SHC615AP [BB]

Wide-Bandwidth, DC RESTORATION CIRCUIT; 宽带宽,直流恢复电路
SHC615AP
型号: SHC615AP
厂家: BURR-BROWN CORPORATION    BURR-BROWN CORPORATION
描述:

Wide-Bandwidth, DC RESTORATION CIRCUIT
宽带宽,直流恢复电路

采样保持电路 放大器 放大器电路
文件: 总19页 (文件大小:301K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
SHC615  
®
SHC615  
SHC615  
Wide-Bandwidth,  
DC RESTORATION CIRCUIT  
FEATURES  
PROPAGATION DELAY: 2.2ns  
APPLICATIONS  
BROADCAST/HDTV EQUIPMENT  
BANDWIDTH: OTA: 750MHz  
TELECOMMUNICATIONS EQUIPMENT  
HIGH-SPEED DATA ACQUISITION  
Comparator: 280MHz  
LOW INPUT BIAS CURRENT: –0.3µA  
CAD MONITORS/CCD IMAGE  
SAMPLE/HOLD  
PROCESSING  
SWITCHING TRANSIENTS: +1/–7mV  
NANO SECOND PULSE INTEGRATOR/  
SAMPLE/HOLD  
PEAK DETECTORS  
FEEDTHROUGH REJECTION: 100dB  
PULSE CODE MODULATOR/  
CHARGE INJECTION: 40fC  
DEMODULATOR  
HOLD COMMAND DELAY TIME: 3.8ns  
TTL/CMOS HOLD CONTROL  
COMPLETE VIDEO DC LEVEL  
RESTORATION  
SAMPLE/HOLD AMPLIFIER  
DESCRIPTION  
The SHC615 is a complete subsystem for very fast  
and precise DC restoration, offset clamping, and low  
frequency hum suppression of wideband amplifiers or  
buffers. Designed to stabilize the performance of  
video signals, it can also be used as a sample/hold  
amplifier, high-speed integrator, or peak detector for  
nanosecond pulses. A wideband Operational  
Transconductance Amplifier (OTA) with a high-im-  
pedance cascode current source output and fast sam-  
pling comparator set a new standard for high-speed  
applications. Both can be used as stand-alone circuits  
or combined to form a more complex signal process-  
ing stage. The self-biased, bipolar OTA can be viewed  
as an ideal voltage-controlled current source and is  
optimized for low input bias current. The sampling  
comparator has two identical high-impedance inputs  
and a current source output optimized for low output  
bias current and offset voltage; it can be controlled by  
a TTL-compatible switching stage within a few  
nanoseconds. The transconductance of the OTA and  
sampling comparator can be adjusted by an external  
resistor, allowing bandwidth, quiescent current, and  
gain tradeoffs to be optimized.  
The SHC615 is available in SO-14 surface mount and  
14-pin plastic DIPs, and is specified over the ex-  
tended temperature range of –40°C to +85°C.  
CHOLD  
Ground  
Base  
3
9
4
2
Emitter  
7
Switching  
Stage  
Hold Control  
OTA  
12  
Sampling  
Collector (IOUT  
)
Comparator (SC)  
10  
11  
S/H  
In+  
1
Biasing  
5
IQ Adjust  
SOTA  
S/H  
In–  
SHC615  
13  
+VCC –VCC  
International Airport Industrial Park  
Mailing Address: PO Box 11400, Tucson, AZ 85734  
FAXLine: (800) 548-6133 (US/Canada Only)  
Street Address: 6730 S. Tucson Blvd., Tucson, AZ 85706 • Tel: (520) 746-1111 • Twx: 910-952-1111  
Internet: http://www.burr-brown.com/  
Cable: BBRCORP  
Telex: 066-6491  
FAX: (520) 889-1510  
Immediate Product Info: (800) 548-6132  
©1994 Burr-Brown Corporation  
PDS-1214C  
Printed in the U.S.A. May, 1995  
DC SPECIFICATIONS  
At VCC = ±5V, RLOAD = 100, RQ = 300, RIN = 150and TA = +25°C, unless otherwise specified.  
SHC615AP, AU  
TYP  
PARAMETER  
CONDITIONS  
MIN  
MAX  
UNITS  
OFFSET VOLTAGE, VE at VB = 0  
Initial  
vs Temperature  
8
40  
55  
±40  
mV  
µV/°C  
dB  
vs Supply (tracking)  
VCC = ±4.5V to ±5.5V  
50  
B-INPUT BIAS CURRENT  
Initial  
vs Temperature  
–0.3  
1
±0.9  
µA  
nA/°C  
C-OUTPUT BIAS CURRENT, IC at VB = 0  
Initial  
–200  
–77  
4.4  
+100  
µA  
B-INPUT IMPEDANCE  
MΩ  
INPUT NOISE  
Voltage Noise Density, B-to-E  
Voltage Noise Density, B-to-C  
f
f
OUT = 100kHz to 100MHz  
OUT = 100kHz to 100MHz  
2.2  
4.5  
nV/Hz  
nV/Hz  
INPUT VOLTAGE RANGE  
±3.4  
V
OUTPUT  
Output Voltage Compliance  
C-Current Output  
E-Current Output  
C-Output Impedance  
E-Output Impedance  
Open-Loop Gain  
±3.2  
±20  
±20  
0.5  
12  
V
±18  
±18  
mA  
mA  
MΩ  
96  
dB  
TRANSCONDUCTANCE  
Small Signal, <200mV  
70  
mA/V  
The information provided herein is believed to be reliable; however, BURR-BROWN assumes no responsibility for inaccuracies or omissions. BURR-BROWN  
assumes no responsibility for the use of this information, and all use of such information shall be entirely at the user’s own risk. Prices and specifications are  
subject to change without notice. No patent rights or licenses to any of the circuits described herein are implied or granted to any third party. BURR-BROWN  
does not authorize or warrant any BURR-BROWN product for use in life support devices and/or systems.  
®
2
SHC615  
DC SPECIFICATIONS (CONT)  
At VCC = ±5V, RLOAD = 1k, RQ = 300, and TA = +25°C, unless otherwise specified.  
SHC615AP, AU  
TYP  
PARAMETER  
CONDITIONS  
MIN  
MAX  
UNITS  
COMPARATOR  
INPUT BIAS CURRENT  
Initial  
1.0  
±5  
µA  
vs Temperature  
–2.3  
nA/°C  
C-OUTPUT BIAS CURRENT  
Initial  
vs Temperature  
±10  
±13  
±50  
µA  
nA/°C  
INPUT IMPEDANCE  
Input Impedance  
0.2  
5
MΩ  
INPUT NOISE  
Voltage Noise Density  
f
OUT = 100kHz to 100MHz  
nV/Hz  
INPUT VOLTAGE RANGE  
Input Voltage Range  
Common-Mode Input Range  
±3.0  
±3.2  
V
V
OUTPUT  
Output Voltage Compliance  
C-Current Output  
C-Output Impedance  
Open-Loop Gain  
±3.5  
±3.2  
620 || 2  
83  
V
mA  
k|| pF  
dB  
±2.5  
TRANSCONDUCTANCE  
Transconductance  
22  
mA/V  
HOLD CONTROL  
Logic 1 Voltage  
Logic 0 Voltage  
Logic 1 Current  
Logic 0 Current  
+2  
0
+VCC +0.6  
0.8  
V
V
µA  
µA  
V Hold Control = 5.0V  
V Hold Control = 0.8V  
1
0.05  
TRANSFER CHARACTERISTICS  
Charge Injection  
Feedthrough Rejection  
Track-To-Hold  
Hold Mode  
40  
–100  
fC  
dB  
COMPLETE SHC615  
POWER SUPPLY  
Rated Voltage  
Derated Performance  
Quiescent Current  
Quiescent Current Range  
±5  
V
V
mA  
mA  
±4.5  
±12  
±5.5  
±18  
R
Q = 300Ω  
±15  
±3 to ±36  
Programmable (Useful Range)  
TEMPERATURE RANGE  
Operating  
Storage  
–40  
–40  
+85  
+125  
°C  
°C  
®
3
SHC615  
AC SPECIFICATIONS  
At VCC = ±5V, RLOAD = 100, RSOURCE = 50Ω, RQ = 300, and TA = +25°C, unless otherwise specified.  
SHC615AP, AU  
TYP  
PARAMETER  
CONDITIONS  
MIN  
MAX  
UNITS  
FREQUENCY DOMAIN  
OTA  
LARGE-SIGNAL BANDWIDTH  
(–3dB), (B-to-E)  
VOUT = 5.0Vp-p  
430  
540  
620  
MHz  
MHz  
MHz  
VOUT = 2.8Vp-p  
OUT = 1.4Vp-p  
V
SMALL-SIGNAL BANDWIDTH B-TO-E  
DIFFERENTIAL GAIN (B-TO-E)  
VOUT = 0.2Vp-p  
520  
MHz  
f = 4.43MHz, VOUT = 0.7Vp-p,  
R
L = 150Ω  
1.8  
0.1  
%
%
RL = 500Ω  
DIFFERENTIAL PHASE  
f = 4.43MHz, VOUT = 0.7Vp-p,  
L = 150Ω  
L = 500Ω  
R
R
0.07  
0.01  
°
°
(B-to-E)  
HARMONIC DISTORTION (B-TO-E)  
Second Harmonic  
Third Harmonic  
f = 30MHz, VOUT = 1.4Vp-p  
–50  
–46  
dBc  
dBc  
LARGE SIGNAL BANDWIDTH  
(–3dB), (B-to-C)  
VOUT = 5.0Vp-p  
VOUT = 2.8Vp-p  
VOUT = 1.4Vp-p  
250  
580  
750  
MHz  
MHz  
MHz  
SMALL SIGNAL BANDWIDTH  
B-to-C  
VOUT = 0.2Vp-p  
680  
MHz  
COMPARATOR  
Sample Mode  
IOUT = 4mAp-p  
BANDWIDTH  
240  
270  
280  
MHz  
MHz  
MHz  
(–3dB)  
I
I
OUT = 2mAp-p  
OUT = 1mAp-p  
TIME DOMAIN  
OTA  
RISE TIME  
2Vp-p Step, 10% to 90%  
B-to-E  
B-to-C  
1.1  
1.2  
ns  
ns  
SLEW RATE  
2Vp-p,B-to-E  
B-to-C  
5Vp-p,B-to-E  
B-to-C  
1800  
1700  
3300  
3000  
V/µs  
V/µs  
V/µs  
V/µs  
COMPARATOR  
RISE TIME  
10% to 90%, RL = 50Ω, IOUT = ±2mA  
(Sample Mode)  
CLOAD = 1pF  
2.5  
ns  
SLEW RATE  
10% to 90%, RL = 50Ω, IOUT = ±2mA  
(Sample Mode)  
CLOAD = 1pF  
0.95  
mA/ns  
DYNAMIC CHARACTERISTICS  
Propagation Delay Time  
Propagation Delay Time  
Delay Time  
tPDH, VOD = 200mV  
2.2  
2.15  
3.8  
ns  
ns  
ns  
ns  
t
PDL, VOD = 200mV  
Sample-to-Hold  
Hold-to-Sample  
3.0  
®
4
SHC615  
PIN CONFIGURATION  
BLOCK DIAGRAM  
Top View  
DIP, SO-14  
CHOLD  
4
Ground  
9
Base  
3
2
Emitter  
IQ Adjust  
Emitter, E  
Base, B  
CHOLD  
1
2
3
4
5
6
7
14 NC  
7
Hold  
Control  
Switching  
Stage  
13 +VCC  
12 IOUT, Collector, C  
11 S/H In–  
OTA  
12  
1
Collector  
Sampling  
Comparator (SC)  
SHC615  
(IOUT  
)
10  
11  
S/H  
In+  
–VCC  
10 S/H In+  
Biasing  
IQ Adjust  
SOTA  
S/H  
In–  
NC  
9
8
Ground  
NC  
SHC615  
Hold Control  
13  
5
+VCC –VCC  
ABSOLUTE MAXIMUM RATINGS  
ELECTROSTATIC  
DISCHARGE SENSITIVITY  
Any integrated circuit can be damaged by ESD. Burr-Brown  
recommends that all integrated circuits be handled with ap-  
propriate precautions. Failure to observe proper handling and  
installation procedures can cause damage.  
Power Supply Voltage (±VCC) .............................................................. ±6V  
Input Voltage(1) ........................................................................ ±VCC ±0.7V  
Operating Temperature .................................................... –40°C to +85°C  
Storage Temperature...................................................... –40°C to +125°C  
Junction Temperature .................................................................... +150°C  
Lead Temperature (soldering, 10s) ............................................... +300°C  
Hold Control .............................................................. –0.5V to +VCC +0.7V  
NOTE: (1) Inputs are internally diode-clamped to ±VCC  
.
ESD damage can range from subtle performance degradation  
to complete device failure. Precision integrated circuits may  
be more susceptible to damage because very small parametric  
changes could cause the device not to meet published speci-  
fications.  
PACKAGE/ORDERING INFORMATION  
PACKAGE  
DRAWING TEMPERATURE  
PRODUCT  
PACKAGE  
NUMBER(1)  
RANGE  
SHC615AP  
SHC615AU SO 14-Lead Surface-Mount  
Plastic 14-Pin DIP  
010  
235  
–40°C to +85°C  
–40°C to +85°C  
NOTE: (1) For detailed drawing and dimension table, please see end of data  
sheet, or Appendix C of Burr-Brown IC Data Book.  
®
5
SHC615  
TYPICAL PERFORMANCE CURVES  
At RQ = 300, TA = +25°C, VCC = ±5V, unless otherwise noted.  
TOTAL QUIESCENT CURRENT vs TEMPERATURE  
SHC615 TOTAL QUIESCENT CURRENT vs RQ  
100  
1.50  
1.40  
1.30  
1.20  
1.10  
1.00  
0.90  
0.80  
0.70  
0.60  
0.50  
10  
1
–25  
0
25  
50  
75  
100  
10  
100  
1000  
10000  
Temperature (C°)  
RQ ()  
OPERATIONAL TRANSCONDUCTANCE AMPLIFIER  
OTA B-INPUT BIAS CURRENT vs TEMPERATURE  
OTA-B INPUT OFFSET VOLTAGE vs TEMPERATURE  
0.0  
–0.1  
–0.2  
–0.3  
–0.4  
–0.5  
–0.6  
–0.7  
–0.8  
–0.9  
–1.0  
12  
10  
8
6
4
2
RE = 100Ω  
0
–25  
0
25  
50  
75  
100  
–25  
0
25  
50  
75  
100  
Temperature (C°)  
Temperature (C°)  
OTA-B INPUT RESISTANCE vs  
TOTAL QUIESCENT CURRENT  
OTA-E OUTPUT RESISTANCE vs  
TOTAL QUIESCENT CURRENT  
18  
16  
14  
12  
10  
8
45  
40  
35  
30  
25  
20  
15  
10  
5
6
4
2
0
0
4
9
14  
19  
24  
29  
34  
39  
5
10  
15  
20  
25  
30  
35  
40  
Total Quiescent Current, IQ (mA)  
Total Quiescent Current, IQ (mA)  
®
6
SHC615  
TYPICAL PERFORMANCE CURVES (CONT)  
At RQ = 300Ω, TA = +25°C, VCC = ±5V, unless otherwise noted.  
OTA-C OUTPUT RESISTANCE vs  
TOTAL QUIESCENT CURRENT  
OTA-C OUTPUT BIAS CURRENT vs TEMPERATURE  
1.8  
1.6  
1.4  
1.2  
1
–60  
–65  
–70  
–75  
–80  
–85  
–90  
–95  
–100  
0.8  
0.6  
0.4  
0.2  
0
–40  
–20  
0
20  
40  
60  
80  
100  
5
10  
15  
20  
25  
30  
35  
40  
Total Quiescent Current, IQ (mA)  
Temperature (°C)  
OTA TRANSFER CHARACTERISTICS  
vs INPUT VOLTAGE  
OTA TRANSFER CHARACTERISTIC vs INPUT VOLTAGE  
IQ = ±25mA  
25  
20  
25  
20  
IQ = ±25mA  
IQ = ±14mA  
15  
15  
IQ = ±14mA  
VOUT  
100Ω  
RC  
150Ω  
10  
10  
OTA  
IQ = ±5mA  
VIN  
5
5
IQ = ±5mA  
100Ω  
RE  
0
0
–5  
–5  
VOUT  
–10  
–15  
–20  
–25  
–10  
–15  
–20  
–25  
150Ω  
OTA  
100Ω  
RC  
VIN  
–3.5 –3 –2.5 –2 –1.5 –1 –0.5  
0
0.5  
1
1.5  
2
2.5  
3
3.5  
–0.2 –0.15 –0.1 –0.05  
0
0.05  
0.1  
0.15  
0.2  
OTA-B Input Voltage (V)  
OTA-B Input Voltage (V)  
OTA TRANSCONDUCTANCE vs  
TOTAL QUIESCENT CURRENT  
OTA-TRANSCONDUCTANCE vs FREQUENCY  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
100  
80  
60  
40  
20  
0
IQ = ±25mA  
IQ = ±5mA  
IQ = ±14mA  
Small Signal  
(<200mV)  
Large Signal  
(>200mV)  
0
±5  
±10  
±15  
±20  
±25  
±30  
1.0  
10k  
100k  
1M  
10M  
100M  
1G  
Total Quiescent Current, IQ (mA)  
Frequency (Hz)  
®
7
SHC615  
TYPICAL PERFORMANCE CURVES (CONT)  
At RQ = 300Ω, TA = +25°C, VCC = ±5V, unless otherwise noted.  
OTA-E FREQUENCY RESPONSE  
OTA-E VOLTAGE NOISE SPECTRAL DENSITY  
20  
10  
45  
40  
35  
30  
25  
20  
15  
10  
5
5Vp-p  
2.8Vp-p  
1.4Vp-p  
0.6Vp-p  
0
0.2Vp-p  
12  
–10  
–20  
–30  
150Ω  
3
VIN  
OTA  
2.2nV/Hz  
50Ω  
2
VOUT  
0
300k  
1M  
10M  
Frequency (Hz)  
100M  
1G  
100  
1G  
100  
1k  
10k  
100k  
Frequency (Hz)  
OTA-E SMALL SIGNAL PULSE RESPONSE  
OTA-E LARGE SIGNAL PULSE RESPONSE  
150  
100  
50  
3
2
1
0
0
–50  
–100  
–150  
–1  
–2  
–3  
RIN = 150, RL = 100, VIN = 4Vp-p,  
RIN = 150, RL = 100, VIN = 200mVp-p,  
tRISE = tFALL = 1.5ns (Generator)  
tRISE = tFALL = 1.5ns (Generator)  
0
20  
40  
Time (ns)  
60  
80  
100  
0
20  
40  
60  
80  
Time (ns)  
OTA-C FREQUENCY RESPONSE  
5Vp-p  
OTA-C VOLTAGE NOISE SPECTRAL DENSITY  
20  
10  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
2.8Vp-p  
1.4Vp-p  
0
0.6Vp-p  
0.2Vp-p  
–10  
–20  
–30  
–40  
VOUT  
12  
2
100Ω  
150Ω  
3
VIN  
OTA  
50Ω  
4.5nV/Hz  
100Ω  
100  
1k  
10k  
100k  
300k  
1M  
10M  
Frequency (Hz)  
100M  
Frequency (Hz)  
®
8
SHC615  
TYPICAL PERFORMANCE CURVES (CONT)  
At RQ = 300Ω, TA = +25°C, VCC = ±5V, unless otherwise noted.  
OTA-C SMALL SIGNAL PULSE RESPONSE  
OTA-C LARGE SIGNAL PULSE RESPONSE  
3
2
150  
100  
50  
1
0
0
–1  
–2  
–3  
–50  
–100  
–150  
RIN = 150, RE = 100, R C = 100,  
VIN = 4Vp-p, tRISE = tFALL = 1.5ns (Generator)  
RIN = 150, RE = 100, R C = 100,  
VIN = 200mVp-p, tRISE = tFALL = 1.5ns (Generator)  
0
20  
40  
60  
80  
100  
0
20  
40  
60  
80  
100  
Time (ns)  
Time (ns)  
OTA-C HARMONIC DISTORTION vs FREQUENCY  
OTA-E HARMONIC DISTORTION vs FREQUENCY  
RE = 100Ω  
–45  
–46  
–47  
–48  
–49  
–50  
–51  
–52  
–53  
0
–5  
VOUT = 1.4Vp  
RE = RC = 100Ω  
–10  
–15  
–20  
–25  
–30  
–35  
–40  
–45  
–50  
2f  
2f  
3f  
3f  
1M  
10M  
Frequency (Hz)  
100M  
1M  
10M  
100M  
Frequency (Hz)  
SAMPLING COMPARATOR  
OUTPUT BIAS CURRENT vs TEMPERATURE  
INPUT BIAS CURRENT vs TEMPERATURE  
S/H In+  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0
20  
15  
10  
5
S/H In–  
0
0
5
–10  
–40  
–20  
0
20  
40  
60  
80  
100  
100  
–40  
–20  
0
20  
40  
60  
80  
Temperature (°C)  
Temperature (C°)  
®
9
SHC615  
TYPICAL PERFORMANCE CURVES (CONT)  
At RQ = 300Ω, TA = +25°C, VCC = ±5V, unless otherwise noted.  
TRANSCONDUCTANCE vs  
TOTAL QUIESCENT CURRENT  
INPUT RESISTANCE vs TOTAL QUIESCENT CURRENT  
0.7  
40  
0.6  
30  
0.5  
0.4  
20  
0.3  
0.2  
10  
0.1  
0
0
5
10  
15  
20  
25  
30  
35  
40  
0
5
10  
15  
20  
25  
Total Quiescent Current, IQ (mA)  
Total Quiescent Current, IQ (mA)  
TRANSFER CHARACTERISTICS  
IQ = ±25mA  
TRANSCONDUCTANCE vs INPUT VOLTAGE  
IQ = ±25mA  
6
4
50  
40  
30  
20  
10  
0
IQ = ±14mA  
2
IQ = ±14mA  
0
IQ = ±5mA  
–2  
–4  
–6  
IQ = ±5mA  
–10  
–0.2 –0.15 –0.1 –0.05  
0
0.05  
0.1  
0.15  
0.2  
–0.2 –0.15 –0.1 –0.05  
0
0.05  
0.1  
0.15  
0.2  
Input Voltage (V)  
Input Voltage (V)  
COMMON-MODE REJECTION vs FREQUENCY  
PROPAGATION DELAY vs TOTAL QUIESCENT CURRENT  
0
–20  
4
3.5  
3
–40  
Pos  
2.5  
2
–60  
–80  
1.5  
1
Neg  
–100  
300k  
1M  
10M  
100M  
1G  
3
8
13  
18  
21  
28  
33  
38  
Frequency (Hz)  
Total Quiescent Current, IQ (mA)  
®
10  
SHC615  
TYPICAL PERFORMANCE CURVES (CONT)  
At RQ = 300Ω, TA = +25°C, VCC = ±5V, unless otherwise noted.  
PROPAGATION DELAY vs OVERDRIVE  
PROPAGATION DELAY TIME vs TEMPERATURE  
3
2.5  
2
3
2.8  
2.6  
2.4  
2.2  
2
Pos  
Neg  
Pos  
Neg  
1.5  
1
100Ω  
100Ω  
10  
11  
VOD  
VOD  
GND  
4
SC  
VOD  
0.5  
0
1.8  
1.6  
0
0
0
200  
400  
600  
800  
100  
1200  
–40  
–20  
0
20  
40  
60  
80  
100  
120  
Input Voltage (mV)  
Temperature (°C)  
PROPAGATION DELAY vs LOAD CAPACITANCE  
Pos  
PROPAGATION DELAY vs SLEW RATE  
Pos  
4
3.5  
3
40  
35  
30  
25  
20  
15  
10  
5
VIN = 1.2Vpp  
Neg  
Neg  
2.5  
2
10  
4
SC  
11  
+0.6V  
–0.6V  
CLOAD  
1.5  
1
VREF  
VOD = 1.2Vp-p  
0
500 250 160 120 96  
80  
68  
60  
53  
48  
100 200 300 400 500 600 700 800 900 1000  
Capacitive Load, CL (pF)  
(0) (2) (4) (6) (8) (10) (12) (14) (16) (18) (20)  
Slew Rate (V/µs)  
(Rise Time (ns))  
COMPARATOR RESPONSE TO A  
2ns ANALOG INPUT PULSE  
COMPARATOR RESPONSE TO A  
10ns ANALOG INPUT PULSE  
150  
100  
50  
150  
100  
50  
IOUT = 4mAp-p  
RL = 50Ω  
IOUT = 4mAp-p  
RL = 50Ω  
0
0
–50  
–100  
–150  
–50  
–100  
–150  
20  
40  
60  
80  
100  
0
20  
40  
60  
80  
100  
Time (ns)  
Time (ns)  
®
11  
SHC615  
TYPICAL PERFORMANCE CURVES (CONT)  
At RQ = 300Ω, TA = +25°C, VCC = ±5V, unless otherwise noted.  
SWITCHING TRANSIENTS  
5
SWITCHING TRANSIENTS TEST CIRCUITS  
CD74HCT  
100Ω  
100Ω  
150Ω  
TTL  
Off-On  
On-Off  
0
–5  
Comparator  
200Ω  
200Ω  
50Ω  
4
10  
11  
SC  
–10  
–15  
50Ω  
7
TTL  
0
20  
40  
60  
Time (ns)  
80  
100  
FEEDTHROUGH REJECTION vs FREQUENCY  
(Off-Isolation)  
BANDWIDTH vs OUTPUT CURRENT SWING  
0
–20  
0
–10  
–20  
–30  
–40  
±2mA  
±1mA  
–40  
±0.5mA  
–60  
100Ω  
7
VIN  
10  
11  
–80  
4
VOUT  
50Ω  
SC  
50Ω  
–100  
100Ω  
–120  
100k  
1M  
10M  
100M  
1G  
300k  
1M  
10M  
100M  
1G  
Frequency (Hz)  
Frequency (Hz)  
HOLD COMMAND DELAY TIME  
SLEW RATE vs TOTAL QUIESCENT CURRENT  
4
2
0
3.5  
3
2.5  
2
100  
IOUT = 2mA  
Pos  
Neg  
1.5  
1
0
IOUT = –2mA  
0.5  
0
–100  
0
5
10  
15  
20  
25  
30  
35  
40  
0
10  
20  
30  
40  
50  
Time (ns)  
Total Quiescent Current, IQ (mA)  
®
12  
SHC615  
output (emitter), and the high-impedance current output  
(collector).  
DISCUSSION OF  
PERFORMANCE  
The SHC615, which contains a wideband Operational  
Transconductance Amplifier and a fast sampling compara-  
tor, represents a complete subsystem for very fast and  
precise DC restoration, offset clamping and correction to  
GND or to an adjustable reference voltage, and low fre-  
quency hum suppression of wideband operational or buffer  
amplifiers.  
The OTA consists of a complementary buffer amplifier and  
a subsequent complementary current mirror. The buffer  
amplifier features a Darlington output stage and the current  
mirror has a cascoded output. The addition of this cascode  
circuitry increases the current source output resistance to  
1Mand the open-loop gain to typically 96dB. Both fea-  
tures improve the OTAs linearity and drive capabilities. Any  
bipolar input voltage at the high impedance base has the  
same polarity and signal level at the low impedance buffer  
or emitter output. For the open-loop diagrams the emitter is  
connected to GND and then the collector current is deter-  
mined by the product voltage between base and emitter  
times the transconductance. In application circuits (Figure  
2b.), a resistor RE between emitter and GND is used to set  
the OTA transfer characteristics. The following formulas  
describe the most important relationships. rE is the output  
impedance of the buffer amplifier (emitter) or the reciprocal  
of the OTA transconductance. Above ±5mA, collector cur-  
rent, IC, will be slightly less than indicated by the formula.  
Although the IC was designed to improve or stabilize the  
performance of complex, wideband video signals, it can also  
be used as a sample and hold amplifier, high-speed integra-  
tor, peak detector for nanosecond pulses, or demodulator or  
modulator for pulse code transmission systems. A wideband  
Operational Transconductance Amplifier (OTA) with a high-  
impedance cascode current source output and a fast and  
precise sampling comparator set a new standard for high-  
speed sampling applications.  
Both can be used as stand-alone circuits or combined to  
create more complex signal processing stages like sample  
and hold amplifiers. The SHC615 simplifies the design of  
input amplifiers with high hum suppression, clamping or  
DC-restoration stages in professional broadcast equipment,  
high-resolution CAD monitors and information terminals,  
signal processing stages for the energy and peak value of  
small and fast nanoseconds pulses, and eases the design of  
high-speed data acquisition systems behind a CCD sensor or  
in front of an analog-to-digital converter.  
VIN  
VIN  
IC  
IC  
=
RE  
=
rE  
rE + RE  
The RE resistor may be bypassed by a relatively large  
capacitor to maintain high AC gain. The parallel combina-  
tion of RE and this large capacitor form a high pass filter  
enhancing the high frequency gain. Other cases may require  
a RC compensation network parallel to RE to optimize the  
high-frequency response. The full power bandwidth mea-  
sured at the emitter achieves 620MHz. The frequency re-  
sponse of the collector is directly related to the resistor’s  
value between collector and GND; it decreases with increas-  
ing resistor values, because it forms a low-pass network with  
the OTA C-output capacitance.  
An external resistor, RQ, allows the user to set the quiescent  
current. RQ is connected from Pin 1 (IQ adjust) to –VCC. It  
determines the operating currents of both the OTA and  
comparator sections and controls the bandwidth and AC  
behavior as well as the transconductance of both sections.  
Besides the quiescent current setting feature, the Propor-  
tional-to-Absolute-Temperature (PTAT) supply increases the  
quiescent current vs temperature and keeps it constant over  
a wide range of input voltages. This variation holds the  
transconductance gm of the OTA and comparator relatively  
constant vs temperature. The circuit parameters listed in the  
specification table are measured with RQ set to 300, giving  
a nominal quiescent current at ±15mA. The circuit can be  
totally switched-off with a current flowing into Pin 1.  
Figure 1 shows a simplified block and circuit diagram of  
the SHC615 OTA. Both the emitter and the collector  
outputs offer a drive capability of ±20mA for driving low  
impedance lines or inputs. Connecting the collector to the  
emitter in a direct-feedback buffer configuration increases  
the drive capability to ±40mA. The emitter output is not  
current-limited or protected. Momentary shorts to GND  
should be avoided, but are unlikely to cause permanent  
damage.  
While the OTA’s function and labeling looks similar to  
that of transistors, it offers essential distinctive differences  
and improvements: 1) The collector current flows out of  
the C terminal for a positive B-to-E input voltage and into  
it for negative voltages; 2) A common emitter amplifier  
operates in non-inverting mode while the common base  
operates in inverting mode; 3) The OTA is far more linear  
than a bipolar transistor; 4) The transconductance can be  
adjusted with an external resistor; 5) Due to the PTAT  
biasing characteristic the quiescent current increases as  
shown in the typical performance curve vs temperature  
and keeps the AC performance constant; 6) The OTA is  
self-biased and bipolar; and, 7) The output current is zero  
for zero differential input voltages. AC inputs centered at  
zero produce an output current centered at zero.  
OPERATIONAL  
TRANSCONDUCTANCE  
AMPLIFIER (OTA)  
SECTION AND OVERVIEW  
The symbol for the OTA section is similar to that of a  
bipolar transistor, and the self-based OTA can be viewed as  
a quasi-ideal transistor or as a voltage-controlled current  
source. Application circuits for the OTA look and operate  
much like transistor circuits—the bipolar transistor, also, is  
a voltage-controlled current source. Like a transistor, it has  
three terminals: a high-impedance input (base) optimized for  
a low input bias current of 0.3µA, a low-impedance input/  
®
13  
SHC615  
+VCC  
(13)  
+VCC  
(13)  
Biasing  
Biasing  
B
(3)  
E
(2)  
C
(12)  
E
(2)  
C
(12)  
+1  
B
(3)  
Biasing  
Biasing  
+VCC  
(5)  
–VCC  
(5)  
(a)  
(b)  
FIGURE 1. a) Simplified Block; and, b) Circuit Diagram of the OTA Section.  
V+  
RB  
RL  
12  
C
VO  
VO  
100Ω  
Non-InvertingGain  
VOS  
3
B
VI  
OTA  
0
RL  
Inverting Gain  
VOS several volts  
VI  
E
2
RE  
RB  
RE  
V–  
(a) Common Emitter Amplifier  
Transconductance varies over temperature.  
(b) Common-E Amplifier  
Transconductance remains constant over temperature.  
FIGURE 2. a) Common Emitter Amplifier Using a Discrete Transistor; b) Common-E Amplifier Using the OTA Portion of the  
SHC615.  
BASIC APPLICATIONS CIRCUITS  
a Common-E amplifier which is equivalent to a common  
emitter transistor amplifier. Input and output can be ground  
referenced without any biasing. Due to the sense of the  
output current, the amplifier is non-inverting.  
Most application circuits for the OTA section consist of a  
few basic types which are best understood by analogy to  
discrete transistor circuits. Just as the transistor has three  
basic operating modes—common emitter, common base,  
and common collector—the OTA has three equivalent oper-  
ating modes common-E, common-B, and common-C (See  
Figures 2, 3 and 4). Figure 2 shows the OTA connected as  
Figure 4 shows the common-B amplifier. This configuration  
produces an inverting gain, and the input is low-impedance.  
When a high impedance input is needed, it can be created by  
inserting a buffer amplifier like BUF600 in series.  
®
14  
SHC615  
V+  
RL  
+
RL  
RE  
12  
C
V+  
G = –  
–  
1
gm  
RL  
RE  
100Ω  
G
VOS  
1
3 B  
VI  
OTA  
0
VO  
Non-Inverting Gain  
E
2
VI  
VO  
VOS several volts  
VO  
Inverting Gain  
OS 0  
12  
RE  
VO  
C
100Ω  
G
VOS  
1
B
3
(b) Common-C Amplifier  
(Buffer)  
RE  
V
OTA  
RE  
0.7V  
RL  
E
2
VI  
1
G =  
≈ 1  
1
V–  
(a) Common-Base  
Amplifier  
1 +  
RE  
gm • RE  
(a) Common Collector Amplifier  
(Emitter Follower)  
1
gm  
VI  
RO  
=
(b) Common-B Amplifier  
FIGURE 3. a) Common Collector Amplifier Using a Discrete  
Transistor; b) Common-C Amplifier Using the  
OTA Portion of the SHC615.  
FIGURE 4. a) Common Base Amplifier Using a Discrete  
Transistor; b) Common-B Amplifier Using the  
OTA Portion of the SHC615.  
SAMPLING COMPARATOR  
The additional offset voltage or switching transient induced  
on a capacitor at the current source output by the switching  
charge can be determined by the following formula:  
The SHC615 sampling comparator features a very short  
2.2ns propagation delay and utilizes a new switching circuit  
architecture to achieve excellent speed and precision.  
Charge(pC)  
Offset(V) =  
It provides high impedance inverting and non-inverting  
inputs, a high-impedance current source output and a TTL-  
CMOS-compatible Hold Control Input.  
CH Total(pF)  
The switching stage input is insensitive to the low slew rate  
performance of the hold control command and compatible  
with TTL/CMOS logic levels. With a TTL logic high, the  
comparator is active, comparing the two input voltages and  
varying the output current accordingly. With a TTL logic  
low, the comparator output is switched off.  
The sampling comparator consists of an operational transcon-  
ductance amplifier (OTA), a buffer amplifier, and a subse-  
quent switching circuit. The OTA and buffer amplifier are  
directly tied together at the buffer outputs to provide the two  
identical high-impedance inputs and high open-loop transcon-  
ductance. Even a small differential input voltage multiplied  
with the high transconductance results in an output cur-  
rent—positive or negative—depending upon the input polar-  
ity. This is similar to the low or high status of a conventional  
comparator. The current source output features high output  
impedance, output bias compensation, and is optimized for  
charging a capacitor in DC restoration, nanosecond integra-  
tors, peak detectors and S/H circuits. The typical comparator  
output current is ±3.2mA and the output bias current is  
minimized to typically ±10µA in the sampling mode.  
APPLICATION INFORMATION  
The SHC615 operates from ±5V power supplies (±6V maxi-  
mum). Do not attempt to operate with larger power supply  
voltages or permanent damage may occur.  
Inputs of the SHC615 are protected with internal diode  
clamps as shown in Figure 1. These protection diodes can  
safely conduct 10mA continuously (30mA peak). If input  
voltages can exceed the power supply voltages by 0.7V, the  
input signal current must be limited.  
This innovative circuit achieves the slew rate representatives  
of an open-loop design. In addition, the acquisition slew  
current for a hold or storage capacitor is higher than standard  
diode bridge and switch configurations, removing a main  
contributor to the limits of maximum sampling rate and  
input frequency.  
BASIC CONNECTIONS  
Figure 6 shows the basic connections required for operation.  
These connections are not shown in subsequent circuit  
diagrams. Power supply bypass capacitors should be located  
as close as possible to the device pins. Solid tantalum  
capacitors are generally best. See “Circuit Layout” at the end  
of the applications discussion for further suggestions on  
layout.  
The switching circuits in the SHC615 use current steering  
(versus voltage switching) to provide improved isolation  
between the switch and analog sections. This results in low  
aperture time sensitivity to the analog input signal, reduced  
power supply and analog switching noise. Sample-to-hold  
peak switching is 40fC.  
®
15  
SHC615  
If the high speed TTL-hold command signal goes negative  
due to reflections for AC-coupling, the hold control input  
must be protected by an external reverse bias diode to  
ground as shown in Figure 6.  
plague high-speed components when they are used incor-  
rectly.  
• Bypass power supplies very close to the device pins.  
Use tantalum chip capacitors (approximately 2.2µF);  
parallel 470pF and/or 10nF ceramic chip capacitors  
may be added if desired. Surface mount types are  
recommended because of their low lead inductance.  
Supply bypassing is extremely critical at high frequen-  
cies and when driving high current loads.  
CIRCUIT LAYOUT  
The high-frequency performance of the SHC615 can be  
greatly affected by the physical layout of the printed circuit  
board. The following tips are offered as suggestions, not as  
absolute requirements. Oscillations, ringing, poor bandwidth,  
poor settling, and peaking are all typical problems that  
• PC board traces for power lines should be wide to reduce  
impedance.  
+VCC  
(13)  
OTA  
Biasing  
CHOLD  
(4)  
In+  
(10)  
Switching  
Stage  
Biasing  
Hold Control  
(7)  
GND TTL  
(9)  
–VCC  
(5)  
+VCC  
(13)  
Biasing  
Comparator  
(10)  
Switching Stage  
In+  
In–  
CHOLD  
(4)  
SOTA  
(11)  
In–  
(11)  
Hold Control  
(7)  
(a)  
BUFFER  
Biasing  
AMPLIFIER  
–VCC  
(5)  
(b)  
FIGURE 5. a) Simplified Block Diagram; and, b) Circuit Diagram of the Sampling Comparator which Includes the Sampling  
Operational Transconductance Amplifier (SOTA) and the Switching Stage.  
®
16  
SHC615  
• Make short, low-inductance traces. The entire physical  
circuit should be as small as possible.  
• A resistor of 100 to 250in series with the high-imped-  
ance inputs is recommended to reduce peaking.  
• Use a low-impedance ground plane on the component side  
to ensure that a low-impedance ground is available through-  
out the layout.  
• Plug-in prototype boards and wire-wrap boards will not  
function well. A clean layout using RF techniques is  
essential—there are no shortcuts.  
• Do not extend the ground plane under high-impedance  
nodes sensitive to stray capacitances such as the amplifier’s  
input terminals.  
• Terminate transmission line loads. Unterminated lines,  
such as box cables, can appear to the amplifier to be a  
capacitive or inductive load. By terminating a transmission  
line with its characteristic impedance, the amplifier’s load  
then appears purely resistive.  
• Sockets are not recommended since they add significant  
inductance and parasitic capacitance. If sockets are re-  
quired, use zero-profile sockets.  
• Protect the hold control input with an external diode if  
necessary.  
• Use low-inductance, surface-mount components. Surface-  
mount components offer the best AC performance.  
RB  
(25to 200)  
CHOLD  
9
GND  
4
3
Base  
2
Emitter  
Switching Stage  
OTA  
7
Hold  
Control  
(20Ω  
to  
12  
Collector  
200)  
Sampling Comparator  
(SC)  
S/H In+  
S/H In–  
IQ Adjust  
10  
11  
Biasing  
1
SOTA  
RQ = 300sets roughly  
IQ = ±14mA  
RQ  
13  
+VCC  
5
–VCC  
–5V(1)  
+5V(1)  
10nF  
+
2.2µF  
470pF  
470pF  
10nF  
2.2µF  
+
Solid Tanatlum  
NOTE: (1) ±VCC = ±6V absolute max.  
FIGURE 6. Basic Connections  
®
17  
SHC615  
TYPICAL APPLICATIONS  
HCL  
HCL  
100Ω  
100Ω  
10  
7
100Ω  
100Ω  
4
10  
11  
7
SC  
R2  
R1  
11  
G = +  
SC  
4
SHC615  
12  
CHOLD  
100Ω  
12  
OTA  
3
SHC615  
OTA  
2
CHOLD  
100Ω  
3
VOUT  
VIN  
VOUT  
2
VIN  
R1  
R2  
FIGURE 7. Complete DC Restoration System.  
FIGURE 8. DC Restoration of a Buffer Amplifier.  
CHOLD  
HCL  
100Ω  
RE  
7
Hold /Track  
2
100Ω  
11  
10  
VREF  
4
100Ω  
SC  
OTA  
12  
IOUT  
3
12  
150Ω  
50Ω  
SHC615  
SHC615  
10  
11  
7
VIN  
100Ω  
4
OTA  
2
SC  
R1  
R2  
3
CHOLD  
100Ω  
50Ω  
300Ω  
300Ω  
VOUT  
300Ω  
VOUT  
OPA623  
150Ω  
300Ω  
• Current Control  
• Non-Inverting  
• DC Coupling  
VIN  
FIGURE 10. Sample/Hold Amplifier.  
FIGURE 9. Clamped Video/RF Amplifier.  
®
18  
SHC615  
Hold Control  
Hold Control  
50Ω  
100Ω  
–VOUT  
+1  
IOUT  
8
4
150Ω  
50Ω  
12  
OTA  
2
10  
11  
7
27pF  
VIN  
BUF600  
100Ω  
100Ω  
4
SC  
3
12  
150Ω  
27pF  
10  
11  
7
VIN  
100Ω  
4
50Ω  
SC  
OTA  
2
3
50Ω  
VOUT  
50Ω  
27pF  
SHC615  
300Ω  
620Ω  
820Ω  
+VOUT  
1µF  
FIGURE 11. Integrator for ns-Pulses.  
FIGURE 12. Fast Pulse Peak Detector.  
12  
SHC615  
11  
fREF  
100Ω  
OTA  
SC  
10  
4
3
fIN  
HCL  
7
75Ω  
RE  
CINT  
2
VOUT  
2
CHOLD  
4
100Ω  
7
Video  
ADC  
75Ω  
75Ω  
• Level Shifting  
• Black Level Control  
• Gain  
11  
10  
–1V  
100Ω  
+5V  
SC  
OTA  
12  
3
SHC615  
R1  
R2  
100Ω  
fIN  
÷N  
25Ω  
fOUT  
VIN = 0 to –2V  
OPA621  
Sample  
/Hold  
CCD  
Buffer  
fREF  
fIN  
VCO  
VOUT  
IOUT  
Timing  
Control  
Phase  
fREF  
VOUT  
fOUT = fREF x N  
FIGURE 13. CCD Analog Front-End.  
FIGURE 14. Phase Detector For Fast PLL-Systems.  
®
19  
SHC615  

相关型号:

SHC615AU

Wide-Bandwidth, DC RESTORATION CIRCUIT
BB

SHC615AU/2K5

Sample and Hold Circuit, 1 Func, Sample, PDSO14, SO-14
BB

SHC68-68-RDIO

R Series Expansion Chassis for C Series I/O
NI

SHC7

CIT SWITCH
CIT

SHC702JM

Sample and Hold Circuit, 1 Func, Sample, 0.6us Acquisition Time, Hybrid, MDIP24, METAL, 24 PIN
BB

SHC76BM

Sample and Hold Circuit, 1 Func, MDIP14,
BB

SHC76BM-BI

Sample and Hold Circuit, 1 Func, MDIP14,
BB

SHC76KM

MDIP14
TI

SHC76KM

Sample and Hold Circuit, 1 Func, MDIP14,
BB

SHC76KM-BI

Sample and Hold Circuit, 1 Func, MDIP14,
BB

SHC8

CIT SWITCH
CIT

SHC803CMQ

Sample and Hold Circuit, 1 Func, MDIP24,
BB