OPA227UA [BB]

High Precision, Low Noise OPERATIONAL AMPLIFIERS; 高精度,低噪声运算放大器
OPA227UA
型号: OPA227UA
厂家: BURR-BROWN CORPORATION    BURR-BROWN CORPORATION
描述:

High Precision, Low Noise OPERATIONAL AMPLIFIERS
高精度,低噪声运算放大器

运算放大器
文件: 总17页 (文件大小:368K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
®
OPA4227  
OPA227  
OPA2227  
OPA4227  
OPA227  
OPA2227  
O
P
A4227  
O
P
A
2
O
P
A
2
2
7
2
2
7
OPA228  
OPA2228  
OPA4228  
For most current data sheet and other product  
information, visit www.burr-brown.com  
High Precision, Low Noise  
OPERATIONAL AMPLIFIERS  
FEATURES  
DESCRIPTION  
LOW NOISE: 3nV/Hz  
The OPA227 and OPA228 series op amps combine  
low noise and wide bandwidth with high precision to  
make them the ideal choice for applications requiring  
both ac and precision dc performance.  
WIDE BANDWIDTH:  
OPA227: 8MHz, 2.3V/µs  
OPA228: 33MHz, 10V/µs  
SETTLING TIME: 5µs  
The OPA227 is unity gain stable and features high  
slew rate (2.3V/µs) and wide bandwidth (8MHz). The  
OPA228 is optimized for closed-loop gains of 5 or  
greater, and offers higher speed with a slew rate of  
10V/µs and a bandwidth of 33MHz.  
(significant improvement over OP-27)  
HIGH CMRR: 138dB  
HIGH OPEN-LOOP GAIN: 160dB  
LOW INPUT BIAS CURRENT: 10nA max  
LOW OFFSET VOLTAGE: 75µV max  
WIDE SUPPLY RANGE: ±2.5V to ±18V  
OPA227 REPLACES OP-27, LT1007, MAX427  
OPA228 REPLACES OP-37, LT1037, MAX437  
SINGLE, DUAL, AND QUAD VERSIONS  
The OPA227 and OPA228 series op amps are ideal  
for professional audio equipment. In addition, low  
quiescent current and low cost make them ideal for  
portable applications requiring high precision.  
The OPA227 and OPA228 series op amps are pin-  
for-pin replacements for the industry standard OP-27  
and OP-37 with substantial improvements across the  
board. The dual and quad versions are available for  
space savings and per-channel cost reduction.  
APPLICATIONS  
DATA ACQUISITION  
TELECOM EQUIPMENT  
GEOPHYSICAL ANALYSIS  
VIBRATION ANALYSIS  
SPECTRAL ANALYSIS  
PROFESSIONAL AUDIO EQUIPMENT  
ACTIVE FILTERS  
The OPA227, OPA228, OPA2227, and OPA2228  
are available in DIP-8 and SO-8 packages. The  
OPA4227 and OPA4228 are available in DIP-14  
and SO-14 packages with standard pin configura-  
tions. Operation is specified from –40°C to +85°C.  
OPA4227, OPA4228  
POWER SUPPLY CONTROL  
Out A  
–In A  
+In A  
V+  
1
2
3
4
5
6
7
14 Out D  
13 –In D  
12 +In D  
11 V–  
SPICE Model available for OPA227 at www.burr-brown.com  
OPA227, OPA228  
A
D
C
Trim  
–In  
+In  
V–  
1
2
3
4
8
7
6
5
Trim  
V+  
OPA2227, OPA2228  
+In B  
–In B  
Out B  
10 +In C  
Out A  
–In A  
+In A  
V–  
1
2
3
4
8
7
6
5
V+  
B
Output  
NC  
9
8
–In C  
Out C  
A
Out B  
–In B  
+In B  
B
DIP-8, SO-8  
DIP-14, SO-14  
DIP-8, SO-8  
International Airport Industrial Park  
Mailing Address: PO Box 11400, Tucson, AZ 85734  
Street Address: 6730 S. Tucson Blvd., Tucson, AZ 85706  
• Tel: (520) 746-1111  
Twx: 910-952-1111 Internet: http://www.burr-brown.com/  
Cable: BBRCORP Telex: 066-6491  
FAX: (520) 889-1510 Immediate Product Info: (800) 548-6132  
© 1998 Burr-Brown Corporation  
PDS-1494B  
Printed in U.S.A. May, 1999  
SPECIFICATIONS: VS = ±5V to ±15V  
OPA227 Series  
At TA = +25°C, and RL = 10k, unless otherwise noted.  
Boldface limits apply over the specified temperature range, TA = –40°C to +85°C.  
OPA227PA, UA  
OPA2227PA, UA  
OPA4227PA, UA  
OPA227P, U  
OPA2227P, U  
PARAMETER  
CONDITION  
MIN  
TYP  
MAX  
MIN  
TYP  
MAX  
UNITS  
OFFSET VOLTAGE  
Input Offset Voltage  
OTA = –40°C to +85°Cver Temperature  
vs Temperature  
vs Power Supply  
VOS  
±5  
±75  
±100  
±0.6  
±2  
±10  
±200  
±200  
±2  
µV  
µV  
dVOS/dT  
PSRR  
±0.1  
±0.5  
±0.3  
µV/°C  
µV/V  
µV/V  
µV/mo  
µV/V  
dB  
VS = ±2.5V to ±18V  
T
A = –40°C to +85°C  
±2  
vs Time  
0.2  
0.2  
110  
Channel Separation (dual, quad)  
dc  
f = 1kHz, RL = 5kΩ  
INPUT BIAS CURRENT  
Input Bias Current  
IB  
±2.5  
±2.5  
±10  
±10  
±10  
±10  
nA  
nA  
nA  
nA  
T
A = –40°C to +85°C  
Input Offset Current  
A = –40°C to +85°C  
IOS  
T
NOISE  
Input Voltage Noise, f = 0.1Hz to 10Hz  
90  
15  
3.5  
3
3
0.4  
nVp-p  
nVrms  
nV/Hz  
nV/Hz  
nV/Hz  
pA/Hz  
Input Voltage Noise Density, f = 10Hz en  
f = 100Hz  
f = 1kHz  
Current Noise Density, f = 1kHz  
in  
INPUT VOLTAGE RANGE  
Common-Mode Voltage Range  
Common-Mode Rejection  
VCM  
CMRR  
(V–)+2  
120  
120  
(V+)–2  
V
dB  
dB  
VCM = (V–)+2V to (V+)–2V  
VCM = (V–)+2V to (V+)–2V  
138  
T
A = –40°C to +85°C  
INPUT IMPEDANCE  
Differential  
Common-Mode  
107 || 12  
109 || 3  
|| pF  
|| pF  
OPEN-LOOP GAIN  
Open-Loop Voltage Gain  
AOL  
VO = (V–)+2V to (V+)–2V, RL = 10k  
VO = (V–)+3.5V to (V+)–3.5V, RL = 600  
132  
132  
132  
132  
160  
160  
dB  
dB  
dB  
dB  
T
A = –40°C to +85°C  
T
A = –40°C to +85°C  
FREQUENCY RESPONSE  
Gain Bandwidth Product  
Slew Rate  
Settling Time: 0.1%  
0.01%  
GBW  
SR  
8
2.3  
5
5.6  
1.3  
MHz  
V/µs  
µs  
µs  
µs  
G = 1, 10V Step, CL = 100pF  
G = 1, 10V Step, CL = 100pF  
VIN • G = VS  
Overload Recovery Time  
Total Harmonic Distortion + Noise THD+N  
f = 1kHz, G = 1, VO = 3.5Vrms  
0.00005  
%
OUTPUT  
Voltage Output  
RL = 10kΩ  
RL = 10kΩ  
RL = 600Ω  
RL = 600Ω  
(V–)+2  
(V–)+2  
(V–)+3.5  
(V–)+3.5  
(V+)–2  
(V+)–2  
(V+)–3.5  
(V+)–3.5  
V
V
V
V
mA  
T
A = –40°C to +85°C  
T
A = –40°C to +85°C  
Short-Circuit Current  
Capacitive Load Drive  
ISC  
CLOAD  
±45  
See Typical Curve  
POWER SUPPLY  
Specified Voltage Range  
Operating Voltage Range  
Quiescent Current (per amplifier)  
TA = –40°C to +85°C  
VS  
IQ  
±5  
±2.5  
±15  
±18  
±3.8  
±4.2  
V
V
mA  
mA  
IO = 0  
IO = 0  
±3.7  
TEMPERATURE RANGE  
Specified Range  
Operating Range  
Storage Range  
Thermal Resistance  
SO-8 Surface Mount  
DIP-8  
–40  
–55  
–65  
+85  
+125  
+150  
°C  
°C  
°C  
θJA  
150  
100  
80  
°C/W  
°C/W  
°C/W  
°C/W  
DIP-14  
SO-14 Surface Mount  
100  
Specifications same as OPA227P, U.  
®
OPA227, 2227, 4227  
OPA228, 2228, 4228  
2
SPECIFICATIONS: VS = ±5V to ±15V  
OPA228 Series  
At TA = +25°C, and RL = 10k, unless otherwise noted.  
Boldface limits apply over the specified temperature range, TA = –40°C to +85°C.  
OPA228PA, UA  
OPA2228PA, UA  
OPA4228PA, UA  
OPA228P, U  
OPA2228P, U  
PARAMETER  
CONDITION  
MIN  
TYP  
MAX  
MIN  
TYP  
MAX  
UNITS  
OFFSET VOLTAGE  
Input Offset Voltage  
OTA = –40°C to +85°Cver Temperature  
vs Temperature  
vs Power Supply  
VOS  
±5  
±75  
±100  
±0.6  
±2  
±10  
±200  
±200  
±2  
µV  
µV  
dVOS/dT  
PSRR  
±0.1  
±0.5  
±0.3  
µV/°C  
µV/V  
µV/V  
µV/mo  
µV/V  
dB  
VS = ±2.5V to ±18V  
T
A = –40°C to +85°C  
±2  
vs Time  
0.2  
0.2  
110  
Channel Separation (dual, quad)  
dc  
f = 1kHz, RL = 5kΩ  
INPUT BIAS CURRENT  
Input Bias Current  
IB  
±2.5  
±2.5  
±10  
±10  
±10  
±10  
nA  
nA  
nA  
nA  
T
A = –40°C to +85°C  
Input Offset Current  
A = –40°C to +85°C  
IOS  
T
NOISE  
Input Voltage Noise, f = 0.1Hz to 10Hz  
90  
15  
3.5  
3
3
0.4  
nVp-p  
nVrms  
nV/Hz  
nV/Hz  
nV/Hz  
pA/Hz  
Input Voltage Noise Density, f = 10Hz en  
f = 100Hz  
f = 1kHz  
Current Noise Density, f = 1kHz  
in  
INPUT VOLTAGE RANGE  
Common-Mode Voltage Range  
Common-Mode Rejection  
VCM  
CMRR  
(V–)+2  
120  
120  
(V+)–2  
V
dB  
dB  
VCM = (V–)+2V to (V+)–2V  
VCM = (V–)+2V to (V+)–2V  
138  
T
A = –40°C to +85°C  
INPUT IMPEDANCE  
Differential  
Common-Mode  
107 || 12  
109 || 3  
|| pF  
|| pF  
OPEN-LOOP GAIN  
Open-Loop Voltage Gain  
AOL  
VO = (V–)+2V to (V+)–2V, RL = 10kΩ  
VO = (V–)+3.5V to (V+)–3.5V, RL = 600Ω  
132  
132  
132  
132  
160  
160  
dB  
dB  
dB  
dB  
T
A = –40°C to +85°C  
T
A = –40°C to +85°C  
FREQUENCY RESPONSE  
Minimum Closed-Loop Gain  
Gain Bandwidth Product  
Slew Rate  
Settling Time: 0.1%  
0.01%  
5
33  
11  
1.5  
2
V/V  
MHz  
V/µs  
µs  
µs  
µs  
GBW  
SR  
G = 5, 10V Step, CL = 100pF, CF =12pF  
G = 5, 10V Step, CL = 100pF, CF =12pF  
VIN • G = VS  
Overload Recovery Time  
Total Harmonic Distortion + Noise THD+N  
0.6  
0.00005  
f = 1kHz, G = 5, VO = 3.5Vrms  
%
OUTPUT  
Voltage Output  
RL = 10kΩ  
RL = 10kΩ  
RL = 600Ω  
RL = 600Ω  
(V–)+2  
(V–)+2  
(V–)+3.5  
(V–)+3.5  
(V+)–2  
(V+)–2  
(V+)–3.5  
(V+)–3.5  
V
V
V
V
mA  
T
A = –40°C to +85°C  
TA = –40°C to +85°C  
Short-Circuit Current  
Capacitive Load Drive  
ISC  
CLOAD  
±45  
See Typical Curve  
POWER SUPPLY  
Specified Voltage Range  
Operating Voltage Range  
Quiescent Current (per amplifier)  
VS  
IQ  
±5  
±2.5  
±15  
±18  
±3.8  
±4.2  
V
V
mA  
mA  
IO = 0  
IO = 0  
±3.7  
T
A = –40°C to +85°C  
TEMPERATURE RANGE  
Specified Range  
Operating Range  
Storage Range  
Thermal Resistance  
SO-8 Surface Mount  
DIP-8  
–40  
–55  
–65  
+85  
+125  
+150  
°C  
°C  
°C  
θJA  
150  
100  
80  
°C/W  
°C/W  
°C/W  
°C/W  
DIP-14  
SO-14 Surface Mount  
100  
Specifications same as OPA228P, U.  
®
OPA227, 2227, 4227  
OPA228, 2228, 4228  
3
ABSOLUTE MAXIMUM RATINGS(1)  
Supply Voltage .................................................................................. ±18V  
Signal Input Terminals, Voltage ........................(V–) –0.7V to (V+) +0.7V  
Current ....................................................... 20mA  
ELECTROSTATIC  
DISCHARGE SENSITIVITY  
Output Short-Circuit(2) .............................................................. Continuous  
Operating Temperature ..................................................55°C to +125°C  
Storage Temperature .....................................................65°C to +150°C  
Junction Temperature ...................................................................... 150°C  
Lead Temperature (soldering, 10s) ................................................. 300°C  
This integrated circuit can be damaged by ESD. Burr-Brown  
recommends that all integrated circuits be handled with  
appropriate precautions. Failure to observe proper handling  
and installation procedures can cause damage.  
NOTE: (1) Stresses above these ratings may cause permanent damage.  
Exposure to absolute maximum conditions for extended periods may degrade  
device reliability. (2) Short-circuit to ground, one amplifier per package.  
ESD damage can range from subtle performance degrada-  
tion to complete device failure. Precision integrated circuits  
may be more susceptible to damage because very small  
parametric changes could cause the device not to meet its  
published specifications.  
PACKAGE/ORDERING INFORMATION  
OFFSET  
VOLTAGE  
max, µV  
OFFSET  
VOLTAGE DRIFT  
max, µV/°C  
PACKAGE  
DRAWING  
NUMBER(1)  
TEMPERATURE  
RANGE  
ORDERING  
NUMBER(2)  
TRANSPORT  
MEDIA  
PRODUCT  
PACKAGE  
OPA227 Series  
Single  
OPA227PA  
OPA227P  
OPA227UA  
"
±200  
±75  
±200  
"
±75  
"
±2  
±0.6  
±2  
"
±0.6  
"
DIP-8  
DIP-8  
SO-8 Surface Mount  
006  
006  
182  
"
182  
"
–40°C to +85°C  
–40°C to +85°C  
–40°C to +85°C  
OPA227PA  
OPA227P  
OPA227UA  
OPA227UA/2K5  
OPA227U  
Rails  
Rails  
Rails  
"
"
Tape and Reel  
Rails  
Tape and Reel  
OPA227U  
"
SO-8 Surface Mount  
"
–40°C to +85°C  
"
OPA227U/2K5  
Dual  
OPA2227PA  
OPA2227P  
OPA2227UA  
"
OPA2227U  
"
±200  
±75  
±200  
"
±75  
"
±2  
±0.6  
±2  
"
±0.6  
"
DIP-8  
DIP-8  
SO-8 Surface Mount  
006  
006  
182  
"
182  
"
–40°C to +85°C  
–40°C to +85°C  
–40°C to +85°C  
OPA2227PA  
OPA2227P  
OPA2227UA  
OPA2227UA/2K5  
OPA2227U  
Rails  
Rails  
Rails  
"
"
Tape and Reel  
Rails  
Tape and Reel  
SO-8 Surface Mount  
"
–40°C to +85°C  
"
OPA2227U/2K5  
Quad  
OPA4227PA  
OPA4227UA  
"
±200  
±200  
"
±2  
±2  
"
DIP-14  
SO-14 Surface Mount  
"
010  
235  
"
–40°C to +85°C  
–40°C to +85°C  
OPA4227PA  
OPA4227UA  
OPA4227UA/2K5  
Rails  
Rails  
Tape and Reel  
"
OPA228 Series  
Single  
OPA228PA  
OPA228P  
OPA228UA  
"
±200  
±75  
±200  
"
±75  
"
±2  
±0.6  
±2  
"
±0.6  
"
DIP-8  
DIP-8  
SO-8 Surface Mount  
006  
006  
182  
"
182  
"
–40°C to +85°C  
–40°C to +85°C  
–40°C to +85°C  
OPA228PA  
OPA228P  
OPA228UA  
OPA228UA/2K5  
OPA228U  
Rails  
Rails  
Rails  
"
"
Tape and Reel  
Rails  
Tape and Reel  
OPA228U  
"
SO-8 Surface Mount  
"
–40°C to +85°C  
"
OPA228U/2K5  
Dual  
OPA2228PA  
OPA2228P  
OPA2228UA  
"
OPA2228U  
"
±200  
±75  
±200  
"
±75  
"
±2  
±0.6  
±2  
"
±0.6  
"
DIP-8  
DIP-8  
SO-8 Surface Mount  
006  
006  
182  
"
182  
"
–40°C to +85°C  
–40°C to +85°C  
–40°C to +85°C  
OPA2228PA  
OPA2228P  
OPA2228UA  
OPA2228UA/2K5  
OPA2228U  
Rails  
Rails  
Rails  
"
"
Tape and Reel  
Rails  
Tape and Reel  
SO-8 Surface Mount  
"
–40°C to +85°C  
"
OPA2228U/2K5  
Quad  
OPA4228PA  
OPA4228UA  
"
±200  
±200  
"
±2  
±2  
"
DIP-14  
SO-14 Surface Mount  
"
010  
235  
"
–40°C to +85°C  
–40°C to +85°C  
OPA4228PA  
OPA4228UA  
OPA4228UA/2K5  
Rails  
Rails  
Tape and Reel  
"
NOTE: (1) For detailed drawing and dimension table, please see end of data sheet, or Appendix C of Burr-Brown IC Data Book. (2) Products followed by a slash  
(/) are only available in Tape and Reel in the quantities indicated (e.g. /2K5 indicates 2500 devices per reel). Ordering 2500 pieces of “OPA227UA/2K5” will get  
a single 2500 piece Tape and Reel. For detailed Tape and Reel mechanical information, refer to Appendix B of Burr-Brown IC Data Book.  
The information provided herein is believed to be reliable; however, BURR-BROWN assumes no responsibility for inaccuracies or omissions. BURR-BROWN assumes  
no responsibility for the use of this information, and all use of such information shall be entirely at the user’s own risk. Prices and specifications are subject to change  
without notice. No patent rights or licenses to any of the circuits described herein are implied or granted to any third party. BURR-BROWN does not authorize or warrant  
any BURR-BROWN product for use in life support devices and/or systems.  
®
OPA227, 2227, 4227  
4
OPA228, 2228, 4228  
TYPICAL PERFORMANCE CURVES  
At TA = +25°C, RL = 10k, and VS = ±15V, unless otherwise noted.  
OPEN-LOOP GAIN/PHASE vs FREQUENCY  
OPA228  
OPEN-LOOP GAIN/PHASE vs FREQUENCY  
180  
160  
140  
120  
100  
80  
180  
160  
140  
120  
100  
0
0
–20  
–40  
–60  
–80  
OPA227  
–20  
–40  
G
G
–60  
–80  
φ
80  
φ
–100  
–120  
–140  
–160  
–180  
–200  
–100  
60  
60  
–120  
40  
40  
–140  
20  
20  
–160  
0
0
–180  
–20  
–20  
–200  
0.01 0.10  
1
10 100 1k 10k 100k 1M 10M 100M  
0.01 0.10  
1
10 100 1k 10k 100k 1M 10M 100M  
Frequency (Hz)  
Frequency (Hz)  
POWER SUPPLY AND COMMON-MODE  
REJECTION RATIO vs FREQUENCY  
INPUT VOLTAGE AND CURRENT NOISE  
SPECTRAL DENSITY vs FREQUENCY  
140  
120  
100  
80  
100k  
10k  
1k  
+CMRR  
Current Noise  
+PSRR  
–PSRR  
60  
100  
10  
40  
Voltage Noise  
-20  
–0  
1
0.1  
1
10  
100  
1k  
10k  
100k  
1M  
0.1  
1
10  
100  
1k  
10k  
Frequency (Hz)  
Frequency (Hz)  
TOTAL HARMONIC DISTORTION + NOISE  
vs FREQUENCY  
TOTAL HARMONIC DISTORTION + NOISE  
vs FREQUENCY  
0.01  
0.001  
0.01  
0.001  
VOUT = 3.5Vrms  
OPA227  
VOUT = 3.5Vrms  
OPA228  
0.0001  
0.00001  
0.0001  
0.00001  
G = 1, RL = 10k  
G = 1, RL = 10kΩ  
20  
100  
1k  
10k 20k  
20  
100  
1k  
10k 50k  
Frequency (Hz)  
Frequency (Hz)  
®
OPA227, 2227, 4227  
OPA228, 2228, 4228  
5
TYPICAL PERFORMANCE CURVES (CONT)  
At TA = +25°C, RL =10k, and VS = ±15V, unless otherwise noted.  
INPUT NOISE VOLTAGE vs TIME  
CHANNEL SEPARATION vs FREQUENCY  
140  
120  
100  
80  
Dual and quad devices. G = 1, all channels.  
Quad measured Channel A to D, or B to C;  
other combinations yield similiar or improved  
rejection.  
60  
40  
10  
100  
1k  
10k  
100k  
1M  
1s/div  
Frequency (Hz)  
VOLTAGE NOISE DISTRIBUTION (10Hz)  
OFFSET VOLTAGE PRODUCTION DISTRIBUTION  
24  
16  
8
17.5  
15.0  
12.5  
10.0  
5.5  
Typical distribution  
of packaged units.  
5.0  
2.5  
0
0
0
3.16 3.25 3.34 3.43 3.51 3.60 3.69 3.78  
Noise (nV/Hz)  
Offset Voltage (µV)  
OFFSET VOLTAGE DRIFT PRODUCTION DISTRIBUTION  
WARM-UP OFFSET VOLTAGE DRIFT  
12  
8
10  
8
Typical distribution  
of packaged units.  
6
4
2
0
–2  
–4  
–6  
–8  
–10  
4
0
0
50  
100  
150  
200  
250  
300  
0
0.5  
1.0  
1.5  
Time from Power Supply Turn-On (s)  
Offset Voltage Drift (µV)/°C  
®
OPA227, 2227, 4227  
OPA228, 2228, 4228  
6
TYPICAL PERFORMANCE CURVES (CONT)  
At TA = +25°C, RL = 10k, and VS = ±15V, unless otherwise noted.  
AOL, CMRR, PSRR vs TEMPERATURE  
AOL  
AOL, CMRR, PSRR vs TEMPERATURE  
160  
150  
140  
130  
120  
110  
100  
90  
160  
150  
140  
130  
120  
110  
100  
90  
AOL  
CMRR  
CMRR  
PSRR  
PSRR  
80  
80  
OPA227  
OPA228  
70  
70  
60  
60  
–75  
–75  
0
–50  
–25  
0
25  
50  
75  
100  
125  
125  
20  
–75  
–50  
–25  
0
25  
50  
75  
100  
125  
Temperature (°C)  
Temperature (°C)  
SHORT-CIRCUIT CURRENT vs TEMPERATURE  
INPUT BIAS CURRENT vs TEMPERATURE  
60  
50  
40  
30  
20  
10  
0
2.0  
1.5  
1.0  
–ISC  
0.5  
+ISC  
0
–0.5  
–1.0  
–1.5  
–2.0  
–50  
–25  
0
25  
50  
75  
100  
–60 –40 –20  
0
20  
40  
60  
80 100 120 140  
Temperature (°C)  
Temperature (°C)  
QUIESCENT CURRENT vs SUPPLY VOLTAGE  
QUIESCENT CURRENT vs TEMPERATURE  
3.8  
3.6  
3.4  
3.2  
3.0  
2.8  
5.0  
4.5  
4.0  
3.5  
3.0  
2.5  
±18V  
±15V  
±12V  
±10V  
±5V  
±2.5V  
2
4
6
8
10  
12  
14  
16  
18  
–60 –40 –20  
0
20  
40 60  
80 100 120 140  
Supply Voltage (±V)  
Temperature (°C)  
®
OPA227, 2227, 4227  
OPA228, 2228, 4228  
7
TYPICAL PERFORMANCE CURVES (CONT)  
At TA = +25°C, RL = 10k, and VS = ±15V, unless otherwise noted.  
SLEW RATE vs TEMPERATURE  
SLEW RATE vs TEMPERATURE  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
12  
10  
8
OPA227  
OPA228  
Positive Slew Rate  
Negative Slew Rate  
6
4
RLOAD = 2kΩ  
RLOAD = 2kΩ  
LOAD = 100pF  
2
CLOAD = 100pF  
C
0
–75  
–50  
–25  
0
25  
50  
75  
100  
125  
–75  
–50  
–25  
0
25  
50  
75  
100  
125  
Temperature (°C)  
Temperature (°C)  
CHANGE IN INPUT BIAS CURRENT  
vs COMMON-MODE VOLTAGE  
CHANGE IN INPUT BIAS CURRENT  
vs POWER SUPPLY VOLTAGE  
1.5  
1.0  
2.0  
1.5  
Curve shows normalized change in bias current  
with respect to VCM = 0V. Typical IB may range  
from –2nA to +2nA at VCM = 0V.  
Curve shows normalized change in bias current  
with respect to VS = ±10V. Typical IB may range  
from –2nA to +2nA at VS = ±10V.  
1.0  
0.5  
0.5  
0
0
VS = ±15V  
–0.5  
–1.0  
–1.5  
–2.0  
–0.5  
–1.0  
–1.5  
VS = ±5V  
–15  
–10  
–5  
0
5
10  
15  
0
5
10  
15  
20  
25  
30  
35  
40  
Common-Mode Voltage (V)  
Supply Voltage (V)  
OUTPUT VOLTAGE SWING vs OUTPUT CURRENT  
SETTLING TIME vs CLOSED-LOOP GAIN  
15  
14  
13  
12  
11  
10  
V+  
100  
10  
1
VS = ±15V, 10V Step  
CL = 1500pF  
RL = 2kΩ  
(V+) –1V  
(V+) –2V  
(V+) –3V  
–40°C  
125°C  
85°C  
25°C  
–55°C  
OPA227  
0.01%  
0.1%  
–10  
–11  
–12  
–13  
–14  
–15  
–55°C  
OPA228  
85°C  
0.01%  
0.1%  
125°C  
(V–) +3V  
(V–) +2V  
(V–) +1V  
V–  
–40°C  
25°C  
0
10  
20  
30  
40  
50  
60  
±1  
±10  
±100  
Output Current (mA)  
Gain (V/V)  
®
OPA227, 2227, 4227  
OPA228, 2228, 4228  
8
TYPICAL PERFORMANCE CURVES (CONT)  
At TA = +25°C, RL = 10k, and VS = ±15V, unless otherwise noted.  
SMALL-SIGNAL OVERSHOOT  
vs LOAD CAPACITANCE  
MAXIMUM OUTPUT VOLTAGE vs FREQUENCY  
30  
25  
20  
15  
10  
5
70  
60  
50  
40  
30  
20  
10  
0
OPA227  
OPA227  
VS = ±15V  
Gain = +10  
VS = ±5V  
Gain = –10  
Gain = –1  
100  
Gain = +1  
0
1k  
10k  
100k  
1M  
10M  
1
10  
1k  
10k  
100k  
Frequency (Hz)  
Load Capacitance (pF)  
SMALL-SIGNAL STEP RESPONSE  
G = +1, CL = 1000pF  
LARGE-SIGNAL STEP RESPONSE  
G = –1, CL = 1500pF  
OPA227  
OPA227  
400ns/div  
5µs/div  
SMALL-SIGNAL STEP RESPONSE  
G = +1, CL = 5pF  
OPA227  
400ns/div  
®
OPA227, 2227, 4227  
OPA228, 2228, 4228  
9
TYPICAL PERFORMANCE CURVES (CONT)  
At TA = +25°C, RL = 10k, and VS = ±15V, unless otherwise noted.  
SMALL-SIGNAL OVERSHOOT  
vs LOAD CAPACITANCE  
MAXIMUM OUTPUT VOLTAGE vs FREQUENCY  
30  
25  
20  
15  
10  
5
70  
60  
50  
40  
30  
20  
10  
0
VS = ±15V  
OPA228  
OPA228  
G = –100  
VS = ±5V  
G = +100  
G = ±10  
0
1
10  
100  
1k  
10k  
100k  
1k  
10k  
100k  
Frequency (Hz)  
1M  
10M  
Load Capacitance (pF)  
LARGE-SIGNAL STEP RESPONSE  
G = –10, CL = 100pF  
SMALL-SIGNAL STEP RESPONSE  
G = +10, CL = 1000pF, RL = 1.8kΩ  
OPA228  
OPA228  
2µs/div  
500ns/div  
SMALL-SIGNAL STEP RESPONSE  
G = +10, CL = 5pF, RL = 1.8kΩ  
OPA228  
500ns/div  
®
OPA227, 2227, 4227  
OPA228, 2228, 4228  
10  
APPLICATIONS INFORMATION  
Trim range exceeds  
offset voltage specification  
V+  
The OPA227 and OPA228 series are precision op amps with  
very low noise. The OPA227 series is unity-gain stable with  
a slew rate of 2.3V/µs and 8MHz bandwidth. The OPA228  
series is optimized for higher-speed applications with gains  
of 5 or greater, featuring a slew rate of 10V/µs and 33MHz  
bandwidth. Applications with noisy or high impedance  
power supplies may require decoupling capacitors close to  
the device pins. In most cases, 0.1µF capacitors are ad-  
equate.  
0.1µF  
20kΩ  
7
1
2
3
8
OPA227  
6
OPA227 and OPA228 single op amps only.  
Use offset adjust pins only to  
null offset voltage of op amp.  
See text.  
4
0.1µF  
V–  
OFFSET VOLTAGE AND DRIFT  
The OPA227 and OPA228 series have very low offset  
voltage and drift. To achieve highest dc precision, circuit  
layout and mechanical conditions should be optimized.  
Connections of dissimilar metals can generate thermal po-  
tentials at the op amp inputs which can degrade the offset  
voltage and drift. These thermocouple effects can exceed  
the inherent drift of the amplifier and ultimately degrade its  
performance. The thermal potentials can be made to cancel  
by assuring that they are equal at both input terminals. In  
addition:  
FIGURE 1. OPA227 Offset Voltage Trim Circuit.  
amp. This adjustment should not be used to compensate for  
offsets created elsewhere in the system since this can  
introduce additional temperature drift.  
INPUT PROTECTION  
Back-to-back diodes (see Figure 2) are used for input protec-  
tion on the OPA227 and OPA228. Exceeding the turn-on  
threshold of these diodes, as in a pulse condition, can cause  
current to flow through the input protection diodes due to the  
amplifier’s finite slew rate. Without external current-limiting  
resistors, the input devices can be destroyed. Sources of high  
input current can cause subtle damage to the amplifier.  
Although the unit may still be functional, important param-  
eters such as input offset voltage, drift, and noise may shift.  
• Keep thermal mass of the connections made to the two  
input terminals similar.  
• Locate heat sources as far as possible from the critical  
input circuitry.  
• Shield op amp and input circuitry from air currents such  
as those created by cooling fans.  
RF  
500  
OPERATING VOLTAGE  
OPA227 and OPA228 series op amps operate from ±2.5V to  
±18V supplies with excellent performance. Unlike most op  
amps which are specified at only one supply voltage, the  
OPA227 series is specified for real-world applications; a  
single set of specifications applies over the ±5V to ±15V  
supply range. Specifications are guaranteed for applications  
between ±5V and ±15V power supplies. Some applications  
do not require equal positive and negative output voltage  
swing. Power supply voltages do not need to be equal. The  
OPA227 and OPA228 series can operate with as little as 5V  
between the supplies and with up to 36V between the  
supplies. For example, the positive supply could be set to  
25V with the negative supply at –5V or vice-versa. In  
addition, key parameters are guaranteed over the specified  
temperature range, –40°C to +85°C. Parameters which vary  
significantly with operating voltage or temperature are shown  
in the Typical Performance Curves.  
OPA227  
Output  
+
Input  
FIGURE 2. Pulsed Operation.  
When using the OPA227 as a unity-gain buffer (follower), the  
input current should be limited to 20mA. This can be accom-  
plished by inserting a feedback resistor or a resistor in series  
with the source. Sufficient resistor size can be calculated:  
RX = VS/20mA – RSOURCE  
where RX is either in series with the source or inserted in  
the feedback path. For example, for a 10V pulse (VS =  
10V), total loop resistance must be 500. If the source  
impedance is large enough to sufficiently limit the current  
on its own, no additional resistors are needed. The size of  
any external resistors must be carefully chosen since they  
will increase noise. See the Noise Performance section of  
this data sheet for further information on noise calcula-  
tion. Figure 2 shows an example implementing a current-  
limiting feedback resistor.  
OFFSET VOLTAGE ADJUSTMENT  
The OPA227 and OPA228 series are laser-trimmed for  
very low offset and drift so most applications will not  
require external adjustment. However, the OPA227 and  
OPA228 (single versions) provide offset voltage trim con-  
nections on pins 1 and 8. Offset voltage can be adjusted by  
connecting a potentiometer as shown in Figure 1. This  
adjustment should be used only to null the offset of the op  
®
OPA227, 2227, 4227  
OPA228, 2228, 4228  
11  
INPUT BIAS CURRENT CANCELLATION  
NOISE PERFORMANCE  
The input bias current of the OPA227 and OPA228 series is  
internally compensated with an equal and opposite cancella-  
tion current. The resulting input bias current is the difference  
between with input bias current and the cancellation current.  
The residual input bias current can be positive or negative.  
Figure 4 shows total circuit noise for varying source imped-  
ances with the op amp in a unity-gain configuration (no  
feedback resistor network, therefore no additional noise con-  
tributions). Two different op amps are shown with total circuit  
noise calculated. The OPA227 has very low voltage noise,  
making it ideal for low source impedances (less than 20k).  
Asimilar precision op amp, the OPA277, has somewhat higher  
voltage noise but lower current noise. It provides excellent  
noise performance at moderate source impedance (10kto  
100k). Above 100k, a FET-input op amp such as the  
OPA132 (very low current noise) may provide improved  
performance. The equation is shown for the calculation of the  
total circuit noise. Note that en = voltage noise, in = current  
noise, RS = source impedance, k = Boltzmann’s constant =  
1.38 • 10–23 J/K and T is temperature in K. For more details on  
calculating noise, see the insert titled “Basic Noise Calcula-  
tions.”  
When the bias current is cancelled in this manner, the input  
bias current and input offset current are approximately equal.  
A resistor added to cancel the effect of the input bias current  
(as shown in Figure 3) may actually increase offset and noise  
and is therefore not recommended.  
Conventional Op Amp Configuration  
R2  
R1  
Op Amp  
Not recommended  
for OPA227  
VOLTAGE NOISE SPECTRAL DENSITY  
vs SOURCE RESISTANCE  
1.00+03  
RB = R2 || R1  
External Cancellation Resistor  
EO  
OPA227  
RS  
Recommended OPA227 Configuration  
1.00E+02  
R2  
OPA277  
OPA277  
R1  
Resistor Noise  
OPA227  
1.00E+01  
1.00E+00  
Resistor Noise  
EO2 = en2 + (in RS)2 + 4kTRS  
OPA227  
No cancellation resistor.  
See text.  
100  
1k  
10k  
100k  
10M  
Source Resistance, RS ()  
FIGURE 4. Noise Performance of the OPA227 in Unity-  
Gain Buffer Configuration.  
FIGURE 3. Input Bias Current Cancellation.  
BASIC NOISE CALCULATIONS  
noise component. The voltage noise is commonly mod-  
Design of low noise op amp circuits requires careful  
consideration of a variety of possible noise contributors:  
noise from the signal source, noise generated in the op  
amp, and noise from the feedback network resistors. The  
total noise of the circuit is the root-sum-square combina-  
tion of all noise components.  
eled as a time-varying component of the offset voltage.  
The current noise is modeled as the time-varying compo-  
nent of the input bias current and reacts with the source  
resistance to create a voltage component of noise. Conse-  
quently, the lowest noise op amp for a given application  
depends on the source impedance. For low source imped-  
ance, current noise is negligible and voltage noise gener-  
ally dominates. For high source impedance, current noise  
may dominate.  
The resistive portion of the source impedance produces  
thermal noise proportional to the square root of the  
resistance. This function is shown plotted in Figure 4.  
Since the source impedance is usually fixed, select the op  
amp and the feedback resistors to minimize their contri-  
bution to the total noise.  
Figure 5 shows both inverting and noninverting op amp  
circuit configurations with gain. In circuit configurations  
with gain, the feedback network resistors also contribute  
noise. The current noise of the op amp reacts with the  
feedback resistors to create additional noise components.  
The feedback resistor values can generally be chosen to  
make these noise sources negligible. The equations for  
total noise are shown for both configurations.  
Figure 4 shows total noise for varying source imped-  
ances with the op amp in a unity-gain configuration (no  
feedback resistor network and therefore no additional  
noise contributions). The operational amplifier itself con-  
tributes both a voltage noise component and a current  
®
OPA227, 2227, 4227  
12  
OPA228, 2228, 4228  
Noise in Noninverting Gain Configuration  
R2  
Noise at the output:  
2
2
R2  
R2  
R1  
R1  
2
2
2
2
2
2
2
EO = 1+  
en + e1 + e2 + i R  
+ eS + i R  
1+  
(
)
(
)
n
2
n
S
R1  
EO  
R2  
R2  
Where eS = 4kTRS •  
= thermal noise of RS  
1+  
R1  
RS  
R2  
R1  
e1 = 4kTR1 •  
e2 = 4kTR2  
= thermal noise of R1  
= thermal noise of R2  
VS  
Noise in Inverting Gain Configuration  
R2  
Noise at the output:  
2
R1  
R2  
2
2
2
2
2
2
EO = 1+  
en + e1 + e2 + i R  
+ eS  
(
)
n
2
R1 + RS  
EO  
RS  
R2  
Where eS = 4kTRS •  
= thermal noise of RS  
R1 + RS  
VS  
R2  
e1 = 4kTR1 •  
e2 = 4kTR2  
= thermal noise of R1  
= thermal noise of R2  
R1 + RS  
For the OPA227 and OPA228 series op amps at 1kHz, en = 3nV/Hz and in = 0.4pA/Hz.  
FIGURE 5. Noise Calculation in Gain Configurations.  
®
OPA227, 2227, 4227  
OPA228, 2228, 4228  
13  
R1  
2M  
R2  
2MΩ  
R8  
402kΩ  
R11  
178kΩ  
C6  
10nF  
C4  
22nF  
R3  
1kΩ  
R4  
9.09kΩ  
R6  
R7  
R9  
R10  
40.2kΩ  
97.6kΩ  
178kΩ  
226kΩ  
2
3
2
3
C1  
1µF  
C2  
1µF  
6
6
U2  
VOUT  
U3  
U1  
C3  
C5  
0.47µF  
0.47µF  
(OPA227)  
(OPA227)  
(OPA227)  
Input from  
Device  
Under  
R5  
634kΩ  
Test  
FIGURE 6. 0.1Hz to 10Hz Bandpass Filter Used to Test Wideband Noise of the OPA227 and OPA228 Series.  
USING THE OPA228 IN LOW GAINS  
The OPA228 family is intended for applications with signal  
gains of 5 or greater, but it is possible to take advantage of  
their high speed in lower gains. Without external compen-  
sation, the OPA228 has sufficient phase margin to maintain  
stability in unity gain with purely resistive loads. However,  
the addition of load capacitance can reduce the phase  
margin and destabilize the op amp.  
22pF  
100k  
10Ω  
2
3
6
VOUT  
A variety of compensation techniques have been evaluated  
specifically for use with the OPA228. The recommended  
configuration consists of an additional capacitor (CF) in  
parallel with the feedback resistance, as shown in Figures  
8 and 11. This feedback capacitor serves two purposes in  
compensating the circuit. The op amp’s input capacitance  
and the feedback resistors interact to cause phase shift that  
can result in instability. CF compensates the input capaci-  
tance, minimizing peaking. Additionally, at high frequen-  
cies, the closed-loop gain of the amplifier is strongly  
influenced by the ratio of the input capacitance and the  
feedback capacitor. Thus, CF can be selected to yield good  
stability while maintaining high speed.  
OPA227  
Device  
Under  
Test  
FIGURE 7. Noise Test Circuit.  
Figure 6 shows the 0.1Hz 10Hz bandpass filter used to test  
the noise of the OPA227 and OPA228. The filter circuit was  
designed using Burr-Brown’s FilterPro software (available  
at www.burr-brown.com). Figure 7 shows the configura-  
tion of the OPA227 and OPA228 for noise testing.  
®
OPA227, 2227, 4227  
14  
OPA228, 2228, 4228  
Without external compensation, the noise specification of  
the OPA228 is the same as that for the OPA227 in gains of  
5 or greater. With the additional external compensation, the  
output noise of the of the OPA228 will be higher. The  
amount of noise increase is directly related to the increase  
in high frequency closed-loop gain established by the CIN/  
CF ratio.  
values for CF. Because compensation is highly dependent  
on circuit design, board layout, and load conditions, CF  
should be optimized experimentally for best results. Fig-  
ures 9 and 10 show the large- and small-signal step re-  
sponses for the G = +2 configuration with 100pF load  
capacitance. Figures 12 and 13 show the large- and small-  
signal step responses for the G = –2 configuration with  
100pF load capacitance.  
Figures 8 and 11 show the recommended circuit for gains  
of +2 and –2, respectively. The figures suggest approximate  
15pF  
22pF  
1kΩ  
2kΩ  
2kΩ  
2kΩ  
OPA228  
OPA228  
100pF  
2kΩ  
100pF  
2kΩ  
FIGURE 8. Compensation of the OPA228 for G =+2.  
FIGURE 11. Compensation for OPA228 for G = –2.  
OPA228  
OPA228  
400ns/div  
400ns/div  
FIGURE 12. Large-Signal Step Response, G = –2, CLOAD  
100pF, Input Signal = 5Vp-p.  
=
FIGURE 9. Large-Signal Step Response, G = +2, CLOAD  
100pF, Input Signal = 5Vp-p.  
=
OPA228  
OPA228  
200ns/div  
200ns/div  
FIGURE 10. Small-Signal Step Response, G = +2, CLOAD  
100pF, Input Signal = 50mVp-p.  
=
FIGURE 13. Small-Signal Step Response, G = –2, CLOAD  
100pF, Input Signal = 50mVp-p.  
=
®
OPA227, 2227, 4227  
OPA228, 2228, 4228  
15  
1.1kΩ  
1.43kΩ  
330pF  
dc Gain = 1  
2.2nF  
1.1kΩ  
1.65kΩ  
VIN  
1.43kΩ  
1.91kΩ  
OPA227  
33nF  
2.21kΩ  
VOUT  
10nF  
OPA227  
68nF  
fN = 13.86kHz  
Q = 1.186  
fN = 20.33kHz  
Q = 4.519  
f = 7.2kHz  
FIGURE 14. Three-Pole, 20kHz Low Pass, 0.5dB Chebyshev Filter.  
20pF  
0.1µF  
TTL INPUT GAIN  
9.76kΩ  
“1”  
“0”  
+1  
–1  
100Ω  
100kΩ  
Balance  
Trim  
500Ω  
2
3
Output  
10kΩ  
Input  
6
2
3
OPA227  
Output  
6
8
4.99kΩ  
OPA227  
D1  
D2  
NOTE: Use metal film resistors  
and plastic film capacitor. Circuit  
must be well shielded to achieve  
low noise.  
S1  
S2  
Dexter 1M  
Thermopile  
Detector  
1
4.75kΩ  
4.75kΩ  
1kΩ  
Responsivity 2.5 x 104V/W  
Output Noise 30µVrms, 0.1Hz to 10Hz  
TTL  
In  
DG188  
Offset  
Trim  
+VCC  
FIGURE 16. High Performance Synchronous Demodulator.  
FIGURE 15. Long-Wavelength Infrared Detector Amplifier.  
®
OPA227, 2227, 4227  
16  
OPA228, 2228, 4228  
+15V  
0.1µF  
1kΩ  
1kΩ  
Audio  
In  
1/2  
OPA2227  
200Ω  
200Ω  
To  
Headphone  
1/2  
OPA2227  
This application uses two op amps  
in parallel for higher output current drive.  
0.1µF  
–15V  
FIGURE 17. Headphone Amplifier.  
Bass Tone Control  
R2  
50kΩ  
CW  
R1  
7.5kΩ  
R3  
7.5kΩ  
3
1
2
R10  
100kΩ  
Midrange Tone Control  
C1  
940pF  
R5  
50kΩ  
CW  
R4  
2.7kΩ  
R6  
2.7kΩ  
3
1
VIN  
2
C2  
0.0047µF  
Treble Tone Control  
R8  
50kΩ  
CW  
R7  
7.5kΩ  
R9  
7.5kΩ  
R11  
100kΩ  
3
1
2
C3  
680pF  
2
6
VOUT  
OPA227  
3
FIGURE 18. Three-Band ActiveTone Control (bass, midrange and treble).  
17  
®
OPA227, 2227, 4227  
OPA228, 2228, 4228  

相关型号:

OPA227UA/2K5

高精度低噪声运算放大器 | D | 8 | -40 to 85
TI

OPA227UA/2K5

High Precision, Low Noise OPERATIONAL AMPLIFIERS
BB

OPA227UA/2K5G4

高精度低噪声运算放大器 | D | 8 | -40 to 85
TI

OPA227UA/2K5G4

High Precision, Low Noise OPERATIONAL AMPLIFIERS
BB

OPA227UA2K5

High Precision, Low Noise OPERATIONAL AMPLIFIERS
TI

OPA227UAG4

High Precision, Low Noise Operational Amplifiers
TI

OPA227UAG4

High Precision, Low Noise OPERATIONAL AMPLIFIERS
BB

OPA227UE4

High Precision, Low Noise Operational Amplifiers
TI

OPA227UE4

High Precision, Low Noise OPERATIONAL AMPLIFIERS
BB

OPA227_07

High Precision, Low Noise OPERATIONAL AMPLIFIERS
TI

OPA228

High Precision, Low Noise OPERATIONAL AMPLIFIERS
BB

OPA228

High Precision, Low Noise OPERATIONAL AMPLIFIERS
TI