DAC7654YBR [BB]

16-Bit, Dual Voltage Output DIGITAL-TO-ANALOG CONVERTER; 16位,双电压输出数位类比转换器
DAC7654YBR
型号: DAC7654YBR
厂家: BURR-BROWN CORPORATION    BURR-BROWN CORPORATION
描述:

16-Bit, Dual Voltage Output DIGITAL-TO-ANALOG CONVERTER
16位,双电压输出数位类比转换器

转换器
文件: 总28页 (文件大小:468K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
SBAS263 − NOVEMBER 2003  
ꢀ ꢁꢂ ꢃ ꢄꢅ ꢆ ꢇ ꢈꢉꢊ ꢋꢌꢍ ꢅ ꢉꢎꢏ ꢐ ꢈꢅ ꢑꢈꢅ  
FEATURES  
DESCRIPTION  
D
D
D
D
D
Low Glitch: 1nV-s (typ)  
The DAC7654 is  
a
16-bit, quad voltage output,  
digital-to-analog converter (DAC) with 16-bit monotonic  
performance over the specified temperature range. It  
accepts 24-bit serial input data, has double-buffered DAC  
input logic (allowing simultaneous update of all DACs),  
and provides a serial data output for daisy-chaining  
multiple DACs. Programmable asynchronous reset clears  
all registers to a mid-scale code of 8000h or to a zero-scale  
of 0000h. The DAC7654 can operate from a single +5V  
supply or from +5V and –5V supplies.  
Low Power: 18mW  
Unipolar or Bipolar Operation  
Settling Time: 12µs to 0.003%  
16-Bit Linearity and Monotonicity:  
–40°C to +85°C  
Programmable Reset to Mid-Scale or  
Zero-Scale  
D
D
D
D
D
Double-Buffered Data Inputs  
Internal Bandgap Voltage Reference  
Power-On Reset  
Low power and small size per DAC make the DAC7654  
ideal for automatic test equipment, DAC-per-pin  
programmers, data acquisition systems, and closed-loop  
servo-control. The DAC7654 is available in an LQFP  
package and is specified for operation over the –40°C to  
+85°C temperature range.  
3V to 5V Logic Interface  
APPLICATIONS  
IO V DD  
V DD  
V SS  
V CC  
D
D
D
D
D
Process Control  
DAC7654  
Closed-Loop Servo-Control  
Motor Control  
V
H A and B  
REF  
V
V
L
Bandgap  
Voltage Reference  
REF  
V
L A and B  
REF  
H
Data Acquisition Systems  
DAC-per-Pin Programmers  
REF  
V
V
V
A Sense 2  
A Sense 1  
A
OUT  
OUT  
OUT  
SDI  
Input  
DAC  
Register A  
DAC A  
DAC B  
DAC C  
DAC D  
Shift  
Register  
Register A  
OFSR1A  
OFSR2A  
SDO  
V
V
V
B Sense 2  
OUT  
OUT  
OUT  
Input  
DAC  
Register B  
B Sense 1  
B
Register B  
OFSR1B  
OFSR2B  
V
V
V
C Sense 2  
C Sense 1  
C
OUT  
OUT  
OUT  
Input  
DAC  
Register C  
CS  
Register C  
CLOCK  
RST  
OFSR1C  
OFSR2C  
Control  
Logic  
RSTSEL  
LDAC  
V
V
V
D Sense 2  
OUT  
OUT  
OUT  
Input  
DAC  
Register D  
D Sense 1  
D
Register D  
LOAD  
OFSR1D  
OFSR2D  
V
L C and D  
REF  
V
H C and D  
REF  
A GND  
D GND  
This device has ESD-CDM sensitivity and special handling precautions must be taken.  
Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments  
semiconductor products and disclaimers thereto appears at the end of this data sheet.  
All trademarks are the property of their respective owners.  
ꢜꢝ ꢐ ꢒꢞ ꢖ ꢟꢠ ꢐꢡ ꢒ ꢓꢟꢓ ꢄꢔ ꢢꢌ ꢘ ꢣꢉ ꢅꢄꢌꢔ ꢄꢤ ꢥꢈ ꢘ ꢘ ꢏꢔꢅ ꢉꢤ ꢌꢢ ꢑꢈꢦ ꢍꢄꢥ ꢉꢅꢄ ꢌꢔ ꢊꢉ ꢅꢏꢧ ꢜꢘ ꢌꢊꢈ ꢥꢅꢤ  
ꢥ ꢌꢔ ꢢꢌꢘ ꢣ ꢅꢌ ꢤ ꢑꢏ ꢥ ꢄ ꢢꢄ ꢥ ꢉ ꢅꢄ ꢌꢔꢤ ꢑ ꢏꢘ ꢅꢨꢏ ꢅꢏ ꢘ ꢣꢤ ꢌꢢ ꢟꢏꢩ ꢉꢤ ꢠꢔꢤ ꢅꢘ ꢈꢣ ꢏꢔꢅ ꢤ ꢤꢅ ꢉꢔꢊ ꢉꢘ ꢊ ꢪ ꢉꢘ ꢘ ꢉ ꢔꢅꢫꢧ  
ꢜꢘ ꢌ ꢊꢈꢥ ꢅ ꢄꢌ ꢔ ꢑꢘ ꢌ ꢥ ꢏ ꢤ ꢤ ꢄꢔ ꢎ ꢊꢌ ꢏ ꢤ ꢔꢌꢅ ꢔꢏ ꢥꢏ ꢤꢤ ꢉꢘ ꢄꢍ ꢫ ꢄꢔꢥ ꢍꢈꢊ ꢏ ꢅꢏ ꢤꢅꢄ ꢔꢎ ꢌꢢ ꢉꢍ ꢍ ꢑꢉ ꢘ ꢉꢣ ꢏꢅꢏ ꢘ ꢤꢧ  
Copyright 2003, Texas Instruments Incorporated  
www.ti.com  
www.ti.com  
SBAS263 − NOVEMBER 2003  
(1)  
ORDERING INFORMATION  
SPECIFIED  
TEMPERATURE  
RANGE  
PACKAGE  
DESIGNATOR  
PACKAGE  
MARKING  
ORDERING  
NUMBER  
TRANSPORT  
MEDIA, QUANTITY  
PRODUCT  
PACKAGE−LEAD  
DAC7654YT  
DAC7654YR  
DAC7654YBT  
DAC7654YBR  
DAC7654YCT  
DAC7654YCR  
Tape and Reel, 250  
Tape and Reel, 1500  
Tape and Reel, 250  
Tape and Reel, 1500  
Tape and Reel, 250  
Tape and Reel, 1500  
DAC7654Y  
DAC7654YB  
DAC7654YC  
LQFP−64  
LQFP−64  
LQFP−64  
PM  
PM  
PM  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
DAC7654Y  
DAC7654YB  
DAC7654YC  
(1)  
For the most current specification and package information, see the Package Ordering Addendum at the end of this data sheet.  
This integrated circuit can be damaged by ESD. Texas  
Instruments recommends that all integrated circuits be  
handledwith appropriate precautions. Failure to observe  
ABSOLUTE MAXIMUM RATINGS  
over operating free-air temperature range unless otherwise noted  
(1)  
proper handling and installation procedures can cause damage.  
DAC7654  
−0.3 to 11  
−0.3 to 5.5  
UNIT  
IOV , V  
DD CC  
and V  
and V  
to V  
SS  
V
V
V
V
V
DD  
ESD damage can range from subtle performance degradation to  
complete device failure. Precision integrated circuits may be more  
susceptible to damage because very small parametric changes could  
cause the device not to meet its published specifications.  
IOV , V  
DD CC  
to GND  
DD  
Digital Input Voltage to GND  
Digital Output Voltage to GND  
ESD-CDM  
−0.3 to V  
+ 0.3  
DD  
−0.3 to V  
+ 0.3  
DD  
200  
+150  
Maximum Junction Temperature  
Operating Temperature Range  
Storage Temperature Range  
Lead Temperature (soldering, 10s)  
°C  
°C  
°C  
°C  
−40 to +85  
−65 to +125  
+300  
(1)  
Stresses above those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. Exposure to  
absolute maximum conditions for extended periods may degrade  
device reliability. These are stress ratings only, and functional  
operationof the device at these or any other conditions beyond  
those specified is not implied.  
2
ꢒ ꢓꢖ ꢙꢁ ꢚꢛ  
www.ti.com  
SBAS263 − NOVEMBER 2003  
ELECTRICAL CHARACTERISTICS: V  
= 0V  
SS  
All specifications at T = T  
A
to T  
, IOV  
DD  
= V  
DD  
= V  
CC  
= +5V, and V  
= 0V, unless otherwise noted.  
MIN  
MAX  
SS  
DAC7654Y  
TYP  
DAC7654YB  
DAC7654YC  
PARAMETER  
Accuracy  
TEST CONDITIONS  
MIN  
MAX  
MIN  
TYP MAX  
MIN TYP MAX  
UNIT  
Linearity error  
3
4
2
4
3
2
2
1
3
2
[
[
[
LSB  
LSB  
Linearity match  
Differential linearity error  
−1  
16  
+2  
LSB  
Monotonicity, T  
to T  
MAX  
14  
15  
Bit  
MIN  
Unipolar zero error  
1
5
5
10  
20  
15  
7
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
mV  
Unipolar zero error drift  
Full-scale error  
[
[
12.5  
[
ppm/°C  
mV  
6
4
Full-scale error drift  
Unipolar zero matching  
Full-Scale matching  
7
[
ppm/°C  
mV  
Channel-to-channel matching  
Channel-to-channel matching  
3
2
5
4
10  
100  
2
8
mV  
Power-supply rejection ratio (PSRR) At full-scale  
10  
[
[
ppm/V  
Analog Output  
Voltage output  
R
= 10kΩ  
0
2.5  
[
[
[
[
[
[
[
[
V
L
Output current  
−1.25  
+1.25  
mA  
pF  
Maximum load capacitance  
Short-circuit current  
Short-circuit duration  
Dynamic Performance  
Settling time  
No oscillation  
500  
20  
[
[
[
[
[
[
mA  
GND or V  
CC  
Indefinite  
To 0.003%, 2.5V output step  
12  
0.5  
2
15  
[
[
[
[
[
[
[
[
[
[
µs  
LSB  
Channel-to-channel crosstalk  
Digital feedthrough  
Output noise voltage  
nV-s  
f = 10kHz  
130  
nV/Hz  
7FFFh to 8000h or  
8000h to 7FFFh  
DAC glitch  
1
5
[
[
[
[
nV-s  
Digital Input  
V
[
[
V
V
0.7 × IOV  
IH  
DD  
V
[
[
[
[
[
[
0.3 × IOV  
DD  
IL  
I
I
10  
µA  
µA  
IH  
10  
IL  
Digital Output  
V
V
V
V
I
I
I
I
= −0.8mA, IOV  
= 5V  
3.6  
2.4  
4.5  
[
[
[
[
[
[
[
[
[
[
[
[
V
V
V
V
OH  
OL  
OH  
OL  
OH  
OL  
OH  
OL  
DD  
= 1.6mA, IOV  
= 5V  
0.3  
2.6  
0.3  
0.4  
0.4  
[
[
[
[
DD  
= −0.4mA, IOV  
= 0.8mA, IOV  
= 3V  
DD  
= 3V  
DD  
Power Supply  
V
+4.75  
+2.7  
+4.75  
0
+5.0  
+5.0  
+5.0  
0
+5.25  
+5.25  
+5.25  
0
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
V
V
DD  
IOV  
DD  
CC  
V
V
V
V
SS  
CC  
DD  
I
I
3.5  
50  
5
mA  
µA  
µA  
mW  
I(IOV  
)
50  
DD  
Power  
18  
25  
[
[
Temperature Range  
Specified performance  
−40  
+85  
[
[
[
°C  
[ specifications same as the grade to the left  
3
www.ti.com  
SBAS263 − NOVEMBER 2003  
ELECTRICAL CHARACTERISTICS: V  
= −5V  
SS  
All specifications at T = T  
A
to T  
, IOV  
DD  
= V  
DD  
= V  
CC  
= +5V, and V = −5V, unless otherwise noted.  
SS  
MIN  
MAX  
DAC7654Y  
TYP  
DAC7654YB  
DAC7654YC  
PARAMETER  
Accuracy  
TEST CONDITIONS  
MIN  
MAX  
MIN  
TYP MAX MIN TYP MAX  
UNIT  
Linearity error  
3
4
2
4
3
2
2
1
3
2
[
[
[
LSB  
LSB  
Linearity match  
Differential linearity error  
−1  
16  
+2  
LSB  
Monotonicity, T  
to T  
MAX  
14  
15  
Bit  
MIN  
Bipolar zero error  
1
5
5
10  
20  
15  
7
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
mV  
Bipolar zero error drift  
Full-scale error  
[
[
12.5  
[
ppm/°C  
mV  
6
4
Full-scale error drift  
Bipolar zero matching  
Full-Scale matching  
7
[
ppm/°C  
mV  
Channel-to-channel matching  
Channel-to-channel matching  
3
2
5
4
10  
100  
2
8
mV  
Power-supply rejection ratio (PSRR) At full-scale  
10  
[
[
ppm/V  
Analog Output  
Voltage output  
R
= 10kΩ  
−2.5  
+2.5  
[
[
[
[
[
[
[
[
V
L
Output current  
−1.25  
+1.25  
mA  
pF  
Maximum load capacitance  
Short-circuit current  
Short-circuit duration  
Dynamic Performance  
Settling time  
No oscillation  
500  
[
[
[
[
[
[
−15, +30  
Indefinite  
mA  
GND or V  
CC  
or V  
SS  
To 0.003%, 5V output step  
12  
0.5  
2
15  
[
[
[
[
[
[
[
[
[
[
µs  
LSB  
Channel-to-channel crosstalk  
Digital feedthrough  
Output noise voltage  
nV-s  
f = 10kHz  
200  
nV/Hz  
7FFFh to 8000h or  
8000h to 7FFFh  
DAC glitch  
2
7
[
[
[
[
nV-s  
Digital Input  
V
[
[
V
V
0.7 × IOV  
IH  
DD  
V
[
[
[
[
[
[
0.3 × IOV  
DD  
IL  
I
I
10  
µA  
µA  
IH  
10  
IL  
Digital Output  
V
V
V
V
I
I
I
I
= −0.8mA, IOV  
= 5V  
3.6  
2.4  
4.5  
[
[
[
[
[
[
[
[
[
[
[
[
V
V
V
V
OH  
OL  
OH  
OL  
OH  
OL  
OH  
OL  
DD  
= 1.6mA, IOV  
= 5V  
0.3  
2.6  
0.3  
0.4  
0.4  
[
[
[
[
DD  
= −0.4mA, IOV  
= 0.8mA, IOV  
= 3V  
DD  
= 3V  
DD  
Power Supply  
V
+4.75  
+2.7  
+5.0  
+5.0  
+5.0  
−5.0  
4
+5.25  
+5.25  
+5.25  
−4.75  
5.5  
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
V
V
DD  
IOV  
DD  
CC  
V
V
+4.75  
−5.25  
V
V
SS  
CC  
DD  
I
I
mA  
µA  
µA  
mA  
mW  
50  
I(IOV  
)
50  
DD  
I
−3.5  
−40  
−2.0  
30  
[
[
[
[
SS  
Power  
45  
[
[
Temperature Range  
Specified performance  
+85  
[
°C  
[ specifications same as the grade to the left  
4
ꢒ ꢓꢖ ꢙꢁ ꢚꢛ  
www.ti.com  
SBAS263 − NOVEMBER 2003  
PIN ASSIGNMENTS  
LQFP PACKAGE  
(TOP VIEW)  
48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33  
49  
50  
32  
31  
Offset D Range 1  
Offset D Range 2  
NC  
NC  
Offset C Range 2 51  
30 NC  
52  
53  
54  
55  
56  
57  
58  
59  
60  
29  
28  
27  
Offset C Range 1  
VDD  
V
OUTC Sense 2  
OUTC Sense 1  
DGND  
RSTSEL  
V
VOUTC  
26 RST  
25 LDAC  
24 LOAD  
Reference GND  
Reference GND  
DAC7654  
23  
22  
21  
V
OUTB  
OUTB Sense 1  
VOUTB Sense 2  
SDI  
CLK  
CS  
V
Offset B Range 1 61  
20 SDO  
62  
63  
64  
19  
18  
17  
Offset B Range 2  
Offset A Range 2  
Offset A Range 1  
IOVDD  
VDD  
DGND  
1
2
3
4
5
6
7
8
9
10 11 12 13 14 15 16  
5
ꢒꢓ ꢖ ꢙ ꢁꢚ ꢛ  
www.ti.com  
SBAS263 − NOVEMBER 2003  
Terminal Functions  
PIN  
NAME  
DESCRIPTION  
PIN  
NAME  
DESCRIPTION  
1
2
3
4
5
6
NC  
NC  
No Connection  
No Connection  
36  
37  
38  
39  
40  
41  
42  
43  
44  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
No connection  
No connection  
No connection  
No connection  
No connection  
No connection  
No connection  
No connection  
V
Analog –5V power supply or 0V single supply  
Analog +5V power supply  
SS  
CC  
V
V
V
A
DAC A output voltage  
OUT  
A
Connect to V  
A for unipolar mode  
OUT  
Sense 1  
OUT  
7
V
A
Connect to V  
A for bipolar mode  
OUT  
OUT  
Sense 2  
AGND  
NC  
V
D
Connect to V  
D for bipolar mode  
D for unipolar mode  
OUT  
Sense 2  
OUT  
8
Analog ground  
No connection  
No connection  
No connection  
No connection  
No connection  
No connection  
No connection  
No connection  
Digital ground  
9
45  
V
D
Connect to V  
OUT  
Sense 1  
OUT  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
NC  
NC  
46  
47  
48  
49  
V
D
DAC D output  
No connection  
No connection  
OUT  
NC  
NC  
NC  
NC  
NC  
Offset D  
Range 1  
Connect to Offset D Range 2 for unipolar  
mode  
NC  
50  
51  
52  
53  
54  
Offset D  
Range 2  
Connect to Offset D Range 1 for unipolar  
mode  
NC  
DGND  
Offset C  
Range 2  
Connect to Offset C Range 1 for unipolar  
mode  
V
DD  
Digital +5V power supply  
Interface power supply  
IOV  
DD  
SDO  
Offset C  
Range 1  
Connect to Offset C Range 2 for unipolar  
mode  
Serial data output  
CS  
CLK  
Chip select, active low  
V
C
Connect to V  
C for bipolar mode  
OUT  
Sense 2  
OUT  
Data clock input  
SDI  
Serial data input  
V
C
Connect to V  
C for unipolar mode  
OUT  
Sense 1  
OUT  
LOAD  
LDAC  
RST  
DAC input register load control, active low  
DAC register load control, rising edge triggered  
55  
56  
57  
58  
59  
V
C
DAC C output  
OUT  
Reset, rising edge triggered. Depending on  
the state of RSTSEL, the DAC registers are  
set to either mid-scale or zero.  
REF GND Reference ground  
REF GND Reference ground  
V
V
B
B
DAC B output  
OUT  
27  
RSTSEL Reset select. Determines the action of RST.  
If high, an RST command sets the DAC  
registers to mid-scale (8000h). If low, an RST  
command sets the DAC registers to zero  
(0000h).  
Connect to V  
B for unipolar mode  
B for bipolar mode  
OUT  
Sense 1  
OUT  
60  
61  
62  
63  
64  
V
B
Connect to V  
OUT  
Sense 2  
OUT  
Offset B  
Range 1  
Connect to Offset B Range 2 for unipolar  
mode  
28  
29  
30  
31  
32  
33  
34  
35  
DGND  
Digital ground  
V
DD  
Digital +5V power supply  
No connection  
No connection  
No connection  
No connection  
No connection  
No connection  
Offset B  
Range 2  
Connect to Offset B Range 1 for unipolar  
mode  
NC  
NC  
NC  
NC  
NC  
NC  
Offset A  
Range 2  
Connect to Offset A Range 1 for unipolar  
mode  
Offset A  
Range 1  
Connect to Offset A Range 2 for unipolar  
mode  
6
ꢒ ꢓꢖ ꢙꢁ ꢚꢛ  
www.ti.com  
SBAS263 − NOVEMBER 2003  
TYPICAL CHARACTERISTICS: V  
= 0V  
SS  
All specifications at T = 25°C, IOV  
= V  
DD DD  
= V  
CC  
= +5V, V = 0V, representative unit, unless otherwise noted.  
SS  
A
+255C  
LINEARITY ERROR AND  
DIFFERENTIAL LINEARITY ERROR vs CODE  
LINEARITY ERROR AND  
DIFFERENTIAL LINEARITY ERROR vs CODE  
_
(DAC A, +25 C)  
_
(DAC B, +25 C)  
2.0  
1.5  
1.0  
0.5  
0
2.0  
1.5  
1.0  
0.5  
0
0.5  
1.0  
1.5  
2.0  
0.5  
1.0  
1.5  
2.0  
2.0  
1.5  
1.0  
0.5  
0
2.0  
1.5  
1.0  
0.5  
0
0.5  
1.0  
1.5  
2.0  
0.5  
1.0  
1.5  
2.0  
0000h 2000h 4000h 6000h 8000h A000h C000h E000h FFFFh  
0000h 2000h 4000h 6000h 8000h A000h C000h E000h FFFFh  
Digital Input Code  
Digital Input Code  
Figure 1  
Figure 2  
LINEARITY ERROR AND  
LINEARITY ERROR AND  
DIFFERENTIAL LINEARITY ERROR vs CODE  
DIFFERENTIAL LINEARITY ERROR vs CODE  
_
(DAC C, +25 C)  
_
(DAC D, +25 C)  
2.0  
1.5  
1.0  
0.5  
0
2.0  
1.5  
1.0  
0.5  
0
0.5  
1.0  
1.5  
2.0  
0.5  
1.0  
1.5  
2.0  
2.0  
1.5  
1.0  
0.5  
0
0.5  
1.0  
1.5  
2.0  
2.0  
1.5  
1.0  
0.5  
0
0.5  
1.0  
1.5  
2.0  
0000h 2000h 4000h 6000h 8000h A000h C000h E000h FFFFh  
0000h 2000h 4000h 6000h 8000h A000h C000h E000h FFFFh  
Digital Input Code  
Digital Input Code  
Figure 3  
Figure 4  
7
ꢒꢓ ꢖ ꢙ ꢁꢚ ꢛ  
www.ti.com  
SBAS263 − NOVEMBER 2003  
TYPICAL CHARACTERISTICS: V  
= 0V (continued)  
SS  
All specifications at T = 25°C, IOV  
= V  
DD DD  
= V  
CC  
= +5V, V  
SS  
= 0V, representative unit, unless otherwise noted.  
A
+855C  
LINEARITY ERROR AND  
LINEARITY ERROR AND  
DIFFERENTIAL LINEARITY ERROR vs CODE  
DIFFERENTIAL LINEARITY ERROR vs CODE  
_
_
(DAC A, +85 C)  
(DAC B, +85 C)  
2.0  
1.5  
1.0  
0.5  
0
2.0  
1.5  
1.0  
0.5  
0
0.5  
1.0  
1.5  
2.0  
0.5  
1.0  
1.5  
2.0  
2.0  
1.5  
1.0  
0.5  
0
0.5  
1.0  
1.5  
2.0  
2.0  
1.5  
1.0  
0.5  
0
0.5  
1.0  
1.5  
2.0  
0000h 2000h 4000h 6000h 8000h A000h C000h E000h FFFFh  
0000h 2000h 4000h 6000h 8000h A000h C000h E000h FFFFh  
Digital Input Code  
Digital Input Code  
Figure 5  
Figure 6  
LINEARITY ERROR AND  
LINEARITY ERROR AND  
DIFFERENTIAL LINEARITY ERROR vs CODE  
DIFFERENTIAL LINEARITY ERROR vs CODE  
_
_
(DAC C, +85 C)  
(DAC D, +85 C)  
2.0  
2.0  
1.5  
1.0  
0.5  
0
1.5  
1.0  
0.5  
0
0.5  
1.0  
1.5  
2.0  
0.5  
1.0  
1.5  
2.0  
2.0  
1.5  
1.0  
0.5  
0
2.0  
1.5  
1.0  
0.5  
0
0.5  
1.0  
1.5  
2.0  
0.5  
1.0  
1.5  
2.0  
0000h 2000h 4000h 6000h 8000h A000h C000h E000h FFFFh  
0000h 2000h 4000h 6000h 8000h A000h C000h E000h FFFFh  
Digital Input Code  
Digital Input Code  
Figure 7  
Figure 8  
8
ꢒ ꢓꢖ ꢙꢁ ꢚꢛ  
www.ti.com  
SBAS263 − NOVEMBER 2003  
TYPICAL CHARACTERISTICS: V  
= 0V (continued)  
SS  
All specifications at T = 25°C, IOV  
= V  
DD DD  
= V  
CC  
= +5V, V = 0V, representative unit, unless otherwise noted.  
SS  
A
−405C  
LINEARITY ERROR AND  
DIFFERENTIAL LINEARITY ERROR vs CODE  
LINEARITY ERROR AND  
DIFFERENTIAL LINEARITY ERROR vs CODE  
_
_
(DAC A, 40 C)  
(DAC B, 40 C)  
2.0  
1.5  
1.0  
0.5  
0
0.5  
1.0  
1.5  
2.0  
2.0  
1.5  
1.0  
0.5  
0
0.5  
1.0  
1.5  
2.0  
2.0  
1.5  
1.0  
0.5  
0
2.0  
1.5  
1.0  
0.5  
0
0.5  
1.0  
1.5  
2.0  
0.5  
1.0  
1.5  
2.0  
0000h 2000h 4000h 6000h 8000h A000h C000h E000h FFFFh  
0000h 2000h 4000h 6000h 8000h A000h C000h E000h FFFFh  
Digital Input Code  
Digital Input Code  
Figure 9  
Figure 10  
LINEARITY ERROR AND  
LINEARITY ERROR AND  
DIFFERENTIAL LINEARITY ERROR vs CODE  
DIFFERENTIAL LINEARITY ERROR vs CODE  
_
(DAC C, 40 C)  
_
(DAC D, 40 C)  
2.0  
2.0  
1.5  
1.0  
0.5  
0
1.5  
1.0  
0.5  
0
0.5  
1.0  
1.5  
2.0  
0.5  
1.0  
1.5  
2.0  
2.0  
1.5  
1.0  
0.5  
0
0.5  
1.0  
1.5  
2.0  
2.0  
1.5  
1.0  
0.5  
0
0.5  
1.0  
1.5  
2.0  
0000h 2000h 4000h 6000h 8000h A000h C000h E000h FFFFh  
0000h 2000h 4000h 6000h 8000h A000h C000h E000h FFFFh  
Digital Input Code  
Digital Input Code  
Figure 11  
Figure 12  
9
ꢒꢓ ꢖ ꢙ ꢁꢚ ꢛ  
www.ti.com  
SBAS263 − NOVEMBER 2003  
TYPICAL CHARACTERISTICS: V  
= 0V (continued)  
SS  
All specifications at T = 25°C, IOV  
DD  
= V  
DD  
= V  
CC  
= +5V, V = 0V, representative unit, unless otherwise noted.  
A
SS  
SUPPLY CURRENT vs TEMPERATURE  
SUPPLY CURRENT vs DIGITAL INPUT CODE  
5.0  
4.5  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
5.0  
4.5  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
All DACs at Midscale  
No Load  
All DACs  
No Load  
ICC  
ICC  
0000h 2000h 4000h 6000h 8000h A000h C000h E000h FFFFh  
15  
40  
10  
35  
60  
85  
Digital Input Code  
_
Temperature ( C)  
Figure 13  
Figure 14  
ZEROSCALE ERROR vs TEMPERATURE  
(Code 0000h)  
POSITIVE FULLSCALE ERROR vs TEMPERATURE  
10  
8
10  
(Code FFFFh)  
8
6
4
2
0
2
4
6
8
6
DAC D  
4
DAC B  
DAC C  
DAC B  
DAC C  
DAC A  
2
0
2
4
6
8
DAC D  
DAC A  
10  
10  
15  
40  
15  
10  
35  
60  
85  
40  
10  
35  
60  
85  
_
Temperature ( C)  
_
Temperature ( C)  
Figure 15  
Figure 16  
BROADBAND NOISE  
(Code = 8000h, BW = 10kHz)  
OUTPUT NOISE VOLTAGE vs FREQUENCY  
1000  
100  
10  
Time (10ms/div)  
10  
100  
1k  
10k  
100k  
1M  
Frequency (Hz)  
Figure 17  
Figure 18  
10  
ꢒ ꢓꢖ ꢙꢁ ꢚꢛ  
www.ti.com  
SBAS263 − NOVEMBER 2003  
TYPICAL CHARACTERISTICS: V  
= 0V (continued)  
SS  
All specifications at T = 25°C, IOV  
DD  
= V  
DD  
= V  
CC  
= +5V, V  
SS  
= 0V, representative unit, unless otherwise noted.  
A
SETTLING TIME  
(0V to +2.5V)  
SETTLING TIME  
(+2.5V to 39mV)  
Large Signal: 1.0V/div  
µ
Small Signal: 100 V/div  
Large Signal: 1.0V/div  
µ
Small Signal: 100 V/div  
µ
µ
Time (5 s/div)  
Time (5 s/div)  
Figure 19  
Figure 20  
MIDSCALE GLITCH PERFORMANCE  
CODE 7FFFh to 8000h  
MIDSCALE GLITCH PERFORMANCE  
CODE 8000h to 7FFFh  
Unfiltered DAC Output  
Unfiltered DAC Output  
DAC Output after  
DAC Output After  
2K, 470pF LowPass Filter  
2K, 470pF LowPass Filter  
µ
µ
Time (0.5 s/div)  
Time (0.5 s/div)  
Figure 21  
Figure 22  
OVERSHOOT FOR TRANSITION OF 100 CODES  
CODE 32750 to 32850  
OVERSHOOT FOR TRANSITION OF 100 CODES  
CODE 32850 to 32750  
Unfiltered DAC Output  
DAC Output After  
2K, 470pF LowPass Filter  
DAC Output After  
2K, 470pF LowPass Filter  
100  
Codes  
Unfiltered DAC Output  
µ
µ
Time (1.0 s/div)  
Time (1.0 s/div)  
Figure 23  
Figure 24  
11  
ꢒꢓ ꢖ ꢙ ꢁꢚ ꢛ  
www.ti.com  
SBAS263 − NOVEMBER 2003  
TYPICAL CHARACTERISTICS: V  
= 0V (continued)  
SS  
All specifications at T = 25°C, IOV  
DD  
= V  
DD  
= V  
CC  
= +5V, V  
SS  
= 0V, representative unit, unless otherwise noted.  
A
IOVDD SUPPLY CURRENT  
vs LOGIC INPUT LEVEL FOR DIGITAL INPUTS  
VOUT vs RLOAD  
0.8  
5.0  
4.5  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
Typical of One  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
Digital Input  
IOVDD = 5V  
Source  
Sink  
10  
0
1
2
3
4
5
0.01  
0.1  
1
100  
Logic Input Level for Digital Inputs (V)  
RLOAD (k )  
Figure 26  
Figure 25  
12  
ꢒ ꢓꢖ ꢙꢁ ꢚꢛ  
www.ti.com  
SBAS263 − NOVEMBER 2003  
TYPICAL CHARACTERISTICS: V  
= −5V  
SS  
All specifications at T = 25°C, IOV  
= V  
DD DD  
= V  
CC  
= +5V, V = −5V, representative unit, unless otherwise noted.  
SS  
A
+255C  
LINEARITY ERROR AND  
LINEARITY ERROR AND  
DIFFERENTIAL LINEARITY ERROR vs CODE  
DIFFERENTIAL LINEARITY ERROR vs CODE  
_
_
(DAC A, +25 C)  
(DAC B, +25 C)  
2.0  
1.5  
1.0  
0.5  
0
2.0  
1.5  
1.0  
0.5  
0
0.5  
1.0  
1.5  
2.0  
0.5  
1.0  
1.5  
2.0  
2.0  
1.5  
1.0  
0.5  
0
2.0  
1.5  
1.0  
0.5  
0
0.5  
1.0  
1.5  
2.0  
0.5  
1.0  
1.5  
2.0  
0000h 2000h 4000h 6000h 8000h A000h C000h E000h FFFFh  
0000h 2000h 4000h 6000h 8000h A000h C000h E000h FFFFh  
Digital Input Code  
Digital Input Code  
Figure 27  
Figure 28  
LINEARITY ERROR AND  
LINEARITY ERROR AND  
DIFFERENTIAL LINEARITY ERROR vs CODE  
DIFFERENTIAL LINEARITY ERROR vs CODE  
_
_
(DAC D, +25 C)  
(DAC C, +25 C)  
2.0  
1.5  
1.0  
0.5  
0
2.0  
1.5  
1.0  
0.5  
0
0.5  
1.0  
1.5  
2.0  
0.5  
1.0  
1.5  
2.0  
2.0  
1.5  
1.0  
0.5  
0
2.0  
1.5  
1.0  
0.5  
0
0.5  
1.0  
1.5  
2.0  
0.5  
1.0  
1.5  
2.0  
0000h 2000h 4000h 6000h 8000h A000h C000h E000h FFFFh  
0000h 2000h 4000h 6000h 8000h A000h C000h E000h FFFFh  
Digital Input Code  
Digital Input Code  
Figure 29  
Figure 30  
13  
ꢒꢓ ꢖ ꢙ ꢁꢚ ꢛ  
www.ti.com  
SBAS263 − NOVEMBER 2003  
TYPICAL CHARACTERISTICS: V  
= −5V (continued)  
SS  
All specifications at T = 25°C, IOV  
= V  
DD DD  
= V  
CC  
= +5V, V  
SS  
= −5V, representative unit, unless otherwise noted.  
A
+855C  
LINEARITY ERROR AND  
LINEARITY ERROR AND  
DIFFERENTIAL LINEARITY ERROR vs CODE  
DIFFERENTIAL LINEARITY ERROR vs CODE  
_
_
(DAC A, +85 C)  
(DAC B, +85 C)  
2.0  
1.5  
1.0  
0.5  
0
2.0  
1.5  
1.0  
0.5  
0
0.5  
1.0  
1.5  
2.0  
0.5  
1.0  
1.5  
2.0  
2.0  
1.5  
1.0  
0.5  
0
2.0  
1.5  
1.0  
0.5  
0
0.5  
1.0  
1.5  
2.0  
0.5  
1.0  
1.5  
2.0  
0000h 2000h 4000h 6000h 8000h A000h C000h E000h FFFFh  
0000h 2000h 4000h 6000h 8000h A000h C000h E000h FFFFh  
Digital Input Code  
Digital Input Code  
Figure 31  
Figure 32  
LINEARITY ERROR AND  
LINEARITY ERROR AND  
DIFFERENTIAL LINEARITY ERROR vs CODE  
DIFFERENTIAL LINEARITY ERROR vs CODE  
_
_
(DAC C, +85 C)  
(DAC D, +85 C)  
2.0  
2.0  
1.5  
1.0  
0.5  
0
0.5  
1.0  
1.5  
2.0  
1.5  
1.0  
0.5  
0
0.5  
1.0  
1.5  
2.0  
2.0  
1.5  
1.0  
0.5  
0
2.0  
1.5  
1.0  
0.5  
0
0.5  
1.0  
1.5  
2.0  
0.5  
1.0  
1.5  
2.0  
0000h 2000h 4000h 6000h 8000h A000h C000h E000h FFFFh  
0000h 2000h 4000h 6000h 8000h A000h C000h E000h FFFFh  
Digital Input Code  
Digital Input Code  
Figure 33  
Figure 34  
14  
ꢒ ꢓꢖ ꢙꢁ ꢚꢛ  
www.ti.com  
SBAS263 − NOVEMBER 2003  
TYPICAL CHARACTERISTICS: V  
= −5V (continued)  
SS  
All specifications at T = 25°C, IOV  
= V  
DD DD  
= V  
CC  
= +5V, V = −5V, representative unit, unless otherwise noted.  
SS  
A
−405C  
LINEARITY ERROR AND  
DIFFERENTIAL LINEARITY ERROR vs CODE  
LINEARITY ERROR AND  
DIFFERENTIAL LINEARITY ERROR vs CODE  
_
_
(DAC A, 40 C)  
(DAC B, 40 C)  
2.0  
1.5  
1.0  
0.5  
0
2.0  
1.5  
1.0  
0.5  
0
0.5  
1.0  
1.5  
2.0  
0.5  
1.0  
1.5  
2.0  
2.0  
1.5  
1.0  
0.5  
0
2.0  
1.5  
1.0  
0.5  
0
0.5  
1.0  
1.5  
2.0  
0.5  
1.0  
1.5  
2.0  
0000h 2000h 4000h 6000h 8000h A000h C000h E000h FFFFh  
0000h 2000h 4000h 6000h 8000h A000h C000h E000h FFFFh  
Digital Input Code  
Digital Input Code  
Figure 35  
Figure 36  
LINEARITY ERROR AND  
LINEARITY ERROR AND  
DIFFERENTIAL LINEARITY ERROR vs CODE  
DIFFERENTIAL LINEARITY ERROR vs CODE  
_
_
(DAC C, 40 C)  
(DAC D, 40 C)  
2.0  
2.0  
1.5  
1.0  
0.5  
0
1.5  
1.0  
0.5  
0
0.5  
1.0  
1.5  
2.0  
0.5  
1.0  
1.5  
2.0  
2.0  
1.5  
1.0  
0.5  
0
2.0  
1.5  
1.0  
0.5  
0
0.5  
1.0  
1.5  
2.0  
0.5  
1.0  
1.5  
2.0  
0000h 2000h 4000h 6000h 8000h A000h C000h E000h FFFFh  
0000h 2000h 4000h 6000h 8000h A000h C000h E000h FFFFh  
Digital Input Code  
Digital Input Code  
Figure 37  
Figure 38  
15  
ꢒꢓ ꢖ ꢙ ꢁꢚ ꢛ  
www.ti.com  
SBAS263 − NOVEMBER 2003  
TYPICAL CHARACTERISTICS: V  
= −5V (continued)  
SS  
All specifications at T = 25°C, IOV  
DD  
= V  
DD  
= V  
CC  
= +5V, V = −5V, representative unit, unless otherwise noted.  
A
SS  
SUPPLY CURRENT vs TEMPERATURE  
ICC  
SUPPLY CURRENT vs DIGITAL INPUT CODE  
ICC  
5
4
3
2
1
0
5
4
3
2
1
0
1
2
3
4
5
1
2
3
4
5
ISS  
ISS  
All DACs  
No Load  
All DACs at Midscale  
No Load  
0000h 2000h 4000h 6000h 8000h A000h C000h E000h FFFFh  
15  
40  
10  
35  
60  
85  
Digital Input Code  
_
Temperature ( C)  
Figure 39  
Figure 40  
BIPLOAR ZERO ERROR vs TEMPERATURE  
(Code 8000h)  
POSITIVE FULLSCALE ERROR vs TEMPERATURE  
10  
8
10  
8
(Code FFFFh)  
6
6
DAC C  
DAC B  
4
4
DAC C  
DAC D  
DAC D  
DAC B  
2
2
0
0
2
4
6
8
2
4
6
8
DAC A  
DAC A  
10  
10  
15  
40  
15  
10  
35  
60  
85  
40  
10  
35  
60  
85  
_
_
Temperature ( C)  
Temperature ( C)  
Figure 41  
Figure 42  
NEGATIVE FULLSCALE ERROR vs TEMPERATURE  
(Code 0000h)  
10  
8
6
DAC B  
4
2
DAC A  
0
2
4
6
8
DAC C  
DAC D  
10  
15  
40  
10  
35  
60  
85  
_
Temperature ( C)  
Figure 43  
16  
ꢒ ꢓꢖ ꢙꢁ ꢚꢛ  
www.ti.com  
SBAS263 − NOVEMBER 2003  
TYPICAL CHARACTERISTICS: V  
= −5V (continued)  
SS  
All specifications at T = 25°C, IOV  
DD  
= V  
DD  
= V  
CC  
= +5V, V = −5V, representative unit, unless otherwise noted.  
A
SS  
BROADBAND NOISE  
(Code = 8000h, BW = 10kHz)  
OUTPUT NOISE VOLTAGE vs FREQUENCY  
1000  
100  
10  
10  
100  
1k  
10k  
100k  
1M  
Time (10ms/div)  
Figure 44  
SETTLING TIME  
Frequency (Hz)  
Figure 45  
SETTLING TIME  
(+2.5V to 2.5V)  
( 2.5V to +2.5V)  
Large Signal: 1.0V/div  
µ
Small Signal: 100 V/div  
µ
Small Signal: 100 V/div  
Large Signal: 1.0V/div  
µ
µ
Time (5 s/div)  
Time (5 s/div)  
Figure 46  
Figure 47  
MIDSCALE GLITCH PERFORMANCE  
CODE 7FFFh to 8000h  
MIDSCALE GLITCH PERFORMANCE  
CODE 8000h to 7FFFh  
Unfiltered DAC Output  
Unfiltered DAC Output  
DAC Output after  
DAC Output After  
2K, 470pF LowPass Filter  
2K, 470pF LowPass Filter  
µ
µ
Time (0.5 s/div)  
Time (0.5 s/div)  
Figure 48  
Figure 49  
17  
ꢒꢓ ꢖ ꢙ ꢁꢚ ꢛ  
www.ti.com  
SBAS263 − NOVEMBER 2003  
TYPICAL CHARACTERISTICS: V  
= −5V (continued)  
SS  
All specifications at T = 25°C, IOV  
DD  
= V  
DD  
= V  
CC  
= +5V, V = −5V, representative unit, unless otherwise noted.  
SS  
A
OVERSHOOT FOR TRANSITION OF 100 CODES  
CODE 32750 to 32850  
OVERSHOOT FOR TRANSITION OF 100 CODES  
CODE 32850 to 32750  
Unfiltered DAC Output  
DAC Output After  
2K, 470pF LowPass Filter  
DAC Output After  
2K, 470pF LowPass Filter  
100  
Codes  
Unfiltered DAC Output  
µ
µ
Time (1.0 s/div)  
Time (1.0 s/div)  
Figure 50  
Figure 51  
VOUT vs RLOAD  
5
4
3
2
1
0
Source  
1
2
3
4
5
Sink  
0.01  
0.1  
1
10  
100  
RLOAD (k )  
Figure 52  
18  
ꢒ ꢓꢖ ꢙꢁ ꢚꢛ  
www.ti.com  
SBAS263 − NOVEMBER 2003  
THEORY OF OPERATION  
The DAC7654 is a quad voltage output, 16-bit DAC. The  
architecture is an R−2R ladder configuration with the three  
most significant bits (MSBs) segmented, followed by an  
operational amplifier that serves as a buffer. Each DAC  
has its own R−2R ladder network, segmented MSBs, and  
output op amp, as shown in Figure 53. The minimum  
voltage output (zero-scale) and maximum voltage output  
(full-scale) are set by the internal voltage references and  
the resistors associated with the output operational  
amplifier.  
The digital input is a 24-bit serial word that contains a 2-bit  
address code for selecting one of four DACs, a quick load  
bit, five unused bits, and the 16-bit DAC code (MSB first).  
The converters can be powered from either a single +5V  
supply or a dual 5V supply. The device offers a reset  
function that immediately sets all DAC output voltages and  
DAC registers to mid-scale (code 8000h) or to zero-scale  
(code 0000h). See Figure 54 and Figure 55 for basic  
single- and dual-supply operation of the DAC7654.  
VOUTS1  
13K  
13K  
VOUTS2  
100  
R
VOUT  
2R  
2R  
2R  
2R  
2R  
2R  
2R  
2R  
2R  
OFSR2  
13K  
11K  
12K  
OFSR1  
VREF  
H
L
VREF  
Figure 53. DAC7654 Architecture  
19  
ꢒꢓ ꢖ ꢙ ꢁꢚ ꢛ  
www.ti.com  
SBAS263 − NOVEMBER 2003  
0V to +2.5V  
NC NC  
NC NC NC NC NC NC NC NC NC NC NC NC  
48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33  
49 Offset D Range 1  
NC 32 NC  
NC 31 NC  
NC 30 NC  
VDD 29  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60  
61  
62  
63  
64  
Offset D Range 2  
Offset C Range 2  
Offset C Range 1  
VOUTC Sense 2  
VOUTC Sense 1  
NC  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
DGND  
RSTSEL  
RST  
0V to +2.5V  
VOUT  
C
Reset DAC Register  
Load DAC Registers  
Load  
DAC7654  
Reference GND  
Reference GND  
LDAC  
LOAD  
SDI  
Single Supply  
NC = No Connection  
VOUT  
B
Serial Data In  
Clock  
0V to +2.5V  
VOUTB Sense 1  
VOUTB Sense 2  
Offset B Range 1  
Offset B Range 2  
Offset A Range 2  
Offset A Range 1  
CLK  
NC  
CS  
Chip Select  
SDO  
Serial Data Out  
+3V to +5V  
IOVDD  
VDD  
+
µ
µ
F
0.1  
F
1
DGND  
1
2
3
4
5
6
7
8
9
10 11 12 13 14 15 16  
NC NC  
NC  
NC NC NC NC NC NC NC NC  
0V to +2.5V  
+5V  
+
µ
µ
F
1
F
0.1  
Figure 54. Basic Single-Supply Operation of the DAC7654  
20  
ꢒ ꢓꢖ ꢙꢁ ꢚꢛ  
www.ti.com  
SBAS263 − NOVEMBER 2003  
2.5V to +2.5V  
NC NC  
NC  
NC NC NC NC NC NC NC NC NC NC NC  
48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33  
49  
50  
32  
31  
NC  
NC  
Offset D Range 1  
Offset D Range 2  
NC  
NC  
NC  
NC  
NC 51 Offset C Range 2  
NC 30 NC  
52  
53  
54  
29  
28  
27  
NC  
NC  
Offset C Range 1  
VOU TC Sense 2  
VOU TC Sense 1  
VDD  
DGND  
RSTSEL  
55 VOU T  
C
RST 26  
LDAC 25  
LOAD 24  
SDI 23  
2.5V to +2.5V  
Reset DAC Register  
Load DAC Registers  
Load  
DAC7654  
Dual Supply  
NC = No Connection  
56  
57  
Reference GND  
Reference GND  
58 VOU T  
B
Serial Data In  
Clock  
2.5V to +2.5V  
NC 59 VOU TB Sense 1  
CLK 22  
60  
61  
62  
21  
20  
19  
VOU TB Sense 2  
Offset B Range 1  
Offset B Range 2  
CS  
SDO  
Chip Select  
NC  
NC  
Serial Data Out  
+3V to +5V  
+
IOVDD  
NC 63 Offset A Range 2  
NC 64 Offset A Range 1  
VDD 18  
µ
µ
F
0.1  
F
1
DGND 17  
1
2
3
4
5
6
7
8
9
10 11 12 13 14 15 16  
NC NC  
NC  
NC NC NC NC NC NC NC NC  
5V  
µ
µ
1
F
0.1  
F
+
2.5V to +2.5V  
+5V  
+
µ
µ
F
1
F
0.1  
Figure 55. Basic Dual-Supply Operation of the DAC7654  
21  
ꢒꢓ ꢖ ꢙ ꢁꢚ ꢛ  
www.ti.com  
SBAS263 − NOVEMBER 2003  
The DAC7654 offers  
a
force and sense output  
ANALOG OUTPUTS  
configuration for the high open-loop gain output amplifier.  
This feature allows the loop around the output amplifier to  
be closed at the load (as shown in Figure 56), thus  
ensuring an accurate output voltage.  
When VSS = –5V (dual-supply operation), the output  
amplifier can swing to within 2.25V of the supply rails over  
a range of –40°C to +85°C. When VSS = 0V (single-supply  
operation), and with RLOAD also connected to ground, the  
output can swing to within 5mV of ground. Care must be  
taken when measuring the zero-scale error when  
VSS = 0V. Since the output voltage cannot swing below  
ground, the output voltage may not change for the first few  
digital input codes (0000h, 0001h, 0002h, etc.) if the output  
amplifier has a negative offset.  
DIGITAL INTERFACE  
Table 1 shows the basic control logic for the DAC7654.  
The interface consists of a signal data clock (CLK) input,  
serial data in (SDI), DAC input register load control signal  
(LOAD), and DAC register load control signal (LDAC). In  
addition, a chip select (CS) input is available to enable  
serial communication when there are multiple serial  
devices. An asynchronous reset (RST) input, by the rising  
edge, is provided to simplify startup conditions, periodic  
resets, or emergency resets to a known state, depending  
on the status of the reset select (RSTSEL) signal.  
Due to the high accuracy of these DACs, system design  
problems such as grounding and contact resistance are  
very important. A 16-bit converter with a 2.5V full-scale  
range has a 1LSB value of 38µV. With a load current of  
1mA, series wiring and connector resistance of only 40mΩ  
(RW2) will cause a voltage drop of 40µV, as shown in  
Figure 56. To understand what this means in terms of  
system layout, the resistivity of a typical 1-ounce  
copper-clad printed circuit board is 1/2 mper square. For  
a 1mA load, a 0.01-inch-wide printed circuit conductor 0.6  
inches long will result in a voltage drop of 30µV.  
RW1  
VOUTA Sense1  
6
5
8
RW2  
V
OUTA  
VOUT  
DAC7654  
AGND  
RW1  
VOUTB Sense1 59  
58  
RW2  
VOUT  
V
OUTB  
Figure 56. Analog Output Closed-Loop Configuration (1/2 DAC7654). R represents wiring resistances.  
W
Table 1. DAC7654 Logic Truth Table  
A1  
L
A0  
L
CS  
L
RST  
H
RSTSEL LDAC  
LOAD INPUT REGISTER DAC REGISTER  
MODE  
Write input  
Write input  
Write input  
Write input  
Update  
DAC  
A
X
X
X
X
X
X
L
X
X
X
X
L
L
Write  
Write  
Hold  
Hold  
L
H
L
L
H
B
H
H
X
L
H
L
Write  
Hold  
C
H
X
X
X
X
L
H
L
Write  
Hold  
D
H
H
X
X
H
H
H
X
X
Hold  
Write  
All  
All  
All  
All  
X
H
H
X
X
Hold  
Hold  
Hold  
X
Reset to zero  
Reset to zero  
Reset to zero  
X
H
Reset to mid-scale Reset to mid-scale Reset to mid-scale  
22  
ꢒ ꢓꢖ ꢙꢁ ꢚꢛ  
www.ti.com  
SBAS263 − NOVEMBER 2003  
The DAC code, quick load control, and address are provided  
via a 24-bit serial interface (see Table 3; also see Figure 58,  
page 25). The first two bits select the input register that will  
be updated when LOAD goes low. The third bit is a Quick  
Load bit; if high, the code in the shift register is loaded into  
all of the DAC input registers when the LOAD signal goes  
low. If the Quick Load bit is low, the content of shift register  
is loaded only to the DAC input register that is addressed.  
The Quick Load bit is followed by five unused bits. The last  
16 bits (MSB first) are the DAC code.  
CS and CLK are used, CS should rise only when CLK is high.  
If not, then either CS or CLK can be used to operate the shift  
register. Table 2 shows more information.  
Table 2. Serial Shift Register Truth Table  
(1)  
CS  
(1)  
CLK  
LOAD  
RST  
H
SERIAL SHIFT REGISTER  
No change  
(2)  
H
(2)  
X
H
H
H
H
(2)  
L
L
H
No change  
(2)  
L
H
Advanced one bit  
Advanced one bit  
No change  
The internal DAC register is edge triggered and not level  
triggered. When the LDAC signal is transitioned from low  
to high, the digital word currently in the DAC input register  
is latched. The first set of registers (the DAC input  
registers) are level triggered via the LOAD signal. This  
double-buffered architecture has been designed so that  
new data can be entered for each DAC without disturbing  
the analog outputs. When the new data has been entered  
into the device, all of the DAC outputs can be updated  
simultaneously by the rising edge of LDAC. Additionally, it  
allows writing to the DAC input registers at any point,  
which permits the DAC output voltages to be  
synchronously changed via a trigger signal (LDAC).  
L
H
(3)  
(4)  
L
H
H
X
X
H
(3)  
(5)  
H
No change  
(1)  
(2)  
CS and CLK are interchangeable.  
H = logic high. X = don’t care. L = logic low. = positive logic  
transition.  
(3)  
(4)  
A high value is suggested in order to avoid a false clock from  
advancing and changing the shift register.  
If data are clocked into the serial register while LOAD is low, the  
selected DAC register will change as the shift register bits flow  
throughA1 and A0. This will corrupt the data in each DAC register  
that has been erroneously selected.  
(5)  
Rising edge of RST causes no change in the contents of the serial  
shift register.  
3V TO 5V LOGIC INTERFACE  
GLITCH SUPPRESSION CIRCUIT  
All of the digital input and output pins are compatible with  
any logic supply voltage between 3V and 5V. Connect the  
interface logic supply voltage to the IOVDD pin. Note that  
the internal digital logic operates from 5V, so the VDD pin  
must connect to a 5V supply.  
Figure 21, Figure 22, Figure 48, and Figure 49 show the  
typical DAC output when switching between codes 7FFFh  
and 8000h. For R-2R ladder DACs, this is potentially the  
worst-case glitch condition, since every switch in the DAC  
changes state. To minimize the glitch energy at this and  
other code pairs with possible high-glitch outputs, an  
internal track-and-hold circuit is used to maintain the DAC  
ouput voltage at a nearly constant level during the internal  
switching interval. This track-and-hold circuit is activated  
only when the transition is at, or close to, one of the code  
pairs with the high-glitch possibility.  
CS AND CLK INPUTS  
Note that CS and CLK are combined with an OR gate, which  
controls the serial-to-parallel shift register. These two inputs  
are completely interchangeable. However, care must be  
taken with the state of CLK when CS rises at the end of a  
serial transfer. If CLK is low when CS rises, the OR gate will  
provide a rising edge to the shift register, shifting the internal  
data by one additional bit. The result will be incorrect data and  
the possible selection of the wrong input register(s). If both  
It is advisable to avoid digital transitions within 1µs of the  
rising edge of the LDAC signal. These signals can affect  
the charge on the track-and-hold capacitor, thus  
increasing the glitch energy.  
Table 3. 24-Bit Data and Command Word  
B23 B22 B21 B20 B19 B18 B17 B16 B15 B14 B13 B12 B11 B10 B9 B8 B7 B6 B5 B4 B3 B2 B1 B0  
A1  
A0 Quick  
Load  
X
X
X
X
X
D15 D14 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0  
23  
ꢒꢓ ꢖ ꢙ ꢁꢚ ꢛ  
www.ti.com  
SBAS263 − NOVEMBER 2003  
SERIAL DATA OUTPUT  
DIGITAL INPUT CODING  
The serial-data output (SDO) is the internal shift register  
output. For the DAC7654, the SDO is a driven output and  
does not require an external pull-up. Any number of  
DAC7654s can be daisy-chained by connecting the SDO  
pin of one device to the SDI pin of the following device in  
the chain, as shown in Figure 57.  
The DAC7654 input data is in straight binary format. The  
output voltage for single-supply operation is given by  
Equation 1:  
2.5   N  
VOUT  
+
65, 536  
(1)  
where N is the digital input code.  
This equation does not include the effects of offset  
(zero-scale) or gain (full-scale) errors.  
DIGITAL TIMING  
Figure 58 and Table 4 provide detailed timing for the digital  
interface of the DAC7654.  
The output for the dual supply operation is given by  
Equation 2:  
5   N  
VOUT  
+
* 2.5  
65, 536  
(2)  
DAC7654  
CLK  
DAC7654  
DAC7654  
CLK  
SCK  
DIN  
CS  
CLK  
SDI  
CS  
SDO  
SDO  
SDO  
SDI  
CS  
SDI  
CS  
To  
Other  
Serial  
Devices  
Figure 57. Daisy-Chaining the DAC7654  
24  
ꢒ ꢓꢖ ꢙꢁ ꢚꢛ  
www.ti.com  
SBAS263 − NOVEMBER 2003  
(LSB)  
D0  
(MSB)  
A1  
QUICK  
LOAD  
SDI  
A0  
X
X
X
X
X
D15  
D1  
CLK  
tCSH  
t
css  
CS  
tLDDD  
tLD2  
tLD1  
LOAD  
tLDRW  
LDAC  
tDS  
tDH  
SDI  
tCL  
tCH  
CLK  
tLDDL  
tLDDH  
LDAC  
VOUT  
tS  
tS  
1 LSB  
ERROR BAND  
1 LSB  
ERROR BAND  
tRSTL  
tRSTH  
RST  
tRSSH  
tRSSS  
RSTSEL  
Figure 58. Digital Input and Output Timing  
Table 4. Timing Specifications for Figure 58  
SYMBOL  
DESCRIPTION  
Data valid to CLK rising  
Data held valid after CLK rises  
CLK high  
MIN  
10  
20  
25  
25  
15  
0
UNITS  
t
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
µs  
DS  
DH  
CH  
t
t
t
CLK low  
CL  
t
CS low to CLK rising  
CLK high to CS rising  
LOAD high to CLK rising  
CLK rising to LOAD low  
LOAD low time  
CSS  
CSH  
t
t
10  
30  
30  
100  
150  
0
LD1  
LD2  
t
t
LDRW  
t
LDAC low time  
LDDL  
LDDH  
RSSS  
RSSH  
t
LDAC high time  
t
RSTSEL valid to RST high  
RST high to RSTSEL not valid  
RST low time  
t
100  
10  
10  
10  
t
RSTL  
RSTH  
t
RST high time  
t
S
Settling time  
25  
PACKAGE OPTION ADDENDUM  
www.ti.com  
30-Mar-2005  
PACKAGING INFORMATION  
Orderable Device  
Status (1)  
Package Package  
Pins Package Eco Plan (2) Lead/Ball Finish MSL Peak Temp (3)  
Qty  
Type  
LQFP  
LQFP  
LQFP  
LQFP  
LQFP  
LQFP  
Drawing  
DAC7654YBR  
DAC7654YBT  
DAC7654YCR  
DAC7654YCT  
DAC7654YR  
DAC7654YT  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
PM  
64  
64  
64  
64  
64  
64  
1500  
250  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
CU SNPB  
CU SNPB  
CU SNPB  
CU SNPB  
CU SNPB  
CU SNPB  
Level-3-240C-168 HR  
Level-3-240C-168 HR  
Level-3-240C-168 HR  
Level-3-240C-168 HR  
Level-3-240C-168 HR  
Level-3-240C-168 HR  
PM  
PM  
1500  
250  
PM  
PM  
1500  
250  
PM  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in  
a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2)  
Eco Plan  
-
The planned eco-friendly classification: Pb-Free (RoHS) or Green (RoHS  
&
no Sb/Br)  
-
please check  
http://www.ti.com/productcontent for the latest availability information and additional product content details.  
TBD: The Pb-Free/Green conversion plan has not been defined.  
Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements  
for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered  
at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.  
Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame  
retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)  
(3)  
MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder  
temperature.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is  
provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the  
accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take  
reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on  
incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited  
information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI  
to Customer on an annual basis.  
Addendum-Page 1  
MECHANICAL DATA  
MTQF008A – JANUARY 1995 – REVISED DECEMBER 1996  
PM (S-PQFP-G64)  
PLASTIC QUAD FLATPACK  
0,27  
0,17  
0,50  
M
0,08  
33  
48  
49  
32  
64  
17  
0,13 NOM  
1
16  
7,50 TYP  
Gage Plane  
10,20  
SQ  
9,80  
0,25  
12,20  
SQ  
0,05 MIN  
0°7°  
11,80  
1,45  
1,35  
0,75  
0,45  
Seating Plane  
0,08  
1,60 MAX  
4040152/C 11/96  
NOTES: A. All linear dimensions are in millimeters.  
B. This drawing is subject to change without notice.  
C. Falls within JEDEC MS-026  
D. May also be thermally enhanced plastic with leads connected to the die pads.  
1
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
IMPORTANT NOTICE  
Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications,  
enhancements, improvements, and other changes to its products and services at any time and to discontinue  
any product or service without notice. Customers should obtain the latest relevant information before placing  
orders and should verify that such information is current and complete. All products are sold subject to TI’s terms  
and conditions of sale supplied at the time of order acknowledgment.  
TI warrants performance of its hardware products to the specifications applicable at the time of sale in  
accordance with TI’s standard warranty. Testing and other quality control techniques are used to the extent TI  
deems necessary to support this warranty. Except where mandated by government requirements, testing of all  
parameters of each product is not necessarily performed.  
TI assumes no liability for applications assistance or customer product design. Customers are responsible for  
their products and applications using TI components. To minimize the risks associated with customer products  
and applications, customers should provide adequate design and operating safeguards.  
TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right,  
copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process  
in which TI products or services are used. Information published by TI regarding third-party products or services  
does not constitute a license from TI to use such products or services or a warranty or endorsement thereof.  
Use of such information may require a license from a third party under the patents or other intellectual property  
of the third party, or a license from TI under the patents or other intellectual property of TI.  
Reproduction of information in TI data books or data sheets is permissible only if reproduction is without  
alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction  
of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for  
such altered documentation.  
Resale of TI products or services with statements different from or beyond the parameters stated by TI for that  
product or service voids all express and any implied warranties for the associated TI product or service and  
is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.  
Following are URLs where you can obtain information on other Texas Instruments products and application  
solutions:  
Products  
Applications  
Audio  
Amplifiers  
amplifier.ti.com  
www.ti.com/audio  
Data Converters  
dataconverter.ti.com  
Automotive  
www.ti.com/automotive  
DSP  
dsp.ti.com  
Broadband  
Digital Control  
Military  
www.ti.com/broadband  
www.ti.com/digitalcontrol  
www.ti.com/military  
Interface  
Logic  
interface.ti.com  
logic.ti.com  
Power Mgmt  
Microcontrollers  
power.ti.com  
Optical Networking  
Security  
www.ti.com/opticalnetwork  
www.ti.com/security  
www.ti.com/telephony  
www.ti.com/video  
microcontroller.ti.com  
Telephony  
Video & Imaging  
Wireless  
www.ti.com/wireless  
Mailing Address:  
Texas Instruments  
Post Office Box 655303 Dallas, Texas 75265  
Copyright 2005, Texas Instruments Incorporated  

相关型号:

DAC7654YBRG4

SERIAL INPUT LOADING, 12us SETTLING TIME, 16-BIT DAC, PQFP64, GREEN, PLASTIC, LQFP-64
TI

DAC7654YBT

16-Bit, Dual Voltage Output DIGITAL-TO-ANALOG CONVERTER
BB

DAC7654YCR

16-Bit, Dual Voltage Output DIGITAL-TO-ANALOG CONVERTER
BB

DAC7654YCRG4

SERIAL INPUT LOADING, 12us SETTLING TIME, 16-BIT DAC, PQFP64, GREEN, PLASTIC, LQFP-64
TI

DAC7654YCT

16-Bit, Dual Voltage Output DIGITAL-TO-ANALOG CONVERTER
BB

DAC7654YCT

16 位、四路电压输出数模转换器 | PM | 64 | -40 to 85
TI

DAC7654YR

16-Bit, Dual Voltage Output DIGITAL-TO-ANALOG CONVERTER
BB

DAC7654YT

16-Bit, Dual Voltage Output DIGITAL-TO-ANALOG CONVERTER
BB

DAC7654YTG4

SERIAL INPUT LOADING, 12us SETTLING TIME, 16-BIT DAC, PQFP64, GREEN, PLASTIC, LQFP-64
TI

DAC7664

16-BIT, QUAD VOLTAGE OUTPUT DIGITAL-TO-ANALOG CONVERTER
TI

DAC7664YBR

16-BIT, QUAD VOLTAGE OUTPUT DIGITAL-TO-ANALOG CONVERTER
TI

DAC7664YBRG4

PARALLEL, WORD INPUT LOADING, 12us SETTLING TIME, 16-BIT DAC, PQFP64, GREEN, PLASTIC, LQFP-64
TI