INA117KU [BB]

High Common-Mode Voltage DIFFERENCE AMPLIFIER; 高共模电压差动放大器
INA117KU
型号: INA117KU
厂家: BURR-BROWN CORPORATION    BURR-BROWN CORPORATION
描述:

High Common-Mode Voltage DIFFERENCE AMPLIFIER
高共模电压差动放大器

运算放大器 放大器电路 光电二极管
文件: 总14页 (文件大小:194K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
®
INA117  
INA117  
INA117  
High Common-Mode Voltage  
DIFFERENCE AMPLIFIER  
FEATURES  
APPLICATIONS  
COMMON-MODE INPUT RANGE:  
CURRENT MONITOR  
±200V (VS = ±15V)  
BATTERY CELL-VOLTAGE MONITOR  
GROUND BREAKER  
PROTECTED INPUTS:  
±500V Common-Mode  
±500V Differential  
INPUT PROTECTION  
SIGNAL ACQUISITION IN NOISY  
UNITY GAIN: 0.02% Gain Error max  
NONLINEARITY: 0.001% max  
CMRR: 86dB min  
ENVIRONMENTS  
FACTORY AUTOMATION  
DESCRIPTION  
The INA117 is a precision unity-gain difference  
amplifier with very high common-mode input voltage  
range. It is a single monolithic IC consisting of a  
precision op amp and integrated thin-film resistor  
network. It can accurately measure small differential  
voltages in the presence of common-mode signals up  
to ±200V. The INA117 inputs are protected from  
momentary common-mode or differential overloads  
up to ±500V.  
21.11kΩ  
RefB  
–In  
+In  
V–  
Comp  
V+  
1
2
3
4
8
7
6
5
380kΩ  
380kΩ  
380kΩ  
20kΩ  
In many applications, where galvanic isolation is not  
essential, the INA117 can replace isolation amplifiers.  
This can eliminate costly isolated input-side power  
supplies and their associated ripple, noise and quies-  
cent current. The INA117’s 0.001% nonlinearity and  
200kHz bandwidth are superior to those of conven-  
tional isolation amplifiers.  
VO  
RefA  
The INA117 is available in 8-pin plastic mini-DIP and  
SO-8 surface-mount packages, specified for the –40°C  
to +85°C temperature range. The metal TO-99 models  
are available specified for the –40°C to +85°C and  
–55°C to +125°C temperature range.  
International Airport Industrial Park  
Mailing Address: PO Box 11400, Tucson, AZ 85734  
Street Address: 6730 S. Tucson Blvd., Tucson, AZ 85706  
• Tel: (520) 746-1111  
Twx: 910-952-1111 Internet: http://www.burr-brown.com/  
Cable: BBRCORP Telex: 066-6491  
FAX: (520) 889-1510 Immediate Product Info: (800) 548-6132  
© 1987 Burr-Brown Corporation  
PDS-748G  
Printed in U.S.A. August, 1999  
SPECIFICATIONS  
ELECTRICAL  
At TA = +25°C, VS = ±15V, unless otherwise noted.  
INA117AM, SM  
INA117BM  
TYP  
INA117P, KU  
TYP  
PARAMETER  
GAIN  
Initial  
Error  
CONDITIONS  
MIN  
TYP  
MAX  
MIN  
MAX  
MIN  
MAX  
UNITS  
(1)  
1
0.01  
2
V/V  
%
ppm/°C  
%
0.05  
10  
0.02  
vs Temperature  
(2)  
Nonlinearity  
0.0002 0.001  
OUTPUT  
Rated Voltage  
Rated Current  
Impedance  
Current Limit  
Capacitive Load  
IO = +20mA, –5mA  
VO = 10V  
10  
+20, –5  
12  
V
mA  
mA  
pF  
0.01  
+49, –13  
1000  
To Common  
Stable Operation  
INPUT  
Impedance  
Differential  
Common-Mode  
Differential  
800  
400  
kΩ  
kΩ  
V
Voltage Range  
±10  
Common-Mode, Continuous  
±200  
V
(3)  
Common-Mode Rejection  
DC  
70  
66  
80  
80  
86  
66  
94  
94  
dB  
dB  
AC, 60Hz  
VCM = 400Vp-p  
vs Temperature, DC  
AM, BM, P, KU  
SM  
TA = TMIN to TMAX  
66  
60  
75  
75  
80  
90  
dB  
dB  
(4)  
OFFSET VOLTAGE  
RTO  
Initial  
120  
1000  
40  
1000  
20  
600  
2000  
µV  
µV  
µV/°C  
dB  
KU Grade (SO-8 Package)  
vs Temperature  
vs Supply  
TA = TMIN to TMAX  
VS = ±5V to ±18V  
8.5  
90  
200  
74  
80  
vs Time  
µV/mo  
(5)  
OUTPUT NOISE VOLTAGE  
fB = 0.01Hz to 10Hz  
fB = 10kHz  
RTO  
25  
550  
µVp-p  
nV/Hz  
DYNAMIC RESPONSE  
Gain Bandwidth, –3dB  
Full Power Bandwidth  
Slew Rate  
Settling Time: 0.1%  
0.01%  
200  
kHz  
kHz  
V/µs  
µs  
µs  
µs  
VO = 20Vp-p  
30  
2
2.6  
6.5  
10  
VO = 10V Step  
VO = 10V Step  
VCM = 10V Step, VDIFF = 0V  
0.01%  
4.5  
POWER SUPPLY  
Rated  
Voltage Range  
Quiescent Current  
±15  
V
V
mA  
Derated Performance  
VO = 0V  
±5  
±18  
2
1.5  
TEMPERATURE RANGE  
Specification: AM, BM, P, KU  
SM  
Operation  
Storage  
–25  
–55  
–55  
–65  
+85  
–40  
+85  
°C  
°C  
°C  
°C  
+125  
+125  
+150  
–40  
–55  
+85  
+125  
Specification same as for INA117AM.  
NOTES: (1) Connected as difference amplifier (see Figure 1). (2) Nonlinearity is the maximum peak deviation from the best-fit straight line as a percent of full-scale  
peak-to-peak output. (3) With zero source impedance (see discussion of common-mode rejection in Application Information section). (4) Includes effects of amplifier’s  
input bias and offset currents. (5) Includes effects of amplifier’s input current noise and thermal noise contribution of resistor network.  
The information provided herein is believed to be reliable; however, BURR-BROWN assumes no responsibility for inaccuracies or omissions. BURR-BROWN assumes  
no responsibility for the use of this information, and all use of such information shall be entirely at the user’s own risk. Prices and specifications are subject to change  
without notice. No patent rights or licenses to any of the circuits described herein are implied or granted to any third party. BURR-BROWN does not authorize or warrant  
any BURR-BROWN product for use in life support devices and/or systems.  
®
2
INA117  
PIN CONFIGURATION  
Top View  
TO-99  
Top View  
DIP/SOIC  
INA117AM, BM, SM  
INA117P, KU  
Tab  
8
Comp  
Ref B  
1
V+  
7
8
7
6
5
1
2
3
4
Comp  
RefB  
V+  
–In  
+In  
V–  
–In  
2
6
Output  
Output  
RefA  
3
5
Ref A  
+In  
4
V–  
Case internally connected to V–. Make no connection.  
ABSOLUTE MAXIMUM RATINGS  
ELECTROSTATIC  
DISCHARGE SENSITIVITY  
This integrated circuit can be damaged by ESD. Burr-Brown  
recommends that all integrated circuits be handled with  
appropriate precautions. Failure to observe proper handling  
and installation procedures can cause damage.  
Supply Voltage .................................................................................. ±22V  
Input Voltage Range, Continuous ................................................... ±200V  
Common-Mode and Differential, 10s ........................................... ±500V  
Operating Temperature  
M Metal TO-99 ................................................................55 to +125°C  
P Plastic DIP and U SO-8 ................................................40 to +85°C  
Storage Temperature  
M Package.......................................................................65 to +150°C  
P Plastic DIP and U SO-8 .............................................. –55 to +125°C  
Lead Temperature (soldering, 10s)............................................... +300°C  
Output Short Circuit to Common ............................................ Continuous  
ESD damage can range from subtle performance degrada-  
tion to complete device failure. Precision integrated circuits  
may be more susceptible to damage because very small  
parametric changes could cause the device not to meet its  
published specifications.  
PACKAGE/ORDERING INFORMATION  
PACKAGE  
DRAWING  
NUMBER(1)  
SPECIFIED  
TEMPERATURE  
RANGE  
PACKAGE  
MARKING  
ORDERING  
NUMBER(2)  
TRANSPORT  
MEDIA  
PRODUCT  
PACKAGE  
INA117P  
8-Pin Plastic DIP  
006  
182  
001  
"
–40°C to +85°C  
INA117KU  
INA117AM  
INA117BM  
INA117SM  
SO-8 Surface-Mount  
"
TO-99 Metal  
–25°C to +85°C  
"
"
"
"
–55°C to +125°C  
NOTES: (1) For detailed drawing and dimension table, please see end of data sheet, or Appendix C of Burr-Brown IC Data Book. (2) Models with a slash (/)  
are available only in Tape and Reel in the quantities indicated (e.g., /2K5 indicates 2500 devices per reel). Ordering 2500 pieces of “INA117KU/2K5” will get a  
single 2500-piece Tape and Reel. For detailed Tape and Reel mechanical information, refer to Appendix B of Burr-Brown IC Data Book.  
®
3
INA117  
TYPICAL PERFORMANCE CURVES  
At TA = +25°C, VS = ±15V, unless otherwise noted.  
COMMON-MODE REJECTION vs FREQUENCY  
POWER SUPPLY REJECTION vs FREQUENCY  
100  
100  
90  
80  
70  
60  
50  
40  
INA117BM  
90  
V–  
80  
V+  
INA117AM, SM, P, KU  
70  
60  
50  
40  
20  
100  
1k  
10k  
100k  
2M  
1
10  
100  
1k  
10k  
Frequency (Hz)  
Frequency (Hz)  
POSITIVE COMMON-MODE VOLTAGE RANGE  
vs POSITIVE POWER SUPPLY VOLTAGE  
NEGATIVE COMMON-MODE VOLTAGE RANGE  
vs NEGATIVE POWER SUPPLY VOLTAGE  
400  
350  
300  
250  
200  
150  
100  
50  
–400  
–350  
–300  
–250  
–200  
–150  
–100  
–50  
TA = –55°C  
TA = +25°C  
TA = +25°C  
Max Rating = 200V  
Max Rating = –200V  
TA = +125°C  
TA = –55°C to +125°C  
+VS = +5V to +20V  
–VS = –5V to –20V  
5
10  
15  
20  
–5  
–10  
–15  
–20  
Positive Power Supply Voltage (V)  
Negative Power Supply Voltage (V)  
®
4
INA117  
TYPICAL PERFORMANCE CURVES (CONT)  
At TA = +25°C, VS = ±15V, unless otherwise noted.  
SMALL SIGNAL STEP RESPONSE  
CL = 0  
SMALL SIGNAL STEP RESPONSE  
CL = 1000pF  
LARGE SIGNAL STEP RESPONSE  
®
5
INA117  
APPLICATION INFORMATION  
Figure 1 shows the basic connections required for operation.  
V–  
V+  
Applications with noisy or high impedance power supply lines  
may require decoupling capacitors close to the device pins.  
4
7
380kΩ  
380kΩ  
380kΩ  
The output voltage is equal to the differential input volt-  
age between pins 2 and 3. The common mode input  
voltage is rejected.  
2
3
V2  
6
Internal circuitry connected to the compensation pin 8 can-  
cels the parasitic distributed capacitance between the feed-  
back resistor, R2, and the IC substrate. For specified dy-  
namic performance, pin 8 should be grounded or connected  
through a 0.1µF capacitor to an AC ground such as V+.  
VO = V3 – V2  
V3  
21.1kΩ  
20kΩ  
+15V  
8
1
5
100kΩ  
–15V  
+15V  
50kΩ  
±1.5mV  
Range  
–15V  
(a)  
10Ω  
1µF  
Tantalum  
1µF  
Tantalum  
4
R1  
7
R2  
380kΩ  
V–  
V+  
380kΩ  
2
3
4
7
–In = V2  
380kΩ  
380kΩ  
R3  
2
3
6
380kΩ  
V2  
VO = V3 – V2  
+In = V3  
6
380kΩ  
R5  
R4  
20kΩ  
V
= V – V  
O
3
2
21.1kΩ  
V3  
8
1
5
V+  
21.1kΩ  
20kΩ  
100µA  
1/2 REF200  
8
1
5
FIGURE 1. Basic Power and Signal Connections.  
100Ω  
100Ω  
COMMON-MODE REJECTION  
±10mV  
OPA27  
(b)  
Common-mode rejection (CMR) of the INA117 is depend-  
ent on the input resistor network, which is laser-trimmed for  
accurate ratio matching. To maintain high CMR, it is impor-  
tant to have low source impedances driving the two inputs.  
A 75resistance in series with pin 2 or 3 will decrease CMR  
from 86dB to 72dB.  
10kΩ  
Offset adjustment is regulated—  
insensitive to power supply variations.  
100µA  
1/2 REF200  
Resistance in series with the reference pins will also degrade  
CMR. A 4resistance in series with pin 1 or 5 will decrease  
CMRR from 86dB to 72dB.  
V–  
Most applications do not require trimming. Figures 2 and 3  
show optional circuits that may be used for trimming offset  
voltage and common-mode rejection.  
FIGURE 2. Offset Voltage Trim Circuits.  
Some applications, however, apply voltages to the reference  
terminals (pins 1 and 5). A more complete transfer function  
is:  
TRANSFER FUNCTION  
Most applications use the INA117 as a simple unity-gain  
difference amplifier. The transfer function is:  
VO = V3 – V2 + 19 • V5 – 18 • V1  
V5 and V1 are the voltages at pins 5 and 1.  
VO = V3 – V2  
V3 and V2 are the voltages at pins 3 and 2.  
®
6
INA117  
MEASURING CURRENT  
V–  
V+  
The INA117 can be used to measure a current by sensing the  
voltage drop across a series resistor, RS. Figure 4 shows the  
INA117 used to measure the supply currents of a device  
under test. The circuit in Figure 5 measures the output  
current of a power supply. If the power supply has a sense  
connection, it can be connected to the output side of RS to  
eliminate the voltage-drop error. Another common applica-  
tion is current-to-voltage conversion as shown in Figure 6.  
(+200V max)  
+VS  
4
7
380kΩ  
380kΩ  
380kΩ  
2
3
C
RS  
6
RC*  
VO = RS IDUT+  
IDUT+  
21.1kΩ  
20kΩ  
V–  
V+  
8
1
5
4
7
380kΩ  
380kΩ  
380kΩ  
Device  
Under  
Test  
2
3
V2  
V+  
V–  
4
6
7
VO = V3 – V2  
V3  
IDUT–  
380kΩ  
380kΩ  
2
3
21.1kΩ  
20kΩ  
RC*  
RS  
6
8
1
5
380kΩ  
VO = RS IDUT–  
200Ω  
CMR  
Adjust  
21.1kΩ  
20kΩ  
10Ω  
10Ω  
8
1
5
–VS  
If offset adjust is also required,  
connect to offset circuit, Figure 2.  
(–200V max)  
*Not needed if RS is less than 20—see text.  
FIGURE 3. CMR Trim Circuit.  
FIGURE 4. Measuring Supply Currents of Device Under  
Test.  
V–  
V+  
4
7
Power Supply  
Out  
Sense  
380kΩ  
380kΩ  
380kΩ  
±200V max  
RS  
2
3
6
RC*  
VO = IL RS  
Optional Load  
IL  
Sense Connection  
(see text)  
21.1kΩ  
20kΩ  
Load  
8
1
5
*RC = RS not needed if RS is less than 20—see text.  
FIGURE 5. Measuring Power Supply Output Current.  
®
7
INA117  
VS  
(±200V max)  
380kΩ  
380kΩ  
380kΩ  
2
3
RS  
250Ω  
6
VO = 1V to 5V  
250Ω  
4 to 20mA  
RC*  
21.1kΩ  
20kΩ  
8
1
5
VS  
(±200V max)  
(a)  
*Not needed if RS is less than 20—see text.  
380kΩ  
380kΩ  
380kΩ  
2
3
250Ω  
RC*  
RS  
250Ω  
6
V
O = –1V to –5V  
4 to 20mA  
21.1kΩ  
20kΩ  
8
1
5
(b)  
4 to 20mA  
380kΩ  
380kΩ  
380kΩ  
*Not needed if RS is less than 20—see text.  
2
3
250Ω  
RC*  
RS  
250Ω  
6
VO = 1V to 5V  
21.1kΩ  
20kΩ  
8
1
5
VS  
(±200V max)  
4 to 20mA  
(c)  
*Not needed if RS is less than 20—see text.  
380kΩ  
380kΩ  
380kΩ  
2
3
RS  
250Ω  
6
VO = –1V to –5V  
250Ω  
RC*  
21.1kΩ  
20kΩ  
VS  
8
1
5
(±200V max)  
(d)  
*Not needed if RS is less than 20—see text.  
FIGURE 6. Current to Voltage Converter.  
®
8
INA117  
In all cases, the sense resistor imbalances the input resistor  
matching of the INA117, degrading its CMR. Also, the input  
impedance of the INA117 loads RS, causing gain error in the  
voltage-to-current conversion. Both of these errors can be  
easily corrected.  
Example: For a 1V/mA transfer function, the nominal,  
uncorrected value for RS would be 1k. A slightly larger  
value, RS' = 1002.6, compensates for the gain error due to  
loading.  
The 380kterm in the equation for RS' has a tolerance of  
±25%, so sense resistors above approximately 400may  
require trimming to achieve gain accuracy better than 0.02%.  
The CMR error can be corrected with the addition of a  
compensation resistor, RC, equal in value to RS as shown in  
Figures 4, 5, and 6. If RS is less than 20, the degradation  
in CMR is negligible and RC can be omitted. If RS is larger  
than approximately 2k, trimming RC may be required to  
achieve greater than 86dB CMR. This is because the actual  
INA117 input impedances have 1% typical mismatch.  
Of course, if a buffer amplifier is added as shown in Figure  
7, both inputs see a low source impedance, and the sense  
resistor is not loaded. As a result, there is no gain error or  
CMR degradation. The buffer amplifier can operate as a  
unity gain buffer or as an amplifier with non-inverting gain.  
Gain added ahead of the INA117 improves both CMR and  
signal-to-noise. Added gain also allows a lower voltage drop  
across the sense resistor. The OPA1013 is a good choice for  
the buffer amplifier since both its input and output can swing  
close to its negative power supply.  
If RS is more than approximately 100, the gain error will  
be greater than the 0.02% specification of the INA117. This  
gain error can be corrected by slightly increasing the value  
of RS. The corrected value, RS', can be calculated by—  
RS • 380kΩ  
RS' = ——————  
380k– RS  
–15V  
+15V  
7
V1  
4
I
380kΩ  
380kΩ  
2
3
VX  
V1  
–21V to +10V  
–5V to –36V  
–20V to –51V  
+15V  
Ground  
–15V  
R2*  
RS  
6
380kΩ  
R2  
R1  
VO = I • RS • (1 +  
)
1/2  
OPA1013  
21.1kΩ  
20kΩ  
R1 *  
8
1
5
*Or connect as buffer (R2 = 0, omit R1).  
–VX  
Regulated power for op amp allows –VX  
power to vary over wide range.  
Op amp power can be derived with voltage-  
dropping zener diode if –VX power is relatively  
constant.  
180k Ω  
V
X = –30V to –200V  
VZ  
MPS-A42  
|VX| = (5V to 36V) + VZ  
e.g., If VZ is 50V then VX = –55V to –86V.  
0.01µF  
IN4702  
or  
–VX  
V–  
V+  
7
4
380kΩ  
380kΩ  
2
3
I
RS  
6
380kΩ  
V
O = I • RS  
1/2  
OPA1013  
21.1kΩ  
20kΩ  
0.1µF  
8
1
5
–VX  
FIGURE 7. Current Sensing with Input Buffer.  
®
9
INA117  
Figure 8 shows very high input impedance buffer used to  
measure low leakage currents. Here, the buffer op amp is  
powered with an isolated, split-voltage power supply. Using  
an isolated power supply allows full ±200V common-mode  
input range.  
these resistors produces approximately 550nV/Hz noise.  
The internal op amp contributes virtually no excess noise at  
frequencies above 100Hz.  
Many applications may be satisfied with less than the full  
200kHz bandwidth of the INA117. In these cases, the noise  
can be reduced with a low-pass filter on the output. The two-  
pole filter shown in Figure 9 limits bandwidth to 1kHz and  
reduces noise by more than 15:1. Since the INA117 has a  
1/f noise corner frequency of approximately 100Hz, a cutoff  
frequency below 100Hz will not further reduce noise.  
NOISE PERFORMANCE  
The noise performance of the INA117 is dominated by the  
internal resistor network. The thermal or Johnson noise of  
±200V max  
+15V  
Isolated DC/DC Converter  
1kΩ  
9kΩ  
+15V  
Com  
–15V  
PWS725  
100MΩ  
D1,2  
*
OPA111  
IL  
100kΩ  
Device  
Under  
Test  
380kΩ  
380kΩ  
2
3
6
*D1 and D2 are each a 2N3904 transistor  
base-collector junction (emitter open).  
380kΩ  
e
O = IL x 109  
(1V/nA)  
21.1kΩ  
20kΩ  
INA117  
8
1
5
FIGURE 8. Leakage Current Measurement Circuit.  
V+  
V–  
4
7
C2  
0.02µF  
380kΩ  
380kΩ  
380kΩ  
2
3
V2  
R1  
11.0kΩ  
R2  
11.3kΩ  
VO = V2 – V3  
OPA27  
6
2-Pole Butterworth  
Low-Pass Filter  
V3  
C1  
0.01µF  
21.1kΩ  
20kΩ  
BUTTERWORTH  
LOW-PASS  
f–3dB  
OUTPUT NOISE  
8
1
5
(mVp-p)  
R1  
R2  
C1  
C2  
200kHz  
100kHz  
10kHz  
1kHz  
100Hz(1)  
1.8  
1.1  
0.35  
0.11  
0.05  
No Filter  
11kΩ  
11kΩ  
11kΩ  
11kΩ  
11.3kΩ  
11.3kΩ  
11.3kΩ  
11.3kΩ  
100pF  
1nF  
10nF  
0.1µF  
200pF  
2nF  
20nF  
0.2µF  
See Application Bulletin AB-017 for other filters.  
NOTE: (1) Since the INA117 has a 1/f noise corner frequency of approximately 100Hz,  
bandwidth reduction below this frequency will not significantly reduce noise.  
FIGURE 9. Output Filter for Noise Reduction.  
®
10  
INA117  
380kΩ  
380kΩ  
380kΩ  
2
3
V–  
V+  
V2  
4
7
V3 – V2  
19 R7  
6
VO  
=
380kΩ  
380kΩ  
380kΩ  
V3  
2
3
1 +  
V2  
R6  
21.1kΩ  
20kΩ  
6
INA117  
R6  
VO = V3 – V2 + VX  
V3  
8
1
5
R7  
21.1kΩ  
20kΩ  
Refer to Application  
Bulletin AB-001 for  
details.  
INA117  
OPA27  
8
1
5
OPA27  
GAIN  
(V/V)  
R7  
(k)  
R6  
(k)  
VX  
1/2  
1/4  
1/5  
1.05  
3.16  
4.22  
20  
20  
20  
FIGURE 11. Summing VX in Output.  
FIGURE 10. Reducing Differential Gain.  
(a)  
R1  
R2  
380kΩ  
380kΩ  
2
3
V2  
Refer to Application Bulletin AB-010 for details.  
R3  
380kΩ  
6
VOUT = V3 – V2  
V3  
R5  
R4  
21.1kΩ  
20kΩ  
R1  
380kΩ  
R2  
380kΩ  
INA117  
2
3
8
1
5
V2  
100pF  
R6  
5kΩ  
R7  
10kΩ  
R3  
380kΩ  
6
V3  
VOUT = V3 – V2  
A1  
OPA27  
–V3 /20  
R5  
21.1kΩ  
R4  
20kΩ  
R9  
400kΩ  
100pF  
INA117  
8
1
5
R10  
10kΩ  
100pF  
R6  
R7  
R8  
5kΩ  
10kΩ  
10kΩ  
A2  
OPA27  
VCM /20  
(b)  
A1  
OPA27  
FIGURE 12. Common-Mode Voltage Monitoring.  
®
11  
INA117  
+9V  
7
380kΩ  
380kΩ  
380kΩ  
2
3
V2  
CM Range =  
+50V to +200V  
(VS ±9V)  
7
V
25kΩ  
25kΩ  
6
2
5
6
V3  
VO = V3 – V2  
21.1kΩ  
20kΩ  
(a)  
INA117  
–3V > VO > –6V swap A2 pins  
2 and 3 for +4V > VO > 3V.  
INA105  
8
1
5
4
25kΩ  
25kΩ  
3
1
4
–9V  
+9V  
7
380kΩ  
380kΩ  
380kΩ  
2
3
V2  
7
VCM Range =  
–12V to +200V  
(VS = ±9V)  
25kΩ  
25kΩ  
6
2
5
6
V3  
VO = V3 – V2  
21.1kΩ  
20kΩ  
(b)  
0V > VO > –6V swap A2 pins  
2 and 3 for +4V > VO > 0V.  
INA117  
INA105  
10kΩ  
8
1
5
4
25kΩ  
25kΩ  
3
1
1N4684  
3.3V  
4
(V–) +3.3V  
–9V  
380kΩ  
380kΩ  
2
3
V2  
VCM Range = ±200V  
(VS = ±9V)  
25kΩ  
25kΩ  
6
2
5
6
380kΩ  
V3  
VO = V3 – V2  
21.1kΩ  
20kΩ  
INA117  
INA105  
8
1
5
(c)  
25kΩ  
25kΩ  
3
1
13.7kΩ  
R7  
(VS = ±9V)  
1MΩ  
Refer to Application Bulletin AB-015 for details.  
R8  
OPA602  
1MΩ  
FIGURE 13. Offsetting or Boosting Common-Mode Voltage Range for Reduced Power Supply Voltage Operation.  
®
12  
INA117  
+200V max  
V–  
V+  
4
7
380kΩ  
380kΩ  
2
3
+
6
6
6
6
380kΩ  
21.1kΩ  
20kΩ  
INA117  
8
1
1
1
1
5
5
5
5
V–  
4
V+  
7
380kΩ  
380kΩ  
2
3
+
380kΩ  
21.1kΩ  
20kΩ  
INA117  
eO = Cell Voltage  
Repeat  
for each  
cell  
8
MUX  
V–  
4
V+  
7
380kΩ  
380kΩ  
2
3
+
380kΩ  
21.1kΩ  
20kΩ  
INA117  
8
Cell Select  
V–  
4
V+  
7
380kΩ  
380kΩ  
2
3
+
380kΩ  
21.1kΩ  
20kΩ  
INA117  
8
–200V max  
FIGURE 14. Battery Cell Voltage Monitor.  
®
13  
INA117  
–15V  
4
+15V  
7
VS (200V max)  
380kΩ  
380kΩ  
2
R1  
0.1Ω  
6
–0.1 (I1)  
380kΩ  
3
I1  
21.1kΩ  
20kΩ  
INA117  
8
1
5
A1  
Load  
VIN  
ILOAD = I1 – I2  
+15V –15V  
+15V –15V  
7
4
7
4
I2  
100kΩ  
380kΩ  
380kΩ  
5
6
2
10kΩ  
10kΩ  
2
3
R2  
0.1Ω  
VO  
6
VO = I1 – I2  
= ILOAD  
380kΩ  
–0.1 (I2)  
3
100kΩ  
INA106  
21.1kΩ  
20kΩ  
1
INA117  
8
1
5
VS (–200V max)  
FIGURE 15. Measuring Amplifier Load Current.  
R1  
R2  
380kΩ  
380kΩ  
2
3
V2  
V3  
R3  
380kΩ  
6
VOUT = V3 – V2  
R5  
R4  
21.1kΩ  
20kΩ  
INA117  
R1  
8
1
5
C1  
1MΩ  
0.47µF  
Refer to Application  
Bulletin AB-008 for  
details.  
OPA602  
FIGURE 16. AC-Coupled INA117.  
®
14  
INA117  

相关型号:

INA117KU/2K5

High Common-Mode Voltage DIFFERENCE AMPLIFIER
TI

INA117KU/2K5G4

High Common-Mode Voltage DIFFERENCE AMPLIFIER
TI

INA117KUG4

High Common-Mode Voltage DIFFERENCE AMPLIFIER
TI

INA117P

High Common-Mode Voltage DIFFERENCE AMPLIFIER
BB

INA117P

High Common-Mode Voltage DIFFERENCE AMPLIFIER
TI

INA117P-BI

High Common-Mode Voltage DIFFERENCE AMPLIFIER
TI

INA117PG4

High Common-Mode Voltage DIFFERENCE AMPLIFIER
TI

INA117SM

High Common-Mode Voltage DIFFERENCE AMPLIFIER
BB

INA117SM

High Common-Mode Voltage DIFFERENCE AMPLIFIER
TI

INA117SMQ

High Common-Mode Voltage DIFFERENCE AMPLIFIER
TI

INA118

Precision, Low Power INSTRUMENTATION AMPLIFIER
BB

INA118

Precision, Low Power INSTRUMENTATION AMPLIFIER
TI