OPA37G [BB]

Ultra-Low Noise Precision OPERATIONAL AMPLIFIERS; 超低噪声精密运算放大器
OPA37G
型号: OPA37G
厂家: BURR-BROWN CORPORATION    BURR-BROWN CORPORATION
描述:

Ultra-Low Noise Precision OPERATIONAL AMPLIFIERS
超低噪声精密运算放大器

运算放大器
文件: 总13页 (文件大小:219K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
®
OPA27  
OPA37  
OPA27  
OPA27  
Ultra-Low Noise Precision  
OPERATIONAL AMPLIFIERS  
FEATURES  
APPLICATIONS  
LOW NOISE: 4.5nV/Hz max at 1kHz  
PRECISION INSTRUMENTATION  
LOW OFFSET: 100µV max  
DATA ACQUISITION  
LOW DRIFT: 0.4µV/°C  
TEST EQUIPMENT  
HIGH OPEN-LOOP GAIN: 117dB min  
PROFESSIONAL AUDIO EQUIPMENT  
TRANSDUCER AMPLIFIER  
RADIATION HARD EQUIPMENT  
HIGH COMMON-MODE REJECTION:  
100dB min  
HIGH POWER SUPPLY REJECTION:  
94dB min  
FITS OP-07, OP-05, AD510, AD517  
SOCKETS  
7
+VCC  
DESCRIPTION  
The OPA27/37 is an ultra-low noise, high precision  
monolithic operational amplifier.  
8
Trim  
1
Laser-trimmed thin-film resistors provide excellent  
long-term voltage offset stability and allow superior  
voltage offset compared to common zener-zap tech-  
niques.  
Trim  
6
Output  
A unique bias current cancellation circuit allows bias  
and offset current specifications to be met over the full  
–55°C to +125°C temperature range.  
2
3
The OPA27 is internally compensated for unity-gain  
stability. The decompensated OPA37 requires a closed-  
loop gain 5.  
–In  
+In  
The Burr-Brown OPA27/37 is an improved replace-  
ment for the industry-standard OP-27/OP-37.  
4
–VCC  
International Airport Industrial Park  
Mailing Address: PO Box 11400, Tucson, AZ 85734  
FAXLine: (800) 548-6133 (US/Canada Only)  
• Street Address: 6730 S. Tucson Blvd., Tucson, AZ 85706 • Tel: (520) 746-1111 • Twx: 910-952-1111  
Internet: http://www.burr-brown.com/  
Cable: BBRCORP  
Telex: 066-6491  
FAX: (520) 889-1510  
Immediate Product Info: (800) 548-6132  
© 1984 Burr-Brown Corporation  
PDS-466M  
Printed in U.S.A. March, 1998  
SPECIFICATIONS  
At VCC = ±15V and TA = +25°C, unless otherwise noted.  
OPA27/37G  
TYP  
PARAMETER  
CONDITIONS  
MIN  
MAX  
UNITS  
INPUT NOISE(6)  
Voltage, fO = 10Hz  
3.8  
3.3  
3.2  
0.09  
1.7  
1.0  
0.4  
8.0  
5.6  
4.5  
nV/Hz  
nV/Hz  
nV/Hz  
µVp-p  
pA/Hz  
pA/Hz  
pA/Hz  
f
O = 30Hz  
O = 1kHz  
B = 0.1Hz to 10Hz  
Current,(1) fO = 10Hz  
f
f
0.25  
f
f
O = 30Hz  
O = 1kHz  
0.6  
OFFSET VOLTAGE(2)  
Input Offset Voltage  
Average Drift(3)  
±25  
±0.4  
0.4  
±100  
±1.8 (6)  
2.0  
µV  
µV/°C  
µV/mo  
TA MIN to TA MAX  
Long Term Stability(4)  
Supply Rejection  
±VCC = 4 to 18V  
±VCC = 4 to 18V  
94  
120  
±1  
dB  
µV/V  
±20  
±80  
75  
BIAS CURRENT  
Input Bias Current  
±15  
10  
nA  
nA  
OFFSET CURRENT  
Input Offset Current  
IMPEDANCE  
Common-Mode  
2 || 2.5  
G|| pF  
VOLTAGE RANGE  
Common-Mode Input Range  
Common-Mode Rejection  
±11  
100  
±12.3  
122  
V
dB  
VIN = ±11VDC  
OPEN-LOOP VOLTAGE GAIN, DC  
R
R
L 2kΩ  
L 1kΩ  
117  
124  
124  
dB  
dB  
FREQUENCY RESPONSE  
Gain-Bandwidth Product(5)  
OPA27  
OPA37  
VO = ±10V,  
5(6)  
45 (6)  
8
63  
MHz  
MHz  
Slew Rate (5)  
R
L = 2kΩ  
OPA27, G = +1  
OPA37, G = +5  
OPA27, G = +1  
OPA37, G = +5  
1.7(6)  
11(6)  
1.9  
11.9  
25  
V/µs  
V/µs  
µs  
Settling Time, 0.01%  
25  
µs  
RATED OUTPUT  
Voltage Output  
R
R
L 2kΩ  
L 600Ω  
DC, Open Loop  
L = 0Ω  
±12  
±10  
±13.8  
±12.8  
70  
V
V
Output Resistance  
Short Circuit Current  
R
25  
60(6)  
mA  
POWER SUPPLY  
Rated Voltage  
±15  
VDC  
Voltage Range,  
Derated Performance  
Current, Quiescent  
±4  
±22  
5.7  
VDC  
mA  
I
O = 0mADC  
3.3  
TEMPERATURE RANGE  
Specification  
Operating  
–40  
–40  
+85  
+85  
°C  
°C  
NOTES: (1) Measured with industry-standard noise test circuit (Figures 1 and 2). Due to errors introduced by this method, these current noise specifications should  
be used for comparison purposes only. (2) Offset voltage specification are measured with automatic test equipment after approximately 0.5 seconds from power turn-  
on. (3) Unnulled or nulled with 8kto 20kpotentiometer. (4) Long-term voltage offset vs time trend line does not include warm-up drift. (5) Typical specification only  
on plastic package units. Slew rate varies on all units due to differing test methods. Minimum specification applies to open-loop test. (6) This parameter guaranteed by  
design.  
®
2
OPA27, 37  
SPECIFICATIONS  
At VCC = ±15V and TA = +25°C, unless otherwise noted.  
OPA27/37G  
TYP  
PARAMETER  
CONDITIONS  
MIN  
MAX  
UNITS  
INPUT VOLTAGE(1)  
Input Offset Voltage  
Average Drift(2)  
±48  
±0.4  
±220(3)  
±1.8(3)  
µV  
µV/°C  
TA MIN to TA MAX  
±VCC = 4.5 to 18V  
±VCC = 4.5 to 18V  
Supply Rejection  
90 (3)  
122  
dB  
nA  
BIAS CURRENT  
Input Bias Current  
±21  
±150(3)  
OFFSET CURRENT  
Input Offset Current  
E, F, G  
20  
135(3)  
nA  
VOLTAGE RANGE  
Common-Mode Input Range  
Common-Mode Rejection  
±10.5(3)  
96(3)  
±11.8  
V
VIN = ±11VDC  
122  
dB  
OPEN-LOOP GAIN, DC  
Open-Loop Voltage Gain  
RL 2kΩ  
113(3)  
120  
dB  
RATED OUTPUT  
Voltage Output  
Short Circuit Current  
RL = 2kΩ  
O = 0VDC  
±11.0(3)  
±13.4  
25  
V
mA  
V
TEMPERATURE RANGE  
Specification  
–40  
+85  
°C  
NOTES: (1) Offset voltage specification are measured with automatic test equipment after approximately 0.5s from power turn-on. (2) Unnulled or nulled with 8kto  
20kpotentiometer. (3) This parameter guaranteed by design.  
ABSOLUTE MAXIMUM RATINGS  
Supply Voltage................................................................................... ±22V  
Internal Power Dissipation (1) ........................................................ 500mW  
Input Voltage...................................................................................... ±VCC  
Output Short-Circuit Duration (2) ................................................. Indefinite  
Differential Input Voltage (3) ............................................................. ±0.7V  
Differential Input Current (3) ........................................................... ±25mA  
Storage Temperature Range .......................................... –55°C to +125°C  
Operating Temperature Range .........................................40°C to +85°C  
Lead Temperature:  
PACKAGE TYPE  
θJA  
UNITS  
8-Pin Plastic DIP (P)  
8-Pin SOIC (U)  
100  
160  
°C/W  
°C/W  
NOTES: (1) Maximum package power dissipation vs ambient temperature. (2) To  
common with ±VCC = 15V. (3) The inputs are protected by back-to-back diodes.  
Current limiting resistors are not used in order to achieve low noise. If differential  
input voltage exceeds ±0.7V, the input current should be limited to 25mA.  
P (soldering, 10s) ....................................................................... +300°C  
U (soldering, 3s) ......................................................................... +260°C  
ELECTROSTATIC  
DISCHARGE SENSITIVITY  
This integrated circuit can be damaged by ESD. Burr-Brown  
recommends that all integrated circuits be handled with  
appropriate precautions. Failure to observe proper handling  
and installation procedures can cause damage.  
ESD damage can range from subtle performance degradation  
to complete device failure. Precision integrated circuits may  
be more susceptible to damage because very small parametric  
changes could cause the device not to meet its published  
specifications.  
The information provided herein is believed to be reliable; however, BURR-BROWN assumes no responsibility for inaccuracies or omissions. BURR-BROWN assumes  
no responsibility for the use of this information, and all use of such information shall be entirely at the user’s own risk. Prices and specifications are subject to change  
without notice. No patent rights or licenses to any of the circuits described herein are implied or granted to any third party. BURR-BROWN does not authorize or warrant  
any BURR-BROWN product for use in life support devices and/or systems.  
®
3
OPA27, 37  
CONNECTION DIAGRAMS  
PACKAGE/ORDERING INFORMATION  
OFFSET  
PACKAGE  
DRAWING  
NUMBER(3)  
Top View  
P, U Packages  
TEMPERATURE  
RANGE ( C)  
VOLTAGE  
MAX ( V), 25°C  
PRODUCT(1) PACKAGE  
°
µ
OPA27GP  
Plastic  
SOIC  
–40 to +85  
–40 to +85  
±100  
±100  
006  
182  
Offset Trim  
1
2
3
4
8
7
6
5
OPA27GU(2)  
Offset Trim  
+VCC  
NOTE: (1) Packages for OPA37 are same as for OPA27. (2) OPA27GU may  
be marked OPA27U. Likewise, OPA37GU may be marked OPA37U. (3) For  
detailed drawing and dimension table, please see end of data sheet, or  
Appendix C of Burr-Brown IC Data Book.  
–In  
+In  
Output  
NC  
–VCC  
0.1µF  
100kΩ  
10Ω  
2kΩ  
22µF  
DUT  
4.3kΩ  
OPA111  
4.7µF  
Scope  
x1  
RIN = 1MΩ  
Voltage Gain  
Total = 50,000  
2.2µF  
100kΩ  
110kΩ  
0.1µF  
24.3kΩ  
NOTE: All capacitor values are for nonpolarized capacitors only.  
FIGURE 1. 0.1Hz to 10Hz Noise Test Circuit.  
0.1Hz TO 10Hz NOISE  
1s/div 40nV/div  
FIGURE 2. Low Frequency Noise.  
®
4
OPA27, 37  
TYPICAL PERFORMANCE CURVES  
At TA = +25°C, ±VCC = ±15VDC, unless otherwise noted.  
INPUT OFFSET VOLTAGE CHANGE  
DUE TO THERMAL SHOCK  
INPUT OFFSET VOLTAGE WARM-UP DRIFT  
+10  
+20  
+10  
0
+5  
G
TA = +25°C to TA = +70°C  
Fluid Bath  
+25°C +70°C  
0
–5  
–10  
–20  
TO-99  
–10  
0
100  
0
1
2
3
4
5
6
–1  
0
+1  
+2  
+3  
+4  
+5  
Time From Power Turn-On (min)  
Time From Thermal Shock (min)  
INPUT VOLTAGE NOISE vs NOISE BANDWIDTH  
(0.1Hz to Indicated Frequency)  
TOTAL INPUT VOLTAGE NOISE SPECTRAL DENSITY  
vs SOURCE RESISTANCE  
100  
80  
10  
1
60  
R1  
-
40  
20  
+
R1  
RSOURCE = 2 x R1  
10  
8
6
10Hz  
1kHz  
0.1  
0.01  
4
2
1
Resistor Noise Only  
RS = 0 Ω  
1k  
10k  
100k  
100  
1k  
Source Resistance ()  
10k  
Noise Bandwidth (Hz)  
VOLTAGE NOISE SPECTRAL DENSITY  
vs SUPPLY VOLTAGE  
VOLTAGE NOISE SPECTRAL DENSITY  
vs TEMPERATURE  
5
4
3
2
1
5
4
3
2
1
10Hz  
10Hz  
1kHz  
1kHz  
–75  
–50  
–25  
0
+25  
+50  
+75 +100 +125  
±5  
±10  
±15  
±20  
Ambient Temperature (°C)  
Supply Voltage (VCC  
)
®
5
OPA27, 37  
TYPICAL PERFORMANCE CURVES (CONT)  
At TA = +25°C, ±VCC = ±15VDC, unless otherwise noted.  
INPUT VOLTAGE NOISE SPECTRAL DENSITY  
INPUT CURRENT NOISE SPECTRAL DENSITY  
10  
8
6
10  
8
Current Noise Test Circuit  
4
2
10kΩ  
100k500kΩ  
eno  
DUT  
6
500kΩ  
1
0.8  
0.6  
2
In  
=
(eno  
)
– (130nV)2  
4
1Mx 100  
0.4  
0.2  
0.1  
Warning: This industry-standard equation  
is inaccurate and these figures should  
be used for comparison purposes only!  
2
0
1
10  
100  
1k  
10  
10  
10  
100  
Frequency (Hz)  
1k  
10k  
Frequency (Hz)  
OPEN-LOOP FREQUENCY RESPONSE  
BIAS AND OFFSET CURRENT vs TEMPERATURE  
Bias  
140  
120  
100  
80  
20  
15  
10  
5
20  
15  
10  
5
OPA37  
OPA27  
Offset  
60  
40  
20  
0
0
0
100  
1k  
10k  
100k  
1M  
10M  
100M  
–75  
–50  
–25  
0
+25  
+50  
+75 +100 +125  
Ambient Temperature (°C)  
Frequency (Hz)  
OPA27 CLOSED-LOOP VOLTAGE GAIN AND  
PHASE SHIFT vs FREQUENCY (G = 100)  
OPA37 CLOSED-LOOP VOLTAGE GAIN AND  
PHASE SHIFT vs FREQUENCY (G = 100)  
50  
40  
50  
40  
0
0
30  
–45  
30  
–45  
–90  
–135  
–180  
–225  
Ø
20  
–90  
20  
G = 5  
Gain  
10  
–135  
–180  
–225  
10  
Gain  
0
0
–10  
–20  
–10  
–20  
100  
1k  
10k  
100k  
1M  
10M  
100M  
10  
100  
1k  
10k  
100k  
1M  
10M  
100M  
Frequency (Hz)  
Frequency (Hz)  
®
6
OPA27, 37  
TYPICAL PERFORMANCE CURVES (CONT)  
At TA = +25°C, ±VCC = ±15VDC, unless otherwise noted.  
COMMON-MODE REJECTION vs FREQUENCY  
POWER SUPPLY REJECTION vs FREQUENCY  
OPA27  
140  
120  
100  
80  
140  
120  
100  
80  
–VCC  
OPA37  
+VCC  
60  
60  
OPA27  
40  
40  
20  
20  
0
0
1
±5  
0
10  
100  
1k  
10k  
100k  
1M  
10M  
±25  
±20  
1
–75  
0
10  
100  
1k  
10k  
100k  
1M  
10M  
Frequency (Hz)  
Frequency (Hz)  
OPEN-LOOP VOLTAGE GAIN vs TEMPERATURE  
OPEN-LOOP VOLTAGE GAIN vs SUPPLY VOLTAGE  
130  
125  
120  
115  
135  
130  
125  
120  
115  
RL = 2kΩ  
RL = 600Ω  
RL = 2kΩ  
–50  
–25  
0
+25  
+50  
+75 +100 +125  
±10  
±15  
±20  
Ambient Temperature (°C)  
Supply Voltage (VCC  
)
COMMON-MODE INPUT VOLTAGE RANGE  
vs SUPPLY VOLTAGE  
SUPPLY CURRENT vs SUPPLY VOLTAGE  
6
5
4
3
2
1
0
+15  
+10  
+5  
TA = –55°C  
TA = +25°C  
TA = +125°C  
TA = –55°C  
TA = +25°C  
TA = +125°C  
+125°C  
+25°C  
–55°C  
0
–5  
–10  
–15  
±5  
±10  
±15  
±5  
±10  
±15  
±20  
Supply Voltage (VCC  
)
Supply Voltage (VCC )  
®
7
OPA27, 37  
TYPICAL PERFORMANCE CURVES (CONT)  
At TA = +25°C, ±VCC = ±15VDC, unless otherwise noted.  
OPA27 SMALL SIGNAL TRANSIENT RESPONSE  
OPA37 SMALL SIGNAL TRANSIENT RESPONSE  
+60  
+40  
+20  
0
+60  
+40  
+20  
0
–20  
–40  
–60  
–20  
–40  
–60  
AVCL = +1  
CL = 15pF  
AV = +5  
CL = 25pF  
0
0.5  
1.5  
2.5  
0
0.2  
0.4  
0.6  
0.8  
1.0  
1.2  
1
2
Time (µs)  
Time (µs)  
OPA27 LARGE SIGNAL TRANSIENT RESPONSE  
OPA37 LARGE SIGNAL TRANSIENT RESPONSE  
+6  
+4  
+2  
0
+15  
+10  
+5  
0
–2  
–4  
–6  
–5  
AVCL = +1  
AV = +5  
–10  
–15  
0
2
4
6
8
10  
12  
0
1
2
3
4
5
6
Time (µs)  
Time (µs)  
APPLICATIONS INFORMATION  
OFFSET VOLTAGE ADJUSTMENT  
THERMOELECTRIC POTENTIALS  
The OPA27/37 offset voltage is laser-trimmed and will re-  
quire no further trim for most applications. Offset voltage  
drift will not be degraded when the input offset is nulled with  
a 10ktrim potentiometer. Other potentiometer values from  
1kto 1Mcan be used but VOS drift will be degraded by  
an additional 0.1 to 0.2µV/°C. Nulling large system offsets  
by use of the offset trim adjust will degrade drift performance  
by approximately 3.3µV/°C per millivolt of offset. Large  
system offsets can be nulled without drift degradation by  
input summing.  
The OPA27/37 is laser-trimmed to microvolt-level input  
offset voltage and for very low input offset voltage drift.  
Careful layout and circuit design techniques are necessary to  
prevent offset and drift errors from external thermoelectric  
potentials. Dissimilar metal junctions can generate small  
EMFs if care is not taken to eliminate either their sources  
(lead-to-PC, wiring, etc.) or their temperature difference. See  
Figure 11.  
Short, direct mounting of the OPA27/37 with close spacing  
of the input pins is highly recommended. Poor layout can  
result in circuit drifts and offsets which are an order of  
magnitude greater than the operational amplifier alone.  
The conventional offset voltage trim circuit is shown in  
Figure 3. For trimming very small offsets, the higher resolu-  
tion circuit shown in Figure 4 is recommended.  
The OPA27/37 can replace 741-type operational amplifiers  
by removing or modifying the trim circuit.  
®
8
OPA27, 37  
NOISE: BIPOLAR VERSUS FET  
COMPENSATION  
Low-noise circuit design requires careful analysis of all noise  
sources. External noise sources can dominate in many cases,  
so consider the effect of source resistance on overall opera-  
tional amplifier noise performance. At low source imped-  
ances, the lower voltage noise of a bipolar operational  
amplifier is superior, but at higher impedances the high  
current noise of a bipolar amplifier becomes a serious liabil-  
ity. Above about 15kthe Burr-Brown OPA111 low-noise  
FET operational amplifier is recommended for lower total  
noise than the OPA27 (see Figure 5).  
Although internally compensated for unity-gain stability, the  
OPA27 may require a small capacitor in parallel with a  
feedback resistor (RF) which is greater than 2k. This  
capacitor will compensate the pole generated by RF and CIN  
and eliminate peaking or oscillation.  
INPUT PROTECTION  
Back-to-back diodes are used for input protection on the  
OPA27/37. Exceeding a few hundred millivolts differential  
input signal will cause current to flow and without external  
current limiting resistors the input will be destroyed.  
+VCC  
Accidental static discharge as well as high current can  
damage the amplifier’s input circuit. Although the unit may  
still be functional, important parameters such as input offset  
voltage, drift, and noise may be permanently damaged as will  
any precision operational amplifier subjected to this abuse.  
(1)  
NOTE: (1) 10kto 1MΩ  
Trim Potentiometer  
(10kRecommended).  
7
8
2
1
Transient conditions can cause feedthrough due to the  
amplifier’s finite slew rate. When using the OP-27 as a unity-  
gain buffer (follower) a feedback resistor of 1kis recom-  
mended (see Figure 6).  
6
OPA27/37  
3
4
±4mV Typical Trim Range  
–V  
CC  
RF  
1kΩ  
FIGURE 3. Offset Voltage Trim.  
+VCC  
OPA27  
Output  
(1)  
+
NOTE: (1) 1kTrim Potentiometer.  
Input  
1.9V/µs  
4.7kΩ  
4.7kΩ  
7
8
2
3
1
6
FIGURE 6. Pulsed Operation.  
OPA27/37  
7.87kΩ  
G 40dB at 1kHz.  
Metal film resistors.  
Film capacitors.  
RL and CL per cartridge  
manufacturer’s  
4
±280µV Typical Trim Range  
–V  
CC  
0.01µF 0.03µF  
FIGURE 4. High Resolution Offset Voltage Trim.  
97.6kΩ  
recommendations.  
100Ω  
2
1µF  
1k  
Output  
6
OPA27 + Resistor  
OPA37  
3
EO  
OPA111 + Resistor  
Moving  
Magnet  
20kΩ  
RL  
CL  
RS  
100  
Cartridge  
OPA111 + Resistor  
Resistor Noise Only  
FIGURE 7. Low-Noise RIAA Preamplifier.  
10  
Resistor Noise Only  
OPA27 + Resistor  
1kΩ  
1
100  
1kΩ  
2
1k  
10k  
100k  
1M  
10M  
Input  
6
Source Resistance, RS ()  
Output  
OPA27  
3
EO = en2 + (inRS)2 + 4kTRS  
FO = 1kHz  
FIGURE 8. Unity-Gain Inverting Amplifier.  
FIGURE 5. Voltage Noise Spectral Density Versus Source  
Resistance.  
®
9
OPA27, 37  
G 50dB at 1kHz.  
Metal film resistors.  
Film capacitors.  
RL and CL per head  
manufacturer’s  
4.99k0.01µF  
316kΩ  
1kΩ  
recommendations.  
1kΩ  
2
3
100Ω  
2
Input  
1µF  
6
Output  
Output  
6
OPA37  
OPA37  
250Ω  
3
500pF  
20kΩ  
RL  
CL  
Magnetic Tape Head  
FIGURE 10. NAB Tape Head Preamplifier.  
FIGURE 9. High Slew Rate Unity-Gain Inverting Amplifier.  
Total Gain = 106  
10kΩ  
10Ω  
10Hz Low-  
Pass Filter  
Chart  
Recorder  
10mV/mm  
5mm/s  
DUT  
G =1k  
Offset  
A. 741 noise with circuit well-shielded from air  
currents and RFI. (Note scale change.)  
5µV  
B. OP-07AH with circuit well-shielded from air  
currents and RFI.  
0.5µV  
0.5µV  
0.5µV  
0.5µV  
C. OPA27AJ with circuit well-shielded from air  
currents and RFI. (Represents ultimate  
OPA27 performance potential.)  
D. OPA27 with circuit unshielded and exposed  
to normal lab bench-top air currents.  
(External thermoelectric potentials far  
exceed OPA27 noise.)  
E. OPA27 with heat sink and shield which  
protects input leads from air currents.  
Conditions same as (D).  
FIGURE 11. Low Frequency Noise Comparison.  
®
10  
OPA27, 37  
3
2
Gain = 100  
For gain = 1000 use INA106 differential amplifier.  
–In  
6
Bandwidth 500kHz  
OPA37  
Burr-Brown INA105  
Differential Amplifier  
RF  
5kΩ  
25kΩ  
25kΩ  
2
3
5
6
RG  
101Ω  
Input Stage Gain = 1 + 2RF/RG  
RF  
5kΩ  
25kΩ  
Output  
2
25kΩ  
6
OPA37  
3
+In  
1
FIGURE 12. Low Noise Instrumentation Amplifier.  
1kΩ  
0.1µF  
200Ω  
2
100Ω  
100kΩ  
0.1µF  
Output  
6
500pF  
OPA37  
3
2
3
2kΩ  
Output  
6
1MΩ  
OPA27  
EDO 6166  
Transducer  
NOTE: Use metal film resistors  
and plastic film capacitor. Circuit  
must be well shielded to achieve  
low noise.  
Frequency Response  
1kHz to 50kHz  
Dexter 1M  
Thermopile  
Detector  
FIGURE 13. Hydrophone Preamplifier.  
Responsivity 2.5 x 104V/W  
Output Noise 30µVrms, 0.1Hz to 10Hz  
20pF  
FIGURE 14. Long-Wavelength Infrared Detector Amplifier.  
TTL INPUT GAIN  
9.76kΩ  
“1”  
“0”  
+1  
–1  
Balance  
Trim  
500Ω  
10kΩ  
Input  
2
3
Output  
6
8
4.99kΩ  
OPA27  
D1  
D2  
S1  
S2  
1
4.75kΩ  
4.75kΩ  
1kΩ  
TTL  
In  
DG188  
Offset  
Trim  
+VCC  
FIGURE 15. High Performance Synchronous Demodulator.  
®
11  
OPA27, 37  
Gain = –1010V/V  
Full Power Bandwidth 180kHz  
Gain Bandwidth 500MHz  
Equivalent Noise Resistance 50Ω  
Input  
20Ω  
20Ω  
20Ω  
20Ω  
20Ω  
2kΩ  
Signal-to-Noise Ratio N  
since amplifier noise is  
uncorrelated.  
2
3
2kΩ  
2kΩ  
2kΩ  
2kΩ  
2kΩ  
6
6
6
6
6
OPA37  
2kΩ  
2
3
OPA37  
2kΩ  
2kΩ  
2
3
2
6
OPA37  
OPA37  
3
Output  
2kΩ  
2
3
OPA37  
2kΩ  
2
3
OPA37  
N = 10 Each OPA37EZ  
FIGURE 16. Ultra-Low Noise “N” Stage Parallel Amplifier.  
®
12  
OPA27, 37  
5V  
5V  
+10V  
0V  
+10V  
0V  
–10V  
–10V  
5µs  
RS = 50Ω  
5µs  
1kΩ  
RS = 50Ω  
1kΩ  
2
6
2
3
Output  
OPA37  
3
6
250Ω  
Output  
OPA27  
Input  
500pF  
Input  
FIGURE 18. High Slew Rate Unity-Gain Buffer.  
FIGURE 17. Unity-Gain Buffer.  
+15V  
10µF/20V  
+
100Ω  
10kΩ  
200Ω  
20kΩ  
1
2
3
VIRTEC V1000  
Planar Tunnel  
Diode  
2
100µF/20V  
Tantalum  
50Ω  
Input  
6
6
OPA27  
0.01µF  
OPA37  
2
3
Output  
Video  
Output  
+
10kΩ  
10kΩ  
RFC  
200Ω  
500pF  
3
Siemens LHI 948  
FIGURE 19. RF Detector and Video Amplifier.  
FIGURE 20. Balanced Pyroelectric Infrared Detector.  
4.8V  
+
1kΩ  
2
6
0
OPA27  
Airpax  
Magnetic  
Pickup  
3
Output  
fOUT RPM X N  
Where N = Number of Gear Teeth  
FIGURE 21. Magnetic Tachometer.  
®
13  
OPA27, 37  

相关型号:

OPA37GD

Operational Amplifier, 1 Func, 220uV Offset-Max, BIPolar,
BB

OPA37GJ

Operational Amplifier, 1 Func, 220uV Offset-Max, BIPolar, MBCY8, TO-99, 8 PIN
BB

OPA37GL

Operational Amplifier, 1 Func, 220uV Offset-Max, BIPolar, CQCC20,
BB

OPA37GP

Ultra-Low Noise, Precision OPERATIONAL AMPLIFIERS
BB

OPA37GP

Ultra-Low Noise, Precision OPERATIONAL AMPLIFIERS
TI

OPA37GPG4

Ultra-Low Noise, Precision OPERATIONAL AMPLIFIERS
TI

OPA37GU

Ultra-Low Noise, Precision OPERATIONAL AMPLIFIERS
BB

OPA37GU

Ultra-Low Noise, Precision OPERATIONAL AMPLIFIERS
TI

OPA37GU-BI

Operational Amplifier, 1 Func, 220uV Offset-Max, BIPolar, PDSO8,
BB

OPA37GU/2K5

Ultra-Low Noise, Precision OPERATIONAL AMPLIFIERS
BB

OPA37GU/2K5

Ultra-Low Noise, Precision OPERATIONAL AMPLIFIERS
TI

OPA37GU/2K5G4

Ultra-Low Noise, Precision OPERATIONAL AMPLIFIERS
TI