LOG114AIRGVRG4 [BB]

Single-Supply, High-Speed, Precision LOGARITHMIC AMPLIFIER; 单电源,高速,高精度对数放大器
LOG114AIRGVRG4
型号: LOG114AIRGVRG4
厂家: BURR-BROWN CORPORATION    BURR-BROWN CORPORATION
描述:

Single-Supply, High-Speed, Precision LOGARITHMIC AMPLIFIER
单电源,高速,高精度对数放大器

放大器
文件: 总30页 (文件大小:606K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LOG114  
SBOS301A − MAY 2004 − REVISED MARCH 2007  
Single-Supply, High-Speed, Precision  
LOGARITHMIC AMPLIFIER  
FD EATURES  
DESCRIPTION  
The LOG114 is specifically designed for measuring  
ADVANTAGES:  
− Tiny for High Density Systems  
low-level and wide dynamic range currents in  
communications, lasers, medical, and industrial  
systems. The device computes the logarithm or log-ratio  
of an input current or voltage relative to a reference  
current or voltage (logarithmic transimpedance  
amplifier).  
− Precision on One Supply  
− Fast Over Eight Decades  
− Fully-Tested Function  
D
D
D
D
D
D
D
D
TWO SCALING AMPLIFIERS  
WIDE INPUT DYNAMIC RANGE:  
Eight Decades, 100pA to 10mA  
2.5V REFERENCE  
STABLE OVER TEMPERATURE  
LOW QUIESCENT CURRENT: 10mA  
DUAL OR SINGLE SUPPLY: + 5V, +5V  
PACKAGE: Small QFN-16 (4mm x 4mm)  
SPECIFIED TEMPERATURE RANGE:  
−5°C to +75°C  
High precision is ensured over a wide dynamic range of  
input signals on either bipolar ( 5V) or single (+5V)  
supply. Special temperature drift compensation circuitry  
is included on-chip. In log-ratio applications, the signal  
current may be from a high impedance source such as  
a photodiode or resistor in series with a low impedance  
voltage source. The reference current is provided by a  
resistor in series with a precision internal voltage  
reference, photo diode, or active current source.  
The output signal at V  
has a scale factor of 0.375V  
LOGOUT  
AD PPLICATIONS  
out per decade of input current, which limits the output  
so that it fits within a 5V or 10V range. The output can be  
scaled and offset with one of the available additional  
amplifiers, so it matches a wide variety of ADC input  
ranges. Stable dc performance allows accurate  
ONET ERBIUM-DOPED FIBER OPTIC  
AMPLIFIER (EDFA)  
D
D
D
D
LASER OPTICAL DENSITY MEASUREMENT  
PHOTODIODE SIGNAL COMPRESSION AMP  
LOG, LOG-RATIO FUNCTION  
measurement of low-level signals over  
a wide  
temperature range. The LOG114 is specified over a  
−5°C to +75°C temperature range and can operate from  
−40°C to +85°C.  
ANALOG SIGNAL COMPRESSION IN FRONT  
OF ANALOG-TO-DIGITAL (ADC) CONVERTER  
R
R
5
6
D
ABSORBANCE MEASUREMENT  
V
IN  
4
+IN  
LOGOUT  
4
(2)  
10  
11  
9
LOG114  
Q
1
200  
1250  
I
1
(1)  
R
R
2
1
4
A
1
V
CM IN  
(3)  
5
A
A
V
4
O4  
5
12  
(4)  
A
3
Q
I
and I are current inputs  
2
2
1
+IN  
from a photodiode  
or other current source  
13  
15  
(1)  
200  
1250  
I
2
R
R
4
3
V
3
5
O5  
A
2
R
V
REF  
16  
I
REF  
REF  
1
NOTES: (1) Thermally dependent R and R  
1
3
REF  
provide temperature compensation.  
2.5V  
×
= 0.375 log(I /I ).  
1 2  
(2) V  
LOGOUT  
8
6
7
14  
V
Com  
×
×
K log(I /I )  
(3) V = 0.375  
REF GND  
O4  
1 2  
K = 1 + R /R .  
(4) Differential Amplifier (A ) Gain = 6.25  
IN  
V+  
V
6
5
5
3
Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments  
semiconductor products and disclaimers thereto appears at the end of this data sheet.  
All trademarks are the property of their respective owners.  
ꢀꢁ ꢂ ꢃꢄ ꢅ ꢆꢇ ꢂꢈ ꢃ ꢉꢆꢉ ꢊꢋ ꢌꢍ ꢎ ꢏꢐ ꢑꢊꢍꢋ ꢊꢒ ꢓꢔ ꢎ ꢎ ꢕꢋꢑ ꢐꢒ ꢍꢌ ꢖꢔꢗ ꢘꢊꢓ ꢐꢑꢊ ꢍꢋ ꢙꢐ ꢑꢕꢚ ꢀꢎ ꢍꢙꢔ ꢓꢑꢒ  
ꢓ ꢍꢋ ꢌꢍꢎ ꢏ ꢑꢍ ꢒ ꢖꢕ ꢓ ꢊ ꢌꢊ ꢓ ꢐ ꢑꢊ ꢍꢋꢒ ꢖ ꢕꢎ ꢑꢛꢕ ꢑꢕ ꢎ ꢏꢒ ꢍꢌ ꢆꢕꢜ ꢐꢒ ꢇꢋꢒ ꢑꢎ ꢔꢏ ꢕꢋꢑ ꢒ ꢒꢑ ꢐꢋꢙ ꢐꢎ ꢙ ꢝ ꢐꢎ ꢎ ꢐ ꢋꢑꢞꢚ  
ꢀꢎ ꢍ ꢙꢔꢓ ꢑ ꢊꢍ ꢋ ꢖꢎ ꢍ ꢓ ꢕ ꢒ ꢒ ꢊꢋ ꢟ ꢙꢍ ꢕ ꢒ ꢋꢍꢑ ꢋꢕ ꢓꢕ ꢒꢒ ꢐꢎ ꢊꢘ ꢞ ꢊꢋꢓ ꢘꢔꢙ ꢕ ꢑꢕ ꢒꢑꢊ ꢋꢟ ꢍꢌ ꢐꢘ ꢘ ꢖꢐ ꢎ ꢐꢏ ꢕꢑꢕ ꢎ ꢒꢚ  
Copyright 2004−2007, Texas Instruments Incorporated  
www.ti.com  
www.ti.com  
SBOS301A − MAY 2004 − REVISED MARCH 2007  
This integrated circuit can be damaged by ESD. Texas  
Instruments recommends that all integrated circuits be  
(1)  
ABSOLUTE MAXIMUM RATINGS  
Supply Voltage, V+ to V− . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12V  
handledwith appropriate precautions. Failure to observe  
(2)  
proper handling and installation procedures can cause damage.  
Signal Input Terminals, Voltage . . . . . (V−) −0.5V to (V+) + 0.5V  
Current(2) . . . . . . . . . . . . . . . . . . . . 10mA  
Output Short-Circuit(3) . . . . . . . . . . . . . . . . . . . . . . . . . . Continuous  
Operating Temperature . . . . . . . . . . . . . . . . . . . . . . −40°C to +85°C  
Storage Temperature . . . . . . . . . . . . . . . . . . . . . . . −55°C to +125°C  
Junction Temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . +150°C  
ESD Rating (Human Body Model) . . . . . . . . . . . . . . . . . . . . 2000V  
ESD damage can range from subtle performance degradation to  
complete device failure. Precision integrated circuits may be more  
susceptible to damage because very small parametric changes could  
cause the device not to meet its published specifications.  
PRECISION CURRENT MEASUREMENT  
PRODUCTS  
(1)  
Stresses above these ratings may cause permanent damage.  
Exposure to absolute maximum conditions for extended periods  
may degrade device reliability. These are stress ratings only, and  
functional operation of the device at these or any other conditions  
beyond those specified is not implied.  
FEATURES  
PRODUCT  
Logarithmic Transimpedance Amplifier, 5V, Eight Decades  
Logarithmic Transimpedance, 36V, 7.5 Decades  
LOG114  
LOG112  
(2)  
(3)  
Input terminals are diode-clamped to the power-supply rails.  
Input signals that can swing more than 0.5V beyond the supply  
rails should be current-limited to 10mA or less.  
OPA380,  
OPA381  
Resistor-Feedback Transimpedance, 5V, 5.5 Decades  
IVC102  
Short-circuit to ground.  
Switched Integrator Transimpedance, Six Decades  
Direct Digital Converter, Six Decades  
DDC112  
(1)  
ORDERING INFORMATION  
PRODUCT  
PACKAGE-LEAD  
PACKAGE DESIGNATOR  
PACKAGE MARKING  
LOG114  
QFN-16  
RGV  
LOG114  
(1)  
For the most current package and ordering information, see the Package Option Addendum at the end of this document, or see the TI web site  
at www.ti.com.  
PIN CONFIGURATION  
QFN-16  
Top View  
16  
15  
14  
13  
1
2
3
4
12  
11  
10  
9
VREF GND  
VO4  
Exposed  
thermal  
die pad on  
underside  
(Must be  
NC  
I2  
IN4  
+IN4  
connected to V )  
I1  
VLOGOUT  
5
6
7
8
QFN−16 (4mm x 4mm)  
NC = No Connection  
2
ꢠꢂ ꢡ ꢢꢢꢣ  
www.ti.com  
SBOS301A − MAY 2004 − REVISED MARCH 2007  
ELECTRICAL CHARACTERISTICS: VS = + 5V  
Boldface limits apply over the specified temperature range, TA = −5°C to +75°C.  
All specifications at T = +25°C, R  
= 10k, V = GND, unless otherwise noted.  
A
VLOGOUT  
CM  
LOG114  
PARAMETER  
CONDITIONS  
MIN  
TYP  
= (0.375V) Log (I /I )  
MAX  
UNITS  
CORE LOG FUNCTION  
I
/V  
Equation  
V
O
V
IN OUT  
1 2  
(1)  
LOG CONFORMITY ERROR  
Initial  
1nA to 100µA (5 decades)  
0.1  
0.009  
0.9  
0.2  
%
dB  
%
0.017  
100pA to 3.5mA (7.5 decades)  
0.08  
dB  
1mA to 10mA  
1nA to 100µA (5 decades)  
100pA to 3.5mA (7.5 decades)  
1mA to 10mA  
See Typical Characteristics  
Over Temperature  
0.1  
0.5  
0.4  
%
%
%
See Typical Characteristics  
(2)  
TRANSFER FUNCTION (GAIN)  
Initial Scaling Factor  
100pA to 10mA  
0.375  
0.4  
V/decade  
Scaling Factor Error  
1nA to 100µA  
2.5  
0.21  
3.5  
3
%
dB  
%
0.035  
1.5  
Over Temperature  
T
to T  
MIN MAX  
+15°C to +50°C  
0.7  
%
INPUT, A and A  
1
2
Offset Voltage  
V
1
4
mV  
µV/°C  
µV/V  
pA  
OS  
vs Temperature  
dV/dT  
PSRR  
T
to T  
+ 15  
MIN  
MAX  
vs Power Supply  
V
S
=
2.25V to 5.5V  
75  
400  
Input Bias Current  
I
B
5
vs Temperature  
T
to T  
Doubles every 10°C  
MIN  
MAX  
Input Common-Mode Voltage Range  
V
CM  
(V−)+1.5 to  
(V+)−1.5  
V
Voltage Noise  
e
n
f = 0.1Hz to 10kHz  
f = 1kHz  
3
30  
4
µVrms  
nV/Hz  
fA/Hz  
Current Noise  
i
n
f = 1kHz  
OUTPUT, A (V  
3
)
LOGOUT  
Output Offset, V  
, Initial  
V
11  
50  
65  
mV  
mV  
V
OSO  
OSO  
Over Temperature  
Full-Scale Output (FSO)  
Gain Bandwidth Product  
Short-Circuit Current  
Capacitive Load  
T
to T  
15  
MIN  
MAX  
(3)  
(V−) + 0.6  
(V+) − 0.6  
GBW  
I
IN  
= 1µA  
50  
18  
MHz  
mA  
pF  
I
SC  
100  
OP AMP, A and A  
4
5
Input Offset Voltage  
vs Temperature  
vs Supply  
V
250  
2
1000  
250  
µV  
µV/°C  
µV/V  
dB  
OS  
dV/dT  
T
to T  
MIN  
MAX  
PSRR  
CMRR  
V
S
=
4.5V to 5.5V  
30  
vs Common-Mode Voltage  
Input Bias Current  
Input Offset Current  
Input Voltage Range  
Input Noise f = 0.1Hz to 10Hz  
f = 1kHz  
74  
I
B
−1  
µA  
µA  
I
0.05  
OS  
(V−)  
(V+) − 2  
V
2
13  
2
µV  
PP  
nV/Hz  
pA/Hz  
dB  
Current Noise  
i
n
Open-Loop Voltage Gain  
Gain Bandwidth Product  
Slew Rate  
A
100  
15  
5
OL  
GBW  
SR  
MHz  
V/µs  
µs  
Settling Time 0.01%  
Rated Output  
t
S
G = −1, 3V Step, C = 100pF  
1.5  
L
(V−) + 0.5  
(V+) − 0.5  
V
Short-Circuit Current  
I
+4/−10  
mA  
SC  
3
ꢠ ꢂꢡ ꢢꢢ ꢣ  
www.ti.com  
SBOS301A − MAY 2004 − REVISED MARCH 2007  
ELECTRICAL CHARACTERISTICS: VS = + 5V (continued)  
Boldface limits apply over the specified temperature range, TA = −5°C to +75°C.  
All specifications at T = +25°C, R  
= 10k, V  
= GND, unless otherwise noted.  
A
VLOGOUT  
CM  
LOG114  
TYP  
PARAMETER  
CONDITIONS  
MIN  
MAX  
UNITS  
(4, 5)  
TOTAL ERROR  
See Typical Characteristics  
(6)  
FREQUENCY RESPONSE, Core Log  
BW, 3dB I or I  
1
=
I
= 10% of I  
value, I  
= 1µA  
= 1µA  
= 1µA  
2
AC  
DC  
REF  
1nA  
5
kHz  
kHz  
10nA  
100nA  
1µA  
12  
120  
2.3  
> 5  
> 5  
> 5  
kHz  
MHz  
MHz  
MHz  
MHz  
10µA to 1mA (ratio 1:100)  
1mA to 3.5mA (ratio 1:3.5)  
3.5mA to 10mA (ratio 1:2.9)  
Step Response  
Increasing (I or I )  
I
REF  
1
2
8nA to 240nA (ratio 1:30)  
10nA to 100nA (ratio 1:10)  
10nA to 1µA (ratio 1:100)  
10nA to 10µA (ratio 1:1k)  
10nA to 1mA (ratio 1:100k)  
1mA to 10mA (ratio 1:10)  
Decreasing (I or I )  
0.7  
1.5  
µs  
µs  
µs  
µs  
µs  
µs  
0.15  
0.07  
0.06  
1
I
REF  
1
2
8nA to 240nA (ratio 1:30)  
10nA to 100nA (ratio 1:10)  
10nA to 1µA (ratio 1:100)  
10nA to 10µA (ratio 1:1k)  
10nA to 1mA (ratio 1:100k)  
1mA to 10mA (ratio 1:10)  
1
2
µs  
µs  
µs  
µs  
µs  
µs  
0.25  
0.05  
0.03  
1
VOLTAGE REFERENCE  
Bandgap Voltage  
Error, Initial  
2.5  
0.15  
25  
V
1
%
vs Temperature  
vs Supply  
ppm/°C  
ppm/V  
ppm/mA  
mA  
V
S
=
4.5V to 5.5V  
2mA  
30  
vs Load  
I
O
=
200  
10  
Short-Circuit Current  
POWER SUPPLY  
Dual Supply Operating Range  
Quiescent Current  
V
2.4  
5.5  
15  
V
S
I
Q
I
O
= 0  
10  
mA  
TEMPERATURE RANGE  
Specification, T  
Operating  
to T  
−5  
+75  
+85  
°C  
°C  
°C  
MIN  
MAX  
−40  
−55  
Storage  
+125  
Thermal Resistance, q  
62  
°C/W  
JA  
(1)  
Log conformity error is peak deviation from the best-fit straight line of V vs Log (I /I ) curve expressed as a percent of peak-to-peak full-scale output. Scale factor,  
O
1 2  
K, equals 0.375V output per decade of input current.  
Scale factor of core log function is trimmed to 0.375V output per decade change of input current.  
Specified by design.  
(2)  
(3)  
(4)  
(5)  
(6)  
Worst-case total error for any ratio of I /I , as the largest of the two errors, when I, and I are considered separately.  
1
2
2
Total error includes offset voltage, bias current, gain, and log conformity.  
Small signal bandwidth (3dB) and transient response are a function of the level of input current. Smaller input current amplitude results in lower bandwidth.  
4
ꢠꢂ ꢡ ꢢꢢꢣ  
www.ti.com  
SBOS301A − MAY 2004 − REVISED MARCH 2007  
ELECTRICAL CHARACTERISTICS: VS = +5V  
Boldface limits apply over the specified temperature range, TA = −5°C to +75°C.  
All specifications at T = +25°C, R  
= 10k, V = +2.5V, unless otherwise noted.  
A
VLOGOUT  
CM  
LOG114  
PARAMETER  
CONDITIONS  
MIN  
TYP  
= (0.375V) Log (I /I ) + V  
CM  
MAX  
UNITS  
CORE LOG FUNCTION  
I
/V  
Equation  
V
V
IN OUT  
O
1
2
(1)  
LOG CONFORMITY ERROR  
Initial  
1nA to 100µA (5 decades)  
0.1  
0.009  
0.9  
0.25  
%
dB  
%
0.022  
100pA to 3.5mA (7.5 decades)  
0.08  
dB  
1mA to 10mA  
1nA to 100µA (5 decades)  
100pA to 3.5mA (7.5 decades)  
1mA to 10mA  
See Typical Characteristics  
Over Temperature  
0.1  
0.5  
0.4  
%
%
See Typical Characteristics  
(2)  
TRANSFER FUNCTION (GAIN)  
Initial Scaling Factor  
10nA to 100µA  
1nA to 100µA  
0.375  
0.4  
V/decade  
Scaling Factor Error  
2.5  
0.21  
3.5  
3
%
dB  
%
0.0.35  
0.035  
0.7  
Over Temperature  
T
to T  
MIN MAX  
+15°C to +50°C  
%
INPUT, A and A  
1
2
Offset Voltage  
V
1
7
mV  
µV/°C  
µV/V  
pA  
OS  
vs Temperature  
dV/dT  
PSRR  
T
to T  
+ 30  
MIN  
MAX  
vs Power Supply  
V
S
= +4.5V to +5.5V  
300  
Input Bias Current  
I
B
5
vs Temperature  
T
to T  
Doubles every 10°C  
MIN  
MAX  
Input Common-Mode Voltage Range  
V
CM  
(V−)+1.5 to  
(V+)−1.5  
V
Voltage Noise  
e
n
f = 0.1Hz to 10kHz  
f = 1kHz  
3
30  
4
µVrms  
nV/Hz  
fA/Hz  
Current Noise  
i
n
f = 1kHz  
OUTPUT, A (V  
3
)
LOGOUT  
Output Offset, V  
, Initial  
V
14  
65  
80  
mV  
mV  
V
OSO  
OSO  
Over Temperature  
T
to T  
18  
MIN  
MAX  
(3)  
Full Scale Output (FSO)  
V
I
= +5V  
(V−) + 0.6  
(V+) − 0.6  
S
Gain Bandwidth Product  
Short-Circuit Current  
Capacitive Load  
GBW  
= 1µA  
50  
18  
MHz  
mA  
pF  
IN  
I
SC  
100  
OP AMP, A and A  
4
5
Input Offset Voltage  
vs Temperature  
V
250  
2
4000  
µV  
µV/°C  
µV/V  
dB  
OS  
dV/dT  
T
to T  
MIN  
MAX  
vs Supply  
PSRR  
CMRR  
V
S
= +4.8V to +5.5V  
30  
vs Common-Mode Voltage  
Input Bias Current  
Input Offset Current  
Input Voltage Range  
Input Noise f = 0.1Hz to 10Hz  
f = 1kHz  
70  
I
B
−1  
µA  
µA  
I
0.05  
OS  
(V−)  
(V+) − 1.5  
V
1
28  
2
µV  
PP  
nV/Hz  
pA/Hz  
dB  
Current Noise  
i
n
Open-Loop Voltage Gain  
Gain Bandwidth Product  
Slew Rate  
A
100  
15  
5
OL  
GBW  
SR  
MHz  
V/µs  
µs  
Settling Time 0.01%  
Rated Output  
t
S
G = −1, 3V Step, C = 100pF  
1.5  
L
(V−) + 0.5  
(V+) − 0.5  
V
Short-Circuit Current  
I
+4/−10  
mA  
SC  
5
ꢠ ꢂꢡ ꢢꢢ ꢣ  
www.ti.com  
SBOS301A − MAY 2004 − REVISED MARCH 2007  
ELECTRICAL CHARACTERISTICS: VS = +5V (continued)  
Boldface limits apply over the specified temperature range, TA = −5°C to +75°C.  
All specifications at T = +25°C, R  
= 10k, V  
= +2.5V, unless otherwise noted.  
A
VLOGOUT  
CM  
LOG114  
TYP  
PARAMETER  
CONDITIONS  
MIN  
MAX  
UNITS  
(4, 5)  
TOTAL ERROR  
See Typical Characteristics  
(6)  
FREQUENCY RESPONSE, Core Log  
BW, 3dB I or I  
1
=
I
= 10% of I  
value, I  
= 1µA  
= 1µA  
= 1µA  
2
AC  
DC  
REF  
1nA  
5
kHz  
kHz  
10nA  
100nA  
1µA  
12  
120  
2.3  
> 5  
> 5  
> 5  
kHz  
MHz  
MHz  
MHz  
MHz  
10µA to 1mA (ratio 1:100)  
1mA to 3.5mA (ratio 1:3.5)  
3.5mA to 10mA (ratio 1:2.9)  
Step Response  
Increasing (I or I )  
I
REF  
1
2
8nA to 240nA (ratio 1:30)  
10nA to 100nA (ratio 1:10)  
10nA to 1µA (ratio 1:100)  
10nA to 10µA (ratio 1:1k)  
10nA to 1mA (ratio 1:100k)  
1mA to 10mA (ratio 1:10)  
Decreasing (I or I )  
0.7  
1.5  
µs  
µs  
µs  
µs  
µs  
µs  
0.15  
0.07  
0.06  
1
I
REF  
1
2
8nA to 240nA (ratio 1:30)  
10nA to 100nA (ratio 1:10)  
10nA to 1µA (ratio 1:100)  
10nA to 10µA (ratio 1:1k)  
10nA to 1mA (ratio 1:100k)  
1mA to 10mA (ratio 1:10)  
1
2
µs  
µs  
µs  
µs  
µs  
µs  
0.25  
0.05  
0.03  
1
VOLTAGE REFERENCE  
Bandgap Voltage  
Error, Initial  
2.5  
0.15  
25  
V
1
%
vs Temperature  
vs Supply  
ppm/°C  
ppm/V  
ppm/mA  
mA  
V
S
= +4.8V to +11V  
30  
vs Load  
I
O
=
2mA  
200  
10  
Short-Circuit Current  
POWER SUPPLY  
Single Supply Operating Range  
Quiescent Current  
V
4.8  
11  
15  
V
S
I
Q
I
O
= 0  
10  
mA  
TEMPERATURE RANGE  
Specification, T  
Operating  
to T  
−5  
+75  
+85  
°C  
°C  
°C  
MIN  
MAX  
−40  
−55  
Storage  
+125  
Thermal Resistance, q  
62  
°C/W  
JA  
(1)  
Log conformity error is peak deviation from the best-fit straight line of V vs Log (I /I ) curve expressed as a percent of peak-to-peak full-scale output. Scale factor,  
O
1 2  
K, equals 0.375V output per decade of input current.  
Scale factor of core log function is trimmed to 0.375V output per decade change of input current.  
Specified by design.  
(2)  
(3)  
(4)  
(5)  
(6)  
Worst-case total error for any ratio of I /I , as the largest of the two errors, when I, and I are considered separately.  
1
2
2
Total error includes offset voltage, bias current, gain, and log conformity.  
Small signal bandwidth (3dB) and transient response are a function of the level of input current. Smaller input current amplitude results in lower bandwidth.  
6
ꢠꢂ ꢡ ꢢꢢꢣ  
www.ti.com  
SBOS301A − MAY 2004 − REVISED MARCH 2007  
TYPICAL CHARACTERISTICS: VS = + 5V  
All specifications at T = +25°C, R  
= 10k, V  
= GND, unless otherwise noted.  
A
VLOGOUT  
CM  
ONE CYCLE OF NORMALIZED TRANSFER FUNCTION  
NORMALIZED TRANSFER FUNCTION  
2.0  
1.5  
1.0  
0.5  
0
0.40  
0.35  
0.30  
0.25  
0.20  
0.15  
0.10  
0.05  
0
0.5  
1.0  
1.5  
2.0  
104  
103 102 101  
1
101  
102  
103  
104  
1
10  
Current Ratio (I1/I2)  
Current Ratio (I1/ I2)  
SCALING FACTOR ERROR (I2 = reference 100pA to 10mA)  
µ
VLOGOUT vs I1 INPUT (I2 = 1 A)  
40  
2.5  
2.0  
1.5  
1.0  
0.5  
0
30  
20  
10  
0
_
_
+70 C  
+25 C  
_
0 C  
0.5  
1.0  
1.5  
2.0  
2.5  
_
10 C  
10  
_
+80 C  
_
+90 C  
20  
µ
µ
µ
100pA 1nA 10nA 100nA 1 A 10 A 100 A 1mA 10mA  
µ
µ
µ
100pA 1nA 10nA 100nA 1 A 10 A 100 A 1mA 10mA  
Input Current (I1)  
Input Current (I1)  
µ
VLOGOUT vs I2 INPUT (I1 = 1 A)  
VLOGOUT vs IREF  
4
2.0  
100pA  
1.5  
1.0  
0.5  
0
3
2
1
0
1
2
3
4
1nA  
10nA  
100nA  
µ
1 A  
0.5  
1.0  
1.5  
2.0  
2.5  
µ
10 A  
µ
100 A  
1mA  
10mA  
µ
µ
µ
µ
µ
µ
100pA 1nA 10nA 100nA 1 A 10 A 100 A 1mA  
100pA 1nA 10nA 100nA 1 A 10 A 100 A 1mA 10mA  
10mA  
Input Current (I1)  
IREF (I2)  
7
ꢠ ꢂꢡ ꢢꢢ ꢣ  
www.ti.com  
SBOS301A − MAY 2004 − REVISED MARCH 2007  
TYPICAL CHARACTERISTICS: VS = + 5V (continued)  
All specifications at T = +25°C, R  
= 10k, V = GND, unless otherwise noted.  
A
VLOGOUT  
CM  
_
AVERAGE TOTAL ERROR AT +80 C  
_
AVERAGE TOTAL ERROR AT +25 C  
100  
80  
60  
40  
20  
0
100  
80  
60  
40  
20  
0
I1 = 1mA  
I1 = 1mA  
µ
I1 = 100 A  
µ
I1 = 10 A  
µ
I1 = 10 A  
µ
I1 = 100 A  
20  
40  
60  
80  
20  
40  
60  
80  
µ
I1 = 1 A  
I1 = 1nA, 10nA,  
100nA  
I1 = 10nA  
I1 = 1nA  
µ
I1 = 1 A  
I1 = 100nA  
100  
100  
100 A  
µ
µ
µ
µ
µ
100 A  
200 A  
400 A  
600 A  
800 A  
1mA  
µ
µ
µ
µ
µ
200 A  
400 A  
600 A  
800 A  
1mA  
I2  
I2  
_
AVERAGE TOTAL ERROR AT 10 C  
LOG CONFORMITY vs TEMPERATURE  
7.5 Decade  
100  
1.4  
80  
60  
40  
20  
0
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0
I1 = 1mA  
I1 = 1nA  
7 Decade  
5 Decade  
20  
40  
60  
80  
I1 = 10nA  
µ
I1 = 100 A  
6 Decade  
4 Decade  
µ
I1 = 10 A  
I1 = 100nA  
µ
I1 = 1 A  
100  
100 A  
µ
µ
µ
µ
µ
200 A  
400 A  
600 A  
800 A  
1mA  
10  
0
10  
20  
30  
40  
50  
60  
70  
80  
90  
I2  
_
Temperature ( C)  
4 DECADE LOG CONFORMITY vs IREF  
5 DECADE LOG CONFORMITY vs IREF  
0.09  
0.08  
0.07  
0.06  
0.05  
0.04  
0.40  
0.35  
0.30  
0.25  
0.20  
0.15  
0.10  
0.05  
0
_
+90 C  
_
+90 C  
_
0 C  
_
10 C  
_
_
+80 C  
+80 C  
_
+70 C  
_
+25 C  
_
+70 C  
_
_
_
10 C, 0 C, +25 C  
µ
µ
µ
100pA 1nA 10nA 100nA 1 A 10 A 100 A 1mA 10mA  
µ
µ
µ
100pA 1nA 10nA 100nA 1 A 10 A 100 A 1mA 10mA  
IREF (I1)  
IREF (I1)  
8
ꢠꢂ ꢡ ꢢꢢꢣ  
www.ti.com  
SBOS301A − MAY 2004 − REVISED MARCH 2007  
TYPICAL CHARACTERISTICS: VS = + 5V (continued)  
All specifications at T = +25°C, R  
= 10k, V  
= GND, unless otherwise noted. For ac measurements, small signal means up to approximately 10% of dc  
A
VLOGOUT  
CM  
level.  
6 DECADE LOG CONFORMITY vs IREF  
8 DECADE LOG CONFORMITY (100pA to 3.5mA)  
0.45  
0.40  
0.35  
0.30  
0.25  
0.20  
1.6  
1.5  
1.4  
1.3  
1.2  
1.1  
1.0  
0.9  
_
+90 C  
_
+90 C  
_
+80 C  
_
+70 C  
_
+25 C  
_
+80 C  
_
0 C  
_
10 C  
_
+70 C  
_
_
_
10 C, 0 C, +25 C  
µ
µ
µ
µ
µ
µ
100pA 1nA 10nA 100nA 1 A 10 A 100 A 1mA 10mA  
100pA 1nA 10nA 100nA 1 A 10 A 100 A 1mA 10mA  
IREF (I1)  
Input Current (I1 or I2)  
SMALL−SIGNALAC RESPONSE I1  
SMALL−SIGNAL VLOGOUT  
(10% sine modulation)  
0
20  
10mA  
5
10  
15  
20  
25  
30  
35  
40  
45  
50  
10  
0
µ
10 A  
µ
1 A  
µ
100 A  
1mA  
µ
1 A  
100nA  
1nA  
1mA  
10  
20  
30  
40  
10nA  
100nA  
10nA  
µ
100 A  
µ
10 A  
10  
100  
1k  
10k  
100k  
1M  
10M  
100M  
100  
1k  
10k  
100k  
1M  
10M  
100M  
Frequency (Hz)  
Frequency (Hz)  
SMALL−SIGNALAC RESPONSE I2  
(10% sine modulation)  
A3 GAIN AND PHASE vs FREQUENCY  
160  
140  
120  
100  
80  
225  
180  
135  
90  
0
5
µ
10 A  
10  
15  
20  
25  
30  
35  
40  
45  
50  
µ
100 A  
µ
1 A  
1nA  
10nA  
1mA  
60  
Phase  
Gain  
40  
100nA  
20  
0
45  
20  
40  
0
100  
1k  
10k  
100k  
1M  
10M 40M  
100  
1k  
10k  
100k  
1M  
10M  
100M  
Frequency (Hz)  
Frequency (Hz)  
9
ꢠ ꢂꢡ ꢢꢢ ꢣ  
www.ti.com  
SBOS301A − MAY 2004 − REVISED MARCH 2007  
TYPICAL CHARACTERISTICS: VS = + 5V (continued)  
All specifications at T = +25°C, R  
= 10k, V  
= GND, unless otherwise noted.  
A
VLOGOUT  
CM  
A4 and A5 GAIN AND PHASE vs FREQUENCY  
A
and A5 NONINVERTING CLOSED−LOOP RESPONSE  
4
140  
120  
100  
80  
180  
135  
90  
45  
0
3
0
3
6
9
G = 1  
Phase  
Gain  
G = 10  
60  
40  
20  
12  
15  
0
20  
1
10  
100  
1k  
10k  
100k  
1M  
10M 18M  
1k  
10k  
100k  
1M  
10M  
100M  
Frequency (Hz)  
Frequency (Hz)  
A4 and A5 CAPACITIVE LOAD RESPONSE  
A4 and A5 INVERTING CLOSED−LOOP RESPONSE  
10  
0
30  
20  
10  
0
G = +1  
10  
20  
30  
40  
50  
10  
20  
30  
40  
50  
60  
70  
80  
G = 10  
C = 100pF  
C < 10pF  
G =  
1
1k  
10k  
100k  
1M  
10M  
50M  
1k  
10k  
100k  
1M  
10M  
60M  
Frequency (Hz)  
Frequency (Hz)  
10  
ꢠꢂ ꢡ ꢢꢢꢣ  
www.ti.com  
SBOS301A − MAY 2004 − REVISED MARCH 2007  
Either I or I can be held constant to serve as the refer-  
ence current, with the other input being used for the in-  
put signal. The value of the reference current is selected  
1
2
APPLICATIONS INFORMATION  
OVERVIEW  
The LOG114 is a precision logarithmic amplifier that is  
capable of measuring currents over a dynamic range of  
eight decades. It computes the logarithm, or log ratio,  
of an input current relative to a reference current ac-  
cording to equation (1).  
such that the output at V  
(pin 9) is zero when the  
LOGOUT  
reference current and input current are equal. An on-  
chip 2.5V reference is provided for use in generating the  
reference current.  
Two additional amplifiers, A and A , are included in the  
4
5
LOG114 for use in scaling, offsetting, filtering, threshold  
detection, or other functions.  
I1  
I2  
ǒ Ǔ  
VLOGOUT + 0.375   log10  
(1)  
BASIC CONNECTIONS  
The output at V  
can be digitized directly, or scaled  
LOGOUT  
Figure 1 and Figure 2 show the LOG114 in typical dual  
and single-supply configurations, respectively. To re-  
duce the influence of lead inductance of power-supply  
lines, it is recommended that each supply be bypassed  
with a 10µF tantalum capacitor in parallel with a 1000pF  
ceramic capacitor as shown in Figure 1 and Figure 2.  
Connecting these capacitors as close to the LOG114  
V+ supply pin to ground as possible improves supply−  
related noise rejection.  
for an ADC input using an uncommitted or external op  
amp.  
An offsetting voltage (V  
) can be connected to the  
Com  
Com pin to raise the voltage at V  
. When an  
LOGOUT  
offsetting voltage is used, the transfer function  
becomes:  
I1  
I2  
ǒ Ǔ  
VLOGOUT + 0.375   log10  
) VCom  
(2)  
R8  
56.2k  
R7  
100k  
R5  
100k  
R6  
66.5k  
10  
11  
9
(1)  
VLOGOUT  
+IN4 IN  
LOG114  
4
Q1  
IREF  
1 F  
µ
I1  
4
5
R1  
R2  
A1  
(2)  
VCM IN  
VO4  
12  
A4  
+IN5  
VO5  
Q2  
13  
15  
A3  
Input Signal  
100pAto 10mA  
RREF  
2.5M  
I2  
3
R3  
R4  
A5  
A2  
VREF  
16  
2.5VREF  
VREF GND  
IN  
V+  
V−  
Com  
7
5
8
6
1
14  
1000pF  
1000pF  
10 F  
10 F  
µ
µ
NOTE: (1) VLOGOUT = 0.375 log(I /I )  
×
1
2
+
+
(2) VO4  
= 0.249 log(I /I ) + 1.5V  
− ×  
1 2  
+5V  
5V  
Figure 1. Dual Supply Configuration Example for Best Accuracy Over Eight Decades.  
11  
ꢠ ꢂꢡ ꢢꢢ ꢣ  
www.ti.com  
SBOS301A − MAY 2004 − REVISED MARCH 2007  
R5  
R6  
66.5k  
100k  
R7  
100k  
R8  
316k  
10  
11  
9
(2)  
VLOGOUT  
+IN4  
IN4  
LOG114  
Q1  
I1  
µ
I A  
REF3040  
or  
I1  
4
5
R1  
R2  
REF3240  
4.096V  
Reference  
A1  
(1)  
(3)  
RREF  
VCM IN  
VO4  
12  
A4  
1.62M  
+IN5  
VO5  
Q2  
13  
15  
A3  
Input current  
from photodiode  
or current source  
I2  
I2  
3
R3  
R4  
A5  
A2  
Photodiode(4)  
VREF  
16  
+2.5V  
2.5VREF  
IN5  
1
VREF GND  
V
V
6
Com  
7
8
1
+
µ
10 F  
1000pF  
VCom = +2.5V  
+5V  
NOTE: (1) In single−supply configuration, VCM IN must be connected to 1V.  
×
(2) VLOGOUT = 0.375 log(I1/I2) + 2.5V.  
− ×  
= 0.249 log(I1/I2) + 1.5V.  
(3) VO4  
(4) The cathode of the photodiode is returned to VREF resulting in zero bias across it. The cathode  
could be returned to a voltage more positive than VCM IN to create a reverse bias for reducing  
photodiode capacitance, which increases speed.  
Figure 2. Single-Supply Configuration Example for Measurement Over Eight Decades.  
12  
ꢠꢂ ꢡ ꢢꢢꢣ  
www.ti.com  
SBOS301A − MAY 2004 − REVISED MARCH 2007  
DESIGN EXAMPLE FOR DUAL-SUPPLY  
CONFIGURATION  
4. The A amplifier scales and offsets the V  
4 LOGOUT  
signal for use by the ADC using the equation:  
Given these conditions:  
ǒ
Ǔ
VO4 + *SFACTOR   VLOGOUT ) VOFFSET  
(5)  
D
D
V+ = 5V and V− = −5V  
100pA Input signal  
The A amplifier is specified with a rated output swing  
capability from (V−) +0.5V to (V+) − 0.5V.  
4
D
The stage following the LOG114 is an analog-to-  
digital converter (ADC) with +5V supply and  
+2.5V reference voltage, so V swings from  
Therefore, choose the final A output:  
4
O4  
0V V +2.5V  
O4  
+0.5V to +2.5V.  
This output results in a 2.5V range for the 3V V  
range, or 2.5V/3V scaling factor.  
LOGOUT  
1. Due to LOG114 symmetry, you can choose either  
I or I as the signal input pin. Choosing I as the  
1
2
1
5. When I = 10mA, V  
= −1.5V. Using the  
2
LOGOUT  
reference makes the resistor network around A4  
simpler. (Note: Current must flow into pins 3 (I ) and  
equation in step 5:  
1
pin 4 (I ).)  
2
ǒ
Ǔ
VO4 + *SFACTOR   VLOGOUT ) VOFFSET  
2. Select the magnitude of the reference current.  
0V + *2.5Vń3V(*1.5V) ) VOFFSET  
(6)  
Since the signal (I ) spans eight decades, set I to  
2
1
Therefore, V  
= 0V  
OFFSET  
1µA − four decades above the minimum I value.  
2
(Note that it does not have to be placed in the  
middle. If I spanned seven decades, I could be set  
The A amplifier configuration for V = −2.5/3(V  
+ 0V is seen in Figure 3.  
)
4
O4  
LOGOUT  
2
1
three decades above the minimum and four  
The overall transer function is:  
decades below the maximum I value.) This  
2
configuration results in more swing amplitude in the  
negative direction, which provides more sensitivity  
(V per I ) when the current signal decreases.  
I1  
I2  
+ *0.249   logǒ Ǔ) 1.5V  
VO4  
(7)  
O4  
2
3. Using Equation (1) calculate the expected range of  
log outputs at V  
Internal A Output Amplifier  
4
:
LOGOUT  
R5  
R6  
For I2 + 10mA :  
100k  
82.5k  
VLOGOUT  
I1  
+ 0.375   logǒ Ǔ  
VLOGOUT  
+5V  
I2  
1mA  
VO4  
=
2/3 (VLOGOUT  
)
+ 0.375   logǒ Ǔ + * 1.5V  
A4  
10mA  
For I2 + 100pA :  
10mA  
I2  
I1  
5V  
R8  
100pA  
VREF  
+2.5V  
+ 0.375   logǒ Ǔ  
VLOGOUT  
I2  
R7  
100k  
0V  
+2.5V  
1mA  
+ 0.375   logǒ Ǔ+ ) 1.5V  
100pA  
37.4k  
VO4  
(3)  
Therefore, the expected voltage range at the output  
A4 amplifier used to scale and offset VLOGOUT for 0V to 2.5V output.  
of amplifier A is:  
3
Figure 3. Operational Amplifier Configuration for  
Scaling the Output Going to ADC Stage.  
* 1.5V v VLOGOUT v ) 1.5V  
(4)  
13  
ꢠ ꢂꢡ ꢢꢢ ꢣ  
www.ti.com  
SBOS301A − MAY 2004 − REVISED MARCH 2007  
DESIGN EXAMPLE FOR SINGLE-SUPPLY  
CONFIGURATION  
This result would be fine in a dual−supply system  
(V+ = +5V, V− = −5V) where the output can swing  
below ground, but does not work in a single supply  
+5V system. Therefore, an offset voltage must be  
added to the system.  
Given these conditions:  
D
D
D
V+ = 5V  
V= GND  
100pA Input signal 10mA  
4. Select an offset voltage, V  
to use for centering  
Com  
the output between (V−) + 0.6V and (V+) − 0.6V,  
which is the full-scale output capability of the A  
3
D
The stage following the LOG114 is an analog to  
digital converter (ADC) with +5V supply and  
+2.5V reference voltage  
amplifier. Choosing V  
= 2.5V, and recalculating  
Com  
the expected voltage output range for V  
Equation (2), results in:  
using  
LOGOUT  
1. Choose either I or I as the signal input pin. For this  
1
2
example, I is used. Choosing I as the reference  
current makes the resistor network around A4  
2
1
) 1V v VLOGOUT v ) 4V  
(10)  
simpler. (Note: Current only flows into the I and I  
pins.)  
1
2
5. The A amplifier scales and offsets the V  
4
LOGOUT  
signal for use by the ADC using the equation:  
2. Select the magnitude of the reference current.  
Since the signal (I ) spans eight decades, set I to  
ǒ
Ǔ
VO4 + *SFACTOR   VLOGOUT ) VOFFSET  
2
1
(11)  
1µA − four decades above the minimum I value,  
2
The A amplifier is specified with a rated output swing  
capability from (V−) +0.5V to (V+) − 0.5V.  
4
and four decades below the maximum I value.  
2
(Note that it does not have to be placed in the  
middle. If I spanned seven decades, I could be set  
Therefore, choose the final A4 output:  
2
1
three decades above the minimum and four  
+0.5V V +2.5V  
O4  
decades below the maximum I value.) This  
2
This output results in a 2V range for the 3V V  
range, or 2V/3V scaling factor.  
LOGOUT  
configuration results in more swing amplitude in the  
negative direction, which provides more sensitivity  
(V per I ) when the current signal decreases.  
6. When I = 10mA, V  
= +1V, and V = 2.5V.  
O4  
O4  
2
2
LOGOUT  
Using the equation in step 5:  
ǒ
Ǔ
VO4 + *SFACTOR   VLOGOUT ) VOFFSET  
3. Using Equation (1) calculate the expected range of  
log outputs at V  
:
2.5V + *2Vń3V(1V) ) VOFFSET  
LOGOUT  
(12)  
) +  
Therefore, V  
= 3.16V  
OFFSET  
For I2 + 10mA :  
The A amplifier configuration for V = −2/3(V  
4
O4  
LOGOUT  
I1  
+ 0.375   logǒ Ǔ  
VLOGOUT  
3.16 is seen in Figure 4a.  
I2  
The overall transer function is:  
1mA  
+ 0.375   logǒ Ǔ + * 1.5V  
10mA  
For I2 + 100pA :  
I1  
I2  
+ *0.249   logǒ Ǔ) 1.5V  
VO4  
I1  
(13)  
+ 0.375   logǒ Ǔ  
VLOGOUT  
I2  
A similar process can be used for configuring an  
external rail-to-rail output op amp, such as the OPA335.  
Because the OPA335 op amp can swing down to 0V  
using a pulldown resistor, R , connected to −5V (for  
details, refer to the OPA335 data sheet, available for  
download at www.ti.com), the scaling factor is 2.5V/3V  
1mA  
+ 0.375   logǒ Ǔ+ ) 1.5V  
100pA  
(8)  
P
Therefore, the expected voltage range at the output  
of amplifier A is:  
3
and the corresponding V  
configuration is shown in Figure 4b.  
is 3.3V. This circuit  
OFFSET  
* 1.5V v VLOGOUT v ) 1.5V  
(9)  
14  
ꢠꢂ ꢡ ꢢꢢꢣ  
www.ti.com  
SBOS301A − MAY 2004 − REVISED MARCH 2007  
Internal A Output Amplifier  
4
External Output Amplifier  
R5  
100k  
R6  
66.5k  
R5  
100k  
R6  
82.5k  
VLOGOUT  
VLOGOUT  
+5V  
VO4  
=
2/3 (VLOGOUT) + 3.16  
10mA  
VOUT  
=
2.5/3 (VLOGOUT) + 3.3  
A4  
OPA335  
(1)  
10mA  
100pA  
RP  
I2  
I2  
100pA  
VREF  
VREF  
+2.5V  
5V  
+2.5V  
R7  
100k  
R8  
316k  
R7  
100k  
R8  
267k  
2.5V  
0.5V  
2.5V  
VO4  
VOUT  
0.5V  
a) A4 amplifier used to scale and offset VLOGOUT for 0.5V to 2.5V output.  
b) OPA335 amplifier used to scale and offset VLOGOUT for 0V to 2.5V output.  
NOTE: (1) See OPA335 data sheet for use of R connected to 5V to achieve 0V output.  
P
Figure 4. Operational Amplifier Configuration for Scaling and Offsetting the Output Going to ADC Stage.  
ADVANTAGES OF DUAL−SUPPLY OPERATION  
V
(Pin 5)  
CM IN  
The V  
pin is used to bias the A and A amplifier into  
1 2  
The LOG114 performs very well on a single +5V supply  
by level-shifting pin 7 (Com) to half-supply and raising  
CMIN  
its common-mode input voltage range, (V−) + 1.5V to  
(V+) − 1.5V.  
the common-mode voltage (pin 5, V  
) of the input  
CM IN  
amplifiers. This level−shift places the input amplifiers in  
the linear operating range. However, there are also  
some advantages to operating the LOG114 on dual 5V  
supplies. These advantages include:  
INPUT CURRENT RANGE  
To maintain specified accuracy, the input current range  
of the LOG114 should be limited from 100pA to 3.5mA.  
Input currents outside of this range may compromise  
the LOG114 performance. Input currents larger than  
3.5mA result in increased nonlinearity. An absolute  
maximum input current rating of 10mA is included to  
prevent excessive power dissipation that may damage  
the input transistor.  
1) eliminating the need for the +4.096V precision  
reference;  
2) eliminating a small additional source of error arising  
from the noise and temperature drift of the level−shifting  
voltage; and  
3) allowing increased magnitude of a reverse bias  
voltage on the photodiode.  
COM (PIN 7) VOLTAGE RANGE  
The voltage on the Com pin is used to bias the differen-  
tial amplifier, A , within its linear range. This voltage can  
3
provide an asymmetrical offset of the V  
voltage.  
LOGOUT  
15  
ꢠ ꢂꢡ ꢢꢢ ꢣ  
www.ti.com  
SBOS301A − MAY 2004 − REVISED MARCH 2007  
SETTING THE REFERENCE CURRENT  
ply system, and a maximum value of 7mV in a +5V sup-  
ply system. Resistor temperature stability and noise  
contributions should also be considered.  
When the LOG114 is used to compute logarithms, ei-  
ther I or I can be held constant to become the refer-  
1
2
ence current to which the other is compared.  
If I is set to the lowest current in the span of the signal  
REF  
current (as shown in the front page figure), V  
range from:  
will  
LOGOUT  
VREF = 100mV  
R1 R3  
I1 min  
I1 max signal  
VOS  
ǒ
Ǔ^ 0V  
VLOGOUT + 0.375   log10  
+
1
(14)  
+5V  
A1  
IREF  
to some maximum value:  
R2  
R3 >> R2  
I1 min  
I1 max signal  
ǒ
Ǔ
VLOGOUT + 0.375   log10  
(15)  
While convenient, this approach does not usually result  
in best performance, because I min accuracy is difficult  
1
Figure 5. T-Network for Reference Current.  
may be an external precision voltage reference, or  
to achieve, particularly if it is < 20nA.  
A better way to achieve higher accuracy is to choose  
I
to be in the center of the full signal range. For  
V
REF  
REF  
example, for a signal range of 1nA to 1mA, it is better  
to use this approach:  
the on-chip 2.5V voltage reference of the LOG114.  
I
can be derived from an external current source,  
REF  
such as that shown in Figure 6.  
Ǹ
IREF + ISIGNAL min  1mAń1nA + 1mA dc  
(16)  
than it is to set I  
= 1nA. It is much easier and more  
REF  
precise (that is, dc accuracy, temperature stability, and  
lower noise) to establish a 1mA dc current level than a  
1nA level for the reference current.  
IREF  
2N2905  
The reference current may be derived from a voltage  
source with one or more resistors. When a single resis-  
RREF  
3.6k  
2N2905  
+15V  
tor is used, the value may be large depending on I  
.
REF  
15V  
If I  
is 10nA and +2.5V is used:  
REF  
6V  
IN834  
6V  
RREF  
IREF  
=
R
REF  
= 2.5V/10nA = 250MΩ  
A voltage divider may be used to reduce the value of the  
resistor, as shown in Figure 5. When using this method,  
one must consider the possible errors caused by the  
amplifier input offset voltage. The input offset voltage of  
Figure 6. Temperature-Compensated Current Source.  
amplifier A has a maximum value of 4mV in a 5V sup-  
1
16  
ꢠꢂ ꢡ ꢢꢢꢣ  
www.ti.com  
SBOS301A − MAY 2004 − REVISED MARCH 2007  
NEGATIVE INPUT CURRENTS  
situations where negative input currents are needed,  
the example circuits in Figure 7, Figure 8, and Figure 9  
may be used.  
The LOG114 functions only with positive input currents  
(conventional current flows into input current pins). In  
QA  
QB  
IIN  
National  
LM394  
D1  
D2  
OPA703  
IOUT  
Figure 7. Current Inverter/Current Source.  
+5V  
+3.3V  
1/2  
OPA2335  
1.5k  
1k  
+5V  
1/2  
OPA2335  
BSH203  
(+3.3V  
Back Bias)  
10nA to 1mA  
LOG114  
10nA to 1mA  
Pin 3 or Pin 4  
Photodiode  
Figure 8. Precision Current Inverter/Current Source.  
1k  
100k  
100k  
+5V  
10nA to 1mA  
+3.3V  
1/2  
OPA2335  
Back Bias  
+5V  
1.5k  
1.5k  
+3.3V  
1/2  
OPA2335  
Photodiode  
100k  
100k  
LOG114  
10nA to 1mA  
Pin 3 or Pin 4  
Figure 9. Precision Current Inverter/Current Source.  
17  
ꢠ ꢂꢡ ꢢꢢ ꢣ  
www.ti.com  
SBOS301A − MAY 2004 − REVISED MARCH 2007  
VOLTAGE INPUTS  
noise from these sources must be considered and can  
limit the usefulness of this technique.  
The LOG114 provides the best performance with cur-  
rent inputs. Voltage inputs may be handled directly by  
using a low-impedance voltage source with series resis-  
tors, but the dynamic input range is limited to approxi-  
mately three decades of input voltage. This limitation  
exists because of the magnitude of the required input  
voltage and size of the corresponding series resistor.  
For 10nA of input current, a 10V voltage source and a  
1Gresistor would be required. Voltage and current  
APPLICATION CIRCUITS  
LOG RATIO  
One of the more common uses of log ratio amplifiers is  
to measure absorbance. See Figure 10 for a typical ap-  
plication. Absorbance of the sample is A = log λ ′/λ . If  
1
1
D and D are matched, A (0.375V) log(I /I ).  
1
2
1 2  
R
R
6
5
10  
+IN  
10  
IN  
9
(1)  
V
LOG114  
LOGOUT  
4
4
Q
1
I
4
5
1
R
R
2
1
A
(2)  
1
V
V
12  
CM IN  
O4  
I
1
2
A
A
4
D
D
Sample  
1
+IN  
V
Q
5
13  
15  
2
A
3
λ
λ
1
1
I
I
3
2
O5  
R
R
λ
3
4
1
5
Light  
A
2
Source  
2
V
16  
REF  
2.5V  
REF  
V
IN  
5
V+  
V
Com  
7
REF GND  
8
6
1
14  
+5V  
×
= 0.375 log(I /I ).  
1 2  
NOTES: (1) V  
LOGOUT  
×
×
log(I /I )  
(2) V = 0.375  
K
O4  
1 2  
K = 1 + R /R .  
6
5
Figure 10. Using the LOG114 to Measure Absorbance.  
18  
ꢠꢂ ꢡ ꢢꢢꢣ  
www.ti.com  
SBOS301A − MAY 2004 − REVISED MARCH 2007  
DATA COMPRESSION  
I
1
In many applications, the compressive effects of the  
logarithmic transfer function are useful. For example, a  
LOG114 preceding a 12-bit ADC can produce the  
dynamic range equivalent to a 20-bit converter. (Sug-  
gested products: ADS7818, ADS7834).  
V
LOGOUT  
LOG114  
I
2
V
V+  
+3.3V OPERATION  
TPS60241  
+5V  
C
For systems with only a +3.3V power supply, the  
TPS60241 zero-ripple switched cap buck-boost 2.7V to  
5.5V input to 5V output converter may be used to gener-  
ate a +5V supply for the LOG114, as shown in  
Figure 11.  
V
V
OUT  
IN  
+3.3V  
C
C
C
1+  
2+  
C
µ
1 F  
1
2
C
µ
1 F  
C
1µF  
0
1
µ
1 F  
C
1
2
GND EN  
Likewise, the TPS6040 negative charge pump may be  
connected to the +5V output of the TPS60241 to gener-  
ate a −5V supply to create a ±5V supply for the  
LOG114, as Figure 12 illustrates.  
Figure 11. Creating a +5V Supply from a +3.3V Supply.  
I1  
VLOGOUT  
LOG114  
I2  
V
V+  
+5V  
5V  
CFLY  
µ
1 F  
TPS60241  
CFLYCFLY+  
TPS60400 OUT  
GND  
+5V  
5V  
+3.3V  
VIN  
VOUT  
C2+  
IN  
C1+  
C1  
C1  
C2  
CO  
CO  
CI  
µ
1 F  
µ
1 F  
µ
1 F  
µ
1 F  
µ
1 F  
µ
1 F  
C1  
C2  
GND EN  
Figure 12. Creating a 5V Supply from a +3.3V Supply.  
19  
ꢠ ꢂꢡ ꢢꢢ ꢣ  
www.ti.com  
SBOS301A − MAY 2004 − REVISED MARCH 2007  
ERBIUM-DOPED FIBER OPTIC AMPLIFIER  
(EDFA)  
An alternate design of the system shown in Figure 13  
is possible because the LOG114 inherently takes the  
log ratio. Therefore, one log amp can be eliminated by  
The LOG114 was designed for optical networking sys-  
tems. Figure 13 shows a block diagram of the LOG114  
in a typical EDFA application. This application uses two  
log amps to measure the optical input and output power  
of the amplifier. A difference amplifier subtracts the log  
output signals of both log amps and applies an error  
voltage to the proportional-integral-derivative (PID)  
controller. The controller output adjusts a voltage-con-  
connecting one of the photodiodes to the LOG114 I  
1
input, and the other to the I input. The differential  
2
amplifier would then be eliminated.  
The LOG114 is uniquely suited for most EDFA  
applications because of its fast rise and fall times  
(typically less than 1µs for a 100:1 current input step).  
It also measures a very wide dynamic range of up to  
eight decades.  
trolled current source (V ), which then drives the pow-  
CCS  
er op amp and pump laser. The desired optical gain is  
achieved when the error voltage at the PID is zero.  
The log ratio function is the optical power gain of the  
EDFA. This circuitry forms an automatic power level  
control loop.  
Tap  
1%  
Tap  
1%  
Fiber  
Pump Laser  
Power  
Op Amp  
OPA569  
IL  
VCCS  
PID  
VERROR  
Diff  
VOUT1 VOUT2  
I1  
I2  
LOG114  
LOG114  
REF  
IREF1  
IREF2  
DAC  
RREF1  
RREF2  
Figure 13. Erbium-Doped Fiber Optic Amplifier (EDFA) block diagram.  
20  
ꢠꢂ ꢡ ꢢꢢꢣ  
www.ti.com  
SBOS301A − MAY 2004 − REVISED MARCH 2007  
INSIDE THE LOG114  
Log Conformity  
For the LOG114, log conformity is calculated in the  
The LOG114 uses two matched logarithmic amplifiers  
same way as linearity and is plotted as I /I on a semi-  
(A and A with logging diodes in the feedback loops) to  
1 2  
1
2
log scale. In many applications, log conformity is the  
most important specification. This condition is true be-  
cause bias current errors are negligible (5pA for the  
LOG114), and the scale factor and offset errors may be  
trimmed to zero or removed by system calibration.  
These factors leave log conformity as the major source  
of error.  
generate the outputs log (I ) and log (I ), respectively.  
1
2
The gain of 6.25 differential amplifier (A ) subtracts the  
3
output of A from the output of A , resulting in [log (I )  
2
1
1
− log (I )], or log (I /I ). The symmetrical design of the  
2
1 2  
A and A logarithmic amps allows I and I to be used  
1
2
1
2
interchangeably, and provides good bandwidth and  
phase characteristics with frequency.  
Log conformity is defined as the peak deviation from the  
best fit straight line of the V  
versus log (I /I )  
LOGOUT  
1 2  
DEFINITION OF TERMS  
curve. Log conformity is then expressed as a percent of  
ideal full−scale output. Thus, the nonlinearity error ex-  
pressed in volts over m decades is:  
Transfer Function  
The ideal transfer function of the LOG114 is:  
V
= 0.375V/decade 2Nm  
LOGOUT (NONLIN)  
I1  
12  
where N is the log conformity error, in percent.  
+ 0.375   logǒ Ǔ  
VLOGOUT  
(17)  
This transfer function can be seen graphically in the typ-  
INDIVIDUAL ERROR COMPONENTS  
ical characteristic curve, V  
vs I  
.
LOGOUT  
REF  
The ideal transfer function with current input is:  
When a pedestal, or offset, voltage (V  
)is connected  
Com  
to the Com pin, an additional offset term is introduced  
into the equation:  
I1  
12  
ǒ Ǔ  
VLOGOUT IDEAL + 0.375   log  
(19)  
I1  
12  
The actual transfer function with the major components  
of error is:  
+ 0.375   logǒ Ǔ  
VLOGOUT  
) VCom  
(18)  
I1  
I2  
Accuracy  
0.375(1 " DK)   logǒ Ǔ  
" 2Nm " VOSO  
Accuracy considerations for a log ratio amplifier are  
somewhat more complicated than for other amplifiers.  
This complexity exists because the transfer function is  
nonlinear and has two inputs, each of which can vary  
(20)  
where:  
K = gain error (0.4%, typ, as specified in the Electri-  
cal Characteristics table)  
over  
a
wide  
dynamic range. The accuracy for any combination of  
inputs is determined from the total error specification.  
I
I
= bias current of A (5pA, typ)  
1
B1  
B2  
= bias current of A (5pA, typ)  
2
Total Error  
m = number of decades over which the log  
conformity error is specified  
The total error is the deviation of the actual output from  
the ideal output. Thus,  
N = log conformity error (0.1%, typ for m = 5 decades;  
0.9% typ for m = 7.5 decades)  
V
= V  
Total Error  
LOGOUT(ACTUAL)  
LOGOUT(IDEAL)  
V
= output offset voltage (11mV, typ for 5V sup-  
plies; 14mV, typ for +5V supplies)  
It represents the sum of all the individual components  
of error normally associated with the log amp when op-  
erating in the current input mode. The worst-case error  
OSO  
To determine the typical error resulting from these error  
components, first compute the ideal output. Then calcu-  
late the output again, this time including the individual  
error components. Then determine the error in percent  
using Equation (21):  
for any given ratio of I /I is the largest of the two errors  
1 2  
when I and I are considered separately. Temperature  
1
2
can also affect total error.  
Errors RTO and RTI  
Ť
Ť
As with any transfer function, errors generated by the  
function may be Referred-to-Output (RTO) or Referred-  
to-Input (RTI). In this respect, log amps have a unique  
property: given some error voltage at the log amp out-  
put, that error corresponds to a constant percent of the  
input, regardless of the actual input level.  
VLOGOUT IDEAL*VLOGOUT  
TYP  
%error +  
  100%  
VLOGOUTIDEAL  
(21)  
21  
ꢠ ꢂꢡ ꢢꢢ ꢣ  
www.ti.com  
SBOS301A − MAY 2004 − REVISED MARCH 2007  
For example, in a system configured for measurement  
The QFN package can be easily mounted using stan-  
dard printed circuit board (PCB) assembly techniques.  
See Application Note QFN/SON PCB Attachment  
(SLUA271) and Application Report Quad Flatpack No−  
Lead Logic Packages (SCBA017), both available for  
download at www.ti.com.  
of five decades, with I = 1mA, and I = 10µA:  
1
2
10*3  
ǒ Ǔ+ 0.75V  
VLOGOUT IDEAL + 0.375   log  
10*5  
(22)  
(23)  
10−3*5   10−12  
10−5*5   10−12  
+ 0.375 1 " 0.004   logǒ  
" 2 0.001  
Ǔ
(
)
VLOGOUT  
TYP  
The exposed leadframe die pad on the bottom of  
the package should be connected to V−.  
(
)( )  
5 " 0.011  
Using the positive error components (+K, +2Nm, and  
+V ) to calculate the maximum typical output:  
QFN LAYOUT GUIDELINES  
OSO  
The exposed leadframe die pad on the QFN package  
should be soldered to a thermal pad on the PCB. A me-  
chanical drawing showing an example layout is at-  
tached at the end of this data sheet. Refinements to this  
layout may be necessary based on assembly process  
requirements. Mechanical drawings located at the end  
of this data sheet list the physical dimensions for the  
package and pad. The five holes in the landing pattern  
are optional, and are intended for use with thermal vias  
that connect the leadframe die pad to the heatsink area  
on the PCB.  
VLOGOUT TYP + 0.774V  
(24)  
Therefore, the error in percent is:  
|
|
0.75*0.774  
%error +  
  100% + 3.2%  
0.75  
(25)  
QFN PACKAGE  
The LOG114 comes in a QFN-16 package. This lead-  
less package has lead contacts on all four sides of the  
bottom of the package, thereby maximizing board  
space. An exposed leadframe die pad on the bottom of  
the package enhances thermal and electrical charac-  
teristics.  
Soldering the exposed pad significantly improves  
board-level reliability during temperature cycling, key  
push, package shear, and similar board-level tests.  
Even with applications that have low-power dissipation,  
the exposed pad must be soldered to the PCB to pro-  
vide structural integrity and long-term reliability.  
QFN packages are physically small, have a smaller  
routing area, improved thermal performance, and im-  
proved electrical parasitics. Additionally, the absence of  
external leads eliminates bent-lead issues.  
22  
PACKAGE OPTION ADDENDUM  
www.ti.com  
7-May-2007  
PACKAGING INFORMATION  
Orderable Device  
LOG114AIRGVR  
LOG114AIRGVRG4  
LOG114AIRGVT  
Status (1)  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
Package Package  
Pins Package Eco Plan (2) Lead/Ball Finish MSL Peak Temp (3)  
Qty  
Type  
Drawing  
QFN  
RGV  
16  
16  
16  
16  
2500 Green (RoHS & CU NIPDAU Level-2-260C-1 YEAR  
no Sb/Br)  
QFN  
QFN  
QFN  
RGV  
RGV  
RGV  
2500 Green (RoHS & CU NIPDAU Level-2-260C-1 YEAR  
no Sb/Br)  
250 Green (RoHS & CU NIPDAU Level-2-260C-1 YEAR  
no Sb/Br)  
LOG114AIRGVTG4  
250 Green (RoHS & CU NIPDAU Level-2-260C-1 YEAR  
no Sb/Br)  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in  
a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2)  
Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check  
http://www.ti.com/productcontent for the latest availability information and additional product content details.  
TBD: The Pb-Free/Green conversion plan has not been defined.  
Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements  
for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered  
at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.  
Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and  
package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS  
compatible) as defined above.  
Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame  
retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)  
(3)  
MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder  
temperature.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is  
provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the  
accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take  
reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on  
incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited  
information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI  
to Customer on an annual basis.  
Addendum-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
17-May-2007  
TAPE AND REEL INFORMATION  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
17-May-2007  
Device  
Package Pins  
Site  
MLA  
MLA  
Reel  
Diameter Width  
(mm)  
Reel  
A0 (mm)  
4.3  
B0 (mm)  
4.3  
K0 (mm)  
1.5  
P1  
W
Pin1  
(mm) (mm) Quadrant  
(mm)  
LOG114AIRGVR  
LOG114AIRGVT  
RGV  
RGV  
16  
16  
330  
12  
12  
12  
12 PKGORN  
T2TR-MS  
P
180  
12  
4.3  
4.3  
1.5  
12 PKGORN  
T2TR-MS  
P
TAPE AND REEL BOX INFORMATION  
Device  
Package  
Pins  
Site  
Length (mm) Width (mm) Height (mm)  
LOG114AIRGVR  
LOG114AIRGVT  
RGV  
RGV  
16  
16  
MLA  
MLA  
346.0  
190.0  
346.0  
212.7  
29.0  
31.75  
Pack Materials-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
17-May-2007  
Pack Materials-Page 3  
IMPORTANT NOTICE  
Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements,  
improvements, and other changes to its products and services at any time and to discontinue any product or service without notice.  
Customers should obtain the latest relevant information before placing orders and should verify that such information is current and  
complete. All products are sold subject to TI’s terms and conditions of sale supplied at the time of order acknowledgment.  
TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI’s  
standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this  
warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily  
performed.  
TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and  
applications using TI components. To minimize the risks associated with customer products and applications, customers should  
provide adequate design and operating safeguards.  
TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask  
work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services  
are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such  
products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under  
the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.  
Reproduction of information in TI data books or data sheets is permissible only if reproduction is without alteration and is  
accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an  
unfair and deceptive business practice. TI is not responsible or liable for such altered documentation.  
Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service  
voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business  
practice. TI is not responsible or liable for any such statements.  
TI products are not authorized for use in safety-critical applications (such as life support) where a failure of the TI product would  
reasonably be expected to cause severe personal injury or death, unless officers of the parties have executed an agreement  
specifically governing such use. Buyers represent that they have all necessary expertise in the safety and regulatory ramifications  
of their applications, and acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related  
requirements concerning their products and any use of TI products in such safety-critical applications, notwithstanding any  
applications-related information or support that may be provided by TI. Further, Buyers must fully indemnify TI and its  
representatives against any damages arising out of the use of TI products in such safety-critical applications.  
TI products are neither designed nor intended for use in military/aerospace applications or environments unless the TI products are  
specifically designated by TI as military-grade or "enhanced plastic." Only products designated by TI as military-grade meet military  
specifications. Buyers acknowledge and agree that any such use of TI products which TI has not designated as military-grade is  
solely at the Buyer's risk, and that they are solely responsible for compliance with all legal and regulatory requirements in  
connection with such use.  
TI products are neither designed nor intended for use in automotive applications or environments unless the specific TI products  
are designated by TI as compliant with ISO/TS 16949 requirements. Buyers acknowledge and agree that, if they use any  
non-designated products in automotive applications, TI will not be responsible for any failure to meet such requirements.  
Following are URLs where you can obtain information on other Texas Instruments products and application solutions:  
Products  
Amplifiers  
Data Converters  
DSP  
Applications  
Audio  
amplifier.ti.com  
dataconverter.ti.com  
dsp.ti.com  
www.ti.com/audio  
Automotive  
Broadband  
Digital Control  
Military  
www.ti.com/automotive  
www.ti.com/broadband  
www.ti.com/digitalcontrol  
www.ti.com/military  
Interface  
interface.ti.com  
logic.ti.com  
Logic  
Power Mgmt  
Microcontrollers  
RFID  
power.ti.com  
Optical Networking  
Security  
www.ti.com/opticalnetwork  
www.ti.com/security  
www.ti.com/telephony  
www.ti.com/video  
microcontroller.ti.com  
www.ti-rfid.com  
www.ti.com/lpw  
Telephony  
Low Power  
Wireless  
Video & Imaging  
Wireless  
www.ti.com/wireless  
Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2007, Texas Instruments Incorporated  

相关型号:

LOG114AIRGVT

Single-Supply, High-Speed, Precision LOGARITHMIC AMPLIFIER
BB

LOG114AIRGVT

LOG114EVM User Guide
TI

LOG114AIRGVTG4

Single-Supply, High-Speed, Precision LOGARITHMIC AMPLIFIER
BB

LOG114EVM

LOG114EVM User Guide
TI

LOG114_12

Single-Supply, High-Speed, Precision LOGARITHMIC AMPLIFIER
BB

LOG1527

由CMOS工艺设计制造的可内烧的学习码编码IC.
ETC

LOG2112

LOGARITHMIC AND LOG RATIO AMPLIFIERS
TI

LOG2112AIDW

LOGARITHMIC AND LOG RATIO AMPLIFIERS
TI

LOG2112AIDWE4

Precision LOGARITHMIC AND LOG RATIO AMPLIFIERS
TI

LOG2112AIDWR

LOGARITHMIC AND LOG RATIO AMPLIFIERS
TI

LOG2112AIDWRE4

Precision LOGARITHMIC AND LOG RATIO AMPLIFIERS
TI

LOGA671

Visible LED, Clear
INFINEON