 1-wire Configurable Front Flash LED Driver  
with Ultra Small Package  
Current  
Sink  
400mA 1-wire Configurable Front Flash LED Driver  
with Ultra Small Package  
Current  
Sink  
600mA PWM Configurable Front Flash LED Driver  
with Ultra Small Package  
www.awinic.com.cn  
3
Copyright © 2017 SHANGHAI AWINIC TECHNOLOGY CO., LTD  
AW36413  
July 2018 V1.4  
TYPICAL APPLICATION CIRCUITS  
L 1μH 3A  
VIN  
CIN  
10μF  
IN  
SW  
10V  
OUT  
COUT  
10μF  
10V  
AW36413CSR  
TORCH/TEMP  
LED1  
LED2  
STROBE  
HWEN  
TX  
SDA  
SCL  
D1  
D2  
Flash  
LED  
MCU  
GND  
Flash  
LED  
Fig 3  
Notice for Typical Application Circuits:  
AW36413 Application Circuit  
1: Please place CINCOUT as close to the chip as possible.  
2: Connect the inductor on the top layer close to the SW pin.  
3: For the sake of driving capability, the power lines, output lines, and the connection lines of L and LED  
should be short and wide as possible. .  
www.awinic.com.cn  
4
Copyright © 2017 SHANGHAI AWINIC TECHNOLOGY CO., LTD  
AW36413  
July 2018 V1.4  
ABSOLUTE MAXIMUM RATINGS(NOTE1)  
PARAMETERS  
IN, SW, OUT, LED1, LED2  
Range  
Unit  
V
-0.3 to 6  
HWEN, SCL, SDA, STROBE, TORCH/TEMP, TX  
Continuous power dissipation  
0.3 to (VIN+0.3)  
Internally limited  
V
Max Junction Temperature TJMAX  
Storage Temperature TSTG  
155  
-65 to 150  
260  
Maximum lead temperature (soldering)  
Junction to Ambient Thermal Resistance θJA  
79.2  
/W  
HBM  
±2000  
±1500  
V
V
ESD, All Pins(NOTE2)  
CDM  
+IT+200  
-IT-200  
Latch-Up (Test method: JEDEC STANDARD NO.78D)  
mA  
RECOMMENDED OPERATING CONDITIONS  
PARAMETERS  
Range  
Unit  
VIN  
2.7 to 5.5  
V
Junction temperature (TJ)  
Ambient temperature (TA)  
-40 to 125  
-40 to 85  
NOTE1: Conditions out of those ranges listed in absolute maximum ratingsmay cause permanent damages  
to the device. In spite of the limits above, functional operation conditions of the device should within the  
ranges listed in recommended operating conditions. Exposure to absolute-maximum-rated conditions for  
prolonged periods may affect device reliability.  
NOTE2: The human body model is a 100pF capacitor discharged through a 1.5resistor into each pin. Test  
method: MIL-STD-883J Method 3015.9  
www.awinic.com.cn  
5
Copyright © 2017 SHANGHAI AWINIC TECHNOLOGY CO., LTD  
AW36413  
July 2018 V1.4  
ELECTRICAL CHARACTERISTICS  
Typical limits tested at TA=25. Minimum and maximum limits apply over the full operating ambient  
temperature range(-40TA85). Unless otherwise specified, VIN=3.6V, HWEN= VIN.  
Symbol  
Description  
Test Condition  
Min  
Typ  
Max  
Unit  
Vin Supply  
VIN  
IQ  
Input operating range  
2.7  
5.5  
0.8  
V
Quiescent supply current  
Device not switching, pass mode  
0.4  
3
mA  
Device disabled, HWEN=1.8V  
ISB  
Standby supply current  
Shutdown supply current  
10  
1
  
  
2.5VVIN5.5V  
Device disabled, HWEN=0V  
ISD  
0.1  
2.5VVIN5.5V  
Falling VIN  
Rising VIN  
2.5  
2.6  
V  
Under voltage lockout  
threshold  
UVLO  
V
Current Source Specifications  
VOUT=4V,  
flash code=0x7F=1.5A  
-7%  
1.5  
7%  
A
ILED1/2  
Current source accuracy  
VOUT=4V,  
torch code=0x3F=186mA  
-10%  
186  
10%  
mA  
ON threshold  
OFF threshold  
4.85  
4.75  
5
5.15  
5.05  
VOUT over-voltage protect  
threshold  
VOVP  
V
4.9  
Boost Converter Specifications  
RPMOS  
RNMOS  
PMOS switch on-resistance  
NMOS switch on-resistance  
85  
60  
1.9  
2.8  
2
mΩ  
mΩ  
Reg 0x07, bit[0]=0  
Reg 0x07, bit[0]=1  
Reg 0x07, bit[1]=0  
Reg 0x07, bit[1]=1  
-12%  
-12%  
-6%  
12%  
12%  
6%  
ICL  
Switch current limit  
Switching frequency  
A
FSW  
MHz  
-6%  
4
6%  
Input voltage flash monitor  
trip threshold  
VIVFM  
INTC  
Reg 0x02, bits[3:1]=000”  
-3%  
-6%  
-6%  
2.9  
50  
3%  
6%  
6%  
V
  
V
NTC current  
NTC comparator trip  
threshold  
VTRIP  
Reg 0x09, bit[3:1]=100”  
0.6  
Thermal shutdown threshold  
Thermal shutdown hysteresis  
155  
20  
TSD  
www.awinic.com.cn  
6
Copyright © 2017 SHANGHAI AWINIC TECHNOLOGY CO., LTD  
AW36413  
July 2018 V1.4  
Symbol  
Description  
Test Condition  
Min  
Typ  
Max  
Unit  
I2C-Compatible Interface Specifications(SCL,SDA)  
VIL  
Input logic low  
Input logic high  
Output logic low  
0
0.4  
VIN  
0.4  
V
V
V
VIH  
VOL  
1.2  
ILOAD=3mA  
HWEN, STROBE, TORCH/TEMP, TX Voltage Specifications  
VIL  
Input logic low  
0
0.4  
VIN  
V
V
VIH  
RPD  
Input logic high  
1.2  
Internal pull down resistors  
300  
mΩ  
www.awinic.com.cn  
7
Copyright © 2017 SHANGHAI AWINIC TECHNOLOGY CO., LTD  
AW36413  
July 2018 V1.4  
I2C INTERFACE TIMING  
Symbol  
Description  
Min  
Typ  
Max  
Units  
FSCL  
Interface Clock frequency  
400  
kHz  
ns  
SCL  
SDA  
200  
250  
TDEGLITCH Deglitch time  
ns  
s  
s  
s  
s  
s  
s  
s  
s  
s  
s  
THD:STA  
TLOW  
(Repeat-start) Start condition hold time  
Low level width of SCL  
0.6  
1.3  
0.6  
0.6  
0
THIGH  
TSU:STA  
THD:DAT  
TSU:DAT  
TR  
High level width of SCL  
(Repeat-start) Start condition setup time  
Data hold time  
Data setup time  
0.1  
Rising time of SDA and SCL  
Falling time of SDA and SCL  
Stop condition setup time  
Time between start and stop condition  
0.3  
0.3  
TF  
TSU:STO  
TBUF  
0.6  
1.3  
VIH  
SDA  
SCL  
VIL  
tBUF  
tLOW  
tHIGH  
tR  
tSP  
tF  
VIH  
VIL  
tHD:STA  
tHD:DAT  
tSU:DAT  
tSU:STA  
tSU:STO  
Stop  
Start  
Start  
Stop  
Fig 4  
I2C INTERFACE TIMING  
www.awinic.com.cn  
8
Copyright © 2017 SHANGHAI AWINIC TECHNOLOGY CO., LTD  
AW36413  
July 2018 V1.4  
TYPICAL CHARACTERISTICS  
Ambient temperature is 25°C, input voltage is 3.6 V, HWEN = IN, CIN = COUT = 2×10 µF and L=1 µH, unless  
otherwise noted .  
1.6  
1.4  
1.2  
1
1.6  
1.4  
1.2  
1
0.8  
0.6  
0.4  
0.2  
0
0.8  
0.6  
0.4  
0.2  
0
0
16  
32  
48  
64  
80  
96  
112  
128  
0
16  
32  
48  
64  
80  
96  
112  
128  
LED1 Flash Code (dec#)  
LED2 Flash Code (dec#)  
Fig 5. LED1 Flash Current vs Brightness Code  
Fig 6. LED2 Flash Current vs Brightness Code  
0.4  
0.4  
0.36  
0.32  
0.28  
0.24  
0.2  
0.36  
0.32  
0.28  
0.24  
0.2  
0.16  
0.12  
0.08  
0.04  
0
0.16  
0.12  
0.08  
0.04  
0
0
16  
32  
48  
64  
80  
96  
112  
128  
0
16  
32  
48  
64  
80  
96  
112  
128  
LED1 Torch Code (dec#)  
LED2 Torch Code (dec#)  
Fig 7. LED1 Torch Current vs Brightness Code  
Fig 8. LED2 Torch Current vs Brightness Code  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0.0  
1.6  
1.5  
1.4  
1.3  
1.2  
1.1  
1.0  
0.9  
0.8  
0.7  
BRC = 63  
BRC = 55  
BRC = 47  
BRC = 39  
BRC = 31  
BRC = 23  
BRC = 15  
BRC = 7  
BRC = 127  
BRC = 119  
BRC = 111  
BRC = 103  
BRC = 95  
BRC = 87  
BRC = 79  
BRC = 71  
BRC = 0  
2.5  
3
3.5  
4
4.5  
5
5.5  
2.5  
3
3.5  
4
4.5  
5
5.5  
VIN (V)  
VIN (V)  
Fig 9. LED1 Flash Current vs Input Voltage  
Fig 10. LED1 Flash Current vs Input Voltage  
www.awinic.com.cn  
9
Copyright © 2017 SHANGHAI AWINIC TECHNOLOGY CO., LTD  
AW36413  
July 2018 V1.4  
Typical Characteristics (continued)  
Ambient temperature is 25°C, input voltage is 3.6 V, HWEN = IN, CIN = COUT = 2×10 µF and L=1 µH, unless  
otherwise noted .  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0.0  
1.6  
1.5  
1.4  
1.3  
1.2  
1.1  
1.0  
0.9  
0.8  
0.7  
BRC = 63  
BRC = 55  
BRC = 47  
BRC = 39  
BRC = 31  
BRC = 23  
BRC = 15  
BRC = 7  
BRC = 127  
BRC = 119  
BRC = 111  
BRC = 103  
BRC = 95  
BRC = 87  
BRC = 79  
BRC = 71  
BRC = 0  
2.5  
3
3.5  
4
4.5  
5
5.5  
2.5  
3
3.5  
4
4.5  
5
5.5  
VIN (V)  
VIN (V)  
Fig 11. LED2 Flash Current vs Input Voltage  
Fig 12. LED2 Flash Current vs Input Voltage  
1.60  
1.58  
1.56  
1.54  
1.52  
1.50  
1.48  
1.46  
1.44  
1.42  
1.40  
1.10  
1.08  
1.06  
1.04  
1.02  
1.00  
0.98  
0.96  
0.94  
0.92  
0.90  
2.5  
3
3.5  
4
4.5  
5
5.5  
2.5  
3
3.5  
4
4.5  
5
5.5  
VIN (V)  
VIN (V)  
ILED=1.5A  
fSW=2Mhz  
Flash  
ILED=1.006A fSW=2Mhz Flash  
Fig 13. LED1/2 Flash Current vs Input Voltage  
Fig14. LED1/2 Flash Current vs Input Voltage  
0.87  
0.85  
0.83  
0.81  
0.79  
0.77  
0.75  
0.73  
0.71  
0.69  
0.67  
0.60  
0.58  
0.56  
0.54  
0.52  
0.50  
0.48  
0.46  
0.44  
0.42  
0.40  
LED1  
LED2  
LED1  
LED2  
2.5  
3
3.5  
4
4.5  
5
5.5  
2.5  
3
3.5  
4
4.5  
5
5.5  
VIN (V)  
VIN (V)  
ILED=0.747A fSW=2Mhz  
Flash  
ILED=0.501A fSW=2Mhz Flash  
Fig 15. LED1 & LED2 Current vs Input Voltage  
Fig16. LED1 & LED2 Current vs Input Voltage  
www.awinic.com.cn  
10  
Copyright © 2017 SHANGHAI AWINIC TECHNOLOGY CO., LTD  
AW36413  
July 2018 V1.4  
Typical Characteristics (continued)  
Ambient temperature is 25°C, input voltage is 3.6 V, HWEN = IN, CIN = COUT = 2×10 µF and L=1 µH, unless  
otherwise noted .  
0.45  
0.44  
0.43  
0.42  
0.41  
0.40  
0.39  
0.38  
0.37  
0.36  
0.35  
0.34  
0.33  
0.32  
0.31  
0.30  
0.45  
0.44  
0.43  
0.42  
0.41  
0.40  
0.39  
0.38  
0.37  
0.36  
0.35  
0.34  
0.33  
0.32  
0.31  
0.30  
2.5  
3
3.5  
4
4.5  
5
5.5  
2.5  
3
3.5  
4
4.5  
5
5.5  
VIN (V)  
VIN (V)  
ILED=0.372A  
fSW=2Mhz  
Torch  
ILED=0.372A  
fSW=4Mhz  
Torch  
Fig 17. LED1/2 Torch Current vs Input Voltage  
Fig 18. LED1/2 Torch Current vs Input Voltage  
0.25  
0.24  
0.23  
0.22  
0.21  
0.20  
0.19  
0.18  
0.17  
0.16  
0.15  
0.25  
0.24  
0.23  
0.22  
0.21  
0.20  
0.19  
0.18  
0.17  
0.16  
0.15  
2.5  
3
3.5  
4
4.5  
5
5.5  
2.5  
3
3.5  
4
4.5  
5
5.5  
VIN (V)  
VIN (V)  
ILED=0.186A  
fSW=2Mhz  
Torch  
ILED=0.186A  
fSW=4Mhz  
Torch  
Fig 19. LED1/2 Torch Current vs Input Voltage  
Fig 20. LED1/2 Torch Current vs Input Voltage  
0.45  
0.44  
0.43  
0.42  
0.41  
0.40  
0.39  
0.38  
0.37  
0.36  
0.35  
0.34  
0.33  
0.32  
0.31  
0.30  
0.25  
0.24  
0.23  
0.22  
0.21  
0.20  
0.19  
0.18  
0.17  
0.16  
0.15  
LED1  
LED2  
LED1  
LED2  
2.5  
3
3.5  
4
4.5  
5
5.5  
2.5  
3
3.5  
4
4.5  
5
5.5  
VIN (V)  
VIN (V)  
ILED=0.372A  
fSW=2Mhz  
Torch  
ILED=0.186A  
fSW=2Mhz  
Torch  
Fig 21. LED1 & LED2 Current vs Input Voltage  
Fig 22. LED1 & LED2 Current vs Input Voltage  
www.awinic.com.cn  
11  
Copyright © 2017 SHANGHAI AWINIC TECHNOLOGY CO., LTD  
AW36413  
July 2018 V1.4  
Typical Characteristics (continued)  
Ambient temperature is 25°C, input voltage is 3.6 V, HWEN = IN, CIN = COUT = 2×10 µF and L=1 µH, unless  
otherwise noted .  
100  
95  
90  
85  
80  
75  
70  
65  
60  
55  
50  
100  
95  
90  
85  
80  
75  
70  
65  
60  
55  
50  
VLED = 3.1V  
VLED = 3.3V  
VLED = 3.5V  
VLED = 3.8V  
VLED = 4.1V  
VLED = 4.4V  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
VIN (V)  
VIN (V)  
ILED=1.5A  
fSW=2Mhz Flash  
ILED=1.5A  
VLED=3.5V  
fSW=2Mhz Flash  
Fig23. LED Efficiency vs Input Voltage  
Fig24. LED Efficiency vs Input Voltage  
100  
95  
90  
85  
80  
75  
70  
65  
60  
55  
50  
100  
95  
90  
85  
80  
75  
70  
65  
60  
55  
50  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
VIN (V)  
VIN (V)  
ILED=1.006A  
VLED=3.2V  
fSW=2Mhz Flash  
ILED=1.006A  
VLED=3.2V  
fSW=4Mhz Flash  
Fig25. LED Efficiency vs Input Voltage  
Fig26. LED Efficiency vs Input Voltage  
100  
95  
90  
85  
80  
75  
70  
65  
60  
55  
50  
100  
95  
90  
85  
80  
75  
70  
65  
60  
55  
50  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
Torch  
5.5  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
Torch  
5.5  
VIN (V)  
VIN (V)  
ILED=0.186A VLED=2.75V  
fSW=2Mhz  
ILED=0.372A VLED=2.9V  
fSW=2Mhz  
Fig 28. LED Efficiency vs Input Voltage  
Fig 27. LED Efficiency vs Input Voltage  
www.awinic.com.cn  
12  
Copyright © 2017 SHANGHAI AWINIC TECHNOLOGY CO., LTD  
AW36413  
July 2018 V1.4  
Typical Characteristics (continued)  
Ambient temperature is 25°C, input voltage is 3.6 V, HWEN = IN, CIN = COUT = 2×10 µF and L=1 µH, unless  
otherwise noted .  
2.150  
2.125  
2.100  
2.075  
2.050  
2.025  
2.000  
1.975  
1.950  
1.925  
1.900  
4.300  
4.250  
4.200  
4.150  
4.100  
4.050  
4.000  
3.950  
3.900  
3.850  
3.800  
2.5 2.75  
3
3.25 3.5 3.75  
4
4.25 4.5 4.75  
5
2.5 2.75  
3
3.25 3.5 3.75  
4
4.25 4.5 4.75  
5
VIN (V)  
VIN (V)  
Fig 29. 2-Mhz Frequency vs Input Voltage  
Fig 30. 4-Mhz Frequency vs Input Voltage  
10  
9
8
7
6
5
4
3
2
1
0
5.0  
4.5  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0.0  
2.5  
3
3.5  
4
4.5  
5
5.5  
2.5  
3
3.5  
4
4.5  
5
5.5  
VIN (V)  
VIN (V)  
HWEN=1.8 V  
I2C=1.8 V  
HWEN=1.8 V  
I2C=0 V  
Fig 31. Standby Current vs Input Voltage  
Fig 32. Standby Current vs Input Voltage  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0.0  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0.0  
2.5  
3
3.5  
4
4.5  
I2C=VIN  
5
5.5  
2.5  
3
3.5  
4
4.5  
5
5.5  
VIN (V)  
VIN (V)  
HWEN=VIN  
HWEN=VIN  
I2C=0 V  
Fig 33. Standby Current vs Input Voltage  
Fig 34. Standby Current vs Input Voltage  
www.awinic.com.cn  
13  
Copyright © 2017 SHANGHAI AWINIC TECHNOLOGY CO., LTD  
AW36413  
July 2018 V1.4  
Typical Characteristics (continued)  
Ambient temperature is 25°C, input voltage is 3.6 V, HWEN = IN, CIN = COUT = 2×10 µF and L=1 µH, unless  
otherwise noted .  
2.20  
2.16  
2.12  
2.08  
2.04  
2.00  
1.96  
1.92  
1.88  
1.84  
1.80  
1.76  
1.72  
1.68  
1.64  
1.60  
2.20  
2.16  
2.12  
2.08  
2.04  
2.00  
1.96  
1.92  
1.88  
1.84  
1.80  
1.76  
1.72  
1.68  
1.64  
1.60  
2.5  
2.7  
2.9  
3.1  
3.3  
3.5  
3.7  
3.9  
4.1  
4.3  
2.5  
2.7  
2.9  
3.1  
3.3  
3.5  
3.7  
3.9  
4.1  
4.3  
VIN (V)  
VIN (V)  
ILED=1.5A  
fSW=2MHz  
ICL=1.9A  
VLED=4.5V  
ILED=1.5A  
fSW=4MHz  
ICL=1.9A  
VLED=4.5V  
Fig 35. Inductor Current Limit vs Input Voltage  
Fig 36. Inductor Current Limit vs Input Voltage  
3.0  
2.8  
2.6  
2.4  
2.2  
2.0  
1.8  
1.6  
1.4  
3.0  
2.8  
2.6  
2.4  
2.2  
2.0  
1.8  
1.6  
1.4  
2.5 2.7 2.9 3.1 3.3 3.5 3.7 3.9 4.1 4.3 4.5 4.7 4.9  
2.5 2.7 2.9 3.1 3.3 3.5 3.7 3.9 4.1 4.3 4.5 4.7 4.9  
VIN (V)  
fSW=2MHz  
ICL=2.8A  
VIN (V)  
fSW=4MHz  
ICL=2.8A  
ILED=1.5A  
VLED=4.5V  
ILED=1.5A  
VLED=4.5V  
Fig 37. Inductor Current Limit vs Input Voltage  
Fig 38. Inductor Current Limit vs Input Voltage  
VOUT (2V/DIV)  
VOUT (2V/DIV)  
ILED (500mA/DIV)  
IIN (1A/DIV)  
ILED (500mA/DIV)  
IIN (1A/DIV)  
TIME (500 μs/DIV)  
TIME (500 μs/DIV)  
ILED1/2=1006mA  
fSW=2Mhz  
VLED=3.4V  
ILED1/2=1006mA  
fSW=2Mhz  
VLED=3.4V  
Fig 40. Ramp Down  
Fig 39. Ramp Up  
www.awinic.com.cn  
14  
Copyright © 2017 SHANGHAI AWINIC TECHNOLOGY CO., LTD  
AW36413  
July 2018 V1.4  
Typical Characteristics (continued)  
Ambient temperature is 25°C, input voltage is 3.6 V, HWEN = IN, CIN = COUT = 2×10 µF and L=1 µH, unless  
otherwise noted .  
TX Signal  
VOUT (2V/DIV)  
VIN (50mV/DIV)  
ILED (800mA/DIV)  
IIN (800mA/DIV)  
ILED (200mA/DIV)  
IIN (500mA/DIV)  
TIME (500 μs/DIV)  
fSW=2Mhz VLED=3.18V  
TIME (2 ms/DIV)  
ILED1=ILED2=746.9mA  
VIVFM=3.2V  
ILED1=ILED2=746.9mA  
fSW=2Mhz  
VLED=3.18V  
Fig 41. TX Interrupt  
Fig 42. IVFM Stop and Hold  
VIN (50mV/DIV)  
VIN (50mV/DIV)  
ILED (200mA/DIV)  
IIN (500mA/DIV)  
ILED (200mA/DIV)  
IIN (500mA/DIV)  
TIME (500 μs/DIV)  
TIME (500 μs/DIV)  
fSW=2Mhz VLED=3.18V  
ILED1=ILED2=746.9mA  
fSW=2Mhz  
VLED=3.18V  
VIVFM=3.2V  
ILED1=ILED2=746.9mA  
VIVFM=3.2V  
Fig 43. IVFM Down  
Fig 44. IVFM Up and Down  
www.awinic.com.cn  
15  
Copyright © 2017 SHANGHAI AWINIC TECHNOLOGY CO., LTD  
AW36413  
July 2018 V1.4  
DETAILED FUNCTIONAL DESCRIPTION  
The AW36413 is a high-power white LED flash driver capable of delivering up to 1.5A in either of the two  
parallel LEDs. The total allowed LED current during operation is 1.5A (ILED1+ILED21.5A). The device  
incorporates a 2MHz or 4MHz constant frequency-synchronous current-mode PWM boost converter and dual  
high-side current sources to regulate the LED current over the 2.7V to 5.5V input voltage range.  
The AW36413 PWM DC-DC boost converter switches and boosts the output to maintain at least VHR across  
each of the current sources (LED1/2). This minimum headroom voltage ensures that both current sources  
remain in regulation. If the input voltage is above the LED voltage + current source headroom voltage, the  
device would not switch, but turns the PMOS on continuously (Pass mode). In Pass mode the difference  
between (VIN ILED × RPMOS) and the voltage across the LED is dropped across the current source.  
The AW36413 has three logic inputs including a hardware Flash Enable (STROBE), a hardware Torch Enable  
(TORCH/TEMP, TORCH = default), and a Flash Interrupt input (TX) designed to interrupt the flash pulse  
during high battery-current conditions. These logic inputs have internal 300kΩ (typical) pull-down resistors to  
GND.  
Additional features of the AW36413 include an internal comparator for LED thermal sensing via an external  
NTC thermistor and an input voltage monitor that can reduce the Flash current during low VIN conditions. It  
also has a Hardware Enable (HWEN) pin that can be used to reset the state of the device and the registers by  
pulling the HWEN pin to ground.  
Control is done via an I2C-compatible interface. This includes adjustment of the Flash and Torch current  
levels, changing the Flash Timeout Duration, and changing the switch current limit. Additionally, there are flag  
and status bits that indicate flash current timeout, LED over-temperature condition, LED failure (open/short),  
device thermal shutdown, TX interrupt, and VIN under-voltage conditions.  
www.awinic.com.cn  
16  
Copyright © 2017 SHANGHAI AWINIC TECHNOLOGY CO., LTD  
AW36413  
July 2018 V1.4  
FUNCTIONAL BLOCK DIAGRAM  
SW  
AW36413  
OVP  
IN  
Thermal Shutdown  
Protection  
VOVP  
UVLO  
IVFM  
OUT  
OSC  
Boost Controller  
2/4Mhz  
INTC=50uA  
NTC  
monitor  
Current  
Limit  
TORCH/TEMP  
STROBE  
TX  
LED1  
LED2  
FB  
Select  
Control Logic  
/Regsiter  
HWEN  
I2C  
Interface  
LED & OUT  
Short Detect  
SDA  
SCL  
GND  
FEATURE DESCRIPTION  
HWEN & I2C INTERFACE  
AW3643 has a logic input HWEN pin to enable/disable the device. When HWEN is set low, the device goes  
into shutdown mode, the I2C interface is disabled and all I2C registers are reset to default. In shutdown mode  
the device does not respond to any I2C command. When HWEN is set high, the device goes into standby  
mode, the I2C interface is enabled, and the device can respond to I2C command.  
There are two kinds of power-up sequences, shown in Figure 45 and Figure 46.  
If HWEN is tied to IN pin in application, once IN goes above around VPOR (2.0V), HWEN should stay high for at  
least twait=2ms time before any I2C command can be accepted.  
If HWEN is driven by a GPIO, once HWEN goes from low to high, HWEN should stay high for at least  
twait=2ms time before any I2C command can be accepted.  
HWEN=IN  
twait2ms  
I2C command  
Fig 45  
Power-Up Sequence with HWEN Tied to IN  
www.awinic.com.cn  
17  
Copyright © 2017 SHANGHAI AWINIC TECHNOLOGY CO., LTD  
AW36413  
July 2018 V1.4  
IN  
HWEN  
twait2ms  
I2C command  
Fig 46  
Power-Up Sequence with HWEN Driven by GPIO  
FLASH MODE  
In Flash Mode, the LED current sources (LED1/2) provide 128 target current levels from 11.35mA to 1.5A.  
The total allowed LED current during operation is 1.5A (ILED1+ILED21.5A). The Flash currents are  
adjusted via the LED1 and LED2 Flash Brightness Registers. Flash mode is activated by the Enable  
Register(setting M1, M0 to 11), or by pulling the STROBE pin HIGH when the pin is enabled (Enable  
Register). Once the Flash sequence is activated the current source (LED1/2) ramps up to the programmed  
Flash current by stepping through all current steps until the programmed current is reached.  
When the device is enabled in Flash Mode through the Enable Register, all mode bits in the Enable Register  
are cleared after a flash timeout event.  
TORCH MODE  
In Torch mode, the LED current sources (LED1/2) provide 128 target current levels from 2.55mA to 372mA.  
The Torch currents are adjusted via the LED1 and LED2 Torch Brightness Registers. Torch mode is activated  
by the Enable Register (setting M1, M0 to 10), or by pulling the TORCH/TEMP pin HIGH when the pin is  
enabled (Enable Register) and set to Torch Mode. Once the TORCH sequence is activated the active current  
sources (LED1/2) ramps up to the programmed Torch current by stepping through all current steps until the  
programmed current is reached. The rate at which the current ramps is determined by the value chosen in the  
Timing Register.  
Torch Mode is not affected by Flash Timeout or by a TX Interrupt event.  
IR MODE  
In IR Mode, the target LED current is equal to the value stored in the LED1/2 Flash Brightness Registers.  
When IR mode is enabled (setting M1, M0 to 01), the boost converter turns on and set the output equal to the  
input (pass-mode). At this point, toggling the STROBE pin enables and disables the LED1/2 current sources  
(if enabled). The strobe pin can only be set to be Level sensitive, meaning all timing of the IR pulse is  
externally controlled. In IR Mode, the current sources do not ramp the LED outputs to the target. The current  
transitions immediately from off to on and then on to off.  
www.awinic.com.cn  
18  
Copyright © 2017 SHANGHAI AWINIC TECHNOLOGY CO., LTD  
AW36413  
July 2018 V1.4  
BOOST  
PASS  
VOUT  
OFF  
STROBE  
ILED1  
ILED2  
M1,M0=01’  
LED1,LED2=11’  
STROBE EN=1’  
M1,M0=01’  
LED1,LED2=10’  
STROBE EN=1’  
M1,M0=00’  
LED1,LED2=10’  
STROBE EN=1’  
Fig 47  
IR Mode with Boost  
VOUT  
STROBE  
ILED1  
ILED2  
M1,M0=01’  
LED1,LED2=11’  
STROBE EN=1’  
M1,M0=01’  
LED1,LED2=10’  
STROBE EN=1’  
M1,M0=00’  
LED1,LED2=10’  
STROBE EN=1’  
Fig 48  
IR Mode Pass Only  
VOUT  
STROBE  
ILED1  
Flash Timeout Value  
ILED2  
Timeout Reached  
VOUT goes low  
LED1 &LED2 turn off  
Timeout  
Start  
Timeout  
Start  
Timeout  
Start  
M1,M0=01’  
LED1,LED2=11’  
STROBE EN=1’  
Timeout  
Reset  
Timeout  
Reset  
Fig 49  
IR Mode Timeout  
SOFT START-UP  
Turn on of the AW36413 Torch and Flash modes can be done through the Enable Register. On start-up, when  
VOUT is less than VIN the internal synchronous PMOS turns on as a current source and delivers 200mA (typical)  
to the output capacitor. During this time the current source (LED) is off. When the voltage across the output  
www.awinic.com.cn  
19  
Copyright © 2017 SHANGHAI AWINIC TECHNOLOGY CO., LTD  
AW36413  
July 2018 V1.4  
capacitor reaches 2.2 V (typical) the current source turns on. At turn-on the current source steps through each  
FLASH or TORCH level until the target LED current is reached. This gives the device a controlled turn-on and  
limits inrush current from the VIN supply.  
PASS MODE  
The AW36413 starts up in Pass Mode and stays there until Boost Mode is needed to maintain regulation. In  
Pass Mode the boost converter does not switch, and the synchronous PMOS turns fully on bringing VOUT up to  
VIN ILED × RPMOS  
.
In Pass Mode the inductor current is not limited by the peak current limit. If the voltage  
difference between VOUT and VLED falls below VHR, the device switches to Boost Mode.  
POWER AMPLIFIER SYNCHRONIZATION (TX)  
The TX pin is a Power Amplifier Synchronization input. This is designed to reduce the flash LED current and  
thus limit the battery current during high battery current conditions such as PA transmit events. When the  
AW36413 is engaged in a Flash event, and the TX pin is pulled high, the LED current is forced into Torch  
Mode at the programmed Torch current setting. If the TX pin is then pulled low before the Flash pulse  
terminates, the LED current returns to the previous Flash current level. At the end of the Flash time-out,  
whether the TX pin is high or low, the LED current turns off.  
The TX input can be disable by setting bit[7] (TX Enable) to a 0in the Enable Register(0x01).  
INPUT VOLTAGE FLASH MONITOR (IVFM)  
The AW36413 has the ability to adjust the flash current based upon the voltage level present at the IN pin  
utilizing the Input Voltage Flash Monitor (IVFM). The adjustable threshold ranges from 2.9 V to 3.6 V in  
100mV steps as well as adjustable hysteresis, with three different usage modes (Stop and Hold, Down, Up  
and Down). The IVFM threshold and hysteresis are controlled by bits[5:3] and bit[2] respectively, in the IVFM  
Register(0x02). The Flags2 Register has the IVFM flag bit set when the input voltage crosses the IVFM  
threshold value. Additionally, the IVFM threshold sets the input voltage boundary that forces the AW36413 to  
either stop ramping the flash current during startup in Stop and Hold Mode, or to actively adjust the LED  
current lower in Down Mode, or to continuously adjust the LED current up and down in Up & Down Mode.  
Stop and Hold Mode: Stops Current Ramp and holds the level for the remaining flash, If VIN falls below the  
IVFM threshold value.  
Down Mode: Adjust current down if VIN falls below the IVFM threshold value and stops decreasing once VIN  
rises above the IVFM threshold (or plus a hysteresis). The AW36413 will decrease the current throughout  
the flash pulse anytime VIN falls below the IVFM threshold, not just once. The flash current will not increase  
again until the next flash.  
Up & Down Mode: Adjust current down if VIN falls below the IVFM threshold value and adjusts current up if  
VIN rise above the IVFM threshold (or plus a hysteresis). In Up & Down mode, the LED current will  
continually adjust with the rising and falling of VIN throughout the entire flash pulse.  
www.awinic.com.cn  
20  
Copyright © 2017 SHANGHAI AWINIC TECHNOLOGY CO., LTD  
AW36413  
July 2018 V1.4  
Flash Event  
VIN  
IVFM-Threshold  
Stop & Hold  
Mode  
Target Flash Current  
Flash Current with  
IVFM Disable  
Flash Current  
VIN  
Hysteresis = 0 or 50mV  
IVFM-Threshold  
Down  
Mode  
Flash Current  
VIN  
Hysteresis = 0 or 50mV  
IVFM-Threshold  
Up & Down  
Mode  
Flash Current  
Fig 50  
IVFM Modes  
FLASH TIMEOUT  
The Flash Timeout period sets the maximum time of one flash event, whether a flash stop command is  
received or not. The AW36413 has 16 timeout levels ranging from 40ms to 1.6s (see TIMING  
CONFIGURATION REGISTER (0X08) for more detail). Flash Timeout applies to both Flash and IR modes,  
and it continues to count when the Flash mode is forced into Torch mode during a TX high event. The mode  
bits are cleared and bit[0] is set in the Flags1 register(0x0A) upon a Flash Timeout. This fault flag can be reset  
to 0by reading back the Flags1 Register (0x0A), or by setting HWEN to 0, or by setting the SW RESET bit  
to a 1, or by removing power to the AW36413.  
CURRENT LIMIT  
When the inductor current limit is reached, the AW36413 terminates the charging phase of the switching cycle  
until the next switching period. If the over-current condition persists, the device operates continuously in  
current limit. The AW36413 features two selectable inductor current limits(1.9A and 2.8A) that are  
programmable by bit[0] in Boost configuration Register(0x07).  
Since the current limit is sensed in the NMOS switch, there is no mechanism to limit the current when the  
device operates in Pass Mode (current does not flow through the NMOS in pass mode). The mode bits are  
not cleared upon a Current Limit event, but a flag bit[3] is set in the Flags1 register(0x0A).  
www.awinic.com.cn  
21  
Copyright © 2017 SHANGHAI AWINIC TECHNOLOGY CO., LTD  
AW36413  
July 2018 V1.4  
This fault flag can be reset to 0by reading back the Flags1 Register (0x0A), or by setting HWEN to 0, or by  
setting the SW RESET bit to a 1, or by removing power to the AW36413.  
NTC THERMISTOR INPUT (TORCH/TEMP)  
The TORCH/TEMP pin, when set to TEMP mode, serves as a threshold detector and bias source for negative  
temperature coefficient (NTC) thermistors. When the voltage at TEMP goes below the programmed threshold,  
bit[0] is set to a 1, and the AW36413 is placed into standby mode. The NTC threshold voltage is adjustable  
from 200 mV to 900 mV in 100-mV steps. The NTC bias current is set to 50µA. The NTC detection circuitry  
can be enabled or disabled via the Enable Register. If enabled, the NTC block turns on and off during the start  
and stop of a Flash/Torch event.  
Additionally, the NTC input looks for an open NTC connection and a shorted NTC connection. If the NTC input  
falls below 100 mV, the NTC short flag is set(bit[4] in the Flags2 Register), and the AW36413 is forced into  
standby mode. If the NTC input rises above 2.3 V, the NTC Open flag is set(bit[3] in the Flags2 Register), and  
the AW36413 is forced into standby mode. These fault detections can be individually disabled/enabled via the  
NTC Open Fault Enable bit and the NTC Short Fault Enable bit in Temp register(0x09)  
VIN  
VOPEN  
INTC  
TORCH/  
TEMP  
Control  
Logic  
VTRIP  
RNTC  
VSHORT  
Fig 51  
Temp Detection Diagram  
The AW36413 is not available for operation until Flags2 register is cleared. The three NTC fault flags can be  
reset to 0by reading back the Flags2 Register (0x0B), or by setting HWEN to 0, or by setting the SW  
RESET bit to a 1, or by removing power to the AW36413.  
UNDERVOLTAGE LOCKOUT (UVLO)  
The AW36413 has an internal comparator that monitors the voltage at IN and forces the AW36413 into  
standby if the input voltage drops to 2.5 V. If the UVLO monitor threshold is tripped, the UVLO flag bit is set in  
the Flags1 Register (0x0A). If the input voltage rises above 2.5 V, the AW36413 is not available for operation  
until there is an I2C read of the Flags1 Register (0x0A). Upon a read, the Flags1 register is cleared, and  
normal operation can resume if the input voltage is greater than 2.5 V.  
VOUT SHORT FAULT  
The Output Short Fault flag reads back a 1if the device is active in Flash or Torch mode and the boost output  
experiences a short condition. VOUT short condition occurs if the voltage at OUT goes below 2.3V (typ.) while  
the device is in Torch or Flash mode. There is a deglitch time of 2.048ms before the VOUT Short flag is valid.  
The mode bits are cleared upon an the VOUT short fault. The AW36413 is not available for operation until  
VOUT Fault flags is cleared. The VOUT Short Faults can be reset to 0by reading back the Flags1 Register  
(0x0A), or by setting HWEN to 0, or by setting the SW RESET bit to a 1, or by removing power to the  
AW36413.  
www.awinic.com.cn  
22  
Copyright © 2017 SHANGHAI AWINIC TECHNOLOGY CO., LTD  
AW36413  
July 2018 V1.4  
LED SHORT FAULT  
The LED Short Fault flags read back a 1if the device is active in Flash or Torch mode and either active LED  
output experiences a short condition. An LED short condition is determined if the voltage at LED1 or LED2  
goes below 500mV (typ.) while the device is in Torch or Flash mode. There is a deglitch time of 256μs before  
the LED Short Fault flag is valid. The mode bits are cleared upon an LED short fault. The AW36413 is not  
available for operation until the LED Short Fault flags is cleared. The LED Short Faults can be reset to 0by  
reading back the Flags1 Register (0x0A), or by setting HWEN to 0, or by setting the SW RESET bit to a 1, or  
by removing power to the AW36413.  
OVERVOLTAGE PROTECTION (OVP)  
The output voltage is limited to typically 5 V. In situations such as an open LED, the AW36413 raises the  
output voltage in order to try and keep the LED current at its target value. When VOUT reaches 5 V (typ.) the  
overvoltage comparator trips and turns off the internal NMOS. When VOUT falls below the VOVP Off  
Threshold”, the AW36413 begins switching again. The mode bits are cleared, and the OVP Fault flag is set,  
when an OVP condition is present for three rising OVP edges. This prevents momentary OVP events from  
forcing the device to shut down. The AW36413 is not available for operation until the OVP Fault flag is cleared.  
The OVP Fault can be reset to 0by reading back the Flags2 Register (0x0A), or by setting HWEN to 0, or by  
setting the SW RESET bit to a 1, or by removing power to the AW36413.  
THERMAL SHUTDOWN (TSD)  
When the AW36413 die temperature reaches 155°C, the thermal shutdown detection circuit trips, forcing the  
AW36413 into standby and writing a 1to the Thermal Shutdown Fault flag of the Flags1 Register (0x0A) .  
The AW36413 is only allowed to restart after the Thermal Shutdown Fault flag is cleared. The Thermal  
Shutdown Faults can be reset to 0by reading back the Flags1 Register (0x0A), or by setting HWEN to 0, or  
by setting the SW RESET bit to a 1, or by removing power to the AW36413. Upon restart, if the die  
temperature is still above 155°C, the AW36413 resets the Fault flag and re-enters standby.  
www.awinic.com.cn  
23  
Copyright © 2017 SHANGHAI AWINIC TECHNOLOGY CO., LTD  
AW36413  
July 2018 V1.4  
PROGRAMMING  
CONTROL TRUTH TABLE  
MODE1  
MODE0  
STROBE EN  
TORCH EN  
STROBE PIN  
TORCH PIN  
ACTION  
Standby  
0
0
0
0
0
0
1
1
0
0
0
0
0
0
0
0
0
0
1
1
1
1
0
0
1
1
1
1
X
X
0
1
1
0
1
0
1
1
1
X
X
X
X
X
X
X
X
Pos edge  
Ext Torch  
Pos edge  
X
Ext Flash  
0
Pos edge  
Standalone Torch  
Standalone Flash  
Standalone Flash  
Int Torch  
Pos edge  
0
Pos edge  
Pos edge  
X
X
X
X
X
X
X
Int Flash  
X
0
IRLED Standby  
IRLED Standby  
IRLED enabled  
Pos edge  
I2C INTERFACE  
Data Validation  
When SCL is high level, SDA level must be constant. SDA can be changed only when SCL is low level.  
SDA  
SCL  
Data Line  
Stable  
Data Valid  
Change  
of Data  
Allowed  
Fig 52  
Data Validation Diagram  
I2C Start/Stop  
I2C start: SDA changes form high level to low level when SCL is high level.  
I2C stop: SDA changes form low level to high level when SCL is high level.  
SDA  
SCL  
S/Sr  
P
P: STOP condition  
S: START condition  
Sr: START Repeated condition  
Fig 53  
Start and Stop Conditions  
www.awinic.com.cn  
24  
Copyright © 2017 SHANGHAI AWINIC TECHNOLOGY CO., LTD  
AW36413  
July 2018 V1.4  
ACK (Acknowledgement)  
ACK means the successful transfer of I2C bus data. After master sends 8bits data, SDA must be released;  
SDA is pulled to GND by slave device when slave acknowledges.  
When master reads, slave device sends 8bit data, releases the SDA and waits for ACK from master. If ACK is  
send and I2C stop is not send by master, slave device sends the next data. If ACK is not send by master, slave  
device stops to send data and waits for I2C stop.  
Data Output  
by Transmiter  
Not AcknowledgeNACK)  
Data Output  
by Receiver  
AcknowledgeACK)  
SCL From  
Master  
1
2
8
9
Clock Pulse for  
START  
Acknowledgement  
condition  
Fig 54  
Acknowledgement Diagram  
Write Cycle  
One data bit is transferred during each clock pulse. Data is sampled during the high state of the serial clock  
(SCL). Consequently, throughout the clock’s high period, the data should remain stable. Any changes on the  
SDA line during the high state of the SCL and in the middle of a transaction, aborts the current transaction.  
New data should be sent during the low SCL state. This protocol allows a single data line to transfer both  
command/control information and data using the synchronous serial clock.  
Each data transaction is composed of a Start Condition, a number of byte transfers (set by the software) and  
a Stop Condition to terminate the transaction. Every byte written to the SDA bus must be 8 bits long and is  
transferred with the most significant bit first. After each byte, an Acknowledge signal must follow.  
In a write process, the following steps should be followed:  
Table 1 Master device generates START condition. The “START” signal is generated by lowering the  
SDA signal while the SCL signal is high.  
b) Master device sends slave address (7-bit) and the data direction bit (r/w = 0).  
c) Slave device sends acknowledge signal if the slave address is correct.  
d) Master sends control register address (8-bit)  
e) Slave sends acknowledge signal  
f) Master sends data byte to be written to the addressed register  
g) Slave sends acknowledge signal  
h) If master will send further data bytes the control register address will be incremented by one after  
acknowledge signal (repeat step 6, 7)  
i)  
Master generates STOP condition to indicate write cycle end  
SCL  
SDA  
0
1
2
3
4
5
6
7
8
0
1
2
3
4
5
6
7
8
0
1
2
3
4
5
6
7
8
R/WAck  
A6 A5 A4 A3 A2 A1 A0  
Device Address  
A7 A6 A5 A4 A3 A2 A1 A0  
Register Address  
D7 D6 D5 D4 D3 D2 D1 D0  
Write Data  
Ack  
Stop  
Start  
Fig 55 I2C Write Timing  
www.awinic.com.cn  
25  
Copyright © 2017 SHANGHAI AWINIC TECHNOLOGY CO., LTD  
AW36413  
July 2018 V1.4  
Read Cycle  
In a read cycle, the following steps should be followed:  
a) Master device generates START condition  
b) Master device sends slave address (7-bit) and the data direction bit (r/w = 0).  
c) Slave device sends acknowledge signal if the slave address is correct.  
d) Master sends control register address (8-bit)  
e) Slave sends acknowledge signal  
f) Master generates STOP condition followed with START condition or REPEAT START condition  
g) Master device sends slave address (7-bit) and the data direction bit (r/w = 1).  
h) Slave device sends acknowledge signal if the slave address is correct.  
i)  
j)  
Slave sends data byte from addressed register.  
If the master device sends acknowledge signal, the slave device will increase the control register  
address by one, then send the next data from the new addressed register.  
k) If the master device generates STOP condition, the read cycle is ended.  
0
1
2
3
4
5
6
7
8
0
1
2
3
4
5
6
7
8
SCL  
SDA  
R/W  
Ack  
A6 A5 A4 A3 A2 A1 A0  
A7 A6 A5 A4 A3 A2 A1 A0  
Ack  
start  
Device Address  
Register Address  
0
1
2
3
4
5
6
7
8
0
1
...  
6
7
8
……  
Using  
Repeat start……  
Ack  
A6 A5 A4 A3 A2 A1 A0  
D7 D6 …… D1 D0  
Ack  
R/W  
RS  
stop  
Write Data  
Device Address  
Separated……  
Read/write  
transaction ……  
1
...  
6
7
8
0
1
2
3
4
5
6
7
8
0
Ack  
A6 A5 A4 A3 A2 A1 A0  
D1 D0  
D7 D6  
R/W  
……  
Ack  
P
S
Device Address  
Write Data  
stop  
Fig 56 I2C Read Timing  
www.awinic.com.cn  
26  
Copyright © 2017 SHANGHAI AWINIC TECHNOLOGY CO., LTD  
AW36413  
July 2018 V1.4  
REGISTER CONFIGURATION  
REGISTER LIST  
Register name  
Chip ID Register  
Address(HEX)  
0x00  
Read/Write  
Read  
Default Value  
0x36  
0x80  
0x01  
0Xbf  
0x3F  
0Xbf  
0x3F  
0x09  
0x1A  
0x08  
0x00  
0x00  
0x12  
0x00  
0x7F  
Enable Register  
0x01  
Read/Write  
Read/Write  
Read/Write  
Read/Write  
Read/Write  
Read/Write  
Read/Write  
Read/Write  
Read/Write  
Read  
IVFM Register  
0x02  
LED1 Flash Brightness Register  
0x03  
0x04  
LED2 Flash Brightness Register  
LED1 Torch Brightness Register  
0x05  
LED2 Torch Brightness Register  
Boost Configuration Register  
Timing Configuration Register  
Temp Register  
0x06  
0x07  
0x08  
0x09  
Flags1 Register  
0x0A  
Flags2 Register  
0x0B  
Read  
Device ID Register  
0x0C  
0x0D  
0x39  
Read  
Last Flash Register  
Read  
Indicator Current Register  
Read/Write  
REGISTER DETAILED DESCRIPTION  
Chip ID Register (0x00)  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
Chip ID: 00110110”  
Enable Register (0x01)  
Bit 7  
Bit 6  
Bit 5  
Strobe  
Enable  
0=Disabled  
(Default)  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
TX Pin  
Enable  
0=Disabled  
1=Enabled  
(Default)  
Strobe Type  
0=Level  
Triggered  
(Default)  
1=Edge  
Torch/Temp  
Pin Enable  
0=Disabled  
(Default)  
Mode Bits: M1, M0  
00=Standby (Default)  
01=IR Drive  
10=Torch  
11=Flash  
LED2 Enable  
0=OFF  
(Default)  
1=ON  
LED1 Enable  
0=OFF  
(Default)  
1=ON  
1=Enabled  
1=Enabled  
Triggered  
Note:  
In Edge or Level Strobe Mode, it is recommended that the trigger pulse width be set greater than 1ms to  
ensure proper turn-on of the device.  
www.awinic.com.cn  
27  
Copyright © 2017 SHANGHAI AWINIC TECHNOLOGY CO., LTD  
AW36413  
July 2018 V1.4  
IVFM Register (0x02)  
Bit 7  
Bit 6  
UVLO  
Circuitry  
0=Disabled  
(Default)  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
IVFM  
Hysteresis  
0=0 mV  
Bit 1  
Bit 0  
RFU  
IVFM Levels  
000=2.9 V (Default)  
001=3.0 V  
010=3.1 V  
011=3.2 V  
IVFM Mode Selection  
00=Disabled  
01=Stop and Hold Mode  
(Default)  
(Default)  
1=50 mV  
1=Enabled  
10=Down Mode  
100=3.3 V  
11=Up and Down Mode  
101=3.4 V  
110=3.5 V  
111=3.6 V  
LED1 Flash Brightness Register (0x03)  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 1  
Bit 1  
Bit 1  
Bit 0  
Bit 0  
Bit 0  
Bit 0  
LED2 Flash Current Override  
0=LED2 Flash Current is not set to LED1 Flash  
Current  
1=LED2 Flash Current is set to LED1 Flash Current  
(Default)  
LED1 Flash Brightness Levels  
IFLASH(mA)≈(Brightness Code*11.72 mA)+11.35 mA  
0000000=11.35 mA  
……………  
0111111=746.9 mA (Default)  
……………  
1111111=1.5 A  
LED2 Flash Brightness Register (0x04)  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
RFU  
LED2 Flash Brightness Levels  
IFLASH(mA)≈(Brightness Code*11.72 mA)+11.35 mA  
0000000=11.35 mA  
……………  
0111111=746.9 mA (Default)  
……………  
1111111=1.5 A  
LED1 Torch Brightness Register (0x05)  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
LED2 Torch Current Override  
0=LED2 Torch Current is not set to LED1 Torch  
Current  
1=LED2 Torch Current is set to LED1 Torch Current  
(Default)  
LED1 Torch Brightness Levels  
ITORCH(mA)≈(Brightness Code*2.91 mA)+2.55 mA  
0000000=2.55 mA  
……………  
0111111=186 mA (Default)  
……………  
1111111=372 mA  
LED2 Torch Brightness Register (0x06)  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
RFU  
LED2 Torch Brightness Levels  
ITORCH(mA)≈(Brightness Code*2.91 mA)+2.55 mA  
0000000=2.55 mA  
……………  
0111111=186 mA (Default)  
……………  
1111111=372 mA  
www.awinic.com.cn  
28  
Copyright © 2017 SHANGHAI AWINIC TECHNOLOGY CO., LTD  
AW36413  
July 2018 V1.4  
Boost Configuration Register (0x07)  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Boost  
Frequency  
Select  
0=2 MHz  
(Default)  
1=4 MHz  
Bit 0  
Software  
Reset Bit  
0=Not Reset  
(Default)  
RFU  
RFU  
RFU  
LED Pin  
Short Fault  
Detect  
0=Disabled  
1=Enabled  
(Default)  
Boost Mode  
0=Normal  
(Default)  
1=Pass Mode  
Only  
Boost  
Current Limit  
0=1.9A  
1=2.8A  
(Default)  
1=Reset  
Timing Configuration Register (0x08)  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
RFU  
Torch Current Ramp time  
000=No Ramp  
001=1 ms (Default)  
010=32 ms  
Flash Time-out Duration  
0000=40 ms  
0001=80 ms  
0010=120 ms  
011=64 ms  
0011=160 ms  
100=128 ms  
0100=200 ms  
101=256 ms  
0101=240 ms  
110=512 ms  
0110=280 ms  
111=1024 ms  
0111=320 ms  
1000=360 ms  
1001=400 ms  
1010=600 ms (Default)  
1011=800 ms  
1100=1000 ms  
1101=1200 ms  
1110=1400 ms  
1111=1600 ms  
Temp Register (0x09)  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
RFU  
TORCH  
Polarity  
0=Active High 0=Disabled  
(Default)  
(Pull-down  
Resister  
Enabled)  
1=Active Low  
(Pull-down  
Resister  
NTC Open  
Fault Enable  
NTC Short  
Fault Enable  
0=Disabled  
(Default)  
TEMP Detect Voltage Thresholds  
000=200 mV  
001=300 mV  
010=400 mV  
011=500 mV  
100=600 mV (Default)  
101=700 mV  
110=800 mV  
TORCH/TEM  
P
Function  
Select  
(Default)  
1=Enabled  
0=TORCH  
(Default)  
1=TEMP  
1=Enabled  
111=900 mV  
Disabled)  
Flags1 Register (0x0A)  
Bit 7  
TX Flag  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
VOUT Short  
Fault  
LED1 Short  
Fault  
LED2 Short  
Fault  
Current Limit Thermal  
UVLO Fault  
Flash  
Time-Out  
Flag  
Flag  
Shutdown  
(TSD) Fault  
Flags2 Register (0x0B)  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
RFU  
RFU  
RFU  
NTC Short  
Fault  
NTC Open  
Fault  
IVFM Trip  
Flag  
OVP Fault  
TEMP Trip  
Fault  
www.awinic.com.cn  
29  
Copyright © 2017 SHANGHAI AWINIC TECHNOLOGY CO., LTD  
AW36413  
July 2018 V1.4  
Device ID Register (0x0C)  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
RFU  
RFU  
Device ID  
010”  
Silicon Revision Bits  
010”  
Last Flash Register (0x0D)  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
RFU  
The value stored is always the last current value the IVFM detection block set ILED=IFLASH-TARGET*((code+1)/128)  
Indicator Current Register (0x39)  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
RFU  
The indicator current IINDICATOR=ITORCH-TARGET*((indicator current code+1)/128)  
Note:  
In Torch, Flash, or IR mode, the Register(0x69) value Must be 0x00(default), and the Indicator Current  
Register(0x39) value Must be 0x7f(default).  
To set the indicator current level, the action must be done as follows:  
1) Set the Register(0x69) value to 0x02, enable the indicator current setting.  
2) Set the Indicator Current Register(0x39) value to the desired value.  
3) Set the Register(0x69) value to 0x00(default), disable the indicator current setting.  
www.awinic.com.cn  
30  
Copyright © 2017 SHANGHAI AWINIC TECHNOLOGY CO., LTD  
AW36413  
July 2018 V1.4  
APPLICATION INFORMATION  
The AW36413 can drive two flash LEDs at currents up to 1.5 A per LED. The total allowed LED current  
during operation is 1.5A (ILED1+ILED21.5A). The 2MHz/4MHz DC-DC boost regulator allows for the use of  
small value discrete external components. Below are some peripheral selection guidelines.  
OUTPUT CAPACITOR SELECTION  
The AW36413 is designed to operate with a 10µF ceramic output capacitor. When the boost converter is  
running, the output capacitor supplies the load current during the boost converter on-time. When the NMOS  
switch turns off, the inductor energy is discharged through the internal PMOS switch, supplying power to the  
load and restoring charge to the output capacitor. This causes a sag in the output voltage during the on-time  
and a rise in the output voltage during the off-time. The output capacitor is therefore chosen to limit the output  
ripple to an acceptable level depending on load current and input/output voltage differentials and also to  
ensure the converter remains stable.  
Larger capacitors such as a 22µF or capacitors in parallel can be used if lower output voltage ripple is desired.  
To estimate the output voltage ripple considering the ripple due to capacitor discharge (ΔVQ) and the ripple  
due to the capacitors ESR (ΔVESR) use the following equations:  
For continuous conduction mode, the output voltage ripple due to the capacitor discharge is:  
(VOUT VIN )ILED  
VQ   
VOUT f COUT  
The output voltage ripple due to the output capacitors ESR is found by:  
L   
VOUT ILED I  
VIN (VOUT VIN )  
VOUT f L  
VESR RESR  
IL   
VIN  
2
Where  
In ceramic capacitors the ESR is very low so the assumption is that 80% of the output voltage ripple is due to  
capacitor discharge and 20% from ESR. Table 1 lists different manufacturers for various output capacitors  
and their case sizes suitable for use with the AW36413.  
INPUT CAPACITOR SELECTION  
Choosing the correct size and type of input capacitor helps minimize the voltage ripple caused by the  
switching of the AW36413 boost converter and reduce noise on the boost converters input pin that can feed  
through and disrupt internal analog signals. In the typical application circuit a 10-µF ceramic input capacitor  
works well. It is important to place the input capacitor as close as possible to the AW36413 input (IN) pin. This  
reduces the series resistance and inductance that can inject noise into the device due to the input switching  
currents. Table 1 lists various input capacitors recommended for use with the AW36413.  
Table 2 Recommended Input/ Output Capacitors (X5R/X7R Dielectric)  
MANUFACTURER  
PART NUMBER  
VALUE  
CASE  
VOLTAGE RATING  
TDK  
C1608JB0J106M  
10μF  
0603  
6.3V  
TDK  
C2012JB1A106M  
GRM188R60J106M  
GRM21BR61A106KE19  
10μF  
10μF  
10μF  
0805  
0603  
0805  
10V  
6.3V  
10V  
Murata  
Murata  
www.awinic.com.cn  
31  
Copyright © 2017 SHANGHAI AWINIC TECHNOLOGY CO., LTD  
AW36413  
July 2018 V1.4  
INDUCTOR SELECTION  
The AW36413 is designed to use a 0.47µH or 1µH inductor. When the device is boosting (VOUT > VIN) the  
inductor is typically the largest area of efficiency loss in the circuit. Therefore, choosing an inductor with the  
lowest possible series resistance is important. Additionally, the saturation rating of the inductor should be  
greater than the maximum operating peak current of the AW36413. This prevents excess efficiency loss that  
can occur with inductors that operate in saturation. For proper inductor operation and circuit performance,  
ensure that the inductor saturation and the peak current limit setting of the AW36413 are greater than IPEAK in  
the following calculation:  
VIN   
2fSW LVOUT  
VOUT VIN  
ILED VOUT  
VIN  
IL   
IPEAK  
 IL  
where  
And  
=2 or 4MHz.  
fSW  
Table 3 lists various inductors and their manufacturers that work well with the AW36413.  
Table 4 Recommended Inductors  
MANUFACTURER  
L
PART NO.  
SIZE  
ISAT  
RDC  
58mΩ  
TOKO  
1μH  
DFE201610P-1R0M  
2.0 mm x 1.6 mm x 1.0 mm  
3.7A  
TOKO  
0.47μH  
1μH  
DFE201610P-R470M  
WPN252012H1R0MT  
2.0 mm x 1.6 mm x 1.0 mm  
2.5mm × 2.0mm ×1.2mm  
4.1A  
3.4A  
32mΩ  
48mΩ  
Sunlord  
www.awinic.com.cn  
32  
Copyright © 2017 SHANGHAI AWINIC TECHNOLOGY CO., LTD  
AW36413  
July 2018 V1.4  
PCB LAYOUT  
LAYOUT GUIDELINES  
The high switching frequency and large switching currents of the AW36413 make the choice of layout  
important. The following steps should be used as a reference to ensure the device is stable and maintains  
proper LED current regulation across its intended operating voltage and current range.  
1. Place CIN on the top layer (same layer as the AW36413) and as close to the device as possible. The input  
capacitor conducts the driver currents during the low-side MOSFET turn-on and turn-off and can detect  
current spikes over 1 A in amplitude. Connecting the input capacitor through short, wide traces to both the  
IN and GND pins reduces the inductive voltage spikes that occur during switching which can corrupt the  
VIN line.  
2. Place COUT on the top layer (same layer as the AW36413) and as close as possible to the OUT and GND  
pin. The returns for both CIN and COUT should come together at one point, as close to the GND pin as  
possible. Connecting COUT through short, wide traces reduce the series inductance on the OUT and GND  
pins that can corrupt the VOUT and GND lines and cause excessive noise in the device and surrounding  
circuitry.  
3. Connect the inductor on the top layer close to the SW pin. There should be a low-impedance connection  
from the inductor to SW due to the large DC inductor current, and at the same time the area occupied by  
the SW node should be small so as to reduce the capacitive coupling of the high Dv/Dt present at SW that  
can couple into nearby traces.  
4. Avoid routing logic traces near the SW node so as to avoid any capacitive coupling from SW onto any  
high-impedance logic lines such as TORCH/TEMP, STROBE, HWEN, SDA, and SCL. A good approach  
is to insert an inner layer GND plane underneath the SW node and between any nearby routed traces.  
This creates a shield from the electric field generated at SW.  
5. Terminate the Flash LED cathodes directly to the GND pin of the AW36413. If possible, route the LED  
returns with a dedicated path so as to keep the high amplitude LED currents out of the GND plane. For  
Flash LEDs that are routed relatively far away from the AW36413, a good approach is to sandwich the  
forward and return current paths over the top of each other on two layers. This helps reduce the  
inductance of the LED current paths.  
www.awinic.com.cn  
33  
Copyright © 2017 SHANGHAI AWINIC TECHNOLOGY CO., LTD  
AW36413  
July 2018 V1.4  
PACKAGE DESCRIPTION  
Bottom View  
Top View  
C
B
D
D
A
1
2
3
12×0.268±0.020  
e1  
Side View  
Symbol  
A
NOM Tolerance  
0.575  
0.195  
0.340  
0.040  
1.626  
1.332  
0.196  
0.400  
0
±0.055  
±0.020  
±0.025  
±0.010  
A1  
A2  
A3  
D
±0.025  
±0.025  
NA  
E
e1  
e2  
NA  
e3  
NA  
Note: All dimensions are in millimeter(mm).  
LAND PATTERN DATA  
0.217  
0.209  
0.8  
0.4  
12×0.240  
0.4  
1.2  
Note: All dimensions are in millimeter(mm).  
www.awinic.com.cn  
34  
Copyright © 2017 SHANGHAI AWINIC TECHNOLOGY CO., LTD  
AW36413  
July 2018 V1.4  
TAPE AND REEL INFORMATION  
TAPE DIMENSIONS  
REEL DIMENSIONS  
P1  
P0  
P2  
K0  
W
B0  
D1  
A0  
Cavity  
A0Dimension designed to accommodate the component width  
B0Dimension designed to accommodate the component length  
K0Dimension designed to accommodate the component thickness  
WOverall width of the carrier tape  
P0Pitch between successive cavity centers and sprocket hole  
P1Pitch between successive cavity centers  
P2Pitch between sprocket hole  
D0Reel width  
D0  
D1Reel diameter  
QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE  
Sprocket Holes  
Q1  
Q2  
Q1  
Q2  
Q1  
Q2  
Q1  
Q2  
Q3 Q4  
Q3 Q4  
Q3 Q4  
Q3 Q4  
User Direction of Feed  
Pocket Quadrants  
www.awinic.com.cn  
35  
Copyright © 2017 SHANGHAI AWINIC TECHNOLOGY CO., LTD  
AW36413  
July 2018 V1.4  
REVISION HISTORY  
Vision  
V1.0  
Date  
Change Record  
Product Datasheet V1.0 Released  
Jan 2017  
Jan 2017  
May 2017  
Jan 2018  
V1.1  
Modify the Top Mark Description  
--page2  
Added HWEN & I2C Interface Description  
--page17  
V1.2  
V1.3  
Add Moisture Sensitivity Level and Environmental Information page3  
1. Updated Absolute Maximum Ratings  
2. Updated Tape and Reel Information  
--page5  
--page35  
V1.4  
July 2018  
www.awinic.com.cn  
36  
Copyright © 2017 SHANGHAI AWINIC TECHNOLOGY CO., LTD  
AW36413  
July 2018 V1.4  
DISCLAIMER  
Information in this document is believed to be accurate and reliable. However, Shanghai AWINIC Technology  
Co., Ltd (AWINIC Technology) does not give any representations or warranties, expressed or implied, as to  
the accuracy or completeness of such information and shall have no liability for the consequences of use of  
such information.  
AWINIC Technology reserves the right to make changes to information published in this document, including  
without limitation specifications and product descriptions, at any time and without notice. Customers shall  
obtain the latest relevant information before placing orders and shall verify that such information is current and  
complete. This document supersedes and replaces all information supplied prior to the publication hereof.  
AWINIC Technology products are not designed, authorized or warranted to be suitable for use in medical,  
military, aircraft, space or life support equipment, nor in applications where failure or malfunction of an  
AWINIC Technology product can reasonably be expected to result in personal injury, death or severe property  
or environmental damage. AWINIC Technology accepts no liability for inclusion and/or use of AWINIC  
Technology products in such equipment or applications and therefore such inclusion and/or use is at the  
customer’s own risk.  
Applications that are described herein for any of these products are for illustrative purposes only. AWINIC  
Technology makes no representation or warranty that such applications will be suitable for the specified use  
without further testing or modification.  
All products are sold subject to the general terms and conditions of commercial sale supplied at the time of  
order acknowledgement.  
Nothing in this document may be interpreted or construed as an offer to sell products that is open for  
acceptance or the grant, conveyance or implication of any license under any copyrights, patents or other  
industrial or intellectual property rights.  
Reproduction of AWINIC information in AWINIC data books or data sheets is permissible only if reproduction  
is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices.  
AWINIC is not responsible or liable for such altered documentation. Information of third parties may be subject  
to additional restrictions.  
Resale of AWINIC components or services with statements different from or beyond the parameters stated by  
AWINIC for that component or service voids all express and any implied warranties for the associated  
AWINIC component or service and is an unfair and deceptive business practice. AWINIC is not responsible or  
liable for any such statements.  
www.awinic.com.cn  
37  
Copyright © 2017 SHANGHAI AWINIC TECHNOLOGY CO., LTD  

相关型号:

AW36414

High Efficiency, Dual 1.5A Flash LED Driver
AWINIC

AW36414CSR

High Efficiency, Dual Independent 1.5A Flash LED Driver
AWINIC

AW3641E

High Efficiency, Dual 1.5A Flash LED Driver
AWINIC

AW3641EDNR

Flash-current circuit adjustment 1 A flash lamp LED driver chip
AWINIC

AW3642

High Efficiency, Dual 1.5A Flash LED Driver
AWINIC

AW3643

High Efficiency, Dual 1.5A Flash LED Driver
AWINIC

AW3643CSR

High Efficiency, Dual 1.5A Flash LED Driver
AWINIC

AW3644

High Efficiency, Dual 1.5A Flash LED Driver
AWINIC

AW3644CSR

High Efficiency, Dual Independent 1.5A Flash LED Driver
AWINIC

AW3648

High Efficiency, Dual 1.5A Flash LED Driver
AWINIC

AW3648CSR

High Efficiency, 1.5A Flash LED Driver
AWINIC

AW391KE

RES 390 OHM 2.5W 10% RADIAL
OHMITE