XTR112UA [BB]

4-20mA CURRENT TRANSMITTERS with Sensor Excitation and Linearization; 4-20mA电流变送器传感器激励和线性
XTR112UA
型号: XTR112UA
厂家: BURR-BROWN CORPORATION    BURR-BROWN CORPORATION
描述:

4-20mA CURRENT TRANSMITTERS with Sensor Excitation and Linearization
4-20mA电流变送器传感器激励和线性

模拟IC 传感器 信号电路 光电二极管
文件: 总16页 (文件大小:257K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
®
XTR114  
XTR112  
XTR114  
XTR112  
4-20mA CURRENT TRANSMITTERS  
with Sensor Excitation and Linearization  
FEATURES  
APPLICATIONS  
LOW UNADJUSTED ERROR  
INDUSTRIAL PROCESS CONTROL  
PRECISION CURRENT SOURCES  
XTR112: Two 250µA  
FACTORY AUTOMATION  
SCADA REMOTE DATA ACQUISITION  
XTR114: Two 100µA  
REMOTE TEMPERATURE AND PRESSURE  
RTD OR BRIDGE EXCITATION  
LINEARIZATION  
TRANSDUCERS  
TWO OR THREE-WIRE RTD OPERATION  
LOW OFFSET DRIFT: 0.4µV/°C  
LOW OUTPUT CURRENT NOISE: 30nAp-p  
HIGH PSR: 110dB min  
Pt1000 NONLINEARITY CORRECTION  
USING XTR112 and XTR114  
5
4
HIGH CMR: 86dB min  
3
WIDE SUPPLY RANGE: 7.5V TO 36V  
SO-14 SOIC PACKAGE  
Uncorrected  
RTD Nonlinearity  
2
Corrected  
Nonlinearity  
1
0
DESCRIPTION  
The XTR112 and XTR114 are monolithic 4-20mA,  
two-wire current transmitters. They provide complete  
current excitation for high impedance platinum RTD  
temperature sensors and bridges, instrumentation am-  
plifier, and current output circuitry on a single inte-  
grated circuit. The XTR112 has two 250µA current  
sources while the XTR114 has two 100µA sources for  
RTD excitation.  
–1  
–200°C  
+850°C  
Process Temperature (°C)  
IR  
IR  
VLIN  
VREG  
Versatile linearization circuitry provides a 2nd-order  
correction to the RTD, typically achieving a 40:1  
improvement in linearity.  
7.5V to 36V  
VPS  
+
Instrumentation amplifier gain can be configured for a  
wide range of temperature or pressure measurements.  
Total unadjusted error of the complete current trans-  
mitter is low enough to permit use without adjustment  
in many applications. This includes zero output cur-  
rent drift, span drift and nonlinearity. The XTR112  
and XTR114 operate on loop power supply voltages  
down to 7.5V.  
4-20 mA  
XTR112  
XTR114  
VO  
RL  
RG  
RTD  
XTR112: IR = 250µA  
XTR114: IR = 100µA  
Both are available in an SO-14 surface-mount pack-  
age and are specified for the –40°C to +85°C indus-  
trial temperature range.  
International Airport Industrial Park  
Mailing Address: PO Box 11400, Tucson, AZ 85734  
Street Address: 6730 S. Tucson Blvd., Tucson, AZ 85706  
• Tel: (520) 746-1111  
Twx: 910-952-1111 Internet: http://www.burr-brown.com/  
Cable: BBRCORP Telex: 066-6491  
FAX: (520) 889-1510 Immediate Product Info: (800) 548-6132  
©1998 Burr-Brown Corporation  
PDS-1473A  
Printed in U.S.A. December, 1998  
SPECIFICATIONS  
At TA = +25°C, V+ = 24V, and TIP29C external transistor, unless otherwise noted.  
XTR112U  
XTR114U  
XTR112UA  
XTR114UA  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
MIN  
TYP  
MAX  
UNITS  
OUTPUT  
Output Current Equation  
Output Current, Specified Range  
Over-Scale Limit  
Under-Scale Limit: XTR112  
XTR114  
A
IO = VIN • (40/RG) + 4mA, VIN in Volts, RG in Ω  
4
20  
30  
1.7  
1.4  
mA  
mA  
mA  
mA  
24  
0.9  
0.6  
27  
1.3  
1
IREG = 0  
ZERO OUTPUT(1)  
Initial Error  
vs Temperature  
vs Supply Voltage, V+  
vs Common-Mode Voltage  
vs VREG Output Current  
Noise: 0.1Hz to 10Hz  
VIN = 0V, RG = ∞  
4
±5  
±0.07  
0.04  
0.02  
0.3  
mA  
µA  
±25  
±0.5  
0.2  
±50  
±0.9  
µA/°C  
µA/V  
µA/V  
µA/mA  
µAp-p  
V+ = 7.5V to 36V  
VCM = 1.25V to 3.5V(2)  
0.03  
SPAN  
Span Equation (transconductance)  
Initial Error(3)  
vs Temperature(3)  
Nonlinearity: Ideal Input(4)  
S = 40/RG  
±0.05  
±3  
A/V  
%
ppm/°C  
%
Full Scale (VIN) = 50mV  
Full Scale (VIN) = 50mV  
±0.2  
±25  
0.01  
±0.4  
0.003  
INPUT(5)  
Offset Voltage  
vs Temperature  
vs Supply Voltage, V+  
vs Common-Mode Voltage,  
RTI (CMRR)  
VCM = 2V  
±50  
±0.4  
±0.3  
±10  
±100  
±1.5  
±3  
±250  
±3  
µV  
µV/°C  
µV/V  
µV/V  
V+ = 7.5V to 36V  
VCM = 1.25V to 3.5V(2)  
±50  
±100  
Common-Mode Input Range(2)  
Input Bias Current  
vs Temperature  
Input Offset Current  
vs Temperature  
Impedance: Differential  
Common-Mode  
Noise: 0.1Hz to 10Hz  
1.25  
3.5  
25  
50  
V
nA  
5
20  
±0.2  
5
0.1 || 1  
5 || 10  
0.6  
pA/°C  
nA  
pA/°C  
G|| pF  
G|| pF  
µVp-p  
±3  
±10  
CURRENT SOURCES  
Current: XTR112  
XTR114  
VO = 2V(6)  
250  
100  
±0.05  
±15  
±10  
±0.02  
±3  
µA  
µA  
%
ppm/°C  
ppm/V  
%
ppm/°C  
ppm/V  
V
V
MΩ  
GΩ  
µAp-p  
µAp-p  
Accuracy  
±0.2  
±35  
±25  
±0.1  
±15  
10  
±0.4  
±75  
±0.2  
±30  
vs Temperature  
vs Power Supply, V+  
Matching  
vs Temperature  
vs Power Supply, V+  
Compliance Voltage, Positive  
Negative(2)  
Output Impedance: XTR112  
XTR114  
Noise: 0.1Hz to 10Hz: XTR112  
XTR114  
V+ = 7.5V to 36V  
V+ = 7.5V to 36V  
1
(V+) –3 (V+) –2.5  
0
–0.2  
500  
1.2  
0.001  
0.0004  
(2)  
VREG  
5.1  
±0.02  
±0.2  
V
V
Accuracy  
±0.1  
vs Temperature  
vs Supply Voltage, V+  
Output Current: XTR112  
XTR114  
mV/°C  
mV/V  
mA  
mA  
1
–1, +2.1  
–1, +2.4  
75  
Output Impedance  
LINEARIZATION  
RLIN (internal)  
Accuracy  
1
±0.2  
±25  
kΩ  
%
ppm/°C  
±0.5  
±100  
±1  
vs Temperature  
POWER SUPPLY  
Specified Voltage  
Operating Voltage Range  
+24  
V
V
+7.5  
+36  
TEMPERATURE RANGE  
Specification, TMIN to TMAX  
Operating/Storage Range  
Thermal Resistance, θJA  
SO-14 Surface-Mount  
–40  
–55  
+85  
+125  
°C  
°C  
100  
°C/W  
Specification same as XTR112U, XTR114U.  
NOTES: (1) Describes accuracy of the 4mA low-scale offset current. Does not include input amplifier effects. Can be trimmed to zero. (2) Voltage measured with  
respect to IRET pin. (3) Does not include initial error or TCR of gain-setting resistor, RG. (4) Increasing the full-scale input range improves nonlinearity. (5) Does not  
include Zero Output initial error. (6) Current source output voltage with respect to IRET pin.  
®
2
XTR112, XTR114  
PIN CONFIGURATION  
ABSOLUTE MAXIMUM RATINGS(1)  
Power Supply, V+ (referenced to IO pin) .......................................... 40V  
Input Voltage, VI+N, VIN (referenced to IO pin) ............................ 0V to V+  
Storage Temperature Range ....................................... –55°C to +125°C  
Lead Temperature (soldering, 10s).............................................. +300°C  
Output Current Limit ............................................................... Continuous  
Junction Temperature ................................................................... +165°C  
Top View  
SO-14  
XTR112 and XTR114  
1
2
3
4
5
6
7
IR1  
VIN  
RG  
RG  
NC  
IRET  
IO  
14 IR2  
13 VI+N  
12 VLIN  
11 VREG  
10 V+  
NOTE: (1) Stresses above these ratings may cause permanent damage.  
Exposure to absolute maximum conditions for extended periods may degrade  
device reliability.  
ELECTROSTATIC  
DISCHARGE SENSITIVITY  
This integrated circuit can be damaged by ESD. Burr-Brown  
recommends that all integrated circuits be handled with  
appropriate precautions. Failure to observe proper handling  
and installation procedures can cause damage.  
9
8
B (Base)  
E (Emitter)  
NC = No Connection  
ESD damage can range from subtle performance degradation  
to complete device failure. Precision integrated circuits may  
be more susceptible to damage because very small parametric  
changes could cause the device not to meet its published  
specifications.  
PACKAGE/ORDERING INFORMATION  
PACKAGE  
DRAWING  
NUMBER(1)  
SPECIFIED  
TEMPERATURE  
RANGE  
CURRENT  
SOURCES  
ORDERING  
NUMBER(2)  
TRANSPORT  
MEDIA  
PRODUCT  
PACKAGE  
XTR112U  
2 x 250µA  
SO-14 Surface Mount  
235  
"
235  
"
–40°C to +85°C  
XTR112U  
XTR112U/2K5  
XTR112UA  
Rails  
Tape and Reel  
Rails  
"
"
"
"
XTR112UA  
"
2 x 250µA  
SO-14 Surface Mount  
"
–40°C to +85°C  
"
"
XTR112UA/2K5  
Tape and Reel  
XTR114U  
2 x 100µA  
SO-14 Surface Mount  
235  
"
235  
"
–40°C to +85°C  
XTR114U  
XTR114U/2K5  
XTR114UA  
Rails  
Tape and Reel  
Rails  
"
"
"
"
XTR114UA  
"
2 x 100µA  
SO-14 Surface Mount  
"
–40°C to +85°C  
"
"
XTR114UA/2K5  
Tape and Reel  
NOTES: (1) For detailed drawing and dimension table, please see end of data sheet, or Appendix C of Burr-Brown IC Data Book. (2) Models with a slash (/) are  
available only in Tape and Reel in the quantities indicated (e.g., /2K5 indicates 2500 devices per reel). Ordering 2500 pieces of “XTR112UA/2K5” will get a single  
2500-piece Tape and Reel. For detailed Tape and Reel mechanical information, refer to Appendix B of Burr-Brown IC Data Book.  
The information provided herein is believed to be reliable; however, BURR-BROWN assumes no responsibility for inaccuracies or omissions. BURR-BROWN assumes no responsibility for the use  
of this information, and all use of such information shall be entirely at the user’s own risk. Prices and specifications are subject to change without notice. No patent rights or licenses to any of the circuits  
described herein are implied or granted to any third party. BURR-BROWN does not authorize or warrant any BURR-BROWN product for use in life support devices and/or systems.  
®
3
XTR112, XTR114  
FUNCTIONAL BLOCK DIAGRAM  
VLIN  
XTR112: IR1 = IR2 = 250µA  
XTR114: IR1 = IR2 = 100µA  
IR1  
12  
IR2  
1
14  
VREG  
V+  
IR1  
IR2  
11  
10  
13  
VI+N  
5.1V  
4
B
9
RLIN  
1kΩ  
Q1  
100µA  
RG  
3
E
8
VIN  
RG  
I = 100µA +  
2
VIN  
975Ω  
25Ω  
7
40  
IO = 4mA + VIN  
( R )  
G
6
IRET  
®
4
XTR112, XTR114  
TYPICAL PERFORMANCE CURVES  
At TA = +25°C, and V+ = 24V, unless otherwise noted.  
TRANSCONDUCTANCE vs FREQUENCY  
50  
STEP RESPONSE  
RG = 500Ω  
RG = 125Ω  
RG = 2kΩ  
40  
30  
20  
10  
0
20mA  
RG = 125Ω  
RG = 2kΩ  
4mA  
25µs/div  
100  
1k  
10k  
100k  
1M  
Frequency (Hz)  
COMMON-MODE REJECTION RATIO vs FREQUENCY  
POWER-SUPPLY REJECTION RATIO vs FREQUENCY  
110  
100  
90  
80  
70  
60  
50  
40  
30  
20  
140  
120  
100  
80  
RG = 125Ω  
R
G = 125Ω  
60  
RG = 2kΩ  
RG = 2kΩ  
40  
20  
0
10  
100  
1k  
10k  
100k  
1M  
Frequency (Hz)  
10  
100  
1k  
10k  
100k  
1M  
Frequency (Hz)  
OVER-SCALE CURRENT vs TEMPERATURE  
With External Transistor  
UNDER-SCALE CURRENT vs TEMPERATURE  
29  
28  
27  
26  
25  
24  
23  
1.45  
1.4  
1.35  
1.3  
XTR112  
1.25  
1.2  
V+ = 36V  
V+ = 7.5V  
V+ = 24V  
1.15  
1.1  
1.05  
1
XTR114  
0.95  
–75  
–50  
–25  
0
25  
50  
75  
100  
125  
–75  
–50  
–25  
0
25  
50  
75  
100  
125  
Temperature (°C)  
Temperature (°C)  
®
5
XTR112, XTR114  
TYPICAL PERFORMANCE CURVES (CONT)  
At TA = +25°C, and V+ = 24V, unless otherwise noted.  
INPUT VOLTAGE AND CURRENT  
NOISE DENSITY vs FREQUENCY  
ZERO OUTPUT AND REFERENCE  
CURRENT NOISE vs FREQUENCY  
10k  
1k  
10k  
1k  
10k  
1k  
Zero Output Current  
Current Noise  
100  
10  
100  
10  
100  
10  
XTR112  
Reference Current  
Voltage Noise  
XTR114  
1
10  
100  
1k  
10k  
100k  
1
10  
100  
1k  
10k  
100k  
Frequency (Hz)  
Frequency (Hz)  
ZERO OUTPUT CURRENT ERROR  
vs TEMPERATURE  
INPUT BIAS AND OFFSET CURRENT  
vs TEMPERATURE  
4
2
25  
20  
15  
10  
5
0
–2  
–4  
–6  
–8  
–10  
–12  
+IB  
–IB  
IOS  
0
–75  
–50  
–25  
0
25  
50  
75  
100  
125  
–75  
–50  
–25  
0
25  
50  
75  
100  
125  
Temperature (°C)  
Temperature (°C)  
INPUT OFFSET VOLTAGE DRIFT  
PRODUCTION DISTRIBUTION  
ZERO OUTPUT DRIFT  
PRODUCTION DISTRIBUTION  
80  
70  
60  
50  
40  
30  
20  
10  
0
40  
35  
30  
25  
20  
15  
10  
5
Typical production distribution  
of packaged units. XTR112 and  
XTR114 included.  
Typical production distribution  
of packaged units. XTR112  
and XTR114 included.  
0
Input Offset Voltage Drift (µV/°C)  
Zero Output Drift (µA/°C)  
®
6
XTR112, XTR114  
TYPICAL PERFORMANCE CURVES (CONT)  
At TA = +25°C, and V+ = 24V, unless otherwise noted.  
CURRENT SOURCE DRIFT  
CURRENT SOURCE MATCHING  
PRODUCTION DISTRIBUTION  
DRIFT PRODUCTION DISTRIBUTION  
40  
35  
30  
25  
20  
15  
10  
5
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
Typical production distribution  
of packaged units.  
XTR112 and XTR114 included.  
Typical production distribution  
of packaged units. XTR112 and  
XTR114 included.  
0
Current Source Drift (ppm/°C)  
Current Source Matching Drift (ppm/°C)  
XTR114 VREG OUTPUT VOLTAGE  
XTR112 VREG OUTPUT VOLTAGE  
vs VREG OUTPUT CURRENT  
vs VREG OUTPUT CURRENT  
5.35  
5.30  
5.25  
5.20  
5.15  
5.10  
5.05  
5.00  
5.35  
5.30  
5.25  
5.20  
5.15  
5.10  
5.05  
5.00  
125°C  
125°C  
25°C  
25°C  
–55°C  
–55°C  
NOTE: Above 2.1mA,  
zero output degrades  
NOTE: Above 2.4mA,  
zero output degrades  
–1  
–0.5  
0
0.5  
1
1.5  
2
2.5  
3
–1  
–0.5  
0
0.5  
1
1.5  
2
2.5  
3
VREG Output Current (mA)  
VREG Output Current (mA)  
REFERENCE CURRENT ERROR  
vs TEMPERATURE  
+0.05  
0
–0.05  
–0.10  
–0.15  
–0.20  
–75  
–50  
–25  
0
25  
50  
75  
100  
125  
Temperature (°C)  
®
7
XTR112, XTR114  
The transfer function through the complete instrumentation  
amplifier and voltage-to-current converter is:  
APPLICATION INFORMATION  
Figure 1 shows the basic connection diagram for the XTR112  
and XTR114. The loop power supply, VPS, provides power  
for all circuitry. Output loop current is measured as a voltage  
across the series load resistor, RL.  
IO = 4mA + VIN • (40/RG)  
(VIN in volts, RG in ohms)  
where VIN is the differential input voltage. As evident from  
the transfer function, if RG is not used the gain is zero and  
the output is simply the XTR’s zero current. The value of RG  
varies slightly for two-wire RTD and three-wire RTD con-  
nections with linearization. RG can be calculated from the  
equations given in Figure 1 (two-wire RTD connection) and  
Table I (three-wire RTD connection).  
Two matched current sources drive the RTD and zero-  
setting resistor, RZ. These current sources are 250µA for the  
XTR112 and 100µA for the XTR114. Their instrumentation  
amplifier input measures the voltage difference between the  
RTD and RZ. The value of RZ is chosen to be equal to the  
resistance of the RTD at the low-scale (minimum) measure-  
ment temperature. RZ can be adjusted to achieve 4mA output  
at the minimum measurement temperature to correct for  
input offset voltage and reference current mismatch of the  
XTR112 and XTR114.  
The IRET pin is the return path for all current from the current  
sources and VREG. The IRET pin allows any current used in  
external circuitry to be sensed by the XTR112 and XTR114  
and to be included in the output current without causing an  
error.  
RCM provides an additional voltage drop to bias the inputs of  
the XTR112 and XTR114 within their common-mode input  
range. RCM should be bypassed with a 0.01µF capacitor to  
minimize common-mode noise. Resistor RG sets the gain of  
the instrumentation amplifier according to the desired tem-  
perature range. RLIN1 provides second-order linearization  
correction to the RTD, typically achieving a 40:1 improve-  
ment in linearity. An additional resistor is required for three-  
wire RTD connections, see Figure 3.  
The VREG pin provides an on-chip voltage source of approxi-  
mately 5.1V and is suitable for powering external input  
circuitry (refer to Figure 6). It is a moderately accurate  
voltage reference—it is not the same reference used to set  
the precision current references. VREG is capable of sourcing  
approximately 2.1mA of current for the XTR112 and 2.4mA  
for the XTR114. Exceeding these values may affect the 4mA  
zero output. Both products can sink approximately 1mA.  
IR2  
IR1  
Possible choices for Q1 (see text).  
TYPE  
PACKAGE  
2N4922  
TIP29C  
TIP31C  
TO-225  
TO-220  
TO-220  
12  
1
IR1  
7.5V to 36V  
VLIN  
14  
13  
11  
VI+N  
IR2  
10  
V+  
VREG  
IO  
4
RG  
4-20 mA  
9
8
R(G2)  
B
E
0.01µF  
Q1  
XTR112  
XTR114  
VO  
+
3
2
RG  
VIN  
(3)  
RLIN1  
RL  
VPS  
IO  
7
IRET  
(1)  
6
40  
RG  
RTD  
RZ  
IO = 4mA + VIN • (  
)
NOTES: (1) RZ = RTD resistance at minimum measured temperature.  
2.5 • IREF [R1(R2 + RZ) – 2(R2RZ)]  
RCM  
(2)  
RG  
=
R2 – R1  
0.4 • RLIN(R2 – R1)  
IREF (2R1 – R2 – RZ)  
(3)  
0.01µF  
RLIN1 =  
where R1 = RTD Resistance at (TMIN + TMAX)/2  
R2 = RTD Resistance at TMAX  
RLIN = 1k(Internal)  
XTR112: IR1 = IR2 = 250µA, RCM = 3.3kΩ  
XTR114: IR1 = IR2 = 100µA, RCM = 8.2kΩ  
IREF = 0.25 for XTR112  
IREF = 0.1 for XTR114  
FIGURE 1. Basic Two-Wire RTD Temperature Measurement Circuit with Linearization.  
®
8
XTR112, XTR114  
A negative input voltage, VIN, will cause the output current  
to be less than 4mA. Increasingly negative VIN will cause the  
output current to limit at approximately 1.3mA for the  
XTR112 and 1mA for the XTR114. Refer to the typical  
curve “Under-Scale Current vs Temperature.”  
range from 7.5V to 36V. The loop supply voltage, VPS, will  
differ from the applied voltage according to the voltage drop  
on the current sensing resistor, RL (plus any other voltage  
drop in the line).  
If a low loop supply voltage is used, RL (including the loop  
wiring resistance) must be made a relatively low value to  
assure that V+ remains 7.5V or greater for the maximum  
loop current of 20mA:  
Increasingly positive input voltage (greater than the full-  
scale input) will produce increasing output current according  
to the transfer function, up to the output current limit of  
approximately 27mA. Refer to the typical curve “Over-  
Scale Current vs Temperature.”  
(V+) – 7.5V  
RL max =  
– RWIRING  
20mA  
EXTERNAL TRANSISTOR  
It is recommended to design for V+ equal or greater than  
7.5V with loop currents up to 30mA to allow for out-of-  
range input conditions.  
Transistor Q1 conducts the majority of the signal-dependent  
4-20mA loop current. Using an external transistor isolates  
the majority of the power dissipation from the precision  
input and reference circuitry of the XTR112 and XTR114,  
maintaining excellent accuracy.  
The low operating voltage (7.5V) of the XTR112 and  
XTR114 allow operation directly from personal computer  
power supplies (12V ±5%). When used with the RCV420  
Current Loop Receiver (Figure 7), load resistor voltage drop  
is limited to 3V.  
Since the external transistor is inside a feedback loop its  
characteristics are not critical. Requirements are: VCEO  
=
45V min, β = 40 min and PD = 800mW. Power dissipation  
requirements may be lower if the loop power supply voltage  
is less than 36V. Some possible choices for Q1 are listed in  
Figure 1.  
ADJUSTING INITIAL ERRORS  
Many applications require adjustment of initial errors. Input  
offset and reference current mismatch errors can be cor-  
rected by adjustment of the zero resistor, RZ. Adjusting the  
gain-setting resistor, RG, corrects any errors associated with  
gain.  
The XTR112 and XTR114 can be operated without this  
external transistor, however, accuracy will be somewhat  
degraded due to the internal power dissipation. Operation  
without Q1 is not recommended for extended temperature  
ranges. A resistor (R = 3.3k) connected between the IRET  
pin and the E (emitter) pin may be needed for operation  
below 0°C without Q1 to guarantee the full 20mA full-scale  
output, especially with V+ near 7.5V.  
TWO-WIRE AND THREE-WIRE RTD  
CONNECTIONS  
In Figure 1, the RTD can be located remotely simply by  
extending the two connections to the RTD. With this remote  
two-wire connection to the RTD, line resistance will intro-  
duce error. This error can be partially corrected by adjusting  
LOOP POWER SUPPLY  
The voltage applied to the XTR112 and XTR114, V+, is  
measured with respect to the IO connection, pin 7. V+ can  
the values of RZ, RG, and RLIN1  
.
A better method for remotely located RTDs is the three-wire  
RTD connection shown in Figure 3. This circuit offers  
improved accuracy. RZ’s current is routed through a third  
wire to the RTD. Assuming line resistance is equal in RTD  
lines 1 and 2, this produces a small common-mode voltage  
which is rejected by the XTR112 and XTR114. A second  
resistor, RLIN2, is required for linearization.  
10  
V+  
Note that although the two-wire and three-wire RTD con-  
nection circuits are very similar, the gain-setting resistor,  
RG, has slightly different equations:  
8
E
XTR112  
0.01µF  
XTR114  
2.5IREF R (R + R ) – 2(R R )  
[
]
1
2
Z
2
Z
R
=
Two-wire:  
G
R2 – R1  
IO  
7
2.5IREF (R2 – RZ )(R1 – RZ )  
R =  
Three-wire:  
IRET  
G
R2 – R1  
6
For operation without external  
where RZ = RTD resistance at TMIN  
R1 = RTD resistance at (TMIN + TMAX)/2  
R2 = RTD resistance at TMAX  
IREF = 0.25 for XTR112  
transistor, connect a 3.3kΩ  
resistor between pin 6 and  
pin 8. See text for discussion  
of performance.  
RQ = 3.3kΩ  
IREF = 0.1 for XTR114  
FIGURE 2. Operation Without External Transistor.  
®
9
XTR112, XTR114  
Table I summarizes the resistor equations for two-wire and  
three-wire RTD connections. An example calculation is also  
provided. To maintain good accuracy, at least 1% (or better)  
resistors should be used for RG. Table II provides standard  
1% RG values for a three-wire Pt1000 RTD connection with  
linearization for the XTR112. Table III gives RG values for  
the XTR114.  
LINEARIZATION  
RTD temperature sensors are inherently (but predictably)  
nonlinear. With the addition of one or two external resistors,  
RLIN1 and RLIN2, it is possible to compensate for most of this  
nonlinearity resulting in 40:1 improvement in linearity over  
the uncompensated output.  
TWO-WIRE  
THREE-WIRE  
RG  
RLIN1  
RG  
RLIN1  
RLIN2  
0.4 • (RLIN + RG)(R2 – R1)  
IREF • (2R1 – R2 – RZ)  
0.4 • RLIN (R2 – R1)  
REF • (2R1 – R2 – RZ)  
0.4 • RLIN (R2 – R1)  
IREF • 2.5 (R2 – RZ) (R1 – RZ)]  
(R2 – R1)  
IREF • 2.5 [R1 (R2 + RZ) – 2 (R2RZ)]  
(R2 – R1)  
=
=
General Equations  
=
=
=
I
I
REF • (2R1 – R2 – RZ)  
1.6 • (RLIN + RG)(R2 – R1)  
(2R1 – R2 – RZ)  
1.6 • RLIN (R2 – R1)  
(2R1 – R2 – RZ)  
1.6 • RLIN (R2 – R1)  
(2R1 – R2 – RZ)  
0.625 • (R2 – RZ) (R1 – RZ)]  
(R2 – R1)  
0.625 • [R1 (R2 + RZ) – 2 (R2RZ)]  
(R2 – R1)  
XTR112 (IREF = 0.25)  
(see Table II)  
=
=
=
=
=
=
=
=
=
=
4 • (RLIN + RG)(R2 – R1)  
(2R1 – R2 – RZ)  
4 • RLIN (R2 – R1)  
(2R1 – R2 – RZ)  
4 • RLIN (R2 – R1)  
(2R1 – R2 – RZ)  
0.25 • (R2 – RZ) (R1 – RZ)]  
(R2 – R1)  
0.25 • [R1 (R2 + RZ) – 2 (R2RZ)]  
(R2 – R1)  
XTR114 (IREF = 0.1)  
(see Table III)  
where RZ = RTD resistance at the minimum measured temperature, TMIN  
R1 = RTD resistance at the midpoint measured temperature, TMID = (TMIN + TMAX)/2  
R2 = RTD resistance at maximum measured temperature, TMAX  
RLIN = 1k(internal)  
XTR112 RESISTOR EXAMPLE:  
The measurement range is –100°C to +200°C for a 3-wire Pt100 RTD connection. Determine the values for RS, RG, RLIN1, and RLIN2. Look up the values  
from the chart or calculate the values according to the equations provided.  
METHOD 1: TABLE LOOK UP  
TMIN = –100°C and T = 300°C (TMAX = +200°C),  
Using Table II the 1% values are:  
Calculation of Pt1000 Resistance Values  
(according to DIN IEC 751)  
RZ = 604Ω  
RG = 750Ω  
RLIN1 = 33.2kΩ  
RLIN2 = 59kΩ  
Equation (1) Temperature range from –200°C to 0°C:  
R(T) = 1000 [1 + 3.90802 • 10–3 • T – 0.5802 • 10–6 • T2  
– 4.27350 • 10–12 • (T – 100) • T3]  
METHOD 2: CALCULATION  
Step 1: Determine RZ, R1, and R2.  
RZ is the RTD resistance at the minimum measured temperature, TMIN = –100°C.  
Using Equation (1) at right gives RZ = 602.5(1% value is 604).  
Equation (2) Temperature range from 0°C to +850°C:  
R(T) = 1000 (1 + 3.90802 • 10–3 • T – 0.5802 • 10–6 • T2)  
R2 is the RTD resistance at the maximum measured temperature, TMAX = 200°C.  
Using Equation (2) at right gives R2 = 1758.4.  
where: R(T) is the resistance in at temperature T.  
T is the temperature in °C.  
R1 is the RTD resistance at the midpoint measured temperature,  
TMID = (TMIN + TMAX)/2 = (–100 + 200)/2 = 50°C. R1 is NOT the average of RZ and R2.  
Using Equation (2) at right gives R1 = 1194.  
NOTE: Most RTD manufacturers provide reference tables for  
resistance values at various temperatures.  
Step 2: Calculate RG, RLIN1, and RLIN2 using equations above.  
Resistor values for other RTD types (such as Pt2000) can be  
calculated using the XTR resistor selection program in the  
Applications Section on Burr-Brown’s web site (www.burr-  
brown.com)  
RG = 757(1% value is 750)  
RLIN1 = 33.322k(1% value is 33.2k)  
RLIN2 = 58.548k(1% value is 59k)  
TABLE I. Summary of Resistor Equations for Two-Wire and Three-Wire Pt1000 RTD Connections.  
®
10  
XTR112, XTR114  
XTR112 1% RESISTOR VALUES FOR A THREE-WIRE RTD CONNECTION  
MEASUREMENT TEMPERATURE SPAN T (°C)  
TMIN  
100  
°C  
200  
°C  
300  
°C  
400°C  
500°C  
600°C  
700°C  
800°C  
900°C  
1000°C  
–200°C  
187/267  
48700  
61900  
187/536  
31600  
48700  
187/806 187/1050 187/1330 187/1580 187/1820 187/2100 187/2370 187/2670  
25500  
46400  
21500  
44200  
17800  
41200  
15000  
39200  
13000  
36500  
11300  
34800  
9760  
33200  
8660  
31600  
–100°C  
0°C  
604/255  
86600  
110000  
604/499  
49900  
75000  
604/4750 604/1000 604/1270 604/1500 604/1780 604/2050 604/2260  
33200  
59000  
24900  
49900  
19600  
44200  
15800  
40200  
13300  
37400  
11500  
34800  
10000  
32400  
1000/243 1000/487 1000/732 1000/976 1000/1210 1000/1470 1000/1740 1000/1960  
105000  
130000  
51100  
76800  
33200  
57600  
24300  
48700  
19100  
42200  
15400  
38300  
13000  
35700  
11000  
33200  
100°C  
200°C  
300°C  
400°C  
500°C  
600°C  
700°C  
800°C  
1370/237 1370/475 1370/715 1370/953 1370/1180 1370/1430 1370/1690  
102000  
127000  
49900  
73200  
32400  
56200  
23700  
46400  
18700  
40200  
15000  
36500  
12400  
33200  
RZ /RG  
RLIN1  
RLIN2  
1740/232 1740/464 1740/698 1740/931 1740/1150 1740/1400  
100000  
121000  
48700  
69800  
31600  
53600  
23200  
44200  
17800  
38300  
14300  
34800  
2100/221 2100/442 2100/665 2100/887 2100/1130  
95300  
118000  
46400  
68100  
30100  
51100  
22100  
42200  
17400  
36500  
NOTE: The values listed in the table are 1% resistors (in ).  
Exact values may be calculated from the following equations:  
2490/215 2490/432 2490/649 2490/866  
R
R
R
R
Z = RTD resistance at minimum measured temperature, TMIN  
.
93100  
113000  
45300  
64900  
29400  
48700  
21500  
40200  
0.625 (R – R ) (R – R  
)
Z
2
Z
1
2800/210 2800/412 2800/619  
=
G
(R – R )  
2
1
887000  
107000  
43200  
61900  
28000  
45300  
1.6 R (R – R )  
LIN  
2
1
=
LIN1  
LIN2  
3160/200 3160/402  
(2R – R – R  
)
1
2
Z
86600  
102000  
42200  
59000  
1.6 (R  
+R ) (R – R )  
G
2 1  
LIN  
=
(2R – R – R )  
Z
1
2
3480/191  
82500  
100000  
where R1 = RTD resistance at the midpoint measured temperature, (TMIN + TMAX)/2  
R2 = RTD resistance at TMAX  
3740/187  
80600  
95300  
RLIN = 1k(Internal)  
TABLE II. XTR112 RZ, RG, RLIN1, and RLIN2 Standard 1% Resistor Values for Three-Wire Pt1000 RTD Connection with Linearization.  
XTR114 1% RESISTOR VALUES FOR A THREE-WIRE RTD CONNECTION  
MEASUREMENT TEMPERATURE SPAN T (°C)  
TMIN  
100  
°C  
200  
°C  
300  
°C  
400°C  
500°C  
600°C  
700°C  
800°C  
900°C  
1000°C  
–200°C  
187/107  
121000  
133000  
187/215  
78700  
95300  
187/316  
64900  
84500  
187/422  
53600  
76800  
187/523  
45300  
68100  
187/634  
38300  
68100  
187/732  
32400  
56200  
187/845  
28000  
52300  
187/953  
24900  
47500  
187/1050  
21500  
45300  
–100°C  
0°C  
604/102  
221000  
243000  
604/200  
124000  
150000  
604/301  
84500  
110000  
604/402  
61900  
86600  
604/511  
48700  
73200  
604/604  
40200  
63400  
604/715  
33200  
57600  
604/806  
28700  
52300  
604/909  
24900  
47500  
1000/97.6 1000/196 1000/294 1000/392 1000/487 1000/590 1000/681 1000/787  
261000  
287000  
130000  
154000  
84500  
107000  
61900  
84500  
47500  
71500  
39200  
61900  
32400  
54900  
27400  
49900  
100°C  
200°C  
300°C  
400°C  
500°C  
600°C  
700°C  
800°C  
1370/95.3 1370/191 1370/287 1370/383 1370/475 1370/576 1370/665  
255000  
280000  
124000  
147000  
80600  
105000  
59000  
82500  
46400  
68100  
37400  
59000  
31600  
52300  
RZ /RG  
RLIN1  
RLIN2  
1740/90.9 1740/182 1740/274 1740/365 1740/464 1740/549  
249000  
267000  
121000  
143000  
78700  
100000  
57600  
78700  
44200  
64900  
36500  
56200  
2100/88.9 2100/178 2100/267 2100/357 2100/348  
237000  
261000  
118000  
137000  
75000  
95300  
54900  
75000  
43200  
61900  
NOTE: The values listed in the table are 1% resistors (in ).  
Exact values may be calculated from the following equations:  
2490/86.6 2490/174 2490/261 2490/249  
232000  
249000  
RZ = RTD resistance at minimum measured temperature, TMIN  
.
113000  
133000  
73200  
93100  
53600  
71500  
2800/82.5 2800/165  
2800/49  
69800  
88700  
0.25 (R – R ) (R – R )  
Z
2
Z
1
R
=
G
221000  
243000  
110000  
127000  
(R – R )  
2
1
4 R (R – R )  
LIN  
2
1
)
3160/80.6 3160/162  
R
=
LIN1  
215000  
215000  
105000  
121000  
(2R – R – R  
1
2
Z
4 (R  
+R ) (R – R )  
LIN  
G
2
1
3480/76.8  
205000  
R
=
LIN2  
(2R – R – R  
)
1
2
Z
221000  
where R1 = RTD resistance at the midpoint measured temperature, (TMIN + TMAX)/2  
R2 = RTD resistance at TMAX  
3740/75  
200000  
215000  
RLIN = 1k(Internal)  
TABLE III. XTR114 RZ, RG, RLIN1, and RLIN2 Standard 1% Resistor Values for Three-Wire Pt1000 RTD Connection with Linearization.  
®
11  
XTR112, XTR114  
A typical two-wire RTD application with linearization is  
shown in Figure 1. Resistor RLIN1 provides positive feed-  
back and controls linearity correction. RLIN1 is chosen ac-  
cording to the desired temperature range. An equation is  
given in Figure 1.  
RCM can be adjusted to provide an additional voltage drop to  
bias the inputs of the XTR112 and XTR114 within their  
common-mode input range.  
ERROR ANALYSIS  
In three-wire RTD connections, an additional resistor, RLIN2  
,
Table IV shows how to calculate the effect various error  
sources have on circuit accuracy. A sample error calculation  
for a typical RTD measurement circuit (Pt1000 RTD, 200°C  
measurement span) is provided. The results reveal the  
XTR112’s and XTR114’s excellent accuracy, in this case 1%  
unadjusted for the XTR112, 1.16% for the XTR114. Adjusting  
resistors RG and RZ for gain and offset errors improves the  
XTR112’s accuracy to 0.28% (0.31% for the XTR114). Note  
that these are worst-case errors; guaranteed maximum values  
were used in the calculations and all errors were assumed to be  
positive (additive). The XTR112 and XTR114 achieve perfor-  
mance which is difficult to obtain with discrete circuitry and  
requires less space.  
is required. As with the two-wire RTD application, RLIN1  
provides positive feedback for linearization. RLIN2 provides  
an offset canceling current to compensate for wiring resis-  
tance encountered in remotely located RTDs. RLIN1 and RLIN2  
are chosen such that their currents are equal. This makes the  
voltage drop in the wiring resistance to the RTD a common-  
mode signal which is rejected by the XTR112 and XTR114.  
The nearest standard 1% resistor values for RLIN1 and RLIN2  
should be adequate for most applications. Tables II and III  
provide the 1% resistor values for a three-wire Pt1000 RTD  
connection.  
If no linearity correction is desired, the VLIN pin should be  
left open. With no linearization, RG = 2500 • VFS, where  
VFS = full-scale input range.  
OPEN-CIRCUIT PROTECTION  
The optional transistor Q2 in Figure 3 provides predictable  
behavior with open-circuit RTD connections. It assures that if  
any one of the three RTD connections is broken, the XTR’s  
output current will go to either its high current limit (27mA)  
or low current limit (1.3mA for XTR112 and 1mA for  
XTR114). This is easily detected as an out-of-range condition.  
RTDs  
The text and figures thus far have assumed a Pt1000 RTD.  
With higher resistance RTDs, the temperature range and  
input voltage variation should be evaluated to ensure proper  
common-mode biasing of the inputs. As mentioned earlier,  
12  
IO  
1
IR1  
VLIN  
14  
11  
IR2  
13  
VI+N  
(1)  
(1)  
10  
V+  
RLIN1  
RLIN2  
VREG  
4
RG  
R(G1)  
XTR112  
XTR114  
9
8
B
E
Q1  
0.01µF  
3
2
RG  
VIN  
IO  
7
IRET  
(1)  
EQUAL line resistances here  
creates a small common-mode  
voltage which is rejected by  
XTR112 and XTR114.  
RZ  
IO  
6
2
1
RCM  
0.01µF  
(RLINE2  
)
(RLINE1)  
NOTES: (1) See Table I for resistor equations and  
1% values. (2) Q2 optional. Provides predictable  
output current if any one RTD connection is  
broken:  
(2)  
Q2  
2N2222  
RTD  
XTR112  
IO  
XTR114  
IO  
(RLINE3  
)
OPEN RTD  
TERMINAL  
Resistance in this line causes  
a small common-mode voltage  
which is rejected by XTR112  
and XTR114.  
1
2
3
1.3mA  
27mA  
1.3mA  
1mA  
27mA  
1mA  
3
FIGURE 3. Three-Wire Connection for Remotely Located RTDs.  
®
12  
XTR112, XTR114  
SAMPLE ERROR CALCULATION FOR XTR112(1)  
RTD value at 4mA Output (RRTD MIN  
RTD Measurement Range  
Ambient Temperature Range (TA)  
Supply Voltage Change (V+)  
)
1000Ω  
200°C  
20°C  
5V  
Common-Mode Voltage Change (CM)  
0.1V  
ERROR  
(ppm of Full Scale)  
SAMPLE  
ERROR CALCULATION(2)  
ERROR SOURCE  
ERROR EQUATION  
UNADJ.  
ADJUST.  
INPUT  
Input Offset Voltage  
vs Common-Mode  
Input Bias Current  
Input Offset Current  
VOS/(VIN MAX) • 106  
CMRR • CM/(VIN MAX) • 106  
IB/IREF • 106  
100µV/(250µA • 3.8/°C • 200°C) • 106  
50µV/V • 0.1V/(250µA • 3.8/°C • 200°C) • 106  
0.025µA/250µA • 106  
526  
26  
100  
16  
0
26  
0
IOS • RRTD MIN/(VIN MAX) • 106  
3nA • 1000/(250µA • 3.8/°C • 200°C) • 106  
0
Total Input Error:  
668  
26  
EXCITATION  
Current Reference Accuracy  
vs Supply  
IREF Accuracy (%)/100% • 106  
(IREF vs V+) • V+  
0.2%/100% • 106  
25ppm/V • 5V  
0.1%/100% • 250µA • 1000/(250µA • 3.8/°C • 200°C) • 106  
2000  
125  
1316  
0
125  
0
Current Reference Matching  
IREF Matching (%)/100% • IREF  
R
RTD MIN/(VIN MAX) • 106  
vs Supply  
(IREF matching vs V+) • V+ •  
RTD MIN/(VIN MAX  
10ppm/V • 5V • 250µA • 1000/(250µA • 3.8/°C • 200°C)  
66  
66  
R
)
Total Excitation Error:  
3507  
191  
GAIN  
Span  
Nonlinearity  
Span Error (%)/100% • 106  
Nonlinearity (%)/100% • 106  
0.2%/100% • 106  
0.01%/100% • 106  
Total Gain Error:  
2000  
100  
2100  
0
100  
100  
OUTPUT  
Zero Output  
vs Supply  
(IZERO - 4mA)/16000µA • 106  
(IZERO vs V+) • V+/16000µA • 106  
25µA/16000µA • 106  
0.2µA/V • 5V/16000µA • 106  
Total Output Error:  
1563  
63  
1626  
0
63  
63  
DRIFT (TA = 20°C)  
Input Offset Voltage  
Input Bias Current (typical)  
Input Offset Current (typical)  
Current Reference Accuracy  
Current Reference Matching  
Span  
Drift • TA/(VIN MAX) • 106  
Drift • TA/IREF • 106  
Drift • TA • RRTD MIN/(VIN MAX) • 106  
Drift • TA  
1.5µV/°C • 20°C/(250µA • 3.8/°C • 200°C) • 106  
20pA/°C • 20°C/250µA • 106  
5pA/°C • 20°C • 1000/(250µA • 3.8/°C • 200°C) • 106  
35ppm/°C • 20°C  
158  
2
158  
2
0.5  
0.5  
700  
395  
500  
626  
2382  
700  
395  
500  
626  
2382  
Drift • TA • IREF • RRTD MIN/(VIN MAX  
)
15ppm/°C • 20°C • 250µA • 1000/(250µA • 3.8/°C • 200°C)  
25ppm/°C • 20°C  
Drift • TA  
Drift • TA/16000µA • 106  
Zero Output  
0.5µA/°C • 20°C/16000µA • 106  
Total Drift Error:  
NOISE (0.1Hz to 10Hz, typ)  
Input Offset Voltage  
Current Reference  
Zero Output  
vn/(VIN MAX) • 106  
IREF Noise • RRTD MIN/(VIN MAX) • 106  
IZERO Noise/16000µA • 106  
0.6µV/(250µA • 3.8/°C • 200°C) • 106  
3nA • 1000/(250µA • 3.8/°C • 200°C) • 106  
0.03µA/16000µA • 106  
3
16  
2
3
16  
2
Total Noise Error:  
21  
21  
TOTAL ERROR:  
10304  
2783  
(1.03%)  
(0.28%)  
NOTES: (1) For XTR114, IREF = 100µA. Total unadjusted error is 1.16%, adjusted error 0.31%. (2) All errors are min/max and referred to input, unless  
otherwise stated.  
TABLE IV. Error Calculation.  
REVERSE-VOLTAGE PROTECTION  
SURGE PROTECTION  
The XTR112’s and XTR114’s low compliance rating (7.5V)  
permits the use of various voltage protection methods with-  
out compromising operating range. Figure 4 shows a diode  
bridge circuit which allows normal operation even when the  
voltage connection lines are reversed. The bridge causes a  
two diode drop (approximately 1.4V) loss in loop supply  
voltage. This results in a compliance voltage of approxi-  
mately 9V—satisfactory for most applications. If 1.4V drop  
in loop supply is too much, a diode can be inserted in series  
with the loop supply voltage and the V+ pin. This protects  
against reverse output connection lines with only a 0.7V loss  
in loop supply voltage.  
Remote connections to current transmitters can sometimes be  
subjected to voltage surges. It is prudent to limit the maximum  
surge voltage applied to the XTR to as low as practical.  
Various zener diode and surge clamping diodes are specially  
designed for this purpose. Select a clamp diode with as low a  
voltage rating as possible for best protection. For example, a  
36V protection diode will assure proper transmitter operation  
at normal loop voltages, yet will provide an appropriate level  
of protection against voltage surges. Characterization tests on  
three production lots showed no damage to the XTR112 or  
XTR114 within loop supply voltages up to 65V.  
®
13  
XTR112, XTR114  
Most surge protection zener diodes have a diode character-  
istic in the forward direction that will conduct excessive  
current, possibly damaging receiving-side circuitry if the  
loop connections are reversed. If a surge protection diode is  
used, a series diode or diode bridge should be used for  
protection against reversed connections.  
If the RTD sensor is remotely located, the interference may  
enter at the input terminals. For integrated transmitter as-  
semblies with short connection to the sensor, the interfer-  
ence more likely comes from the current loop connections.  
Bypass capacitors on the input reduce or eliminate this input  
interference. Connect these bypass capacitors to the IRET  
terminal as shown in Figure 5. Although the dc voltage at the  
IRET terminal is not equal to 0V (at the loop supply, VPS) this  
circuit point can be considered the transmitter’s “ground.”  
The 0.01µF capacitor connected between V+ and IO may  
help minimize output interference.  
RADIO FREQUENCY INTERFERENCE  
The long wire lengths of current loops invite radio frequency  
interference. RF can be rectified by the sensitive input  
circuitry of the XTR112 and XTR114 causing errors. This  
generally appears as an unstable output current that varies  
with the position of loop supply or input wiring.  
NOTE: (1) Zener Diode 36V: 1N4753A or General  
Semiconductor TransorbTM 1N6286A. Use lower  
voltage zener diodes with loop power supply  
voltages less than 30V for increased protection.  
See “Over-Voltage Surge Protection.”  
10  
V+  
0.01µF  
XTR112  
XTR114  
1N4148  
Diodes  
(1)  
B
E
D1  
9
8
Maximum VPS must be  
less than minimum  
voltage rating of zener  
RL  
VPS  
diode.  
IO  
The diode bridge causes  
a 1.4V loss in loop supply  
voltage.  
7
IRET  
6
FIGURE 4. Reverse Voltage Operation and Over-Voltage Surge Protection.  
12  
1
IR1  
VLIN  
VI+N  
1kΩ  
14  
IR2  
13  
11  
VREG  
10  
V+  
4
RG  
RLIN1  
RLIN2  
XTR112  
XTR114  
9
8
RG  
B
E
0.01µF  
3
2
RG  
VIN  
IO  
1kΩ  
7
IRET  
RZ  
6
0.01µF  
0.01µF  
RTD  
(1)  
RCM  
NOTE: (1) Bypass capacitors can be connected  
to either the IRET pin or the IO pin.  
0.01µF  
FIGURE 5. Input Bypassing Technique with Linearization.  
®
14  
XTR112, XTR114  
I
REG < 2mA  
Isothermal  
Block  
5V  
14  
12  
1
V+  
OPA277  
V–  
VLIN  
IR1  
13  
4
11  
VREG  
VI+N  
IR2  
10  
V+  
Type J  
RG  
1M(1)  
1MΩ  
RG  
1250Ω  
XTR112  
XTR114  
9
8
B
E
0.01µF  
3
RG  
VIN  
1N4148  
IO  
20kΩ  
2
7
1kΩ  
25Ω  
IRET  
IO = 4mA + (VI+N –VIN  
)
40  
RG  
6
50Ω  
(2)  
RCM  
NOTES: (1) For burn-out indication.  
(2) XTR112, RCM = 3.3kΩ  
XTR114, RCM = 8.2kΩ  
FIGURE 6. Thermocouple Low Offset, Low Drift Loop Measurement with Diode Cold-Junction Compensation.  
12  
1
1N4148  
VLIN  
14  
13  
IR1  
+12V  
11  
VI+N  
IR2  
10  
V+  
VREG  
1µF  
4
RG  
B
E
9
8
RLIN1  
18.7kΩ  
RG  
1270Ω  
XTR112  
Q1  
0.01µF  
16  
10  
11  
3
2
12  
3
RG  
VIN  
VO = 0 to 5V  
15  
14  
IO  
RCV420  
2
7
13  
IRET  
5
4
Pt1000  
100°C to  
600°C  
IO = 4mA – 20mA  
RZ  
1370Ω  
6
RTD  
1µF  
–12V  
RCM  
NOTE: A two-wire RTD connection is shown. For remotely  
located RTDs, a three-wire RTD conection is recommended. RG  
becomes 1180, RLIN2 is 40.2k. See Figure 3 and Table II.  
0.01µF  
FIGURE 7. ±12V Powered Transmitter/Receiver Loop.  
®
15  
XTR112, XTR114  
12  
RLIN1  
RLIN2  
1
1N4148  
VLIN  
14  
13  
IR1  
11  
VI+N  
IR2  
+15V  
10  
V+  
VREG  
1µF  
1µF  
Isolated Power  
from PWS740  
0
4
RG  
–15V  
XTR112  
XTR114  
9
8
B
E
Q1  
0.01µF  
16  
RG  
10  
11  
3
2
12  
3
2
RG  
VIN  
V+  
1
15  
14  
RCV420  
IO  
9
15  
7
8
13  
7
RZ  
ISO124  
VO  
IRET  
5
4
0 – 5V  
10  
IO = 4mA – 20mA  
6
2
16  
RTD  
V–  
NOTE: A three-wire RTD connection is shown.  
For a two-wire RTD connection, eliminate RLIN2  
.
RCM  
0.01µF  
FIGURE 8. Isolated Transmitter/Receiver Loop.  
200µA (XTR114)  
500µA (XTR112)  
12  
1
VLIN  
14  
IR2  
IR1  
11  
VI+N  
13  
4
10  
VREG  
V+  
RG  
XTR112  
XTR114  
9
8
B
E
RG  
3
2
RG  
VIN  
7
IRET  
6
(1)  
RCM  
NOTE: (1) Use RCM to adjust the  
common-mode voltage to within  
1.25V to 3.5V.  
FIGURE 9. Bridge Input, Current Excitation.  
®
16  
XTR112, XTR114  

相关型号:

XTR112UA/2K5

Carrier/Multi-Wire Interface
ETC

XTR112UA/2K5E4

IC SPECIALTY ANALOG CIRCUIT, PDSO14, ROHS COMPLIANT, PLASTIC, SOIC-14, Analog IC:Other
TI

XTR112UE4

SPECIALTY ANALOG CIRCUIT, PDSO14, ROHS COMPLIANT, PLASTIC, SOIC-14
TI

XTR114

4-20mA CURRENT TRANSMITTERS with Sensor Excitation and Linearization
BB

XTR114U

4-20mA CURRENT TRANSMITTERS with Sensor Excitation and Linearization
TI

XTR114U

4-20mA CURRENT TRANSMITTERS with Sensor Excitation and Linearization
BB

XTR114U/2K5

Carrier/Multi-Wire Interface
ETC

XTR114UA

4-20mA CURRENT TRANSMITTERS with Sensor Excitation and Linearization
BB

XTR114UA/2K5

Carrier/Multi-Wire Interface
ETC

XTR114UA/2K5E4

暂无描述
TI

XTR114UE4

4-20mA Current Transmitters with Sensor Excitation and Linearization 14-SOIC
TI

XTR115

4-20mA CURRENT LOOP TRANSMITTERS
TI