ADC71BG [BB]

16-Bit ANALOG-TO-DIGITAL CONVERTER; 16位模拟数字转换器
ADC71BG
型号: ADC71BG
厂家: BURR-BROWN CORPORATION    BURR-BROWN CORPORATION
描述:

16-Bit ANALOG-TO-DIGITAL CONVERTER
16位模拟数字转换器

转换器 模数转换器 CD
文件: 总9页 (文件大小:100K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
®
ADC71  
16-Bit  
ANALOG-TO-DIGITAL CONVERTER  
DESCRIPTION  
FEATURES  
The ADC71 is a low cost, high quality, 16-bit succes-  
sive approximation analog-to-digital converter. It uses  
laser-trimmed ICs and is packaged in a convenient  
32-pin hermetic ceramic dual-in-line package. The  
converter is complete with internal reference, clock,  
comparator, and thin-film scaling resistors, which  
allow selection of analog input ranges of ±2.5V, ±5V,  
±10V, 0 to +5V, 0 to +10V and 0 to +20V.  
16-BIT RESOLUTION  
±0.003% MAXIMUM NONLINEARITY  
COMPACT DESIGN: 32-pin Hermetic  
Ceramic Package  
CONVERSION SPEED: 50µs max  
Data is available in parallel and serial form with  
corresponding clock and status output. All digital in-  
puts and outputs are TTL-compatible.  
Power supply voltages are ±15VDC and +5VDC.  
Reference  
Ref Out (+6.3V)  
Parallel  
Digital  
Output  
16-Bit D/A  
Converter  
16-Bit  
Short Cycle  
Successive Approx.  
Register (SAR)  
Convert Command  
Input Range  
Select  
}
Comparator In  
Clock Out  
Status  
Clock  
International Airport Industrial Park  
Mailing Address: PO Box 11400  
Cable: BBRCORP  
Tucson, AZ 85734  
Street Address: 6730 S. Tucson Blvd.  
Tucson, AZ 85706  
Tel: (520) 746-1111 Twx: 910-952-1111  
Telex: 066-6491  
FAX: (520) 889-1510  
Immediate Product Info: (800) 548-6132  
©1990 Burr-Brown Corporation  
PDS-1060A  
Printed in U.S.A. December, 1993  
SPECIFICATIONS  
ELECTRICAL  
At +25°C and rated power supplies, unless otherwise noted.  
ADC71J, K  
TYP  
ADC71A, B  
TYP  
MODEL  
MIN  
MAX  
MIN  
MAX  
UNITS  
RESOLUTION  
16  
16  
Bits  
INPUTS  
ANALOG  
Voltage Ranges: Bipolar  
Unipolar  
±2.5, ±5, ±10  
0 to +5, 0 to +10,  
0 to +20  
±2.5, ±5, ±10  
0 to +5, 0 to +10,  
0 to +20  
V
V
Input Impedance (Direct Input)  
0 to +5V, ±2.5V  
0 to +10V, ±5.0V  
2.5  
5
10  
2.5  
5
10  
kΩ  
kΩ  
kΩ  
0 to +20V, ±10V  
DIGITAL(1)  
Convert Command Positive pulse 50ns wide (min) trailing edge (“1” to “0” initiates conversion)  
1
Logic Loading  
TTL Load  
TRANSFER CHARACTERISTICS  
ACCURACY  
Gain Error(2)  
Offset(2): Unipolar  
Bipolar  
Linearity Error: K, B  
J, A  
Inherent Quantization Error  
Differential Linearity Error  
±0.1  
±0.05  
±0.1  
±0.2  
±0.1  
±0.2  
±0.003  
±0.006  
±0.1  
±0.05  
±0.1  
±0.2  
±0.1  
±0.2  
±0.003  
±0.006  
%
% of FSR(3)  
% of FSR  
% of FSR  
% of FSR  
LSB  
±1/2  
±0.003  
±1/2  
±0.003  
% of FSR  
POWER SUPPLY SENSITIVITY  
±15VDC  
+5VDC  
0.003  
0.001  
0.003  
0.001  
% of FSR/%VS  
% of FSR/%VS  
CONVERSION TIME(4)  
14 Bits  
50  
50  
µs  
WARM-UP TIME  
5
*
min  
DRIFT  
Gain  
Offset: Unipolar  
Bipolar  
±10  
±2  
±8  
±15  
±4  
±10  
±3  
*
*
±2  
±10  
±2  
ppm/°C  
ppm of FSR/°C  
ppm of FSR/°C  
ppm of FSR/°C  
±5  
Linearity  
±2  
No Missing Codes Temp Range  
J, A (13 Bits)  
K, B (14 Bits)  
0
0
+70  
+70  
–25  
–25  
+85  
+85  
°C  
°C  
OUTPUT  
DIGITAL DATA  
(All Codes Complementary)  
Parallel Output Codes(5): Unipolar  
Bipolar  
CSB  
COB, CTC(6)  
Output Drive  
Serial Data Code (NRZ)  
Output Drive  
2
2
*
*
TTL Loads  
TTL Loads  
CSB, COB  
Status  
Logic “1” During Conversion  
Status Output Drive  
Clock Output Drive  
Frequency(7)  
2
2
2
2
TTL Loads  
TTL Loads  
kHz  
280  
6.3  
*
INTERNAL REFERENCE VOLTAGE  
Max External Current with  
No Degradation of Specs  
Temp Coefficient  
6.0  
6.6  
6.0  
6.3  
6.6  
V
±200  
±10  
±200  
*
µA  
ppm/°C  
POWER SUPPLY REQUIREMENTS  
Power Consumption  
655  
±15  
+5  
+10  
–28  
+17  
655  
mW  
VDC  
VDC  
mA  
mA  
mA  
Rated Voltage, Analog  
Rated Voltage, Digital  
Supply Drain +15VDC  
Supply Drain –15VDC  
Supply Drain +5VDC  
±11.4  
+4.75  
±16  
+4.75  
+15  
–35  
+20  
*
*
*
*
*
*
*
*
*
*
*
*
TEMPERATURE RANGE  
Specification  
Operating (Derated Specs)  
Storage  
0
–25  
–55  
+70  
+85  
+125  
–25  
–55  
–55  
+85  
+125  
+125  
°C  
°C  
°C  
NOTES: (1) CMOS/TTL compatible, i.e., Logic “0” = 0.8V, max Logic “1” = 2.0V, min for inputs. For digital outputs Logic “0” = +0.4V, max Logic “1” = 2.4V min.  
(2) Adjustable to zero. (3) FSR means Full Scale Range. For example, unit connected for ±10V range has 20V FSR. (4) Conversion time may be shortened with  
“Short Cycle” set for lower resolution, see “Additional Connections Required” section. (5) See Table I. CSB = Complementary Straight Binary. COB = Complementary  
Offset Binary. CTC = Complementary Two’s Complement. (6) CTC coding obtained by inverting MSB (Pin 1).  
®
ADC71  
2
PIN CONFIGURATION  
Top View  
DIP  
(MSB) Bit 1  
Bit 2  
1
2
3
4
5
6
7
8
9
32 Short Cycle  
31 Convert Command  
30 +5VDC Supply  
29 Gain Adjust  
28 +15VDC Supply  
27 Comparator In  
26 Bipolar Offset  
25 10V  
Bit 3  
Reference  
Bit 4  
Bit 5  
Bit 6  
6.3kΩ  
Bit 7  
Bit 8  
5k5kΩ  
Bit 9  
24 20V  
Bit 10 10  
Bit 11 11  
Bit 12 12  
23 Ref Out 6.3V  
22 Analog Common(1)  
21 –15VDC Supply  
20 Clock Out  
(LSB for 13 bits) Bit 13 13  
(LSB for 14 bits) Bit 14 14  
Bit 15 15  
19 Digital Common  
18 Status  
Comparator  
Clock  
Bit 16 16  
17 Serial Out  
NOTE: (1) Metal lid of package is connected to pin 22 (Analog Common).  
ABSOLUTE MAXIMUM SPECIFICATIONS  
PACKAGE INFORMATION  
+VCC to Common.................................................................... 0 to +16.5V  
–VCC to Common .................................................................. 0V to –16.5V  
+VDD to Common....................................................................... 0V to +7V  
Analog Common to Digital Common ............................................... ±0.5V  
Logic Inputs to Common ........................................................... 0V to VDD  
Maximum Power Dissipation ....................................................... 1000mW  
Lead Temperature (10s) .................................................................. 300°C  
PACKAGE DRAWING  
NUMBER(1)  
MODEL  
PACKAGE  
ADC71JG  
ADC71KG  
ADC71AG  
ADC71BG  
32-Pin Hermetic DIP  
32-Pin Hermetic DIP  
32-Pin Hermetic DIP  
32-Pin Hermetic DIP  
172-5  
172-5  
172-5  
172-5  
NOTE: (1) For detailed drawing and dimension table, please see end of data  
sheet, or Appendix D of Burr-Brown IC Data Book.  
ORDERING INFORMATION  
MODEL  
TEMPERATURE RANGE  
NONLINEARITY  
ADC71JG  
ADC71KG  
ADC71AG  
ADC71BG  
0°C to +70°C  
0°C to +70°C  
–25°C to +85°C  
–25°C to +85°C  
±0.006% FSR  
±0.003% FSR  
±0.006% FSR  
±0.003% FSR  
The information provided herein is believed to be reliable; however, BURR-BROWN assumes no responsibility for inaccuracies or omissions. BURR-BROWN assumes  
no responsibility for the use of this information, and all use of such information shall be entirely at the user’s own risk. Prices and specifications are subject to change  
without notice. No patent rights or licenses to any of the circuits described herein are implied or granted to any third party. BURR-BROWN does not authorize or warrant  
any BURR-BROWN product for use in life support devices and/or systems.  
®
3
ADC71  
Maximum Throughput Time(2)  
Conversion Time  
Convert Command(1)  
Internal Clock  
Status (EOC)  
MBS  
“0”  
Bit 2  
“1”  
Bit 3  
Bit 4  
Bit 5  
“1”  
“0”  
“0”  
Bit 6  
Bit 7  
Bit 8  
“1”  
“1”  
“1”  
“0”  
Bit 9  
Bit 10  
Bit 11  
Bit 12  
Bit 13  
“1”  
“1”  
“0”  
“1”  
“0”  
Bit 14  
Bit 15  
“0”  
Bit 16  
LSB  
15  
MSB  
1
“1”  
16  
3
4
8
11  
“1”  
12  
“0”  
14  
“0”  
Serial Data Out  
2
5
7
10  
“1”  
13  
“1”  
9
6
“1”  
“1”  
“1”  
“1”  
“1”  
“0”  
“1”  
“0”  
“0”  
“0”  
“0”  
NOTES: (1) The convert command must be at least 50ns wide and must remain low during a conversion. The conversion is initiated  
by the “trailing edge” of the convert command. (2) 57µs for 16 bits.  
FIGURE 1. ADC71 Timing Diagram.  
Bit 16  
Valid  
Serial  
Out  
40-125ns  
40-125ns  
Bit 16  
Clock  
Out  
40-125ns  
Status  
FIGURE 2. Timing Relationship of Serial Data to Clock.  
FIGURE 3. Timing Relationship of Valid Data to Status.  
Binary (BIN)  
Output  
INPUT VOLTAGE RANGE AND LSB VALUES  
Analog Input  
Voltage Range  
Defined As:  
±10V  
±5V  
±2.5V  
0 to +10V  
CSB(3)  
0 to +5V  
CSB(3)  
0 to +20V  
CSB(3)  
Code  
Designation  
COB(1)  
or CTC(2)  
COB(1)  
or CTC(2)  
COB(1)  
or CTC(2)  
One Least  
Significant  
Bit (LSB)  
FSR  
2n  
n = 12  
n = 13  
n = 14  
20V  
2n  
4.88mV  
2.44mV  
1.22mV  
10V  
2n  
2.44mV  
1.22mV  
610µV  
5V  
2n  
1.22mV  
610µV  
305µV  
10V  
2n  
2.44mV  
1.22mV  
610µV  
5V  
2n  
1.22mV  
610µV  
305µV  
20V  
2n  
4.88mV  
2.44mV  
1.22mV  
Transition Values  
MSB LSB  
000 ... 000(4)  
011 ... 111  
111 ... 110  
+Full Scale  
Mid Scale  
–Full Scale  
+10V–3/2LSB  
0
–10V +1/2LSB  
+5V–3/2LSB  
0
–5V +1/2LSB  
+2.5V–3/2LSB  
0
–2.5V +1/2LSB  
+10V–3/2LSB  
+5V  
0 +1/2LSB  
+5V–3/2LSB  
+2.5V  
0 +1/2LSB  
+20V–3/2LSB  
+10V  
0 +1/2LSB  
NOTES: (1) COB = Complementary Offset Binary. (2) Complementary Two’s Complement—obtained by inverting the most significant bit MSB (pin 1). (3) CSB  
= Complementary Straight Binary. (4) Voltages given are the nominal value for transition to the code specified.  
TABLE I. Input Voltages, Transition Values, LSB Values, and Code Definitions.  
®
ADC71  
4
TYPICAL PERFORMANCE CURVES  
At +25°C and rated power supplies unless otherwise noted.  
POWER SUPPLY REJECTION  
vs SUPPLY RIPPLE FREQUENCY  
GAIN DRIFT ERROR (% OF FSR)  
vs TEMPERATURE  
+0.10  
0.1  
0.06  
+0.08  
ADC71AG, BG  
0.04  
–15VDC  
+0.06  
ADC71JG,KG  
+0.04  
0.02  
+0.02  
0
0.01  
0.006  
0.004  
+15VDC  
–0.02  
–0.04  
–0.06  
–0.08  
–0.10  
+5VDC  
0.002  
0.001  
–25°C  
0°C  
+25°C  
+70°C +85°C  
1
10  
100  
1k  
10k  
100k  
Temperature (°C)  
Frequency (Hz)  
NOTE: Pa g es 4 &5  
w ere sw it ch ed fo r  
Ab rid g ed Versio n  
fo r '9 6 d a t a b o o k.  
DISCUSSION OF  
PERFORMANCE  
The accuracy of a successive approximation A/D converter  
is described by the transfer function shown in Figure 1. All  
successive approximation A/D converters have an inherent  
Quantization Error of ±1/2 LSB. The remaining errors in the  
A/D converter are combinations of analog errors due to the  
linear circuitry, matching and tracking properties of the  
ladder and scaling networks, power supply rejection, and  
reference errors. In summary, these errors consist of initial  
errors including Gain, Offset, Linearity, Differential Linear-  
ity, and Power Supply Sensitivity. Initial Gain and Offset  
errors may be adjusted to zero. Gain drift over temperature  
rotates the line (Figure 1) about the zero or minus full scale  
point (all bits Off) and Offset drift shifts the line left or right  
over the operating temperature range. Linearity error is  
unadjustable and is the most meaningful indicator of A/D  
converter accuracy. Linearity error is the deviation of an  
actual bit transition from the ideal transition value at any  
level over the range of the A/D converter. A Differential  
Linearity error of ±1/2 LSB means that the width of each bit  
step over the range of the A/D converter is 1 LSB, ±1/2 LSB.  
The ADC71 is monotonic, assuring that the output digital  
code either increases or remains the same for increasing  
analog input signals. Burr-Brown guarantees that these con-  
verters will have no missing codes over a specified tempera-  
ture range when short-cycled for 14-bit operation.  
TIMING CONSIDERATIONS  
The timing diagram (Figure 2) assumes an analog input such  
that the positive true digital word 1001 1000 1001 0110  
exists. The output will be complementary as shown in Figure  
2 (0110 0111 0110 1001 is the digital output). Figures 3 and  
4 are timing diagrams showing the relationship of serial data  
to clock and valid data to status.  
All Bits On  
0000 ... 0000  
Gain  
Error  
0000 ... 0001  
0111 ... 1101  
0111 ... 1110  
0111 ... 1111  
1000 ... 0000  
1000 ... 0001  
1111 ... 1110  
1111 ... 1111  
DEFINITION OF DIGITAL CODES  
–1/2LSB  
Parallel Data  
Two binary codes are available on the ADC71 parallel  
output; they are complementary (logic “0” is true) straight  
binary (CSB) for unipolar input signal ranges and comple-  
mentary offset binary (COB) for bipolar input signal ranges.  
Complementary two’s complement (CTC) may be obtained  
by inverting MSB (Pin 1).  
+1/2LSB  
Offset  
Error  
eIN On  
All Bits Off  
Analog Input  
+FSR/2–1LSB  
–FSR/2  
Table I shows the LSB, transition values, and code defini-  
tions for each possible analog input signal range for 12-, 13-  
and 14-bit resolutions. Figure 5 shows the connections for  
14-bit resolution, parallel data output, with ±10V input.  
eIN Off  
NOTE: (1) See Table I for Digital Code Definitions.  
FIGURE 1. Input vs Output for an Ideal Bipolar A/D  
Converter.  
®
5
ADC71  
0.01µF(1)  
MSB  
1
2
32  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
Offset  
Adjust  
Convert Command From  
Control Logic  
Dotted Lines  
Are External  
Connections  
+5VDC  
3
270k  
1.8MΩ  
4
+15VDC  
5
+
Gain  
10kto  
6
1µF  
1µF  
100kΩ  
Bipolar  
Offset  
Adjust  
7
10kto  
100kΩ  
ADC71  
8
Analog Input  
±10V  
9
NC  
10  
11  
12  
13  
14  
15  
16  
+
–15VDC  
+
1µF  
Digital  
Common  
Analog  
Common  
Status Output to  
Control Logic  
NC  
NC  
NOTE: (1) Capacitor should be connected even if external gain adjust is not used.  
FIGURE 5. ADC71 Connections for: ±10V Analog Input, 14-Bit Resolution (Short-Cycled), Parallel Data Output.  
SERIAL DATA  
Two straight binary (complementary) codes are available on  
the serial output line: CSB and COB. The serial data is  
available only during conversion and appears with MSB  
+15VDC  
(a)  
1.8M  
27  
10kto 100kΩ  
Offset Adjust  
occurring first. The serial data is synchronous with the  
internal clock as shown in the timing diagrams of Figures 2  
and 3. The LSB and transition values shown in Table I also  
apply to the serial data output except for the CTC code.  
Comparator In  
–15VDC  
+15VDC  
(b)  
180kΩ  
180kΩ  
22kΩ  
DISCUSSION  
OF SPECIFICATIONS  
The ADC71 is specified to provide critical performance  
criteria for a wide variety of applications. The most critical  
specifications for an A/D converter are linearity, drift, gain  
and offset errors. This ADC is factory-trimmed and tested  
for all critical key specifications.  
27  
10kto 100kΩ  
Offset Adjust  
Comparator In  
–15VDC  
FIGURE 6. Two Methods of Connecting Optional Offset  
Adjust with a 0.4% of FSR of Adjustment.  
GAIN AND OFFSET ERROR  
+15VDC  
Initial Gain and Offset errors are factory-trimmed to typi-  
cally ±0.1% of FSR (typically ±0.05% for unipolar offset) at  
25°C. These errors may be trimmed to zero by connecting  
external trim potentiometers as shown in Figures 6 and 7.  
270k  
29  
10kto 100kΩ  
Gain Adjust  
Gain Adjust  
0.01µF  
–15VDC  
22  
POWER SUPPLY SENSITIVITY  
Analog Common  
Changes in the DC power supplies will affect accuracy. The  
power supply sensitivity is specified for ±0.003% of FSR/  
%VS for ±15V supplies and ±0.001% of FSR/%S for +5  
supplies. Normally, regulated power supplies with 1% or  
less ripple are recommended for use with this ADC. See  
Layout Precautions, Power Supply Decoupling and Figure  
8.  
FIGURE 7. Connecting Optional Gain Adjust with a 0.2%  
Range of Adjustment.  
®
ADC71  
6
Direct  
Input  
–15VDC  
21  
22  
28  
+5VDC  
30  
19  
R2  
5k  
24  
25  
1µF  
1µF  
Analog  
Common  
+
+
22  
+
1µF  
R1  
5kΩ  
Comp  
In  
27  
26  
Digital  
Common  
6.3kΩ  
From D/A  
Converter  
+15VDC  
Comparator  
to Logic  
VREF  
Bipolar  
Offset  
FIGURE 8. Recommended Power Supply Decoupling.  
FIGURE 9. ADC71 Input Scaling Circuit.  
LAYOUT AND OPERATING INSTRUCTIONS  
Layout Precautions  
OPTIONAL EXTERNAL GAIN  
AND OFFSET ADJUSTMENTS  
Analog and digital common are not connected internally in  
the ADC71 but should be connected together as close to the  
unit as possible, preferably to a large plane under the ADC.  
If these grounds must be run separately, use wide conductor  
patterns and a 0.01µF to 0.1µF non-polarized bypass capaci-  
tor between analog and digital commons at the unit. Low  
impedance analog and digital commons returns are essential  
for low noise performance. Coupling between analog inputs  
and digital lines should be minimized by careful layout. The  
comparator input (Pin 27) is extremely sensitive to noise.  
Any connection to this point should be as short as possible  
and shielded by Analog Common patterns.  
Gain and Offset errors may be trimmed to zero using  
external gain and offset trim potentiometers connected to the  
ADC as shown in Figure 6 and 7. Multiturn potentiometers  
with 100ppm/°C or better TCRs are recommended for mini-  
mum drift over temperature and time. These pots may be any  
value from 10kto 100k. All resistors should be 20%  
carbon or better. Pin 29 (Gain Adjust) and Pin 27 (Offset  
Adjust) may be left open of no external adjustment is  
required.  
ADJUSTMENT PROCEDURE  
OFFSET — Connect the Offset potentiometer (make sure R1  
is as close to pin 27 as possible) as shown in Figure 6. Sweep  
the input through the end point transition voltage that should  
cause an output transition to all bits Off (EIN).  
POWER SUPPLY DECOUPLING  
The power supplies should be bypassed with tantalum ca-  
pacitors as shown in Figure 8 to obtain noise free operation.  
These capacitors should be located close to the ADC.  
Adjust the Offset potentiometer until the actual end point  
transition voltage occurs at EIN. The ideal transition voltage  
values of the input are given in Table I.  
INPUT SCALING  
The analog input should be scaled as close to the maximum  
input signal range as possible in order to utilize the maxi-  
mum signal resolution of the A/D converter. Connect the  
input signal as shown in Table II. See Figure 9 for circuit  
details.  
GAIN — Connect the Gain Adjust potentiometer as shown  
in Figure 7. Sweep the input through the end point transition  
voltage that should cause an output transition to all bits on  
(EIN). Adjust the Gain potentiometer until the actual end  
point transition voltage occurs at EIN.  
Table I details the transition voltage levels required.  
CONNECT  
INPUT  
SIGNAL  
RANGE  
CONNECT  
PIN 26  
TO PIN  
CONNECT  
PIN 24  
TO  
INPUT  
SIGNAL  
TO PIN  
CONVERT COMMAND CONSIDERATIONS  
OUTPUT  
CODE  
Convert command resets the converter whenever taken high.  
This insures a valid conversion on the first conversion after  
power-up.  
±10V  
±5V  
±2.5V  
0 to +5V  
0 to +10V  
0 to +20V  
COB or CTC(1)  
COB or CTC(1)  
COB or CTC(1)  
CSB  
27  
27  
27  
22  
22  
22  
Input Signal  
Open  
Pin 27  
Pin 27  
Open  
24  
25  
25  
25  
25  
24  
Convert command must stay low during a conversion unless  
it is desired to reset the converter during a conversion.  
CSB  
CSB  
Input Signal  
NOTE: (1) Obtained by inverting MSB pin 1.  
ADDITIONAL CONNECTIONS REQUIRED  
The ADC71 may be operated at faster speeds by connecting  
the Short-Cycle Input, pin 32, as shown in Table III. Conver-  
sion speeds, linearity, and resolutions are shown for refer-  
ence.  
TABLE II. ADC71 Input Scaling Connections.  
®
7
ADC71  
OUTPUT DRIVE  
RESOLUTION (Bits)  
16  
14  
13  
12  
Normally all ADC71 logic outputs will drive two standard  
TTL loads; however, if long digital lines must be driver,  
external logic buffers are recommended.  
Connect Pin 32 to  
Open  
Pin 15  
Pin 14  
Pin 13  
Maximum Conversion  
Speed (µs)(1)  
57  
50  
46.5  
43  
Maximum Nonlinearity  
at 25°C (% of FSR)  
0.003(2)  
0.003(2)  
0.006  
0.006  
HEAT DISSIPATION  
NOTES: (1) Max conversion time to maintain specified nonlinearity error.  
(2) BH and KH models only.  
The ADC71 dissipates approximately 0.6W (typical) and the  
packages have a case-to-ambient thermal resistance (θCA) of  
25°C/W. For operation above 85°C, θCA should be lowered  
by a heat sink or by forced air over the surface of the  
package. See Figure 10 for θCA requirement above 85°C. If  
the converter is mounted on a PC card, improved thermal  
contact with the copper ground plane under the case can be  
achieved using a silicone heat sink compound. On a 0.062"  
thick PC card with a 16 square in (min) area, this techniques  
will allow operation to 85°C.  
TABLE III. Short-Cycle Connections and Specifications for  
12- to 14-Bit Resolutions.  
25  
θ
10  
0
60  
70  
80  
90  
100  
110  
125  
Ambient Temperature (°C)  
FIGURE 10. θCA Requirement Above 85°C.  
®
ADC71  
8
This datasheet has been download from:  
www.datasheetcatalog.com  
Datasheets for electronics components.  

相关型号:

ADC71JD

IC 16-BIT SUCCESSIVE APPROXIMATION ADC, SERIAL/PARALLEL ACCESS, CDIP32, BOTTOM BRAZED, CERAMIC, DIP-32, Analog to Digital Converter
ADI

ADC71JG

16-Bit ANALOG-TO-DIGITAL CONVERTER
BB

ADC71KD

IC 16-BIT SUCCESSIVE APPROXIMATION ADC, SERIAL/PARALLEL ACCESS, CDIP32, BOTTOM BRAZED, CERAMIC, DIP-32, Analog to Digital Converter
ADI

ADC71KG

16-Bit ANALOG-TO-DIGITAL CONVERTER
BB

ADC72

16 BIT HYBRID ANALOG TO DIGITAL CONVERTER
BB

ADC72AD

IC 16-BIT SUCCESSIVE APPROXIMATION ADC, SERIAL/PARALLEL ACCESS, CDIP32, BOTTOM BRAZED, CERAMIC, DIP-32, Analog to Digital Converter
ADI

ADC72AM

ADC, Successive Approximation, 16-Bit, 1 Func, 1 Channel, Serial, Parallel, Word Access, CMOS, MDIP32,
BB

ADC72BD

IC 16-BIT SUCCESSIVE APPROXIMATION ADC, SERIAL/PARALLEL ACCESS, CDIP32, BOTTOM BRAZED, CERAMIC, DIP-32, Analog to Digital Converter
ADI

ADC72JD

IC 16-BIT SUCCESSIVE APPROXIMATION ADC, SERIAL/PARALLEL ACCESS, CDIP32, BOTTOM BRAZED, CERAMIC, DIP-32, Analog to Digital Converter
ADI

ADC72JM

暂无描述
BB

ADC72KD

IC 16-BIT SUCCESSIVE APPROXIMATION ADC, SERIAL/PARALLEL ACCESS, CDIP32, BOTTOM BRAZED, CERAMIC, DIP-32, Analog to Digital Converter
ADI

ADC72KM

ADC, Successive Approximation, 16-Bit, 1 Func, 1 Channel, Serial, Parallel, Word Access, CMOS, MDIP32,
BB