ADS8365IPAGR [BB]

16-Bit, 250kSPS, 6-Channel, Simultaneous Sampling SAR ANALOG-TO-DIGITAL CONVERTERS; 16位, 250ksps的, 6通道,同步采样SAR模拟数字转换器
ADS8365IPAGR
型号: ADS8365IPAGR
厂家: BURR-BROWN CORPORATION    BURR-BROWN CORPORATION
描述:

16-Bit, 250kSPS, 6-Channel, Simultaneous Sampling SAR ANALOG-TO-DIGITAL CONVERTERS
16位, 250ksps的, 6通道,同步采样SAR模拟数字转换器

转换器
文件: 总33页 (文件大小:643K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
B
u
r
r
Ć
B
r
o
w
n
P
r
o
d
u
c
t
s
ADS8365  
f
r
o
m
T
e
x
a
s
I
n
s
t
r
u
m
e
n
t
s
SBAS362AAUGUST 2006REVISED SEPTEMBER 2006  
16-Bit, 250kSPS, 6-Channel, Simultaneous Sampling  
SAR ANALOG-TO-DIGITAL CONVERTERS  
FEATURES  
DESCRIPTION  
Six Input Channels  
The ADS8365 includes six, 16-bit, 250kSPS  
analog-to-digital converters (ADCs) with six fully  
differential input channels grouped into three pairs  
for high-speed simultaneous signal acquisition.  
Inputs to the sample-and-hold amplifiers are fully  
differential and are maintained differential to the input  
of the ADC. This architecture provides excellent  
common-mode rejection of 80dB at 50kHz, which is  
important in high-noise environments.  
Fully Differential Inputs  
Six Independent 16-Bit ADCs  
4µs Total Throughput per Channel  
Low Power:  
200mW in Normal Mode  
5mW in Nap Mode  
50µW in Power-Down Mode  
The ADS8365 offers a flexible, high-speed parallel  
interface with a direct address mode, a cycle, and a  
FIFO mode. The output data for each channel is  
available as a 16-bit word.  
TQFP-64 Package Package  
APPLICATIONS  
Motor Control  
Multi-Axis Positioning Systems  
3-Phase Power Control  
CH A0+  
CDAC  
CH A0-  
S/H  
Amp  
Comp  
SAR  
SAR  
SAR  
HOLDA  
CH A1+  
Interface  
A0  
A1  
A2  
CDAC  
CDAC  
CH A1-  
S/H  
Amp  
Comp  
Comp  
Conversion  
and  
ADD  
NAP  
Control  
CH B0+  
RD  
WR  
CS  
CH B0-  
S/H  
Amp  
FD  
EOC  
CLK  
FIFO  
Register  
HOLDB  
CH B1+  
RESET  
BYTE  
6x  
16  
CDAC  
CDAC  
CH B1-  
Comp  
Comp  
S/H  
Amp  
Data  
Input/Output  
CH C0+  
CH C0-  
S/H  
Amp  
HOLDC  
CH C1+  
CDAC  
CH C1-  
Comp  
S/H  
Amp  
REFIN  
Internal  
2.5V  
Reference  
REFOUT  
Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas  
Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.  
All trademarks are the property of their respective owners.  
PRODUCTION DATA information is current as of publication date.  
Products conform to specifications per the terms of the Texas  
Instruments standard warranty. Production processing does not  
necessarily include testing of all parameters.  
Copyright © 2006, Texas Instruments Incorporated  
ADS8365  
www.ti.com  
SBAS362AAUGUST 2006REVISED SEPTEMBER 2006  
This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled with  
appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.  
ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be  
more susceptible to damage because very small parametric changes could cause the device not to meet its published  
specifications.  
ORDERING INFORMATION(1)  
MAXIMUM  
NO  
INTEGRAL MISSING  
LINEARITY CODES  
SPECIFIED  
TEMPERATURE PACKAGE  
TRANSPORT  
MEDIA,  
QUANTITY  
ERROR  
(LSB)  
ERROR PACKAGE-  
(LSB)  
PACKAGE  
DESIGNATOR  
ORDERING  
NUMBER  
PRODUCT  
LEAD  
RANGE  
MARKING  
ADS8365IPAG  
Tray, 96  
ADS8365  
±4  
14  
TQFP-64  
PAG  
–40°C to +85°C  
ADS8365I  
Tape and  
Reel, 1500  
ADS8365IPAGR  
(1) For the most current package and ordering information, see the Package Option Addendum located at the end of this data sheet, or see  
the TI website at www.ti.com.  
ABSOLUTE MAXIMUM RATINGS(1)  
over operating free-air temperature range (unless otherwise noted)  
ADS8365  
–0.3 to 6  
UNIT  
V
Supply voltage, AGND to AVDD  
Supply voltage, BGND to BVDD  
Analog input voltage range  
–0.3 to 6  
V
AGND – 0.3 to AVDD + 0.3  
AGND – 0.3 to AVDD + 0.3  
BGND – 0.3 to BVDD + 0.3  
±0.3  
V
Reference input voltage range  
V
Digital input voltage range  
V
Ground voltage differences, AGND to BGND  
Voltage differences, BVDD to AGND  
Input current to any pin except supply  
Power dissipation  
V
–0.3 to 6  
V
–20 to 20  
mA  
See Dissipation Ratings Table  
Operating virtual junction temperature range, TJ  
Operating free-air temperature range, TA  
Storage temperature range, TSTG  
–40 to +150  
–40 to +85  
–65 to +150  
°C  
°C  
°C  
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings  
only, and functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating  
Conditions is not implied. Exposure to absolute-maximum rated conditions for extended periods may affect device reliability.  
DISSIPATION RATINGS  
DERATING  
FACTOR ABOVE  
TA +25°C  
TA = +70°C  
TA = +85°C  
BOARD  
Low-K(1)  
High-K(2)  
PACKAGE  
PAG  
RθJC  
RθJA  
TA = +25°C  
POWER RATING POWER RATING POWER RATING  
8.6°C/W  
8.6°C/W  
68.5°C/W  
42.8°C/W  
14.598mW/°C  
23.364mW/°C  
1824mW  
2920mW  
1168mW  
1869mW  
949mW  
PAG  
1519mW  
(1) The JEDEC Low K (1s) board design used to derive this data was a 3-inch x 3-inch, two-layer board with 2-ounce copper traces on top  
of the board.  
(2) The JEDEC High K (2s2p) board design used to derive this data was a 3-inch x 3-inch, multilayer board with 1-ounce internal power and  
ground planes, and 2-ounce copper traces on the top and bottom of the board.  
2
Submit Documentation Feedback  
ADS8365  
www.ti.com  
SBAS362AAUGUST 2006REVISED SEPTEMBER 2006  
RECOMMENDED OPERATING CONDITIONS  
MIN  
4.75  
2.7  
4.5  
1.5  
2.2  
0
NOM  
MAX  
5.25  
3.6  
UNIT  
V
Supply voltage, AVDD to AGND  
5
Low-voltage levels  
Supply voltage, BVDD to BGND  
V
5V logic levels  
5
5.5  
V
Reference input voltage  
2.5  
2.5  
2.6  
V
Operating common-mode signal, –IN  
Analog inputs, +IN – (–IN)  
2.8  
V
±VREF  
+125  
V
Operating junction temperature range, TJ  
–40  
°C  
ELECTRICAL CHARACTERISTICS: 100kSPS  
Over recommended operating free-air temperature range at –40°C to +85°C, AVDD = 5V, BVDD = 3V, VREF = internal +2.5V, fCLK = 2MHz,  
and fSAMPLE = 100kSPS, unless otherwise noted.  
ADS8365  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP(1)  
MAX  
UNIT  
ANALOG INPUT  
Full-scale range  
FSR +IN – (–IN)  
±VREF  
V
V
Operating common-mode signal  
Input resistance  
2.2  
2.8  
–IN = VREF  
750  
25  
Input capacitance  
–IN = VREF  
pF  
nA  
Input leakage current  
–IN = VREF  
±1  
Differential input resistance  
Differential input capacitance  
–IN = VREF  
1500  
15  
–IN = VREF  
pF  
dB  
dB  
MHz  
At dc  
84  
Common-mode rejection ratio  
CMRR  
VIN = ±1.25VPP at 50kHz  
80  
Bandwidth  
BW FS sinewave, –3dB  
10  
DC ACCURACY  
Resolution  
16  
Bits  
Bits  
No missing codes  
Integral linearity error  
Differential nonlinearity  
Bipolar offset error  
Bipolar offset error match  
Bipolar offset error drift  
Gain error  
NMC  
14  
INL  
DNL  
VOS  
±1.5  
±1.5  
±1  
±4  
LSB  
LSB  
±2.3  
mV  
Only pair-wise matching  
0.2  
1
mV  
TCVOS  
0.8  
ppm/°C  
%FSR  
%FSR  
ppm/°C  
µVrms  
dB  
GERR Referenced to VREF  
Only pair-wise matching  
±0.05  
0.005  
2
±0.25  
Gain error match  
Gain error drift  
0.05  
TCGERR  
Noise  
60  
Power-supply rejection ratio  
SAMPLING DYNAMICS  
Conversion time per ADC  
Acquisition time  
PSRR 4.75V < AVDD < 5.25V  
–87  
tCONV 50kHz fCLK 5MHz  
3.2  
320  
5
µs  
ns  
tAQ fCLK = 5MHz  
800  
Aperture delay  
ns  
Aperture delay matching  
Aperture jitter  
100  
50  
ps  
ps  
Clock frequency  
0.05  
5
MHz  
(1) All typical values are at +25°C.  
3
Submit Documentation Feedback  
ADS8365  
www.ti.com  
SBAS362AAUGUST 2006REVISED SEPTEMBER 2006  
ELECTRICAL CHARACTERISTICS: 100kSPS (continued)  
Over recommended operating free-air temperature range at –40°C to +85°C, AVDD = 5V, BVDD = 3V, VREF = internal +2.5V, fCLK = 2MHz,  
and fSAMPLE = 100kSPS, unless otherwise noted.  
ADS8365  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP(1)  
MAX  
UNIT  
AC ACCURACY  
Total harmonic distortion  
Spurious-free dynamic range  
Signal-to-noise ratio  
THD VIN = ±2.5VPP at 50kHz  
–94  
95  
dB  
dB  
dB  
dB  
dB  
Bits  
SFDR VIN = ±2.5VPP at 50kHz  
SNR VIN = ±2.5VPP at 10kHz  
SINAD VIN = ±2.5VPP at 10kHz  
88  
Signal-to-noise + distortion  
Channel-to-channel isolation  
Effective number of bits  
VOLTAGE REFERENCE OUTPUT  
Reference voltage output  
Initial accuracy  
87  
95  
ENOB  
VOUT  
14.3  
2.475  
2.5  
2.525  
V
%
±1  
Output voltage temperature drift  
dVOUT/dT  
±20  
40  
ppm/°C  
µVPP  
µVrms  
dB  
f = 0.1Hz to 10Hz, CL = 10µF  
f = 10Hz to 10kHz, CL = 10µF  
Output voltage noise  
8
Power-supply rejection ratio  
Output impedance  
PSRR  
ROUT  
ISC  
60  
2
kΩ  
Short-circuit current  
Turn-on settling time  
VOLTAGE REFERENCE INPUT  
Reference voltage input  
Reference input resistance  
Reference input capacitance  
Reference input current  
DIGITAL INPUTS(2)  
Logic family  
1.25  
100  
mA  
to 0.1% at CL = 0pF  
µs  
VIN  
1.5  
2.5  
5
2.6  
1
V
100  
MΩ  
pF  
µA  
CMOS  
High-level input voltage  
Low-level input voltage  
Input current  
VIH  
VIL  
0.7 × BVDD  
BVDD + 0.3  
0.3 × BVDD  
±50  
V
V
–0.3  
IIN VI = BVDD or GND  
CI  
nA  
pF  
Input capacitance  
5
DIGITAL OUTPUTS(2)  
Logic family  
CMOS  
High-level output voltage  
Low-level output voltage  
High-impedance state output current  
Output capacitance  
Load capacitance  
VOH BVDD = 4.5V, IOH = –100µA  
4.44  
V
V
VOL BVDD = 4.5V, IOL = 100µA  
0.5  
IOZ CS = BVDD, VI = BVDD or GND  
±50  
nA  
pF  
pF  
CO  
CL  
5
30  
DIGITAL INPUTS(3)  
Logic family  
LVCMOS  
High-level input voltage  
Low-level input voltage  
Input current  
VIH BVDD = 3.6V  
VIL BVDD = 2.7V  
IIN VI = BVDD or GND  
CI  
2
BVDD + 0.3  
0.8  
V
V
–0.3  
±50  
nA  
pF  
Input capacitance  
5
(2) Applies for 5.0V nominal supply: BVDD (min) = 4.5V and BVDD (max) = 5.5V.  
(3) Applies for 3.0V nominal supply: BVDD (min) = 2.7V and BVDD (max) = 3.6V.  
4
Submit Documentation Feedback  
ADS8365  
www.ti.com  
SBAS362AAUGUST 2006REVISED SEPTEMBER 2006  
ELECTRICAL CHARACTERISTICS: 100kSPS (continued)  
Over recommended operating free-air temperature range at –40°C to +85°C, AVDD = 5V, BVDD = 3V, VREF = internal +2.5V, fCLK = 2MHz,  
and fSAMPLE = 100kSPS, unless otherwise noted.  
ADS8365  
PARAMETER  
DIGITAL OUTPUTS(4)  
TEST CONDITIONS  
MIN  
TYP(1)  
MAX  
UNIT  
Logic family  
LVCMOS  
High-level output voltage  
Low-level output voltage  
High-impedance state output current  
Output capacitance  
VOH BVDD = 2.7V, IOH = –100µA  
BVDD – 0.2  
V
V
VOL BVDD = 2.7V, IOL = 100µA  
0.2  
IOZ CS = BVDD, VI = BVDD or GND  
±50  
nA  
pF  
pF  
CO  
CL  
5
Load capacitance  
30  
DATA FORMAT  
Bit DB4 = 1  
Bit DB4 = 0  
Binary two's complement  
Straight binary coding  
Data format  
POWER SUPPLY  
Analog supply voltage  
AVDD  
4.75  
2.7  
4.5  
38  
5.25  
3.6  
5.5  
45  
V
V
Low-voltage levels  
5V logic levels  
Buffer I/O supply voltage  
BVDD  
AIDD  
BIDD  
V
Analog operating supply current  
Buffer I/O operating supply current  
mA  
µA  
µA  
mW  
mW  
mW  
µW  
BVDD = 3V  
60  
90  
BVDD = 5V  
100  
190  
190  
150  
225  
225  
5
BVDD = 3V  
BVDD = 5V  
Power dissipation  
Nap mode enabled  
Powerdown enabled  
50  
(4) Applies for 3.0V nominal supply: BVDD (min) = 2.7V and BVDD (max) = 3.6V.  
5
Submit Documentation Feedback  
ADS8365  
www.ti.com  
SBAS362AAUGUST 2006REVISED SEPTEMBER 2006  
ELECTRICAL CHARACTERISTICS: 250kSPS  
Over recommended operating free-air temperature range at –40°C to +85°C, AVDD = 5V, BVDD = 3V, VREF = internal +2.5V, fCLK = 5MHz,  
and fSAMPLE = 250kSPS, unless otherwise noted  
ADS8365  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP(1)  
MAX  
UNIT  
ANALOG INPUT  
Full-scale range  
FSR +IN – (–IN)  
±VREF  
V
V
Operating common-mode signal  
Input resistance  
2.2  
2.8  
–IN = VREF  
750  
25  
Input capacitance  
–IN = VREF  
pF  
nA  
Input leakage current  
–IN = VREF  
±1  
Differential input resistance  
Differential input capacitance  
–IN = VREF  
1500  
15  
–IN = VREF  
pF  
dB  
dB  
MHz  
At dc  
84  
Common-mode rejection ratio  
CMRR  
VIN = ±1.25VPP at 50kHz  
80  
Bandwidth  
BW FS sinewave, –3dB  
10  
DC ACCURACY  
Resolution  
16  
Bits  
Bits  
No missing codes  
Integral linearity error  
Differential nonlinearity  
Bipolar offset error  
Bipolar offset error match  
Bipolar offset error drift  
Gain error  
NMC  
14  
INL  
±3  
±1.5  
±1  
±8  
LSB  
DNL Specified for 14 bit  
VOS  
LSB  
±2.3  
mV  
Only pair-wise matching  
0.2  
1
mV  
TCVOS  
0.8  
ppm/°C  
%FSR  
%FSR  
ppm/°C  
µVrms  
dB  
GERR Referenced to VREF  
Only pair-wise matching  
±0.05  
0.005  
2
±0.25  
Gain error match  
0.05  
Gain error drift  
TCGERR  
Noise  
60  
Power-supply rejection ratio  
SAMPLING DYNAMICS  
Conversion time per ADC  
Acquisition time  
PSRR 4.75V < AVDD < 5.25V  
–87  
tCONV 50kHz fCLK 5MHz  
3.2  
320  
µs  
ns  
tAQ fCLK = 5MHz  
800  
Throughput rate  
250  
5
kSPS  
ns  
Aperture delay  
Aperture delay matching  
Aperture jitter  
100  
50  
ps  
ps  
Clock frequency  
0.05  
5
MHz  
AC ACCURACY  
Total harmonic distortion  
Spurious-free dynamic range  
Signal-to-noise ratio  
Signal-to-noise + distortion  
Channel-to-channel isolation  
Effective number of bits  
THD VIN = ±2.5VPP at 50kHz  
SFDR VIN = ±2.5VPP at 50kHz  
SNR VIN = ±2.5VPP at 10kHz  
SINAD VIN = ±2.5VPP at 10kHz  
–94  
95  
dB  
dB  
dB  
dB  
dB  
Bits  
88  
87  
95  
ENOB  
14.3  
(1) All typical values are at +25°C.  
6
Submit Documentation Feedback  
ADS8365  
www.ti.com  
SBAS362AAUGUST 2006REVISED SEPTEMBER 2006  
ELECTRICAL CHARACTERISTICS: 250kSPS (continued)  
Over recommended operating free-air temperature range at –40°C to +85°C, AVDD = 5V, BVDD = 3V, VREF = internal +2.5V, fCLK = 5MHz,  
and fSAMPLE = 250kSPS, unless otherwise noted  
ADS8365  
PARAMETER  
VOLTAGE REFERENCE OUTPUT  
Reference voltage output  
TEST CONDITIONS  
MIN  
TYP(1)  
MAX  
UNIT  
VOUT  
2.475  
2.5  
2.525  
V
%
Initial accuracy  
±1  
Output voltage temperature drift  
dVOUT/dT  
±20  
40  
ppm/°C  
µVPP  
µVrms  
dB  
f = 0.1Hz to 10Hz, CL = 10µF  
f = 10Hz to 10kHz, CL = 10µF  
Output voltage noise  
8
Power-supply rejection ratio  
Output impedance  
PSRR  
ROUT  
ISC  
60  
2
kΩ  
Short-circuit current  
Turn-on settling time  
VOLTAGE REFERENCE INPUT  
Reference voltage input  
Reference input resistance  
Reference input capacitance  
Reference input current  
DIGITAL INPUTS(2)  
Logic family  
1.25  
100  
mA  
to 0.1% at CL = 0pF  
µs  
VIN  
1.5  
2.5  
5
2.6  
1
V
100  
MΩ  
pF  
µA  
CMOS  
High-level input voltage  
Low-level input voltage  
Input current  
VIH  
VIL  
0.7 × BVDD  
BVDD + 0.3  
0.3 × BVDD  
±50  
V
V
–0.3  
IIN VI = BVDD or GND  
CI  
nA  
pF  
Input capacitance  
5
DIGITAL OUTPUTS(2)  
Logic family  
CMOS  
High-level output voltage  
Low-level output voltage  
High-impedance state output current  
Output capacitance  
VOH BVDD = 4.5V, IOH = –100µA  
4.44  
V
V
VOL BVDD = 4.5V, IOL = 100µA  
0.5  
IOZ CS = BVDD, VI = BVDD or GND  
±50  
nA  
pF  
pF  
CO  
CL  
5
Load capacitance  
30  
DIGITAL INPUTS(3)  
Logic family  
LVCMOS  
High-level input voltage  
Low-level input voltage  
Input current  
VIH BVDD = 3.6V  
VIL BVDD = 2.7V  
IIN VI = BVDD or GND  
CI  
2
BVDD + 0.3  
0.8  
V
V
–0.3  
±50  
nA  
pF  
Input capacitance  
5
DIGITAL OUTPUTS(3)  
Logic family  
LVCMOS  
High-level output voltage  
Low-level output voltage  
High-impedance state output current  
Output capacitance  
VOH BVDD = 2.7V, IOH = –100µA  
BVDD – 0.2  
V
V
VOL BVDD = 2.7V, IOL = 100µA  
0.2  
IOZ CS = BVDD, VI = BVDD or GND  
±50  
nA  
pF  
pF  
CO  
CL  
5
Load capacitance  
30  
(2) Applies for 5.0V nominal supply: BVDD (min) = 4.5V and BVDD (max) = 5.5V.  
(3) Applies for 3.0V nominal supply: BVDD (min) = 2.7V and BVDD (max) = 3.6V.  
7
Submit Documentation Feedback  
ADS8365  
www.ti.com  
SBAS362AAUGUST 2006REVISED SEPTEMBER 2006  
ELECTRICAL CHARACTERISTICS: 250kSPS (continued)  
Over recommended operating free-air temperature range at –40°C to +85°C, AVDD = 5V, BVDD = 3V, VREF = internal +2.5V, fCLK = 5MHz,  
and fSAMPLE = 250kSPS, unless otherwise noted  
ADS8365  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP(1)  
MAX  
UNIT  
DATA FORMAT  
Data format  
Bit DB4 = 1  
Binary two's complement  
Straight binary coding  
Bit DB4 = 0  
POWER SUPPLY  
Analog supply voltage  
AVDD  
BVDD  
AIDD  
BIDD  
4.75  
2.7  
5.25  
3.6  
5.5  
48  
V
V
Low-voltage levels  
5V logic levels  
Buffer I/O supply voltage  
4.5  
V
Analog operating supply current  
Buffer I/O operating supply current  
40  
mA  
µA  
µA  
mW  
mW  
mW  
µW  
BVDD = 3V  
150  
250  
200  
201  
225  
375  
240  
241  
5
BVDD = 5V  
BVDD = 3V  
BVDD = 5V  
Power dissipation  
Nap mode enabled  
Powerdown enabled  
50  
EQUIVALENT INPUT CIRCUIT  
Diode Turn-on Voltage: 0.35V  
AVDD  
BVDD  
RON  
C(SAMPLE)  
20pF  
750W  
AIN  
DIN  
AGND  
BGND  
Equivalent Digital Input Circuit  
Equivalent Analog Input Circuit  
8
Submit Documentation Feedback  
ADS8365  
www.ti.com  
SBAS362AAUGUST 2006REVISED SEPTEMBER 2006  
PIN CONFIGURATION  
PAG PACKAGE  
TQFP-64  
(TOP VIEW)  
64 63 62 61 60 59 58 57 56 55 54 53 52 51 50 49  
CH A1-  
CH A1+  
AVDD  
1
2
3
4
5
6
7
8
9
48 D0  
47 D1  
46 D2  
45 D3  
44 D4  
43 D5  
42 D6  
41 D7  
40 D8  
39 D9  
38 D10  
37 D11  
36 D12  
35 D13  
34 D14  
33 D15  
AGND  
SGND  
CH B0+  
CH B0-  
AVDD  
ADS8365  
AGND  
SGND 10  
CH B1- 11  
CH B1+ 12  
AVDD 13  
AGND 14  
SGND 15  
CH C0+ 16  
17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32  
TERMINAL FUNCTIONS  
TERMINAL  
NAME  
CH A1–  
NO.  
1
I/O(1)  
AI  
AI  
P
DESCRIPTION  
Inverting input channel A1  
Noninverting input channel A1  
Analog power supply  
Analog ground  
CH A1+  
AVDD  
2
3
AGND  
SGND  
CH B0+  
CH B0–  
AVDD  
4
P
5
P
Signal Ground  
6
AI  
AI  
P
Noninverting input channel B0  
Inverting input channel B0  
Analog power supply  
Analog ground  
7
8
AGND  
SGND  
CH B1–  
CH B1+  
AVDD  
9
P
10  
11  
12  
13  
14  
15  
16  
17  
18  
P
Signal ground  
AI  
AI  
P
Inverting input channel B1  
Noninverting input channel B1  
Analog power supply  
Analog ground  
AGND  
SGND  
CH C0+  
CH C0–  
CH C1–  
P
P
Signal ground  
AI  
AI  
AI  
Noninverting input channel C0  
Inverting input channel C0  
Inverting input channel C1  
(1) AI = Analog Input, AO = Analog Output, DI = Digital Input, DO = Digital Output, DIO = Digital Input/Output, and P = Power Supply  
Connection.  
9
Submit Documentation Feedback  
ADS8365  
www.ti.com  
SBAS362AAUGUST 2006REVISED SEPTEMBER 2006  
PIN CONFIGURATION (continued)  
TERMINAL FUNCTIONS (continued)  
TERMINAL  
NAME  
CH C1+  
NO.  
19  
20  
21  
22  
23  
24  
25  
26  
27  
I/O(1)  
AI  
DESCRIPTION  
Noninverting input channel C1  
Nap mode.Low level or unconnected = normal operation; high level = Nap mode.  
Analog ground  
NAP  
DI  
P
AGND  
AVDD  
BYTE  
BVDD  
BGND  
FD  
P
+5V power supply  
DI  
P
2 x 8 output capability (active high)  
Power supply for digital interface from 3V to 5V  
Buffer digital ground  
P
DO  
DO  
First data (A0 data)  
EOC  
End of conversion (active low)  
An external CMOS compatible clock can be applied to the CLK input to synchronize the conversion process to an  
external source.  
CLK  
28  
DI  
RD  
29  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
49  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60  
61  
62  
63  
64  
DI  
DI  
Read (active low)  
WR  
Write (active low)  
CS  
DI  
Chip select (active low)  
Buffer digital ground  
BGND  
D15  
P
DO  
DO  
DO  
DO  
DO  
DO  
DO  
DO  
DIO  
DIO  
DIO  
DIO  
DIO  
DIO  
DIO  
DIO  
P
Data bit 15 (MSB)  
D14  
Data bit 14  
D13  
Data bit 13  
D12  
Data bit 12  
D11  
Data bit 11  
D10  
Data bit 10  
D9  
Data bit 9  
D8  
Data bit 8  
D7  
Data bit 7 (software input 7)  
Data bit 6 (software input 6)  
Data bit 5 (software input 5)  
Data bit 4 (software input 4)  
Data bit 3 (software input 3)  
Data bit 2 (software input 2)  
Data bit 1 (software input 1)  
Data bit 0 (software input 0) (LSB)  
Buffer digital ground  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
BGND  
BVDD  
RESET  
ADD  
A2  
P
Power supply for digital interface from 3V to 5V  
Global reset (active low)  
Address mode select  
Address line 3  
DI  
DI  
DI  
A1  
DI  
Address line 2  
A0  
DI  
Address line 1  
HOLDA  
HOLDB  
HOLDC  
AVDD  
AGND  
REFOUT  
REFIN  
CH A0+  
CH A0–  
DI  
Hold command A (active low)  
Hold command B (active low)  
Hold command C (active low)  
Analog power supply  
Analog ground  
DI  
DI  
P
P
AO  
AI  
Reference output; attach 0.1µF and 10µF capacitors  
Reference input  
AI  
Noninverting input channel A0  
Inverting input channel A0  
AI  
10  
Submit Documentation Feedback  
ADS8365  
www.ti.com  
SBAS362AAUGUST 2006REVISED SEPTEMBER 2006  
TIMING INFORMATION  
tC1  
CLK  
1
2
16  
17  
18  
20  
1
2
19  
tW1  
tD1  
CONVERSION  
tCONV  
ACQUISITION  
tACQ  
HOLDX  
tW3  
tW2  
EOC  
CS  
tD4  
tD5  
tW6  
RD  
tW5  
tD7  
tD6  
D15–D8  
D7–D0  
Bits 15–8  
Bits 7–0  
Bits 15–8  
Bits 7–0  
BYTE  
Figure 1. Read and Convert Timing  
CS  
WR  
WR or CS  
DB7:0  
tD10  
tW6  
tD11  
Figure 2. Write Timing  
11  
Submit Documentation Feedback  
 
ADS8365  
www.ti.com  
SBAS362AAUGUST 2006REVISED SEPTEMBER 2006  
TIMING CHARACTERISTICS(1)(2)(3)(4)  
Over recommended operating free-air temperature range, TMIN to TMAX, AVDD = 5V, REFIN = REFOUT, VREF = internal +2.5V,  
fCLK = 5MHz, fSAMPLE = 250kSPS, and BVDD = 2.7 to 5V, unless otherwise noted,  
SYMBOL  
tACQ  
DESCRIPTION  
MIN  
TYP  
MAX  
0.8  
UNIT  
µs  
µs  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
Acquisition time  
tCONV  
Conversion time  
3.2  
tC1  
Cycle time of CLK  
200  
10  
20  
40  
0
(5)  
tD1  
Delay time of rising edge of CLK after falling edge of HOLDX  
BVDD = 5V  
tD2  
Delay time of first hold after RESET  
BVDD = 3V  
tD4  
tD5  
Delay time of falling edge of RD after falling edge of CS  
Delay time of rising edge of CS after rising edge of RD  
0
BVDD = 5V  
BVDD = 3V  
BVDD = 5V  
BVDD = 3V  
BVDD = 5V  
BVDD = 3V  
BVDD = 5V  
BVDD = 3V  
BVDD = 5V  
BVDD = 3V  
BVDD = 5V  
BVDD = 3V  
40  
60  
5
tD6  
Delay time of data valid after falling edge of RD  
Delay time of data hold from rising edge of RD  
Delay time of RD high after CS low  
tD7  
10  
50  
60  
10  
20  
10  
20  
10  
20  
60  
15  
30  
20  
30  
20  
40  
30  
40  
50  
70  
tD8  
tD9  
Delay time of RD low after address setup  
Delay time of data valid to WR low  
tD10  
tD11  
tW1  
tW2  
Delay time of WR or CS high to data release  
Pulse width CLK high time or low time  
BVDD = 5V  
BVDD = 3V  
BVDD = 5V  
BVDD = 3V  
BVDD = 5V  
BVDD = 3V  
BVDD = 5V  
BVDD = 3V  
BVDD = 5V  
BVDD = 3V  
Pulse width of HOLDX high time to be recognized again  
tW3  
tW4  
tW5  
tW6  
Pulse width of HOLDX low time  
Pulse width of RESET  
Pulse width of RD high time  
Pulse width of RD and CS both low time  
(1) Assured by design.  
(2) All input signals are specified with rise time and fall time = 5ns (10% to 90% of BVDD ) and timed from a voltage level of (VIL + VIH )/2.  
(3) See Figure 1.  
(4) BYTE is asynchronous; when BYTE is 0, bits 15 to 0 appear at DB15 to DB0. When BYTE is 1, bits 15 to 8 appear on DB7 to DB0. RD  
may remain LOW between changes in BYTE.  
(5) Only important when synchronization to clock is important.  
12  
Submit Documentation Feedback  
ADS8365  
www.ti.com  
SBAS362AAUGUST 2006REVISED SEPTEMBER 2006  
TYPICAL CHARACTERISTICS  
At TA = +25°C, AVDD = +5V, BVDD = +3V, VREF = internal +2.5V, fCLK = 5MHz, and fSAMPLE = 250kSPS, unless otherwise noted.  
INTEGRAL LINEARITY ERROR  
vs CODE (100kSPS)  
DIFFERENTIAL LINEARITY ERROR  
vs CODE (100kSPS)  
2.0  
1.5  
1.0  
0.5  
0
4
3
2
1
0
1
2
3
4
-0.5  
-1.0  
0
8192 16384 24576 32768 40960 49152 57344 65535  
Code  
0
8192 16384 24576 32768 40960 49152 57344 65535  
Code  
Figure 3.  
Figure 4.  
MINIMUM AND MAXIMUM INL OF ALL CHANNELS  
vs TEMPERATURE (100kSPS)  
MINIMUM AND MAXIMUM INL OF ALL CHANNELS  
vs TEMPERATURE (250kSPS)  
1.5  
1.0  
1.5  
1.0  
Max  
Max  
Min  
0.5  
0.5  
0
0
-0.5  
-1.0  
-1.5  
-2.0  
-2.5  
-0.5  
-1.0  
-1.5  
-2.0  
-2.5  
Min  
-50  
-25  
0
25  
50  
75  
100  
-50  
-25  
0
25  
50  
75  
100  
Temperature (°C)  
Temperature (°C)  
Figure 5.  
Figure 6.  
MINIMUM AND MAXIMUM DNL OF ALL CHANNELS  
vs TEMPERATURE (100kSPS)  
MINIMUM AND MAXIMUM DNL OF ALL CHANNELS  
vs TEMPERATURE (250kSPS)  
3.0  
3.0  
2.5  
2.0  
2.5  
Max  
Max  
2.0  
1.5  
1.5  
1.0  
1.0  
0.5  
0.5  
0
0
-0.5  
-1.0  
-1.5  
-2.0  
-0.5  
-1.0  
-1.5  
-2.0  
Min  
Min  
-50  
-25  
0
25  
50  
75  
100  
-50  
-25  
0
25  
50  
75  
100  
Temperature (°C)  
Temperature (°C)  
Figure 7.  
Figure 8.  
13  
Submit Documentation Feedback  
ADS8365  
www.ti.com  
SBAS362AAUGUST 2006REVISED SEPTEMBER 2006  
TYPICAL CHARACTERISTICS (continued)  
At TA = +25°C, AVDD = +5V, BVDD = +3V, VREF = internal +2.5V, fCLK = 5MHz, and fSAMPLE = 250kSPS, unless otherwise noted.  
FREQUENCY SPECTRUM  
(16384 point FFT, fIN = 10kHz, –0.2dB)  
FREQUENCY SPECTRUM  
(16384 point FFT, fIN = 45kHz, –0.2dB)  
0
-20  
0
-20  
-40  
-40  
-60  
-60  
-80  
-80  
-100  
-120  
-140  
-160  
-100  
-120  
-140  
-160  
0
25  
50  
75  
100  
125  
0
25  
50  
75  
100  
125  
100  
100  
Frequency (kHz)  
Frequency (kHz)  
Figure 9.  
Figure 10.  
SIGNAL-TO-NOISE RATIO AND  
SIGNAL-TO-NOISE + DISTORTION  
vs INPUT FREQUENCY (ALL CHANNELS)  
SPURIOUS-FREE DYNAMIC RANGE AND  
TOTAL HARMONIC DISTORTION  
vs INPUT FREQUENCY (ALL CHANNELS)  
100  
95  
90  
85  
80  
75  
70  
120  
115  
110  
105  
100  
95  
SFDR  
THD  
SNR  
SINAD  
90  
85  
80  
1
10  
100  
1
10  
Frequency (kHz)  
Frequency (kHz)  
Figure 11.  
Figure 12.  
SIGNAL-TO-NOISE RATIO AND  
SIGNAL-TO-NOISE + DISTORTION  
vs TEMPERATURE (ALL CHANNELS)  
SPURIOUS-FREE DYNAMIC RANGE AND  
TOTAL HARMONIC DISTORTION  
vs TEMPERATURE (ALL CHANNELS)  
90.0  
89.5  
89.0  
88.5  
88.0  
87.5  
87.0  
86.5  
86.0  
85.5  
85.0  
107  
105  
103  
101  
99  
SFDR  
THD  
SNR  
SINAD  
97  
95  
-50  
-25  
0
25  
50  
75  
100  
-50  
-25  
0
25  
50  
75  
Temperature (°C)  
Temperature (°C)  
Figure 13.  
Figure 14.  
14  
Submit Documentation Feedback  
ADS8365  
www.ti.com  
SBAS362AAUGUST 2006REVISED SEPTEMBER 2006  
TYPICAL CHARACTERISTICS (continued)  
At TA = +25°C, AVDD = +5V, BVDD = +3V, VREF = internal +2.5V, fCLK = 5MHz, and fSAMPLE = 250kSPS, unless otherwise noted.  
OFFSET OF ALL CHANNELS  
vs TEMPERATURE  
OFFSET MATCHING OF CHANNEL PAIRS  
vs TEMPERATURE  
-0.8  
-0.9  
-1.0  
-1.1  
-1.2  
-1.3  
-1.4  
0.25  
0.20  
0.15  
0.10  
0.05  
0
C0  
A0  
A1  
B
A
C1  
-0.05  
-0.10  
-0.15  
-0.20  
-0.25  
B0  
B1  
C
-50  
-25  
0
25  
50  
75  
100  
-50  
-25  
0
25  
50  
75  
100  
Temperature (°C)  
Temperature (°C)  
Figure 15.  
Figure 16.  
GAIN ERROR OF ALL CHANNELS  
vs TEMPERATURE  
GAIN-ERROR MATCHING OF CHANNEL PAIRS  
vs TEMPERATURE  
100  
50  
100  
50  
B1  
A0  
B0  
A1  
B
C
A
0
0
C1  
C0  
-50  
-100  
-150  
-50  
-100  
-150  
-50  
-25  
0
25  
50  
75  
100  
-50  
-25  
0
25  
50  
75  
100  
Temperature (°C)  
Temperature (°C)  
Figure 17.  
Figure 18.  
REFERENCE VOLTAGE OUTPUT  
vs TEMPERATURE  
ANALOG SUPPLY CURRENT  
vs TEMPERATURE  
2.498  
2.496  
2.494  
2.492  
2.490  
42  
40  
38  
36  
34  
32  
30  
250kSPS  
100kSPS  
-50  
-25  
0
25  
50  
75  
100  
-50  
-25  
0
25  
50  
75  
100  
Temperature (°C)  
Temperature (°C)  
Figure 19.  
Figure 20.  
15  
Submit Documentation Feedback  
ADS8365  
www.ti.com  
SBAS362AAUGUST 2006REVISED SEPTEMBER 2006  
INTRODUCTION  
signal) is 5ns. The average delta of repeated  
aperture delay values (also known as aperture jitter)  
is typically 50ps. These specifications reflect the  
ability of the ADS8365 to capture ac input signals  
accurately at the exact same moment in time.  
The ADS8365 is  
a
high-speed, low-power,  
six-channel simultaneous sampling and converting,  
16-bit ADC that operates from a single +5V supply.  
The input channels are fully differential with a typical  
common-mode rejection of 80dB. The ADS8365  
contains six 4µs successive approximation ADCs, six  
differential sample-and-hold amplifiers, an internal  
+2.5V reference with REFIN and REFOUT pins, and a  
high-speed parallel interface. There are six analog  
inputs that are grouped into three channel pairs (A,  
B, and C). There are six ADCs, one for each input  
that can be sampled and converted simultaneously,  
thus preserving the relative phase information of the  
signals on both analog inputs. Each pair of channels  
has a hold signal (HOLDA, HOLDB, and HOLDC) to  
allow simultaneous sampling on each channel pair,  
on four or on all six channels. The part accepts a  
differential analog input voltage in the range of –VREF  
to +VREF, centered on the common-mode voltage  
(see the Analog Input section). The ADS8365 also  
accepts bipolar input ranges when a level shift circuit  
is used at the front end (see Figure 26).  
REFERENCE  
Under normal operation, REFOUT (pin 61) can be  
directly connected to REFIN (pin 62) to provide an  
internal +2.5V reference to the ADS8365. The  
ADS8365 can operate, however, with an external  
reference in the range of 1.5V to 2.6V, for a  
corresponding full-scale range of 3.0V to 5.2V, as  
long as the input does not exceed the AVDD + 0.3V  
limit.  
The reference output of the ADS8365 has an  
impedance of 2k. The high impedance reference  
input can be driven directly. For an external resistive  
load, an additional buffer is required.  
A load  
capacitance of 0.1µF to 10µF should be applied to  
the reference output to minimize noise. If an external  
reference is used, the three input buffers provide  
isolation between the external reference and the  
CDACs. These buffers are also used to recharge all  
the capacitors of all CDACs during conversion.  
A conversion is initiated on the ADS8365 by bringing  
the HOLDX pin low for a minimum of 20ns. HOLDX  
low places the sample-and-hold amplifiers of the X  
channels in the hold state simultaneously and the  
conversion process is started on each channel. The  
EOC output goes low for half a clock cycle when the  
conversion is latched into the output register. The  
data can be read from the parallel output bus  
following the conversion by bringing both RD and CS  
low. Conversion time for the ADS8365 is 3.2µs when  
a 5MHz external clock is used. The corresponding  
acquisition time is 0.8µs. To achieve the maximum  
output data rate (250kSPS), the read function can be  
performed during the next conversion. NOTE: This  
mode of operation is described in more detail in the  
Timing and Control section of this data sheet.  
ANALOG INPUT  
The analog input is bipolar and fully differential.  
There are two general methods of driving the analog  
input of the ADS8365: single-ended or differential, as  
shown in Figure 21 and Figure 22. When the input is  
single-ended, the –IN input is held at the  
common-mode voltage. The +IN input swings around  
the same common voltage and the peak-to-peak  
amplitude is the (common-mode + VREF) and the  
(common-mode –VREF). The value of VREF  
determines the range over which the common-mode  
voltage may vary (see Figure 23).  
SAMPLE AND HOLD  
Single-Ended Input  
The sample-and-hold amplifiers on the ADS8365  
allow the ADCs to accurately convert an input sine  
wave of full-scale amplitude to 16-bit resolution. The  
input bandwidth of the sample-and-hold amplifiers is  
greater than the Nyquist rate (Nyquist = 1/2 of the  
sampling rate) of the ADC, even when the ADC is  
operated at its maximum throughput rate of  
250kSPS. The typical small-signal bandwidth of the  
sample-and-hold amplifiers is 10MHz. Typical  
aperture delay time (or the time it takes for the  
ADS8365 to switch from the sample to the hold  
mode following the negative edge of the HOLDX  
-VREF to +VREF  
ADS8365  
peak-to-peak  
Common  
Voltage  
Differential Input  
VREF  
peak-to-peak  
ADS8365  
Common  
VREF  
Voltage  
peak-to-peak  
Figure 21. Methods of Driving the ADS8365  
Single-Ended or Differential  
16  
Submit Documentation Feedback  
 
ADS8365  
www.ti.com  
SBAS362AAUGUST 2006REVISED SEPTEMBER 2006  
+IN  
CM +VREF  
+VREF  
CM Voltage  
-IN = CM Voltage  
-VREF  
t
CM -VREF  
Single-Ended Inputs  
+IN  
+VREF  
CM +1/2VREF  
CM Voltage  
-VREF  
-IN  
t
CM -1/2VREF  
Differential Inputs  
NOTES:  
Common−mode voltage (Differential mode) =  
(+IN) ) (−IN)  
. Common−mode voltage (Single−ended mode) = −IN  
2
The maximum differential voltage between +IN and –IN of the ADS8365 is VREF. See Figure 23 and Figure 24 for a  
further explanation of the common voltage range for single-ended and differential inputs.  
Figure 22. Using the ADS8365 in the Single-Ended and Differential Input Modes  
5
4
5
AVDD = 5V  
AVDD = 5V  
4.55  
3.8  
4
3
4.0  
3
2.7  
2.3  
Differential Input  
Single-Ended Input  
2
2
1.2  
1
1
1.0  
0.45  
0
0
- 1  
- 1  
2.6  
2.5  
2.6  
2.5  
1.0  
1.5  
2.0  
3.0  
1.0  
1.5  
2.0  
3.0  
VREF (V)  
VREF (V)  
Figure 23. Single-Ended Input: Common-Mode  
Voltage Range vs VREF  
Figure 24. Differential Input: Common-Mode  
Voltage Range vs VREF  
When the input is differential, the amplitude of the  
input is the difference between the +IN and –IN  
input, or: (+IN) – (–IN). The peak-to-peak amplitude  
of each input is ±1/2VREF around this common  
voltage. However, since the inputs are 180°  
out-of-phase, the peak-to-peak amplitude of the  
differential voltage is +VREF to –VREF. The value of  
VREF also determines the range of the voltage that  
may be common to both inputs, as shown in  
Figure 24.  
In each case, care should be taken to ensure that  
the output impedance of the sources driving the +IN  
and –IN inputs are matched. Often, a small capacitor  
(20pF) between the positive and negative input helps  
to match the impedance. Otherwise, a mismatch may  
result in offset error, which will change with both  
temperature and input voltage.  
The input current on the analog inputs depends on a  
number of factors, such as sample rate or input  
voltage. Essentially, the current into the ADS8365  
17  
Submit Documentation Feedback  
 
ADS8365  
www.ti.com  
SBAS362AAUGUST 2006REVISED SEPTEMBER 2006  
charges the internal capacitor array during the  
sampling period. After this capacitance has been  
fully charged, there is no further input current. The  
source of the analog input voltage must be able to  
charge the input capacitance (25pF) to a 16-bit  
settling level within three clock cycles if the minimum  
acquisition time is used. When the converter goes  
into the hold mode, the input impedance is greater  
than 1G. Care must be taken regarding the  
absolute analog input voltage. The +IN and –IN  
inputs should always remain within the range of  
AGND – 0.3V to AVDD + 0.3V.  
BIPOLAR INPUTS  
The differential inputs of the ADS8365 were  
designed to accept bipolar inputs (–VREF and +VREF  
)
around the common-mode voltage (2.5V), which  
corresponds to a 0V to 5V input range with a 2.5V  
reference. By using a simple op amp circuit featuring  
four, high-precision external resistors, the ADS8365  
can be configured to accept a bipolar input range.  
The conventional ±2.5V, ±5V, and ±10V input ranges  
could be interfaced to the ADS8365 using the  
resistor values shown in Figure 26.  
The OPA365 is a good choice for driving the analog  
inputs in a 5V, single-supply application.  
R1  
4kW  
1.2kW  
TRANSITION NOISE  
+IN  
OPA227  
20kW  
Bipolar  
Input  
The transition noise of the ADS8365 itself is low, as  
shown in Figure 25 These histograms were  
generated by applying a low-noise dc input and  
initiating 8000 conversions. The digital output of the  
ADC will vary in output code due to the internal noise  
of the ADS8365; this feature is true for all 16-bit,  
successive approximation register (SAR) type ADCs.  
Using a histogram to plot the output codes, the  
distribution should appear bell-shaped, with the peak  
of the bell curve representing the nominal code for  
the input value. The ±1σ , ±2σ , and ±3σ distributions  
represent the 68.3%, 95.5%, and 99.7%,  
respectively, of all codes. The transition noise can be  
calculated by dividing the number of codes  
measured by 6, yielding the ±3σ distribution, or  
99.7%, of all codes. Statistically, up to three codes  
could fall outside the distribution when executing  
1000 conversions. Remember, in order to achieve  
this low-noise performance, the peak-to-peak noise  
of the input signal and reference must be < 50µV.  
1.2kW  
-IN  
R2  
ADS8365  
OPA227  
REFOUT (pin 61)  
2.5V  
BIPOLAR INPUT  
R1  
R2  
±10V  
±5V  
1kW  
2kW  
4kW  
5kW  
10kW  
20kW  
±2.5V  
Figure 26. Level Shift Circuit for Bipolar Input  
Ranges  
TIMING AND CONTROL  
The ADS8365 uses an external clock (CLK, pin 28)  
that controls the conversion rate of the CDAC. With a  
5MHz external clock, the ADC sampling rate is  
250kSPS which corresponds to a 4µs maximum  
throughput time. Acquisition and conversion take a  
total of 20 clock cycles.  
4000  
3379  
3500  
3000  
2500  
2000  
1500  
1000  
500  
3290  
649  
603  
37  
42  
0
32782 32783 32784 32785 32786 32787  
Code  
Figure 25. 8000 Conversion Histogram of a DC  
Input  
18  
Submit Documentation Feedback  
 
 
ADS8365  
www.ti.com  
SBAS362AAUGUST 2006REVISED SEPTEMBER 2006  
THEORY OF OPERATION  
switches. The reset signal must stay  
low for at least 20ns (see Figure 27,  
tW4). The reset signal should be back  
The ADS8365 contains six 16-bit ADCs that can  
operate simultaneously in pairs. The three hold  
signals (HOLDA, HOLDB, and HOLDC) initiate the  
conversion on the specific channels. A simultaneous  
hold on all six channels can occur with all three hold  
signals strobed together. The converted values are  
saved in six registers. For each read operation, the  
ADS8365 outputs 16 bits of information (16 data or 3  
high for at least 20ns (Figure 27, tD2  
)
before starting the next conversion  
(negative hold edge).  
EOC  
End of conversion goes low when new  
data from the internal ADC are latched  
into the output registers, which usually  
happens 16.5 clock cycles after hold  
initiated the conversion. It remains low  
for half a clock cycle. If more than one  
channel  
address,  
data  
valid,  
and  
some  
synchronization information). The address/mode  
signals (A0, A1, and A2) select how the data are  
read from the ADS8365. These address/mode  
signals can define a selection of a single channel, a  
cycle mode that cycles through all channels, or a  
FIFO mode that sequences the data determined by  
the order of the hold signals. The FIFO mode will  
allow the six registers to be used by a single-channel  
pair; therefore, three locations for CH X0 and three  
locations for CH X1 can be updated before they are  
read from the device.  
channel  
pair  
is  
converted  
simultaneously, the A-channels get  
stored to the registers first (16.5 clock  
cycles after hold), followed by the  
B-channels one clock cycle later, and  
finally the C-channels another clock  
cycle later. If a reading (both RD and  
CS are low) is in process, then the  
latch process is delayed until the read  
operation is finished.  
EXPLANATION OF CLOCK, RESET, FD, AND  
EOC PINS  
FD  
First data or A0 data are high if channel  
A0 is chosen to be read next. In FIFO  
mode, the channel (X0) that is written  
to the FIFO first is latched into the A0  
register. For example, when the FIFO  
is empty, FD is 0. The first result  
latched into the FIFO register A0 is,  
therefore, chosen to be read next, and  
FD rises. After the first channel is read  
(one to three read cycles, depending  
on BYTE and ADD), FD goes low  
again.  
Clock  
An external clock has to be provided for  
the ADS8365. The maximum clock  
frequency is 5MHz. The minimum clock  
cycle is 200ns (see Figure 1, tC1), and  
the clock has to remain high (Figure 1,  
tW1) or low for at least 60ns.  
RESET  
Bringing the RESET signal low will  
reset the ADS8365. Resetting clears  
the control register and all the output  
registers, aborts any conversion in  
process, and closes the sampling  
tC1  
CLK  
tW1  
tD1  
HOLD A  
tW3  
HOLD B  
HOLD C  
tD2  
tW2  
tW4  
RESET  
Figure 27. Start of the Conversion  
19  
Submit Documentation Feedback  
 
ADS8365  
www.ti.com  
SBAS362AAUGUST 2006REVISED SEPTEMBER 2006  
START OF A CONVERSION AND READING  
DATA  
The ADS8365 can also convert one channel  
continuously (see Figure 28). Therefore, HOLDA and  
HOLDC are kept high all the time. To gain  
acquisition time, the falling edge of HOLDB takes  
place just before the rising edge of clock. One  
conversion requires 20 clock cycles. Here, data are  
read after the next conversion is initiated by HOLDB.  
To read data from channel B, A1 is set high and A2  
is low. Since A0 is low during the first reading (A2 A1  
A0 = 010), data B0 are put to the output. Before the  
second RD, A0 switches high (A2 A1 A0 = 011) so  
that data from channel B1 are read, as shown in  
Table 1. However, reading data during the  
conversion or on a falling hold edge might cause a  
loss in performance.  
By bringing one, two, or all three of the HOLDX  
signals low, the input data of the corresponding  
channel X are immediately placed in the hold mode  
(5ns). The conversion of this channel X follows with  
the next rising edge of clock. If it is important to  
detect a hold command during a certain clock-cycle,  
then the falling edge of the hold signal has to occur  
at least 10ns before the rising edge of clock, as  
shown in Figure 27, tD1. The hold signal can remain  
low without initiating a new conversion. The hold  
signal must be high for at least 15ns (as shown in  
Figure 27, tW2) before it is brought low again, and  
hold must stay low for at least 20ns (Figure 27, tW3).  
Table 1. Address Control for RD Functions  
Once a particular hold signal goes low, further  
impulses of this hold signal are ignored until the  
conversion is finished or the device is reset. When  
the conversion is finished (after 16 clock cycles) the  
sampling switches close and sample the selected  
channel. The start of the next conversion must be  
delayed to allow the input capacitor of the ADS8365  
to be fully charged. This delay time depends on the  
driving amplifier, but should be at least 800ns.  
A2  
0
A1  
0
A0  
0
CHANNEL TO BE READ  
CH A0  
CH A1  
CH B0  
CH B1  
CH C0  
CH C1  
0
0
1
0
1
0
0
1
1
1
0
0
1
0
1
Cycle mode reads registers CH A0  
to CH C1 on successive transitions  
of the read line  
1
1
1
1
0
1
FIFO mode  
CONVERSION  
ACQUISITION  
19  
CLK  
1
2
16  
17  
18  
20  
1
2
HOLD B  
EOC  
CS  
RD  
A0  
Figure 28. Timing of One Conversion Cycle  
20  
Submit Documentation Feedback  
 
 
ADS8365  
www.ti.com  
SBAS362AAUGUST 2006REVISED SEPTEMBER 2006  
Reading data (RD and CS)  
CS being low tells the ADS8365 that the bus on the  
board is assigned to the ADS8365. If an ADC shares  
a bus with digital gates, there is a possibility that  
digital (high-frequency) noise will be coupled into the  
ADC. If the bus is just used by the ADS8365, CS can  
be hardwired to ground. Reading data at the falling  
edge of one of the HOLDX signals might cause  
noise.  
In general, the channel/data outputs are in tri-state.  
Both CS and RD must be low to enable these  
outputs. RD and CS must stay low together for at  
least 40ns (see Figure 1, tD6) before the output data  
are valid. RD must remain HIGH for at least 30ns  
(see Figure 1, tW5) before bringing it back low for a  
subsequent read command.  
The new data are latched into its output register 16.5  
clock cycles after the start of a conversion (next  
rising edge of clock after the falling edge of HOLDX).  
Even if the ADS8365 is forced to wait until the read  
process is finished (RD signal going high) before the  
new data are latched into its output register, the  
possibility still exists that the new data was latched to  
the output register just before the falling edge of RD.  
If a read process is initiated around 16.5 clock cycles  
after the conversion started, RD and CS should stay  
low for at least 50ns (see Figure 1, tW6) to get the  
new data stored to its register and switched to the  
output.  
BYTE  
If there is only an 8-bit bus available on a board,  
then BYTE can be set high (see Figure 29). In this  
case, the lower eight bits can be read at the output  
pins D15 to D8 or D7 to D0 at the first RD signal,  
and the higher bits after the second RD signal. If the  
ADS8365 is used in the cycle or the FIFO mode,  
then the address and data valid information is added  
to the data (if ADD is high). In this case, the address  
will be read first, then the lower eight bits, and finally  
the higher eight bits. If BYTE is low, then the  
ADS8365 operates in the 16-bit output mode. Here,  
data are read between pins DB15 and DB0. As long  
as ADD is low, with every RD impulse, data from a  
new channel are brought to the output. If ADD is high  
and the cycle or the FIFO mode is chosen; the first  
output word contains the address, while the second  
output word contains the 16-bit data.  
CS  
RD  
BYTE  
A0  
A0  
A1  
A1  
B0  
B0  
B1  
C0  
C1  
A0  
D7 – D0  
LOW  
HIGH  
LOW  
HIGH  
LOW  
HIGH  
Figure 29. Reading Data in Cycling Mode  
21  
Submit Documentation Feedback  
 
ADS8365  
www.ti.com  
SBAS362AAUGUST 2006REVISED SEPTEMBER 2006  
ADD Signal  
If conversion timing between ADCs is not critical,  
Soft Trigger mode can allow all three HOLDX signals  
to be triggered simultaneously. This simultaneous  
triggering can be done by tying all three HOLDX pins  
high, and issuing a write (CS and WR low) with the  
DB0, DB1, DB2, and DB7 bits low, and the reset bit  
(DB3) high. Writing a low to the reset bit (DB3) while  
the RESET pin is high forces a device reset, and all  
HOLDX signals that occur during that time are  
ignored.  
In the cycle and the FIFO mode, it might be desirable  
to have address information with the 16-bit output  
data. Therefore, ADD can be set high. In this case,  
two RD signals (or three readings if the part is  
operated with BYTE being high) are necessary to  
read data of one channel, while the ADS8365  
provides channel information on the first RD signal  
(see Table 2 and Table 3).  
Soft Trigger Mode  
The HOLDX signals start conversion automatically  
on the next clock cycle. The format of the two words  
that can be written to the ADS8365 are shown in  
Table 4.  
Signals NAP, ADD, A0, A1, A2, RESET, HOLDA,  
HOLDB, and HOLDC are accessible through the  
data bus and control word. Bits NAP, ADD, A0, A1  
and A2 are in an OR configuration with hardware  
pins. When software configuration is used, these  
pins must be connected to ground. Conversely, the  
RESET, HOLDA, HOLDB, and HOLDC bits are in a  
NAND configuration with the hardware pins. When  
software configuration is used, these pins must be  
Bits DB5 and DB4 do not have corresponding  
hardware pins. Bit DB5 = 1 enables Powerdown  
mode. Bit DB4 = 1 inverts the MSB of the output  
data, putting the output data in two's complement  
format. When DB4 is low, the data is in straight  
binary format.  
connected to BVDD  
.
Table 2. Overview of the Output Formats Depending on Mode When ADD = 0  
ADD = 0  
A2 A1 A0  
000  
BYTE = 0  
BYTE = 1  
2nd RD  
1st RD  
2nd RD  
1st RD  
3rd RD  
DB15...DB0  
DB15...DB0  
DB15...DB0  
DB15...DB0  
DB15...DB0  
DB15...DB0  
DB15...DB0  
DB15...DB0  
No 2nd RD  
No 2nd RD  
No 2nd RD  
No 2nd RD  
No 2nd RD  
No 2nd RD  
No 2nd RD  
No 2nd RD  
DB7...DB0  
DB7...DB0  
DB7...DB0  
DB7...DB0  
DB7...DB0  
DB7...DB0  
DB7...DB0  
DB7...DB0  
DB15...DB8  
DB15...DB8  
DB15...DB8  
DB15...DB8  
DB15...DB8  
DB15...DB8  
DB15...DB8  
DB15...DB8  
No 3rd RD  
No 3rd RD  
No 3rd RD  
No 3rd RD  
No 3rd RD  
No 3rd RD  
No 3rd RD  
No 3rd RD  
001  
010  
011  
100  
101  
110  
111  
Table 3. Overview of the Output Formats Depending on Mode When ADD = 1  
ADD = 1  
A2 A1 A0  
000  
BYTE = 0  
BYTE = 1  
2nd RD  
1st RD  
2nd RD  
1st RD  
DB7...DB0  
3rd RD  
DB15...DB0  
DB15...DB0  
No 2nd RD  
No 2nd RD  
No 2nd RD  
No 2nd RD  
No 2nd RD  
No 2nd RD  
DB15...DB0  
DB15...DB0  
DB15...DB8  
DB15...DB8  
DB15...DB8  
DB15...DB8  
DB15...DB8  
DB15...DB8  
DB7...DB0  
DB7...DB0  
No 3rd RD  
No 3rd RD  
No 3rd RD  
No 3rd RD  
No 3rd RD  
No 3rd RD  
DB15...DB8  
DB15...DB8  
001  
DB7...DB0  
010  
DB15...DB0  
DB7...DB0  
011  
DB15...DB0  
DB7...DB0  
100  
DB15...DB0  
DB7...DB0  
101  
DB15...DB0  
DB7...DB0  
110  
1000 0000 0000 DV A2 A1 A0  
1000 0000 0000 DV A2 A1 A0  
DV A2 A1 A0 DB3 DB2 DB0  
DV A2 A1 A0 DB3 DB2 DB0  
111  
Table 4. Control Register Bits  
DB7 (MSB)  
DB6  
NAP  
X
DB5  
PD  
X
DB4  
Invert MSB  
X
DB3  
ADD  
DB2  
A2  
DB1  
A1  
DB0 (LSB)  
A0  
1
0
RESET  
HOLDA  
HOLDB  
HOLDC  
22  
Submit Documentation Feedback  
 
 
 
ADS8365  
www.ti.com  
SBAS362AAUGUST 2006REVISED SEPTEMBER 2006  
NAP AND POWERDOWN MODE CONTROL  
B1, C0, and finally, C1 before reading A0 again.  
Data from channel A0 are brought to the output first  
after a reset signal, or after powering up the device.  
The third mode is a FIFO mode that is addressed  
with (A2, A1, A0 = 111). Data of the channel that is  
converted first is read first. So, if a particular channel  
pair is most interesting and is converted more  
frequently (for example, to get a history of a  
particular channel pair), then there are three output  
registers per channel available to store data.  
In order to minimize power consumption when the  
ADS8365 is not in use, two low-power options are  
available. Nap mode minimizes power without  
shutting down the biasing circuitry and internal  
reference, allowing immediate recovery after it is  
disabled. It can be enabled by either the NAP pin  
going high, or setting DB6 in the data register high.  
Enabling Powerdown mode results in lower power  
consumption than Nap mode, but requires a short  
recovery period after disabling. It can only be  
enabled by setting DB5 in the data register high.  
If all the output registers are filled up with unread  
data and new data from an additional conversion  
must be latched in, then the oldest data is discarded.  
If a read process is going on (RD signal low) and  
new data must be stored, then the ADS8365 waits  
until the read process is finished (RD signal going  
high) before the new data gets latched into its output  
register. Again, with the ADD signal, it can be  
chosen whether the address should be added to the  
output data.  
GETTING DATA  
Flexible Output Modes: A0 A1, and A2.  
The ADS8365 has three different output modes that  
are selected with A2, A1, and A0. The A2, A1 and  
A0 pins are held with a transparent latch that triggers  
on a falling edge of the RD pin negative-ANDed with  
the CS pin (that is, if either RD or CS is low, the  
falling edge of the other will latch A0-2).  
New data is always written into the next available  
register. At t0 (see Figure 31), the reset deletes all  
the existing data. At t1, the new data of the channels  
A0 and A1 are put into registers 0 and 1. At t2, a  
dummy read (RD low) is performed to latch the  
address data correctly. At t3, the read process of  
channel A0 data is finished; therefore, these data are  
dumped and A1 data are shifted to register 0. At t4,  
new data are available, this time from channels B0,  
B1, C0, and C1. These data are written into the next  
available registers (registers 1, 2, 3, and 4).  
When (A2, A1, A0) = 000 to 101, a particular channel  
can be directly addressed (see Table  
1 and  
Figure 30). The channel address should be set at  
least 10ns (see Figure 30, tD9) before the falling edge  
of RD and should not change as long as RD is low.  
In this standard address mode, ADD will be ignored,  
but should be connected to either ground or supply.  
When (A2, A1, A0) = 110, the interface is running in  
a cycle mode (see Figure 29). Here, data 7 down to  
data 0 of channel A0 is read on the first RD signal,  
and data 15 down to data 8 on the second as BYTE  
is high. Then A1 on the second RD, followed by B0,  
CLK  
16  
17  
18  
19  
20  
1
2
tD1  
HOLD X  
tACQ  
EOC  
CS  
tD8  
tD7  
RD  
A0  
tD9  
Figure 30. Timing for Reading Data  
23  
Submit Documentation Feedback  
 
ADS8365  
www.ti.com  
SBAS362AAUGUST 2006REVISED SEPTEMBER 2006  
RESET  
EOC  
RD  
Conversion  
Channel A  
Conversion  
Conversion  
Channel C  
Channels B and C  
empty  
empty  
empty  
empty  
empty  
empty  
empty  
empty  
empty  
empty  
CH A1  
CH A0  
empty  
empty  
empty  
empty  
empty  
CH A1  
empty  
CH C1  
CH C0  
empty  
empty  
CH C1  
CH C0  
CH B1  
CH B0  
CH C1  
CH C0  
CH C1  
CH C0  
CH B1  
CH B0  
Register 5  
Register 4  
Register 3  
Register 2  
CH B1  
CH B0  
CH A1  
Register 1  
Register 0  
t0  
t1  
t2  
t3  
t4  
t5  
t6  
Figure 31. Functionality Diagram of the FIFO Registers  
On t5, the new read process of channel A1 data is  
finished. The new data of channel C0 and C1 at t6  
are put on top (registers 4 and 5).  
second RD, the 16-bit data word can be read  
(DB15DB0). If BYTE = 1, then three RD impulses  
are needed. On the first RD impulse, data valid, the  
three address bits, and data bits DB3DB0 (DV, A2,  
A1, A0, DB3, DB2, DB1, DB0) are read, followed by  
the eight lower bits of the 16-bit data word  
(db7db0), and finally the higher eight data bits  
(DB15DB8). 1000 0000 0000 is added before the  
address in case BYTE = 0, and DB3DB0 is added  
after the address if BYTE = 1. This provides the  
possibility to check if the counting of the RD signals  
inside the ADS8365 are still tracking with the  
external interface (see Table 2 and Table 3).  
In Cycle mode and in FIFO mode, the ADS8365  
offers the ability to add the address of the channel to  
the output data. Since there is only a 16-bit bus  
available (or 8-bit bus in the case BYTE is high), an  
additional RD signal is necessary to get the  
information (see Table 2 and Table 3).  
In FIFO mode, a dummy read signal (RD) is required  
after  
a reset signal to set the address bits  
appropriately; otherwise, the first conversion will not  
be valid. This is only necessary in FIFO mode.  
The data valid bit is useful for the FIFO mode. Valid  
data can simply be read until the data valid bit equals  
0. The three address bits are listed in Table 5. If the  
FIFO is empty, 16 zeroes are loaded to the output.  
The Output Code (DB15 DB0)  
In the standard address mode (A2 A1 A0  
=
000101), the ADS8365 has a 16-bit output word  
on pins DB15DB0, if BYTE = 0. If BYTE = 1, then  
two RD impulses are necessary to first read the  
lower bits, and then the higher bits on either  
DB7DB0 or DB15...DB8.  
Table 5. Address Bit in the Output Data  
DATA FROM ...  
Channel A0  
Channel A1  
Channel B0  
Channel B1  
Channel C0  
Channel C1  
A2  
0
A1  
0
A0  
0
0
0
1
If the ADS8365 operates in Cycle or in FIFO mode  
and ADD is set high, then the address of the channel  
(A2A1A0) and a data valid (DV) bit are added to the  
data. If BYTE = 0, then the data valid and the  
address of the channel is active during the first RD  
impulse (1000 0000 0000 DV A2 A1 A0). During the  
0
1
0
0
1
1
1
0
0
1
0
1
24  
Submit Documentation Feedback  
 
ADS8365  
www.ti.com  
SBAS362AAUGUST 2006REVISED SEPTEMBER 2006  
Binary Two's Complement (BTC)  
65535  
0111111111111111  
0111111111111110  
0111111111111101  
65534  
65533  
32769  
32768  
32767  
0000000000000001  
0000000000000000  
1111111111111111  
1000000000000010  
1000000000000001  
1000000000000000  
2
1
0
VNFS = VCM - VREF = 0V  
2.499962V  
2.500038V  
VPFS = VCM + VREF = 5V  
VPFS - 1LSB = 4.999924V  
4.999848V  
0.000038V  
0.000076V  
0.000152V  
VBPZ = 2.5V  
Unipolar Analog Input Voltage  
1LSB = 76V  
VCM = 2.5V  
VREF = 2.5V  
16-BIT  
Bipolar Input, Binary Two’s Complement Output: (BTC)  
Negative Full-Scale Code = VNFS = 8000H, Vcode = VCM - VREF  
Bipolar Zero Code = VBPZ = 0000H, Vcode = VCM  
Positive Full-Scale Code = VPFS = 7FFFH, Vcode = (VCM + VREF) - 1LSB  
Figure 32. Ideal Conversion Characteristics (Condition: Single-Ended, VCM = chXX– = 2.5V, VREF = 2.5V)  
25  
Submit Documentation Feedback  
ADS8365  
www.ti.com  
SBAS362AAUGUST 2006REVISED SEPTEMBER 2006  
LAYOUT  
capacitor and a 5or 10series resistor may be  
used to low-pass filter a noisy supply. On average,  
the ADS8365 draws very little current from an  
external reference because the reference voltage is  
internally buffered. A bypass capacitor of 0.1µF and  
10µF are suggested when using the internal  
reference (tie pin 61 directly to pin 62).  
For optimum performance, care should be taken with  
the physical layout of the ADS8365 circuitry. This  
recommendation is particularly true if the CLK input  
is approaching the maximum throughput rate.  
The basic SAR architecture is sensitive to glitches or  
sudden changes on the power supply, reference,  
ground connections, and digital inputs that occur just  
prior to latching the output of the analog comparator.  
Thus, driving any single conversion for an n-bit SAR  
converter, there are n windows in which large  
external transient voltages can affect the conversion  
result. Such glitches might originate from switching  
power supplies, nearby digital logic, or high-power  
devices. The degree of error in the digital output  
depends on the reference voltage, layout, and the  
exact timing of the external event. Their error can  
change if the external event changes in time with  
respect to the CLK input.  
GROUNDING  
The AGND pins should be connected to a clean  
ground point. In all cases, this point should be the  
analog ground. Avoid connections that are too close  
to the grounding point of a microcontroller or digital  
signal processor. If required, run a ground trace  
directly from the converter to the power-supply entry  
point. The ideal layout includes an analog ground  
plane dedicated to the converter and associated  
analog circuitry. Three signal ground pins (SGND)  
are the input signal grounds that are on the same  
potential as analog ground.  
With this information in mind, power to the ADS8365  
should be clean and well-bypassed. A 0.1µF ceramic  
bypass capacitor should be placed as close to the  
device as possible. In addition, a 1µF to 10µF  
capacitor is recommended. If needed, an even larger  
26  
Submit Documentation Feedback  
ADS8365  
www.ti.com  
SBAS362AAUGUST 2006REVISED SEPTEMBER 2006  
APPLICATION INFORMATION  
Different connection diagrams to DSPs or microcontrollers are shown in Figure 33 through Figure 39.  
5V  
5V  
2.048V  
AVDD  
REF3220  
REFIN  
100nF  
5V  
V+  
REFOUT  
100kW  
20kW  
OPA343  
-IN  
SENSE  
OUT  
0.5V to 4.5V  
100W  
100W  
CH A0+  
100kW  
40kW  
40kW  
1nF  
VREF  
VIN +IN  
A0  
REF 2  
REF 1  
CH A0-  
2.5V  
±10V  
INA159  
ADS8365  
100W  
100W  
-IN  
OUT  
CH A1+  
1nF  
INA159  
VIN  
A1  
CH A1-  
+IN  
REF 1/2  
CH B0+  
CH B0-  
CH B1+  
CH B1-  
CH C0+  
CH C0-  
100W  
100W  
-IN  
OUT  
CH C1+  
1nF  
INA159  
VIN  
C1  
CH C1-  
+IN  
REF 1/2  
SGND  
AGND  
Figure 33. ±10V Input Range By Using the INA159  
27  
Submit Documentation Feedback  
 
ADS8365  
www.ti.com  
SBAS362AAUGUST 2006REVISED SEPTEMBER 2006  
APPLICATION INFORMATION (continued)  
3.3V  
ADS8365  
C28xx  
BVDD  
DVDD  
PWM1  
PWM2  
PWM3  
EA0  
56  
57  
58  
54  
53  
52  
BVDD  
HOLDA  
HOLDB  
HOLDC  
A0  
26  
FD  
30  
23  
WR  
A1  
EA1  
ADD  
BYTE  
55  
A2  
EA2  
EA3  
31  
8:1  
OE  
CS  
IS  
29  
RD  
EOC  
RE  
27  
28  
51  
EXT_INT1  
MCLKX  
CLK  
ADC_RST (MFSX)  
RESET  
DATA [0]  
...  
D0  
...  
48  
...  
DATA [15]  
33  
D15  
VSS  
BGND  
Figure 34. Typical C28xx Connection (Hardware Control)  
3.3V  
BVDD  
ADS8365  
C28xx  
56  
57  
BVDD  
DVDD  
HOLDA  
HOLDB  
58  
26  
A2  
A1  
A0  
IS  
HOLDC  
FD  
8:1  
OE  
23  
55  
54  
53  
52  
ADD  
BYTE  
A0  
31  
29  
30  
CS  
RD  
RE  
WE  
A1  
WR  
27  
28  
EXT_INT1  
MCLKX  
EOC  
A2  
CLK  
D0  
...  
DATA [0]  
...  
48  
...  
33  
D15  
DATA [15]  
VSS  
BGND  
Figure 35. Typical C28xx Connection (Software Control)  
28  
Submit Documentation Feedback  
ADS8365  
www.ti.com  
SBAS362AAUGUST 2006REVISED SEPTEMBER 2006  
APPLICATION INFORMATION (continued)  
3.3V  
ADS8365  
C67xx  
BVDD  
DVDD  
BVDD  
56  
57  
58  
TOUT1  
HOLDA  
HOLDB  
HOLDC  
30  
53  
WR  
A1  
A2  
A1  
8:1  
OE  
52  
23  
54  
A0  
A2  
31  
55  
29  
ADD  
A0  
CS  
IS  
BE0  
RE  
BYTE  
RD  
27  
28  
51  
INT0  
TOUT0  
EOC  
CLK  
DB_CNTL0 (ED27)  
RESET  
D0  
...  
DATA [0]  
...  
48  
...  
33  
D15  
DATA [15]  
VSS  
BGND  
Figure 36. Typical C67xx Connection (Cycle Mode—Hardware Control)  
BVDD  
3.3V  
ADS8365  
HOLDA  
C67xx  
56  
57  
58  
26  
23  
55  
BVDD  
DVDD  
HOLDB  
HOLDC  
FD  
A2  
A1  
8:1  
OE  
A0  
ADD  
BYTE  
A0  
31  
29  
30  
CS  
RD  
IS  
54  
53  
52  
RE  
WE  
INT0  
TOUT0  
A1  
WR  
27  
28  
EOC  
A2  
CLK  
D0  
...  
DATA [0]  
...  
48  
...  
33  
D15  
DATA [15]  
VSS  
BGND  
Figure 37. Typical C67xx Connection (Software Control)  
29  
Submit Documentation Feedback  
ADS8365  
www.ti.com  
SBAS362AAUGUST 2006REVISED SEPTEMBER 2006  
APPLICATION INFORMATION (continued)  
3.3V  
ADS8365  
C54xx  
BVDD  
DVDD  
56  
57  
58  
BVDD  
TOUT0  
HOLDA  
HOLDB  
HOLDC  
A2  
A1  
A0  
IS  
26  
54  
53  
FD  
8:1  
OE  
A0  
31  
29  
30  
CS  
RD  
A1  
52  
30  
23  
55  
A2  
<
1
WR  
ADD  
BYTE  
27  
28  
51  
I/OSTRB  
(1G32)  
INT0  
EOC  
CLK  
BCLKX1  
XF  
RESET  
DATA [0]  
...  
D0  
...  
48  
...  
33  
DATA [15]  
D15  
VSS  
BGND  
Figure 38. Typical C54xx Connection (FIFO Mode—Hardware Control)  
3.3V  
ADS8365  
MSP430x1xx  
DVDD  
BVDD  
BVDD  
56  
57  
58  
31  
51  
27  
28  
TACLK (P1.0)  
HOLDA  
HOLDB  
HOLDC  
CS  
30  
52  
54  
WR  
ADD  
A1  
P1.1  
53  
23  
55  
A2  
RESET  
EOC  
P1.2  
P1.3 (ADC_INT)  
SMCLK (P1.4)  
BYTE  
A0  
CLK  
29  
DATA [0]  
...  
RD  
P2.0  
...  
48  
...  
41  
DATA [7]  
P2.7  
VSS  
BGND  
Figure 39. Typical MSP430x1xx Connection (Cycle Mode—Hardware Control)  
30  
Submit Documentation Feedback  
PACKAGE OPTION ADDENDUM  
www.ti.com  
3-Oct-2006  
PACKAGING INFORMATION  
Orderable Device  
ADS8365IPAG  
Status (1)  
ACTIVE  
ACTIVE  
ACTIVE  
Package Package  
Pins Package Eco Plan (2) Lead/Ball Finish MSL Peak Temp (3)  
Qty  
Type  
Drawing  
TQFP  
PAG  
64  
64  
64  
96 Green (RoHS & CU NIPDAU Level-4-260C-72 HR  
no Sb/Br)  
ADS8365IPAGR  
ADS8365IPAGRG4  
TQFP  
TQFP  
PAG  
PAG  
1500 Green (RoHS & CU NIPDAU Level-4-260C-72 HR  
no Sb/Br)  
1500 Green (RoHS & CU NIPDAU Level-4-260C-72 HR  
no Sb/Br)  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in  
a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2)  
Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check  
http://www.ti.com/productcontent for the latest availability information and additional product content details.  
TBD: The Pb-Free/Green conversion plan has not been defined.  
Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements  
for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered  
at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.  
Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and  
package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS  
compatible) as defined above.  
Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame  
retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)  
(3)  
MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder  
temperature.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is  
provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the  
accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take  
reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on  
incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited  
information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI  
to Customer on an annual basis.  
Addendum-Page 1  
MECHANICAL DATA  
MTQF006A – JANUARY 1995 – REVISED DECEMBER 1996  
PAG (S-PQFP-G64)  
PLASTIC QUAD FLATPACK  
0,27  
0,17  
0,50  
48  
M
0,08  
33  
49  
32  
64  
17  
0,13 NOM  
1
16  
7,50 TYP  
Gage Plane  
10,20  
SQ  
9,80  
0,25  
12,20  
SQ  
0,05 MIN  
11,80  
0°7°  
1,05  
0,95  
0,75  
0,45  
Seating Plane  
0,08  
1,20 MAX  
4040282/C 11/96  
NOTES: A. All linear dimensions are in millimeters.  
B. This drawing is subject to change without notice.  
C. Falls within JEDEC MS-026  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
IMPORTANT NOTICE  
Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications,  
enhancements, improvements, and other changes to its products and services at any time and to discontinue  
any product or service without notice. Customers should obtain the latest relevant information before placing  
orders and should verify that such information is current and complete. All products are sold subject to TI’s terms  
and conditions of sale supplied at the time of order acknowledgment.  
TI warrants performance of its hardware products to the specifications applicable at the time of sale in  
accordance with TI’s standard warranty. Testing and other quality control techniques are used to the extent TI  
deems necessary to support this warranty. Except where mandated by government requirements, testing of all  
parameters of each product is not necessarily performed.  
TI assumes no liability for applications assistance or customer product design. Customers are responsible for  
their products and applications using TI components. To minimize the risks associated with customer products  
and applications, customers should provide adequate design and operating safeguards.  
TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right,  
copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process  
in which TI products or services are used. Information published by TI regarding third-party products or services  
does not constitute a license from TI to use such products or services or a warranty or endorsement thereof.  
Use of such information may require a license from a third party under the patents or other intellectual property  
of the third party, or a license from TI under the patents or other intellectual property of TI.  
Reproduction of information in TI data books or data sheets is permissible only if reproduction is without  
alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction  
of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for  
such altered documentation.  
Resale of TI products or services with statements different from or beyond the parameters stated by TI for that  
product or service voids all express and any implied warranties for the associated TI product or service and  
is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.  
Following are URLs where you can obtain information on other Texas Instruments products and application  
solutions:  
Products  
Applications  
Audio  
Amplifiers  
amplifier.ti.com  
www.ti.com/audio  
Data Converters  
dataconverter.ti.com  
Automotive  
www.ti.com/automotive  
DSP  
dsp.ti.com  
Broadband  
Digital Control  
Military  
www.ti.com/broadband  
www.ti.com/digitalcontrol  
www.ti.com/military  
Interface  
Logic  
interface.ti.com  
logic.ti.com  
Power Mgmt  
Microcontrollers  
power.ti.com  
Optical Networking  
Security  
www.ti.com/opticalnetwork  
www.ti.com/security  
www.ti.com/telephony  
www.ti.com/video  
microcontroller.ti.com  
Low Power Wireless www.ti.com/lpw  
Telephony  
Video & Imaging  
Wireless  
www.ti.com/wireless  
Mailing Address:  
Texas Instruments  
Post Office Box 655303 Dallas, Texas 75265  
Copyright 2006, Texas Instruments Incorporated  

相关型号:

ADS8365IPAGRG4

16-Bit, 250kSPS, 6-Channel, Simultaneous Sampling SAR ANALOG-TO-DIGITAL CONVERTERS
BB

ADS8370

16-BIT, 600-kHz, PSEUDO-DIFFERENTIAL INPUT, MICROPOWER SAMPLING ANALOG-TO-DIGITAL CONVERTER WITH SERIAL INTERFACE AND REFERENCE
BB

ADS8370

16-BIT, 600-kHz, PSEUDO-DIFFERENTIAL INPUT, MICROPOWER SAMPLING ANALOG-TO-DIGITAL CONVERTER WITH SERIAL INTERFACE AND REFERENCE
TI

ADS8370I

16-BIT, 600-kHz, PSEUDO-DIFFERENTIAL INPUT, MICROPOWER SAMPLING ANALOG-TO-DIGITAL CONVERTER WITH SERIAL INTERFACE AND REFERENCE
BB

ADS8370IB

16-BIT, 600-kHz, PSEUDO-DIFFERENTIAL INPUT, MICROPOWER SAMPLING ANALOG-TO-DIGITAL CONVERTER WITH SERIAL INTERFACE AND REFERENCE
BB

ADS8370IBRHPR

16-Bit 600KSPS Serial ADC with Ref and Unipolar Pseudo Diff Input 28-VQFN -40 to 85
TI

ADS8370IBRHPRG4

16-Bit 600KSPS Serial ADC with Ref and Unipolar Pseudo Diff Input 28-VQFN -40 to 85
TI

ADS8370IBRHPT

16-BIT, 600-kHz, PSEUDO-DIFFERENTIAL INPUT, MICROPOWER SAMPLING ANALOG-TO-DIGITAL CONVERTER WITH SERIAL INTERFACE AND REFERENCE
TI

ADS8370IBRHPTG4

1-CH 16-BIT SUCCESSIVE APPROXIMATION ADC, SERIAL ACCESS, PQCC28, 6 X 6 MM, GREEN, PLASTIC, QFN-28
TI

ADS8370IRHPR

1-CH 16-BIT SUCCESSIVE APPROXIMATION ADC, SERIAL ACCESS, PQCC28, 6 X 6 MM, GREEN, PLASTIC, QFN-28
TI

ADS8370IRHPRG4

1-CH 16-BIT SUCCESSIVE APPROXIMATION ADC, SERIAL ACCESS, PQCC28, 6 X 6 MM, GREEN, PLASTIC, QFN-28
TI

ADS8370IRHPT

16-BIT, 600-kHz, PSEUDO-DIFFERENTIAL INPUT, MICROPOWER SAMPLING ANALOG-TO-DIGITAL CONVERTER WITH SERIAL INTERFACE AND REFERENCE
TI