OPA111AM-BI [BB]

暂无描述;
OPA111AM-BI
型号: OPA111AM-BI
厂家: BURR-BROWN CORPORATION    BURR-BROWN CORPORATION
描述:

暂无描述

运算放大器
文件: 总12页 (文件大小:180K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
®
OPA111  
Low Noise Precision Difet ®  
OPERATIONAL AMPLIFIER  
FEATURES  
APPLICATIONS  
LOW NOISE: 100% Tested, 8nVHz max  
PRECISION INSTRUMENTATION  
(10kHz)  
DATA ACQUISITION  
LOW BIAS CURRENT: 1pA max  
LOW OFFSET: 250µV max  
TEST EQUIPMENT  
OPTOELECTRONICS  
LOW DRIFT: 1µV/°C max  
MEDICAL EQUIPMENT—CAT SCANNER  
RADIATION HARD EQUIPMENT  
HIGH OPEN-LOOP GAIN: 120dB min  
HIGH COMMON-MODE REJECTION:  
100dB min  
DESCRIPTION  
The OPA111 is a precision monolithic dielectrically  
isolated FET (Difet®) operational amplifier. Outstand-  
ing performance characteristics allow its use in the  
most critical instrumentation applications.  
Case and  
Substrate  
+VCC  
8
7
–In  
Noise, bias current, voltage offset, drift, open-loop  
gain, common-mode rejection, and power supply re-  
jection are superior to BIFET® amplifiers.  
2
+In  
3
Noise-Free Cascode*  
Very low bias current is obtained by dielectric isola-  
tion with on-chip guarding.  
Output  
6
Laser trimming of thin-film resistors gives very low  
offset and drift. Extremely low noise is achieved with  
patented circuit design techniques. A new cascode  
design allows high precision input specifications and  
reduced susceptibility to flicker noise.  
2kΩ  
2kΩ  
2kΩ  
10kΩ  
10kΩ  
Trim  
1
Trim  
Standard 741 pin configuration allows upgrading of  
existing designs to higher performance levels.  
5
2kΩ  
–VCC  
4
*Patented  
BIFET® National Semiconductor Corp., Difet® Burr-Brown Corp.  
International Airport Industrial Park  
Mailing Address: PO Box 11400  
Cable: BBRCORP  
Tucson, AZ 85734  
Street Address: 6730 S. Tucson Blvd.  
Tucson, AZ 85706  
Tel: (520) 746-1111 Twx: 910-952-1111  
Telex: 066-6491  
FAX: (520) 889-1510  
Immediate Product Info: (800) 548-6132  
© 1984 Burr-Brown Corporation  
PDS-526K  
Printed in U.S.A. August, 1995  
SPECIFICATIONS  
ELECTRICAL  
At VCC = ±15VDC and TA = +25°C unless otherwise noted.  
OPA111AM  
TYP  
OPA111BM  
TYP  
OPA111SM  
TYP  
PARAMETER  
INPUT  
CONDITION  
MIN  
MAX  
MIN  
MAX  
MIN  
MAX  
UNITS  
NOISE  
Voltage, fO = 10Hz  
fO = 100Hz  
fO = 1kHz  
fO = 10kHz  
fB = 10Hz to 10kHz  
fB = 0.1Hz to 10Hz  
Current, fB = 0.1Hz to 10Hz  
fO = 0.1Hz thru 20kHz  
100% Tested  
100% Tested  
100% Tested  
100% Tested  
40  
15  
8
80  
40  
15  
8
1.2  
3.3  
15  
0.8  
30  
11  
7
60  
30  
12  
8
40  
15  
8
80  
40  
15  
8
1.2  
3.3  
15  
0.8  
nV/Hz  
nV/Hz  
nV/Hz  
nV/Hz  
µVrms  
µVp-p  
6
6
6
100% Tested  
0.7  
1.6  
9.5  
0.5  
0.6  
1.2  
7.5  
0.4  
1
0.7  
1.6  
9.5  
0.5  
(1)  
2.5  
12  
0.6  
(1)  
(1)  
fAp-p  
fA/Hz  
OFFSET VOLTAGE(2)  
Input Offset Voltage  
Average Drift  
VCM = 0VDC  
TA = TMIN to TMAX  
CC = ±10V to ±18V  
±100  
±2  
110  
±3  
±500  
±5  
±50  
±0.5  
110  
±3  
±250  
±1  
±100  
±2  
110  
±3  
±500  
±5  
µV  
µV/°C  
dB  
Supply Rejection  
V
90  
100  
90  
±31  
±2  
±10  
±1  
±31  
±2  
µV/V  
BIAS CURRENT(2)  
Input Bias Current  
VCM = 0VDC  
VCM = 0VDC  
±0.8  
±0.5  
±0.5  
±0.8  
±0.5  
pA  
pA  
OFFSET CURRENT(2)  
Input Offset Current  
±1.5  
±0.25  
±0.75  
±1.5  
IMPEDANCE  
Differential  
Common-Mode  
1013 || 1  
1014 || 3  
1013 || 1  
1014 || 3  
1013 || 1  
1014 || 3  
|| pF  
|| pF  
VOLTAGE RANGE  
Common-Mode Input Range  
Common-Mode Rejection  
±10  
90  
±11  
110  
±10  
100  
±11  
110  
±10  
90  
±11  
110  
V
dB  
VIN = ±10VDC  
RL 2kΩ  
OPEN-LOOP GAIN, DC  
Open-Loop Voltage Gain  
FREQUENCY RESPONSE  
114  
125  
120  
125  
114  
125  
dB  
Unity Gain, Small Signal  
Full Power Response  
Slew Rate  
Settling Time, 0.1%  
0.01%  
2
32  
2
6
10  
2
32  
2
6
10  
2
32  
2
6
10  
MHz  
kHz  
V/µs  
µs  
20Vp-p, RL = 2kΩ  
VO = ±10V, RL = 2kΩ  
Gain = –1, RL = 2kΩ  
10V Step  
16  
1
16  
1
16  
1
µs  
Overload Recovery,  
50% Overdrive(3)  
Gain = –1  
5
5
5
µs  
RATED OUTPUT  
Voltage Output  
Current Output  
Output Resistance  
Load Capacitance Stability  
Short Circuit Current  
RL = 2kΩ  
VO = ±10VDC  
DC, Open Loop  
Gain = +1  
±11  
±5.5  
±12  
±10  
100  
1000  
40  
±11  
±5.5  
±12  
±10  
100  
1000  
40  
±11  
±5.5  
±12  
±10  
100  
1000  
40  
V
mA  
pF  
mA  
10  
10  
10  
POWER SUPPLY  
Rated Voltage  
±15  
±15  
±15  
VDC  
Voltage Range, Derated  
Performance  
Current, Quiescent  
±5  
±18  
3.5  
±5  
±18  
3.5  
±5  
±18  
3.5  
VDC  
mA  
IO = 0mADC  
2.5  
2.5  
2.5  
TEMPERATURE RANGE  
Specification  
Operating  
Storage  
Ambient Temp.  
Ambient Temp.  
Ambient Temp.  
–25  
–55  
–65  
+85  
+125  
+150  
–25  
–55  
–65  
+85  
+125  
+150  
–55  
–55  
–65  
+125  
+125  
+150  
°C  
°C  
°C  
θ Junction-Ambient  
200  
200  
200  
°C/W  
NOTES: (1) Sample tested—this parameter is guaranteed. (2) Offset voltage, offset current, and bias current are measured with the units fully warmed up. (3) Overload  
recovery is defined as the time required for the output to return from saturation to linear operation following the removal of a 50% input overdrive.  
The information provided herein is believed to be reliable; however, BURR-BROWN assumes no responsibility for inaccuracies or omissions. BURR-BROWN assumes  
no responsibility for the use of this information, and all use of such information shall be entirely at the user’s own risk. Prices and specifications are subject to change without  
notice. No patent rights or licenses to any of the circuits described herein are implied or granted to any third party. BURR-BROWN does not authorize or warrant any BURR-  
BROWN product for use in life support devices and/or systems.  
®
OPA111  
2
ELECTRICAL (FULL TEMPERATURE RANGE SPECIFICATIONS)  
At VCC = ±15VDC and TA = TMIN to TMAX unless otherwise noted.  
OPA111AM  
OPA111BM  
TYP  
OPA111SM  
TYP  
PARAMETER  
CONDITION  
MIN  
TYP  
MAX  
MIN  
MAX  
MIN  
MAX  
UNITS  
TEMPERATURE RANGE  
Specification Range  
INPUT  
Ambient Temp.  
–25  
+85  
–25  
+85  
–55  
+125  
°C  
OFFSET VOLTAGE(1)  
Input Offset Voltage  
Average Drift  
VCM = 0VDC  
±220  
±2  
100  
±10  
±1000  
±5  
±110  
±0.5  
100  
±500  
±1  
±300  
±2  
100  
±10  
±1500  
±5  
µV  
µV/°C  
dB  
Supply Rejection  
VCC = ±10V to ±18V  
86  
90  
86  
±50  
±250  
±200  
±10  
±32  
±50  
µV/V  
BIAS CURRENT(1)  
Input Bias Current  
VCM = 0VDC  
VCM = 0VDC  
±50  
±30  
±30  
±15  
±130  
±100  
±820  
±510  
±4100  
±3100  
pA  
pA  
OFFSET CURRENT(1)  
Input Offset Current  
VOLTAGE RANGE  
Common-Mode Input Range  
Common-Mode Rejection  
±10  
86  
±11  
100  
±10  
90  
±11  
100  
±10  
86  
±11  
100  
V
dB  
VIN = ±10VDC  
RL 2kΩ  
OPEN-LOOP GAIN, DC  
Open-Loop Voltage Gain  
RATED OUTPUT  
110  
120  
114  
120  
110  
120  
dB  
Voltage Output  
Current Output  
Short Circuit Current  
RL = 2kΩ  
VO = ±10VDC  
VO = 0VDC  
±10.5  
±5.25  
10  
±11  
±10  
40  
±11  
±5.25  
10  
±11.5  
±10  
40  
±11  
±5.25  
10  
±11.5  
±10  
40  
V
mA  
mA  
POWER SUPPLY  
Current, Quiescent  
IO = 0mADC  
2.5  
3.5  
2.5  
3.5  
2.5  
3.5  
mA  
NOTES: (1) Offset voltage, offset current, and bias current are measured with the units fully warmed up.  
CONNECTION DIAGRAM  
ABSOLUTE MAXIMUM RATINGS  
Top View  
Substrate and Case  
Supply ........................................................................................... ±18VDC  
Internal Power Dissipation(1) ......................................................... 750mW  
Differential Input Voltage(2) ..........................................................±36VDC  
Input Voltage Range(2) ................................................................ ±18VDC  
Storage Temperature Range ......................................... –65°C to +150°C  
Operating Temperature Range ..................................... –55°C to +125°C  
Lead Temperature (soldering, 10s) ............................................... +300°C  
Output Short Circuit Duration(3) .............................................. Continuous  
Junction Temperature .................................................................... +175°C  
8
Offset  
Trim  
+VCC  
1
3
7
5
–In  
2
OPA111  
6
Output  
Offset  
Trim  
+In  
NOTES: (1) Packages must be derated based on θJC = 150°C/W or θJA  
= 300°C/W. (2) For supply voltages less than ±18VDC, the absolute  
maximum input voltage is equal to +18V > VIN > –VCC – 6V. See Figure  
2. (3) Short circuit may be to power supply common only. Rating applies  
to +25°C ambient. Observe dissipation limit and TJ.  
4
–VCC  
PACKAGE INFORMATION  
PACKAGE DRAWING  
MODEL  
PACKAGE  
NUMBER(1)  
OPA111AM  
OPA111BM  
OPA111SM  
TO-99  
TO-99  
TO-99  
001  
001  
001  
NOTE: (1) For detailed drawing and dimension table, please see end of data  
sheet, or Appendix D of Burr-Brown IC Data Book.  
ORDERING INFORMATION  
OFFSET  
TEMPERATURE  
RANGE  
VOLTAGE,  
MODEL  
PACKAGE  
MAX (µV)  
OPA111AM  
OPA111BM  
OPA111SM  
TO-99  
TO-99  
TO-99  
–25°C to +85°C  
–25°C to +85°C  
–55°C to +125°C  
±500  
±250  
±500  
®
OPA111  
3
DICE INFORMATION  
PAD  
FUNCTION  
1
2
3
4
5
6
7
8
Offset Trim  
–In  
+In  
–VS  
Offset Trim  
Output  
+VS  
Substrate  
Substrate Bias: This Dielectrically-Isolated  
Substrate is normally connected to common.  
MECHANICAL INFORMATION  
MILS (0.001")  
MILLIMETERS  
Die Size  
Die Thickness  
Min. Pad Size  
95 x 71 ±5  
20 ±3  
4 x 4  
2.41 x 1.80 ±0.13  
0.51 ±0.08  
0.10 x 0.10  
OPA111AD DIE TOPOGRAPHY  
Backing:  
Transistor Count:  
None  
44  
TYPICAL PERFORMANCE CURVES  
TA = +25°C, VCC = ±15VDC unless otherwise noted.  
INPUT CURRENT NOISE SPECTRAL DENSITY  
100  
INPUT VOLTAGE NOISE SPECTRAL DENSITY  
1k  
100  
10  
10  
AM, SM  
BM  
1
BM  
0.1  
1
1
10  
100  
1k  
10k  
100k  
1M  
1
10  
100  
1k  
10k  
100k  
1M  
Frequency (Hz)  
Frequency (Hz)  
®
OPA111  
4
TYPICAL PERFORMANCE CURVES (CONT)  
TA = +25°C, VCC = ±15VDC unless otherwise noted.  
TOTAL* INPUT VOLTAGE NOISE SPECTRAL  
DENSITY vs SOURCE RESISTANCE  
TOTAL* INPUT VOLTAGE NOISE (PEAK-TO-PEAK)  
vs SOURCE RESISTANCE  
1k  
100  
10  
1k  
100  
10  
RS = 10MΩ  
*Includes contribution  
from source resistance.  
RS = 1MΩ  
RS = 100kΩ  
BM  
BM  
fB = 0.1Hz to 10Hz  
RS = 100Ω  
*Includes contribution  
from source resistance.  
1
1
0.1  
–75  
–15  
1
10  
100  
1k  
10k  
100k  
104  
105  
106  
107  
108  
109  
1010  
Frequency (Hz)  
Source Resistance ()  
VOLTAGE AND CURRENT NOISE SPECTRAL  
DENSITY vs TEMPERATURE  
BIAS AND OFFSET CURRENT  
vs TEMPERATURE  
1k  
100  
10  
1k  
12  
10  
8
100  
fO = 1kHz  
100  
10  
10  
BM  
1
1
1
6
0.1  
0.01  
0.1  
0.01  
0.1  
0.01  
4
–50 –25  
0
25  
50  
75  
100  
125  
–50  
–25  
0
25  
50  
75  
100  
125  
Ambient Temperature (°C)  
Temperature (°C)  
BIAS AND OFFSET CURRENT  
vs INPUT COMMON-MODE VOLTAGE  
POWER SUPPLY REJECTION  
vs FREQUENCY  
10  
1
10  
140  
120  
100  
80  
1
Bias Current  
60  
Offset Current  
0.1  
0.01  
0.1  
0.01  
40  
20  
0
–10  
–5  
0
5
10  
15  
1
10  
100  
1k  
10k  
100k  
1M  
10M  
Common-Mode Voltage (V)  
Frequency (Hz)  
®
OPA111  
5
TYPICAL PERFORMANCE CURVES (CONT)  
TA = +25°C, VCC = ±15VDC unless otherwise noted.  
COMMON-MODE REJECTION  
vs FREQUENCY  
COMMON-MODE REJECTION  
vs INPUT COMMON MODE VOLTAGE  
140  
120  
100  
80  
120  
110  
100  
90  
60  
40  
80  
20  
0
70  
–15  
–10  
–5  
0
5
10  
15  
1
10  
100  
1k  
10k  
100k  
1M  
10M  
Common-Mode Voltage (V)  
Frequency (Hz)  
GAIN-BANDWIDTH AND SLEW RATE  
vs TEMPERATURE  
OPEN-LOOP FREQUENCY RESPONSE  
140  
120  
100  
80  
4
3
2
1
0
4
3
2
1
0
–45  
–90  
Phase  
Margin  
60  
Gain  
65°C  
40  
–135  
–180  
20  
0
1
10  
100  
1k  
10k  
100k  
1M  
10M  
–75  
–50 –25  
0
25  
50  
75  
100  
125  
Frequency (Hz)  
Ambient Temperature (°C)  
GAIN-BANDWIDTH AND SLEW RATE  
vs SUPPLY VOLTAGE  
OPEN-LOOP GAIN vs TEMPERATURE  
3
2
1
0
3
2
1
0
140  
130  
120  
110  
100  
0
5
10  
15  
20  
–75  
–50 –25  
0
25  
50  
75  
100  
125  
Ambient Temperature (°C)  
Supply Voltage (±VCC  
)
®
OPA111  
6
TYPICAL PERFORMANCE CURVES (CONT)  
TA = +25°C, VCC = ±15VDC unless otherwise noted.  
COMMON-MODE REJECTION  
vs INPUT COMMON-MODE VOLTAGE  
MAXIMUM UNDISTORTED OUTPUT  
VOLTAGE vs FREQUENCY  
120  
110  
100  
90  
30  
20  
10  
0
80  
70  
1k  
10k  
Frequency (Hz)  
100k  
1M  
–15  
–10  
–5  
0
5
10  
15  
Common-Mode Voltage (V)  
SMALL SIGNAL TRANSIENT RESPONSE  
SETTLING TIME vs CLOSED-LOOP GAIN  
100  
80  
60  
40  
20  
0
60  
40  
20  
0
0.01%  
0.1%  
–20  
–40  
–60  
0
1
2
3
4
5
1
10  
100  
1k  
Time (µs)  
Closed-Loop Gain (V/V)  
SUPPLY CURRENT vs TEMPERATURE  
INPUT OFFSET VOLTAGE WARM-UP DRIFT  
4
3
2
1
0
20  
10  
0
–10  
–20  
–75  
–50 –25  
0
25  
50  
75  
100  
125  
0
1
2
3
4
5
6
Ambient Temperature (°C)  
Time From Power Turn-On (Minutes)  
®
OPA111  
7
TYPICAL PERFORMANCE CURVES (CONT)  
TA = +25°C, VCC = ±15VDC unless otherwise noted.  
INPUT OFFSET VOLTAGE CHANGE  
DUE TO THERMAL SHOCK  
150  
AM  
75  
BM  
0
–75  
25°C  
85°C  
TA = 25°C to TA = 85°C  
Air Environment  
–150  
–1  
0
1
2
3
4
5
Time From Thermal Shock (Minutes)  
APPLICATIONS INFORMATION  
OFFSET VOLTAGE ADJUSTMENT  
2
1
IIN  
V
Maximum Safe Current  
The OPA111 offset voltage is laser-trimmed and will require  
no further trim for most applications. As with most amplifi-  
ers, externally trimming the remaining offset can change  
drift performance by about 0.3µV/°C for each 100µV of  
adjusted offset. Note that the trim (Figure 1) is similar to  
operational amplifiers such as 741 and AD547. The OPA111  
can replace most other amplifiers by leaving the external  
null circuit unconnected.  
0
–1  
Maximum Safe Current  
–2  
–15  
–10  
–5  
0
5
10  
15  
INPUT PROTECTION  
Input Voltage (V)  
Conventional monolithic FET operational amplifiers require  
external current-limiting resistors to protect their inputs  
against destructive currents that can flow when input FET  
gate-to-substrate isolation diodes are forward-biased. Most  
FIGURE 2. Input Current vs Input Voltage with ±VCC Pins  
Grounded.  
Static damage can cause subtle changes in amplifier input  
characteristics without necessarily destroying the device. In  
precision operational amplifiers (both bipolar and FET types),  
this may cause a noticeable degradation of offset voltage and  
drift. Static protection is recommended when handling any  
precision IC operational amplifier.  
BIFET amplifiers can be destroyed by the loss of –VCC  
.
+VCC  
7
2
3
6
OPA111  
1
5
GUARDING AND SHIELDING  
10kto 1M trim potentiometer  
4
As in any situation where high impedances are involved,  
careful shielding is required to reduce “hum” pickup in input  
leads. If large feedback resistors are used, they should also  
be shielded along with the external input circuitry.  
(100krecommended).  
±10mV typical trim range.  
–VCC  
FIGURE 1. Offset Voltage Trim.  
Leakage currents across printed circuit boards can easily  
exceed the bias current of the OPA111. To avoid leakage  
problems, it is recommended that the signal input lead of the  
OPA111 be wired to a Teflon standoff. If the OPA111 is to  
be soldered directly into a printed circuit board, utmost care  
must be used in planning the board layout. A “guard” pattern  
Unlike BIFET amplifiers, The Difet OPA111 requires input  
current limiting resistors only if its input voltage is greater  
than 6V more negative than –VCC. A 10kseries resistor  
will limit input current to a safe level with up to ±15V input  
levels, even if both supply voltages are lost.  
®
OPA111  
8
should completely surround the high impedance input leads  
and should be connected to a low impedance point which is  
at the signal input potential.  
1k  
100  
10  
OP-27 + Resistor  
OPA111 + Resistor  
Resistor Noise Only  
EO  
The amplifier case should be connected to any input shield  
or guard via pin 8. This insures that the amplifier itself is  
fully surrounded by guard potential, minimizing both leak-  
age and noise pickup (see Figure 3).  
RS  
If guarding is not required, pin 8 (case) should be connected  
to ground.  
EO  
=
eN2 + (INRS)2 + 4kTRS  
OPA111 + Resistor  
Resistor Noise Only  
OP-27 + Resistor  
BM  
1M  
1
100  
Non-Inverting  
Buffer  
1k  
10k  
100k  
10M  
Source Resistance, RS ()  
2
2
3
8
8
Out  
Out  
FIGURE 4. Voltage Noise Spectral Density vs Source  
Resistance.  
6
6
OPA111  
OPA111  
3
In  
In  
In  
80  
Inverting  
TO-99 Bottom View  
TA = 25°C; curves taken from  
manufacturers' published  
typical data.  
4
5
LF156/157  
60  
3
6
2
Out  
6
OPA111  
40  
7
8
3
8
2
20  
0
1
LF155  
AD547  
Board layout for input guarding: guard top and bottom of board.  
Alternate: use Teflon® standoff for sensitive input pins.  
OPA111  
OP-15/16/17  
"Perfect Bias Current Cancellation"  
–5 10  
Common-Mode Voltage (VDC)  
Teflon® E. I. Du Pont de Nemours & Co.  
–20  
–15  
–10  
0
5
15  
FIGURE 3. Connection of Input Guard.  
FIGURE 5. Input Bias Currrent vs Common-Mode Voltage.  
NOISE: FET VERSUS BIPOLAR  
Low noise circuit design requires careful analysis of all  
noise sources. External noise sources can dominate in many  
cases, so consider the effect of source resistance on overall  
operational amplifier noise performance. At low source  
impedances, the lower voltage noise of a bipolar operational  
amplifier is superior, but at higher impedances the high  
current noise of a bipolar amplifier becomes a serious  
liability. Above about 15k, the OPA111 will have a lower  
total noise than an OP-27 (see Figure 4).  
1000pF Polystyrene  
1000MΩ  
2
8
Output  
6
OPA111  
3
NOTE: Pyroelectric  
Pyroelectric  
detectors respond  
to rate-of-change  
(AC signal) only.  
1000MΩ  
Detector  
BIAS CURRENT CHANGE  
VERSUS COMMON-MODE VOLTAGE  
The input bias current of most popular BIFET operational  
amplifiers are affected by common-mode voltage (Figure 5).  
Higher input FET gate-to-drain voltage causes leakage and  
ionization (bias) currents to increase. Due to its cascode  
input stage, the extremely low bias current of the OPA111 is  
not compromised by common-mode voltage.  
FIGURE 6. Pyroelectric Infrared Detector.  
APPLICATIONS CIRCUITS  
Figures 6 through 18 are circuit diagrams of various appli-  
cations for the OPA111.  
®
OPA111  
9
<1pF to prevent gain peaking.  
10kΩ  
100Ω  
–46dBm to  
–20dBm  
RF Input  
1000MΩ  
2
3
eO  
6
1000pF  
OPA111  
+15V  
DC  
Output  
0.1µF  
Guard  
2
H-P  
HSCH-3486  
8
RFC  
1MΩ  
7
Output  
e
O 1200mVDC/µW  
6
OPA111  
H-P 5082-4204  
Pin Photodiode  
5 x 108V/W  
Video bandwidth: DC to 50kHz  
0.1µF  
3
4
0.01µF  
1000MΩ  
FIGURE 7. Zero-Bias Schottky Diode Square-Law RF  
Detector.  
–15V  
Circuit must be well shielded.  
FIGURE 10. Sensitive Photodiode Amplifier.  
RF  
500pA  
100MΩ  
IIN  
2
6
Offset voltage =  
255µVDC maximum  
with no offset adjust.  
OPA111  
3
eO = 50mV  
2
3
6
eO = –IIN RF  
Pin Photodiode  
OPA111BM  
5.34M* 5.34M*  
Output  
Input  
1000pF  
2.67M*  
500pF  
Light Rays  
Q
Scintillation Crystal  
2kΩ  
X-Rays (Pencil Beam)  
*For 50Hz use:  
3.16Mand 6.37MΩ  
500pF  
FIGURE 11. 60Hz Reject Filter.  
CF  
RF  
100pF  
1010Ω  
Collimator  
8
2
X-Ray Tube  
Output  
6
OPA111  
eO  
FIGURE 8. Computerized Axial Tomography (CAT) Scan-  
ner Channel Amplifier.  
Q  
3
eO = –Q/CF  
100pF  
1010Ω  
Low frequency cutoff =  
1/(2 π RFCF) = 0.16Hz  
500Ω  
9.5kΩ  
Guard  
+15V  
7
FIGURE 12. Piezoelectric Transducer Charge Amplifier.  
1VDC  
Output  
8
2
3
6
OPA111  
4
5
Offset Trim  
1
375.1kΩ  
1µF  
100kΩ  
8
In  
2
3
pH Probe  
Out  
R 500MΩ  
6
–15V  
375.1kΩ  
187.5kΩ  
OPA111  
50mV Output  
1µF  
FC = 0.6Hz  
–80dB at 60Hz  
FIGURE 13. 0.6Hz Second-Order Low-Pass Filter.  
FIGURE 9. High Impedance (1014) Amplifier.  
®
OPA111  
10  
0.03µF  
10.5kΩ  
<1pF to prevent peaking  
0.01µF  
Overload 0.1µW input  
200MΩ  
+5VDC  
73.2kΩ  
2
6
3
365Ω  
10kΩ  
2
3
OPA111  
Pin Diode*  
1µF  
3
7
365Ω  
Output  
6
LM211  
20kΩ  
0.1µF  
OPA111  
2
Input  
TTL  
Output  
1
0.01µF  
100kΩ  
*Silicon Detector Corp.  
SD-041-11-21-011  
RT  
CT  
Digital Common  
G = 26dB  
Midband  
FIGURE 15. High Sensitivity (under 1nW) Fiber Optic  
Receiver for 9600 Baud Manchester Data.  
FIGURE 14. RIAA Equalized Phono Preamplifier.  
100Ω  
100Ω  
100Ω  
100Ω  
100Ω  
10kΩ  
2
3
10kΩ  
6
6
6
6
6
Input  
OPA111  
10kΩ  
2
3
10kΩ  
10kΩ  
10kΩ  
10kΩ  
AV = –1010  
OPA111  
eN = 1.9nV/Hz typ* at 10kHz  
BW = 30kHz typ  
10kΩ  
GBW = 30.3MHz typ  
VOS = ±16µV typ*  
2
3
VOS/T = ±0.16µV/°C typ*  
IB = 10pA max  
ZIN 1012|| 30pF  
OPA111  
10kΩ  
* Theoretical performance achievable  
from OPA111BM with uncorrelated  
random distribution of parameters.  
2
3
OPA111  
10kΩ  
2
3
10kΩ  
OPA111  
2
3
Output  
6
OPA37  
N = 10 OPA111BM  
FIGURE 16. ‘N’ Stage Parallel-Input Amplifier for Reduced Relative Amplifier Noise at the Output.  
®
OPA111  
11  
IB = 1pA  
3
2
Gain = 100  
CMRR 106dB  
RIN = 1013Ω  
–In  
6
OPA111  
RF  
25kΩ  
25kΩ  
2
5
6
5kΩ  
RF  
RG  
101Ω  
Output  
25kΩ  
3
5kΩ  
Burr-Brown  
INA105  
25kΩ  
2
3
Differential Amplifier  
6
OPA111  
1
+In  
Differential Voltage Gain = 1 + 2RF/RG  
FIGURE 17. FET Input Instrumentation Amplifier.  
10pF  
10kΩ  
1MΩ  
2
8
IN914*  
6
Output  
6
2
3
OPA111  
2N4117*  
3
3507J  
Input  
Droop 100µV/s  
IN914*  
8
0.01µF  
30pF  
Polystyrene  
*Reverse polarity for  
negative peak detection.  
FIGURE 18. Low-Droop Positive Peak Detector.  
®
OPA111  
12  

相关型号:

OPA111AM-BS

Operational Amplifier, 1 Func, 1000uV Offset-Max, MBCY8,
BB

OPA111AM-BSS3

Operational Amplifier, 1 Func, 1000uV Offset-Max, MBCY8,
BB

OPA111AMH

Operational Amplifier, 1 Func, 1500uV Offset-Max, MBCY8,
SIPEX

OPA111AMH/883

Operational Amplifier, 1 Func, 1500uV Offset-Max, MBCY8,
SIPEX

OPA111BL-BSS4

Operational Amplifier, 1 Func, 500uV Offset-Max, CQCC20,
BB

OPA111BM

Low Noise Precision Difet OPERATIONAL AMPLIFIER
BB

OPA111BM-BI

Operational Amplifier, 1 Func, 500uV Offset-Max, MBCY8,
BB

OPA111SL-BS

Operational Amplifier, 1 Func, 1500uV Offset-Max, CQCC20,
BB

OPA111SL-BSS3

Operational Amplifier, 1 Func, 1500uV Offset-Max, CQCC20,
BB

OPA111SL-BSS4

Operational Amplifier, 1 Func, 1500uV Offset-Max, CQCC20,
BB

OPA111SM

Low Noise Precision Difet OPERATIONAL AMPLIFIER
BB

OPA111SM-BS

Operational Amplifier, 1 Func, 1500uV Offset-Max, MBCY8,
BB