BG3020-9D [BEL]

DC-DC Regulated Power Supply Module, 3 Output, 25W, Hybrid;
BG3020-9D
型号: BG3020-9D
厂家: BEL FUSE INC.    BEL FUSE INC.
描述:

DC-DC Regulated Power Supply Module, 3 Output, 25W, Hybrid

输出元件
文件: 总16页 (文件大小:158K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Board Mountable  
DC-DC Converters  
G Series  
25 Watt DC-DC Converters  
G Series  
Input voltage ranges up to 75 V DC  
3 outputs 5...15 V DC  
1500 V DC I/O electric strength test voltage  
• Very high efficiency, typ. 87%  
• Operating case temperature range –25...95°C  
• Flex power (flexible load distribution on all outputs)  
• Excellent dynamic response (magnetic feedback)  
• Active current sharing for operation in parallel  
• Outputs overload, no-load and short-circuit proof  
• Serial 8 bit status communication interface  
10.5  
0.41"  
43  
1.69"  
53  
2.1"  
• Thermal protection with pre-warning prior to shut-  
down  
• Very compact (chip and wire technology)  
• High reliability  
MTBF >700'000 h (Ground benign, 40°C)  
Safety according to IEC/EN 60950, UL 1950  
Summary  
The G series of 25 Watt DC-DC converters represents a  
versalite range of board mountable power supplies for use  
in advanced electronic systems of centralized or decentral-  
ized structure. Features include very high efficiency com-  
bined with compact size, high reliability (MTBF), wide input  
voltage ranges, transient voltage and surge protection, low  
output ripple and noise and excellent dynamic response to  
load and line changes.  
The design is based on an advanced zero-voltage switch-  
ing topology, optimised circuitry and high grade compo-  
nents including the latest integration technologies.  
Main application areas are telecom, avionics, industrial and  
mobile applications where outstanding electrical perform-  
ance and reliability are required.  
Optionally the converters are available with an output volt-  
age monitor with diagnostic results obtainable via an 8bit  
serial interface and reset/shut-down signals for micro con-  
troller applications.  
Available with three outputs electrically isolated from the in-  
put the converters deliver 25 Watt output power with flexible  
load distribution between all outputs without provoking un-  
acceptable voltage deviations.  
Two different aluminium cases are available either for sim-  
ple board mounting or with an additional mounting-flange.  
The G series is designed as a hybrid circuit comprising pro-  
prietary control ASICs and chip and wire technology.  
Table of Contents  
Page  
Page  
Summary .......................................................................... 1  
Type Survey and Key Data .............................................. 2  
Type Key .......................................................................... 2  
Functional Description...................................................... 3  
Electrical Input Data ......................................................... 4  
Electrical Output Data ...................................................... 5  
Auxiliary Functions ........................................................... 8  
Electromagnetic Compatibility (EMC) ............................ 10  
Immunity to Environmental Conditions........................... 11  
Mechanical Data ............................................................ 12  
Safety and Installation Instructions ................................ 12  
Description of Options .................................................... 14  
Edition 1/06.2002  
1/16  
Board Mountable  
DC-DC Converters  
G Series  
Type Survey and Key Data  
Table 1: Type survey  
Output 1  
Output 2  
Output 3  
Output  
power  
[A] Po nom [W]  
Input voltage Effic. 2  
range  
Type  
designation  
Opt.  
1
1
1
Uo1 nom Io1 nom Io1 max Uo2 nom Io2 nom Io2 max Uo3 nom Io3 nom Io3 max  
[V DC]  
5.05  
5.05  
5.05  
5.05  
[A]  
2
[A]  
5
[V DC]  
12.6  
12.6  
15.4  
15.4  
[A]  
0.6  
0.6  
0.5  
0.5  
[A]  
2
[V DC]  
[A]  
[V DC]  
14...36  
36...75  
14...36  
36...75  
h
typ [%]  
12.6 0.6  
12.6 0.6  
15.4 0.5  
15.4 0.5  
2  
2  
25  
25  
25  
25  
87  
BG 3020-9  
CG 3020-9  
BG 3040-9  
CG 3040-9  
D
B
2
5
2
86  
2
5
1.6  
1.6  
1.6  
1.6  
87  
2
5
86  
1 Flexible load distribution on triple output units. Maximum current available from one output with all other outputs in no-load condition.  
The total output power may not exceed the sum of the nominal output power of all outputs.  
2 Efficiency at Ui nom and Io nom  
.
Type Key  
Type Key  
B G 3 0 40 -9 D B  
Input voltage range Ui  
14...36 V DC ................................................B  
36...75 V DC ............................................... C  
Series .............................................................................. G  
Number of outputs............................................................ 3  
Output 1, Uo1 nom  
5 V .......................................................... 0...1  
other voltages ......................................... 7...8  
Output 2 and 3, Uo2 nom, Uo3 nom  
12 V .................................................... 20...39  
15 V .................................................... 40...59  
Operational ambient temperature range TA  
4071°C (option) ..................................... -9  
Options:  
Output voltage monitor, reset sequencer .... D  
Case with additional fixing holes.................. B  
Edition 1/06.2002  
2/16  
Board Mountable  
DC-DC Converters  
G Series  
Functional Description  
The input voltage is fed via the Vi+ and the Vipins and an  
input π-filter to a zero-voltage switching (ZVS) flyback con-  
verter. The controlled resonant switching of the transistors  
keeps the EMI noise low.  
minimum load is required at any of the outputs and no out-  
put voltage will drift under no-load condition.  
An optional voltage monitor and signal sequencer on the  
secondary side generates shut-down and reset signals dur-  
ing the power-up and power-down sequence for a control-  
led turn-on and turn-off of a microprocessor or another cir-  
cuit. The monitor circuit checks for proper converter func-  
tion and monitors all output voltages wether they remain  
within an upper and lower limit.  
On the secondary side, depending upon the converter type,  
two or three output voltages are available, all referenced to  
common ground (Go). Each output has an individual filter  
for further noise reduction designed without any restriction  
to the dynamic behaviour.  
The control circuit on the secondary side senses the main  
output voltage Uo1 and generates a control signal which is  
transmitted via a pulse transformer to the primary control  
circuit. The primary control circuit transforms this signal with  
respect to the maximum admissible output power into a  
second control signal for the switching transistors.  
Any failure will be indicated by a /FAIL signal and may be  
identified if necessary by an 8 bit diagnostic information.  
Efficiency  
Thanks to the latest integration methods, optimised zero-  
voltage switching topology with synchronous rectifier on all  
outputs and a unique control philosophy a very high effi-  
ciency over the whole input voltage range is achieved. The  
benefits are minimized heat dissipation and increased sys-  
tem reliability.  
The regulation for the second and third output voltages re-  
lies on the close magnetic coupling of the transformer  
windings and the circuit symmetry. Thanks to the unique  
control philosophy of the flyback converter topology no  
03005  
5
6
7
8
9
Vo3–  
Vo2+  
Go  
Case 1  
Output Filter  
Output Filter  
0
ZVS  
Flyback  
Converter  
Vi–  
Go  
4
3
Input Filter  
and TVS  
Vi+  
Vo1+  
2 × 22 nF  
1000 V  
2
1
TMON  
17  
18  
Go  
R
Primary  
Controller  
Secondary  
Controller  
19 T  
16  
i
Uo OK or CT2  
12 /PDW  
Uo1  
Option D  
/SDW  
/RST  
CT1  
13  
14  
15  
Uo2  
Uo3  
Supervisory  
Circuit  
10  
11  
1 Pin not fitted with option B  
2 Uo OK without option D, CT2 if with option D  
/FAIL /SRQ  
Fig. 1  
Block diagram  
Edition 1/06.2002  
3/16  
Board Mountable  
DC-DC Converters  
G Series  
Electrical Input Data  
General conditions:  
TA = 25°C, unless TC is specified.  
Connector pins i (inhibit) and Viinterconnected unless Uinh is specified.  
R input not connected.  
Table 2: Input data  
Input  
BG  
CG  
Characteristics  
Conditions  
min  
14  
typ  
max  
36  
min  
36  
typ  
max  
75  
Unit  
Ui  
Input voltage range  
TC minTC max  
V DC  
Ui nom Nominal input voltage Io = 0...Io nom  
24  
10  
2
48  
25  
2
Ui uv  
Pi 0  
Undervoltage lock-out  
No-load input power  
Ui nom, Io = 0  
W
Ii inh  
Input current when  
inhibited  
Uinh > 2.4 V  
Ui min...Ui max  
16  
10  
mA  
1
Iinr p  
Ci  
Peak inrush current  
Ui nom  
11  
9
3
2
A
Input capacitance  
µF  
fs  
Switching frequency 2 Ui nom, Io nom  
1 Source impedance according to prETS 300132-2 (Ver. 4.3).  
2 The switching frequency varies with input voltage and output load (see: Typical performance curves).  
Input Transient Voltage Protection  
Reverse Polarity Protection at Input  
A suppressor diode at the input together with the input filter  
provides an effective protection against input transients  
which may be caused for example by short circuits accross  
the input lines where the network inductance may generate  
high energy pulses.  
The suppressor diode at the input also provides for reverse  
polarity protection by conducting current in the reverse di-  
rection, thus protecting the unit. An external fuse is required  
to limit reverse current:  
for BG units a fast 3 A (F3A) fuse is required.  
for CG units a fast 1.25 A (F1.25A) fuse is required.  
Table 3: Built-in transient voltage suppressor  
Type  
Breakdown  
voltage (1 mA)  
Peak power  
at 1 ms  
Peak pulse  
current  
IP [A]  
Filter recommendations for compliance with  
EN 55022, level B  
V
BR min [V]  
PP [W]  
Electromagnetic emission requirements according to  
EN 55022, level B can be achieved by adding an external  
filter to the input of the converter. (tbd)  
BG 1  
CG 1  
43  
600  
600  
8.6  
4.1  
90  
1 To achieve higher input transient ratings an additional inductor  
and capacitor should be provided externally.  
Inrush current  
The inrush current has been kept as low as possible by  
choosing a small internal input capacitance.  
2 A/Div.  
Steady state  
input current  
0
50 µs/Div.  
Fig. 2  
Typical inrush current at Ui nom, Po nom versus time  
(BG 3040) measured according prETS 300132-2 (Ver. 4.3).  
Edition 1/06.2002  
4/16  
Board Mountable  
DC-DC Converters  
G Series  
Electrical Output Data  
General conditions:  
TA = 25°C, unless TC is specified.  
Connector pins i (inhibit) and Viinterconnected  
R input not connected.  
Table 4a: Output data for dual output modules BG...CG 3020-7  
Output  
BG...CG 3020-7  
Output 1  
Output 2  
Output 3  
typ  
Characteristics  
Uo Output voltage  
Static output voltage  
Conditions  
min  
typ  
max  
5.1  
min  
typ  
max  
min  
max  
Unit  
Ui nom, Io nom  
5.0 5.05  
5
12.15 12.6 12.85 12.85 12.6 12.15  
TC min...TC max  
Ui nom  
Io = 0...Io max  
5.1  
11.95  
13.25 13.25  
11.95  
1
Io nom Output current  
Io max  
Ui nom  
2
0.6  
0.6  
A
only one output  
loaded  
5
2
2  
uo  
Output  
voltage  
noise  
Switching freq. Ui nom, Io nom  
IEC/EN 61204 2  
25  
50  
50  
50  
mV  
pp  
Total  
100  
100  
BW = 20 MHz  
uo d  
t d  
Dynamic3 Voltage limits  
Ui min...Ui max  
4.8  
5.25  
100  
11.35  
13.85 13.85  
11.35  
V
1
load  
Io nom /  
2
Io nom  
Recovery time  
100  
100  
µs  
regulation  
IEC/EN 61204  
Uo adj Output voltage  
adjustment range  
Uo nom setting  
via R input  
60...110  
60...110  
60..100  
% of  
Uo nom  
Table 4b: Output data for dual output modules BG...CG 3040-7  
Output  
BG...CG 3040-7  
Output 1  
Output 2  
Output 3  
typ  
Characteristics  
Uo Output voltage  
Static output voltage  
Conditions  
min  
typ  
max  
5.1  
min  
typ  
max  
min  
max  
Unit  
V
Ui nom, Io nom  
5.0 5.05  
5
15.0 15.4 15.7  
15.7 15.4 15.0  
TC min...TC max  
Ui nom  
Io = 0...Io max  
5.1  
14.6  
16.2  
16.2  
14.6  
1
Io nom Output current  
Io max  
Ui nom  
2
0.5  
0.5  
A
only one output  
loaded  
5
1.6  
1.6  
uo  
Output  
voltage  
noise  
Switching freq. Ui nom, Io nom  
IEC/EN 61204 2  
25  
50  
50  
50  
mV  
pp  
Total  
100  
100  
BW = 20 MHz  
uo d  
t d  
Dynamic3 Voltage limits  
Ui min...Ui max  
4.8  
5.25  
100  
13.8  
17.0  
100  
17.0  
13.8  
V
1
load  
Io nom /  
2
Io nom  
Recovery time  
100  
µs  
regulation  
IEC/EN 61204  
Uo adj Output voltage  
adjustment range  
Uo nom setting  
via R input  
60...110  
60...110  
60..100  
% of  
Uo nom  
1 Power difference between one auxiliary output and main output <12 W. Total output power Po nom  
.
2 See: Technical Information: Measuring and Testing.  
3 Load current change for specific output. Other outputs loaded with Io nom  
.
Output Current Limitation  
Output Overvoltage Protection  
The G series modules have a current limitation allowing  
free choice of load distribution between all outputs, up to a  
total current:  
The outputs of the unit are protected against overvoltages  
by a second fully independent control loop which disables  
the unit. The unit tries to restart after a short time (5 ms).  
The main purpose of this second control loop is to protect  
against possible overvoltages which could occur due to a  
failure in the normal feedback control loop. The second con-  
trol loop does not protect the unit against externally applied  
overvoltages.  
Uo2 nom  
Io1 + ––––––– • Io2 + ––––––– • Io3 Io1 max  
Uo1 nom Uo1 nom  
Uo3 nom  
In overload all output voltages are simultaneously reduced.  
Edition 1/06.2002  
5/16  
Board Mountable  
DC-DC Converters  
G Series  
Output Voltage Regulation of Multi Output Modules  
Under normal operating conditions the main ouput voltage  
Uo1 is regulated to Uo1 nom. The regulation of the second and  
third output voltages relies on the close magnetic coupling  
of the transformer windings and the circuit symmetry. The  
applied control philosophy to the power train necessitates  
no minimum load at any of the outputs for correct operation  
and no output voltage will drift under no-load condition. For  
triple output units the output voltages of the two auxiliary  
outputs (Uo2, Uo3) will remain within ±5% (Ui > Ui nom) if the  
output power difference between one auxiliary output (Uo2,  
Uo3) and the main output (Uo1) is less than 12 W.  
Typical Performance Curves (measured with a BG 3040-7)  
General conditions:  
TA = 25°C, unless TC is specified.  
Nominal loads (Io1 nom, Io2 nom, Io3 nom), unless otherwise specified.  
Connector pins i (inhibit) and Viinterconnected.  
R input not connected.  
Input voltage = Ui nom unless otherwise specified.  
Uox  
Uox nom  
1.08  
Uox  
Uox nom  
1.08  
1.06  
1.04  
1.02  
1
1.06  
1.04  
1.02  
1
+5%  
+5%  
Uo2  
Uo3  
+1%  
+1%  
Uo1  
Uo1  
Uo3  
1%  
1%  
0.98  
0.96  
0.94  
0.98  
0.96  
0.94  
Uo2  
5%  
5%  
Po1 [W]  
25  
Po2 [W]  
25  
0.92  
0
0.92  
0
5
10  
15  
20  
5
10  
15  
20  
Fig. 3  
Fig. 4  
Cross load regulation with load variation from 0...100% on  
output 1. Zero load condition on output 2 and 3.  
Cross load regulation with load variation from 0...100% on  
output 2. Zero load condition on output 1 and 3.  
η [%]  
90  
η [%]  
90  
85  
89  
88  
87  
86  
80  
Ui min  
Ui nom  
Ui max  
75  
70  
Io nom [%]  
100  
65  
Ui [V]  
85  
20  
30  
40  
50  
60  
70  
80  
90  
14 16 18 20 22 24 26 28 30 32 34 36  
Fig. 6  
Fig. 5  
Efficiency versus load and input voltage with currents on  
outputs equally rated.  
Efficiency versus input voltage at Io nom  
.
Uo [%]  
0.6  
∆η [%]  
3
0.4  
0.2  
2
1
Uo2  
0
0.2  
0
Uo3  
0.4  
1  
2  
3  
Uo1  
0.6  
0.8  
TC [°C]  
1  
60 40 20  
TC [°C]  
100  
0
20  
40  
60  
80 100  
60 40 20  
0
20  
40  
60  
80  
Fig. 8  
Output voltage deviation versus case temperature.  
Fig. 7  
Efficiency versus case temperature at Io nom  
.
Edition 1/06.2002  
6/16  
Board Mountable  
DC-DC Converters  
G Series  
Io2  
Io1  
(1 A/Div.)  
(200 mA/Div.)  
Uo1  
(100 mV/Div.)  
Uo1  
(100 mV/Div.)  
Uo2  
(200 mV/Div.)  
Uo2  
(200 mV/Div.)  
Uo3  
(200 mV/Div.)  
Uo3  
(200 mV/Div.)  
(50 µs/Div.)  
(50 µs/Div.)  
Fig. 10  
Fig. 9  
Load transient response (Io2 = 50% to 100% of Io2 nom).  
Load transient response (Io1 = 50% to 100% of Io1 nom).  
06023  
06024  
Ui  
Inhibit  
(10 V/Div.)  
(20 V/Div.)  
Uo1  
(1 V/Div.)  
Uo1  
(1 V/Div.)  
Uo2  
(5 V/Div.)  
Uo2  
(5 V/Div.)  
Uo3  
(5 V/Div.)  
Uo3  
(5 V/Div.)  
(200 µs/Div.)  
(200 µs/Div.)  
Fig. 11  
Fig. 12  
Turn-on into full load.  
Turn-on into full load after inhibit release.  
Ui [V]  
14  
Power-up  
13  
Ui  
(5 V/Div.)  
Power-down  
12  
Uo1  
(50 mV/Div.)  
11  
Uo2  
(50 mV/Div.)  
Po [%]  
10 20 30 40 50 60 70 80 90 100  
10  
0
Fig. 13  
Low line drop-out versus total load (at Uo1 1% drop).  
Uo3  
(50 mV/Div.)  
(50 µs/Div.)  
Fig. 14  
Input line transient response (Ui rise from 20 to 30 V).  
Edition 1/06.2002  
7/16  
Board Mountable  
DC-DC Converters  
G Series  
fs [kHz]  
700  
Zo [dB]  
10  
0
10  
20  
30  
600  
50% Po nom  
Uo2  
Uo3  
500  
100% Po nom  
Uo1  
400  
300  
40  
f [kHz]  
1000  
50  
0.01  
Ui [V]  
14 16 18 20 22 24 26 28 30 32 34 36  
0.1  
1
10  
100  
Fig. 16  
Output impedance versus frequency.  
Fig. 15  
Switching frequency versus input voltage and load.  
Ui/Uo Attenuation [dB]  
20  
30  
40  
50  
60  
70  
80  
90  
100  
f [Hz]  
100000  
10  
100  
1000  
10000  
Fig. 17  
Audio rejection Ui to Uo1.  
Auxiliary Functions  
Connection in Parallel  
Uo OK Output (only for units without option D)  
(Current sharing T referenced to Go)  
Uo OK, referenced to Go  
The outputs of several units with equal nominal output  
voltages can be connected in parallel. To ensure that the  
output currents are approximately shared between the  
units for lower stress and further improved reliability the T  
pins of all converters need to be interconnected. In spite of  
the T connection the load leads should have equal length  
and cross section. If output voltage adjustment is requested  
it is recommended to adjust the output voltages individually  
to within a tolerance of 1...2% prior to paralleling or to con-  
nect the R pins together. No more than 3 units should be  
connected in parallel.  
The Uo OK output is an open collector output without inter-  
nal pull-up resistor indicating wether the main feedback  
loop is in regulation or not. In overload condition the output  
voltage feedback loop will go into saturation and Uo OK will  
go to low state. The external pull-up resistor needs to be  
connected to a supply voltage less than 5.5 V (e.g. Vo1+  
output).  
Table 5: Uo OK output  
Feedback Loop  
In regulation  
Uo OK  
open circuit  
Note: Parallel connection of auxiliary outputs without in-  
Out of regulation  
0.5 V at IUo OK sink 2.5 mA  
volving their main outputs should be avoided.  
Parallel connection of units can slightly enlarge  
the output voltage noise.  
Important: Pull-up voltages higher than 5.5 V may  
damage the unit.  
If units are connected in parallel using decoupling  
diodes as e.g. for redundant systems the T pins  
should not be interconnected.  
Edition 1/06.2002  
8/16  
Board Mountable  
DC-DC Converters  
G Series  
Temperature Monitor  
R Control for Output Voltage Adjustment  
R input, referenced to Go  
TMON, referenced to Vi–  
The TMON output warns the user of possible overheating of  
the converter prior to shutting down the outputs should the  
maximum operating temperature be exceeded. This feature  
allows for instance a connected microprocessor system to  
take measures (for example to save data or to activate a  
cooling fan).  
As a standard feature, the G converters offer adjustable  
output voltages in the range 60% to 110% of Uo nom by us-  
ing the R input. If the R pin is left open circuit the output volt-  
age is set to Uo nom. The voltages at outputs 2 and 3 are al-  
tered in the same ratio as the main output (Uo1). An internal  
limitation will not admit to adjust the output voltages below  
60% ±2% of Uo nom or above 110% ±2% of Uo nom. In spite  
of this limitation the current into or out of the R pin must be  
limited to ±0.5 mA in order to prevent damage of the inter-  
nal circuits.  
The TMON signal will become high (UTMON >2.4 V) if the in-  
ternal temperature of the converter is above 110°C. The  
TMON signal does not disable the converter.  
The converter protects itself from overheating by shutting  
down at an internal temperature of 115°C and will auto-  
matically restart at an internal temperature of 110°C.  
The R control pin is referenced to the secondary side of the  
converter (Go). Adjustment of the output voltages is possi-  
ble by means of either an external resistor or a voltage  
source.  
The TMON pin is connected to an internal open collector  
with a pull-up current source of typ. 50 µA  
a) Adjustment by means of an external resistor Rext  
Table 6: Temperature monitor  
Depending upon the value of the required output voltage,  
the resistor shall be connected  
Internal Temperature  
<110°C  
UTMON  
either: Between the R pin and Go to achieve an output  
voltage adjustment range of approximately  
0.5 V at ITMON sink <1 mA  
>2.4 V at ITMON source 30 µA  
>110°C  
Uo = 60...100% Uo nom  
.
Uo  
Important: An additional external pull-up resistor at  
TMON needs to be connected to a supply voltage less  
than 8 V and referenced to Vi, otherwise the unit may  
be damaged.  
R
ext 1 ––––––––– • 4 kΩ  
Uo nom Uo  
or: Between the R pin and Vo1+ to achieve an output  
voltage range of approximately Uo = 100...110% Uo nom  
.
Uo 2.5 V  
Inhibit Function  
R'ext 2 –––––––––––––––––– • 4 kΩ  
2.5 V (Uo /Uo nom 1)  
Inhibit, referenced to Vi–  
b) Adjustment by means of an external voltage Uext be-  
tween the R pin and Go pins.  
The outputs of the converter may be enabled or disabled by  
means of a logic signal applied to the inhibit pin. If the inhibit  
input is low (Uinh 0.8 V) the outputs are enabled. If the in-  
hibit input is high (Uinh 2.4 V) or floating the outputs are  
disabled. (Input current see table: Electrical input data.)  
The control voltage range is 1.5...2.75 V and allows for  
an adjustment in the range of approximately 60...110%  
of Uo nom  
.
2.5 V  
ext –––––– • Uo  
Uo nom  
Table 7: Inhibit function  
U
Uinh min...Uinh max  
0.3...0.8 V  
2.4...8 V  
Outputs  
Enabled  
Disabled  
Vo1+  
R
Rext 2  
The inhibit input has an internal pull-up resistor of >50 kΩ  
connected to an internal 8 V source.  
Limiter  
and  
control  
circuit  
4 kΩ  
+
Important:  
Rext 1  
Uext  
If the inhibit function is not required, the i pin must be  
connected to Vito enable the outputs.  
2.5 V  
Go  
Voltages higher than 8 V or lower than 0.3 V at the  
inhibit input may damage the unit.  
Fig. 18  
Output voltage control by means of R input.  
Edition 1/06.2002  
9/16  
Board Mountable  
DC-DC Converters  
G Series  
Electromagnetic Compatibility (EMC)  
A suppressor diode together with an input filter form an effective protection against high input transient voltages which typi-  
cally occur in many installations, but especially in battery driven mobile applications.  
Electromagnetic Immunity  
Table 8: Immunity type tests  
Phenomenon  
Standard 1  
Class  
Level  
Coupling  
mode 2  
Value  
applied  
Waveform  
Source  
Imped.  
Test  
procedure  
In  
Per-  
oper. form. 3  
Electrostatic  
discharge  
IEC/EN  
61000-4-2  
2
3
2
2
contact discharge 4000 Vp  
to case  
1/50 ns  
330 Ω  
10 positive and  
10 negative  
discharges  
yes  
B 4  
air discharge  
to case  
8000 Vp  
Electromagnetic IEC/EN  
field  
antenna  
3 V/m  
AM 80%  
1 kHz  
261000 MHz  
900 ±5 MHz  
yes  
yes  
A
A
61000-4-3  
Electromagnetic ENV 50204  
field, pulse  
50% duty cycle  
200 Hz  
modulated  
repetition frequ.  
Electrical fast  
transient/burst  
IEC/EN  
61000-4-4  
2
direct +i/i  
1000 Vp bursts of 5/50 ns 50 Ω  
5 kHz rep. rate  
1 min positive  
1 min negative  
transients per  
coupling mode  
yes  
B
capacitive o/c  
transients with  
15 ms burst  
duration and a  
300 ms period  
Surge  
IEC/EN  
61000-4-5  
2
+i/c, i/c  
+i/i  
1000 Vp  
500 Vp  
tbd  
1.2/50 µs  
12 Ω  
2 Ω  
5 pos. and 5 neg.  
impulses  
yes  
yes  
B 4 5  
tbd  
Conducted  
disturbancies  
IEC/EN  
61000-4-6  
tbd  
+i/i  
AM 80%  
1 kHz  
50 Ω  
1 For related and previous standards see: Technical Information: Safety & EMC.  
2 i = input, o = output, c = case.  
3 A = Normal operation, no deviation from specifications, B = Normal operation, temporary deviation from specs possible.  
4 Test in progress.  
5 Additional external components required.  
Electromagnetic Emission  
[dBµV]  
90  
07003  
[dB (pW)]  
80  
80  
EN 55022 A  
70  
70  
60  
50  
EN 55022 B  
EN 55014  
60  
50  
40  
30  
20  
10  
0
40  
30  
20  
10  
0
[MHz]  
MHz  
150  
30  
100  
200  
250  
300  
Fig. 19  
Fig. 20  
Typical disturbance voltage (quasi-peak) at the input ac-  
cording to EN 55011/22, measured at Ui nom and Io nom  
Output leads 0.1 m, twisted, case connected to protective  
earth. (BG 3040-9)  
Typical radiated electromagnetic power (peak) according  
to EN 55014, measured at Ui nom, Io nom. Output leads  
0.1 m, twisted. (BG 3040-9)  
.
Edition 1/06.2002  
10/16  
Board Mountable  
DC-DC Converters  
G Series  
Immunity to Environmental Conditions  
Table 9: Mechanical stress  
Test Method  
Standard  
Test Conditions  
Status  
Ca  
Ea  
Eb  
Fc  
Damp heat  
steady state  
IEC/DIN IEC 60068-2-3  
MIL-STD-810D section 507.2 Relative humidity:  
Duration:  
Temperature:  
40 ±2 °C  
%
56 days  
Unit not  
operating  
93 +2/-3  
Shock  
(half-sinusoidal)  
IEC/EN/DIN EN 60068-2-27  
MIL-STD-810D section 516.3 Bump duration:  
Number of bumps:  
Acceleration amplitude:  
100 gn = 981 m/s2  
6 ms  
18 (3 each direction)  
Unit  
operating  
Bump  
(half-sinusoidal)  
IEC/EN/DIN EN 60068-2-29  
MIL-STD-810D section 516.3 Bump duration:  
Number of bumps:  
Acceleration amplitude:  
40 gn = 392 m/s2  
6 ms  
6000 (1000 each direction)  
Unit  
operating  
Vibration  
(sinusoidal)  
IEC/EN/DIN EN 60068-2-6  
MIL-STD-810D section 514.3  
Acceleration amplitude:  
0.35 mm (10...60 Hz)  
5 gn = 49 m/s2 (60...2000 Hz) operating  
10...2000 Hz  
Unit  
Frequency (1 Oct/min):  
Test duration:  
7.5 h (2.5 h each axis)  
Fda Random vibration IEC 60068-2-35  
Acceleration spectral density: 0.05 gn2/Hz  
Unit  
wide band  
Reproducibility  
high  
DIN 40046 part 23  
Frequency band:  
Acceleration magnitude:  
Test duration:  
20...500 Hz  
4.9 gn rms  
3 h (1 h each axis)  
operating  
Table 10: Temperature specifications, valid for an air pressure of 800...1200 hPa (800...1200 mbar)  
Characteristics  
-9  
Unit  
min  
max  
71 1  
71 1  
95  
TA  
Ambient temperature range, operational  
Ambient temperature range, start-up  
Case temperature range, operational  
Case temperature range, start-up  
40  
55  
40  
55  
55  
°C  
TAs  
TC  
TCs  
TS  
95  
Storage temperature range, not operational 2  
105  
±10  
dTC/dt Case temperature gradient  
K/min  
1 The upper ambient temperature limit depends on system configuration:  
space between pcbs in a rack  
heat dissipation of neighbouring electronic circuits  
air flow  
In any case the user must assure a case temperature of the module below 95°C.  
2 Storage at high temperatures may cause an acceleration of aging.  
Table 11: Ambient pressure  
Characteristics  
min  
max  
Unit  
ft  
PA  
Ambient pressure corresponding to altitude  
1000  
45000  
dPA/dt Maximum decompression (8000 ft to 40000 ft in 15 sec)  
128000  
ft/min  
Table 12: MTBF and device hours  
Ratings at specified  
Case Temperature  
Modules Ground Benign Ground Fixed Ground Fixed Ground Mobile Device Hours 1 Unit  
40°C  
40°C  
70°C  
42'000  
42'000  
50°C  
45'000  
45'000  
770'000  
770'000  
122'000  
122'000  
MTBF acc. to  
MIL-HDBK-217F-N2  
BG 3020  
BG 3040  
n.a.  
h
1 Statistical values, based on an average of 4300 working hours per year and in general field use, over 2 years  
Edition 1/06.2002  
11/16  
Board Mountable  
DC-DC Converters  
G Series  
Mechanical Data  
Dimensions in mm. Tolerances ±0.3 mm unless otherwise indicated.  
European  
Projection  
0
Pin Ø 1.05 mm  
4 × M3  
5
9
4
5
9
4
2.54  
2.54  
10  
18  
10  
18  
11  
11  
1
1
19  
19  
10.5 3.8  
48.26  
53  
48.26  
54.9  
10.5 3.8  
Fig. 22  
Fig. 21  
Standard case, weight <45 g  
Case option B, weight <50 g  
Safety and Installation Instructions  
Installation Instruction  
Cleaning Agents  
Installation of the DC-DC converters must strictly follow the  
national safety regulations in compliance with the enclo-  
sure, mounting, creepage, clearance, casualty, markings  
and segregation requirements of the end-use application.  
In order to avoid possible damage, any penetration of  
cleaning fluids is to be prevented, since the power supplies  
are not hermetically sealed.  
Standards and approvals  
Connection to the system shall be made via a printed circuit  
board with hole diameters of 1.4 mm ±0.1 mm for the pins.  
Due to a patented design of flexible pins the units can di-  
rectly be soldered into the pcb regardless of different ther-  
mal expansion coefficients of the unit and the pcb. Option B  
case needs to be screwed to the pcb prior to soldering.  
All DC-DC converters are designed to meet UL 1950, CAN/  
CSA C22.2 N0. 950-95 and IEC/EN 60950 standards.  
The DC-DC converters have been evaluated for:  
Building in  
Functional insulation from input to output and input/out-  
put to case  
The units should be connected to a secondary circuit.  
Check for hazardous voltages before altering any connec-  
tions.  
The use in a pollution degree 2 environment.  
Connecting the input to a secondary circuit which is sub-  
ject to a maximum transient rating of 1500 V.  
Do not open the module.  
Ensure that a unit failure (e.g. by an internal short-circuit)  
does not result in a hazardous condition. See also: Safety  
of operator accessible output circuit.  
The DC-DC converters are subject to manufacturing sur-  
veillance in accordance with ISO 9001 standard.  
Table 13: Pin allocation  
Pin No.  
Pin No.  
11  
0
1
2
i
/SRQ 1  
/PDW1  
/SDW1  
/RST 1  
CT1 1  
4
3
5
6
7
8
9
TMON  
Vi+  
12  
3
13  
Bottom view  
4
Vi–  
14  
10  
12  
14  
16  
18  
5
Vo3–  
Vo2+  
Go  
15  
11  
13  
15  
17  
19  
6
16  
CT2 1, Uo OK 2  
Go  
2
1
7
17  
8
Go  
18  
R
9
Vo1+  
/FAIL 1  
19  
T
Fig. 23  
Pin allocation  
10  
0
Case 3  
1 Only with option D  
2 Without option D  
3 Only with standard case (without option B)  
Edition 1/06.2002  
12/16  
Board Mountable  
DC-DC Converters  
G Series  
Isolation  
Protection Degree  
The electric strength test is performed as factory test in ac-  
cordance with IEC/EN 60950 and UL 1950 and should not  
be repeated in the field. Power-One will not honour any  
guarantee claims resulting from electric strength field tests.  
The protection degree of the DC-DC converters is IP 40.  
Safety of operator accessible output circuit  
If the output circuit of a DC-DC converter is operator acces-  
sible, it shall be an SELV circuit according to IEC/EN 60950  
related safety standards  
Table 14: Electric strength test voltages  
Characteristic  
Input to Input to Output to Unit  
The following table shows some possible installation con-  
figurations, compliance with which causes the output circuit  
of the DC-DC converter to be an SELV circuit according to  
IEC/EN 60950 up to a configured output voltage of 40 V.  
output  
case  
1.1  
1.5  
-
case  
1.1  
1.5  
-
Electric strength test  
voltage 1 s  
1.1  
kVrms  
kV DC  
nF  
1.5  
However, it is the sole responsibility of the installer to as-  
sure the compliance with the relevant and applicable safety  
regulations. More information is given in: Technical Infor-  
mation: Safety.  
Coupling capacitance  
11  
Insulation resistance  
at 500 V DC  
>100  
-
-
MΩ  
Table 15: Safety concept leading to an SELV output circuit  
Conditions Front end  
DC-DC converter  
Result  
Supply  
voltage  
Minimum required grade  
of isolation, to be provided DC output status of the front end  
by the AC-DC front end,  
including mains supplied from the  
Maximum Minimum required safety  
Measures to achieve the  
specified safety status of the  
output circuit  
Safety status of  
the DC-DC  
converter output  
circuit  
voltage  
output circuit  
battery charger  
front end 1  
Mains  
250 V AC  
Basic  
60 V  
Earthed SELV circuit 2  
ELV circuit  
Operational insulation (provi-  
ded by the DC-DC converter)  
SELV circuit  
Input fuse 3, output suppressor Earthed SELV  
diodes 4, earthed output  
circuit 2 and earthed 2 or non  
user accessible case 5  
circuit  
>60 V  
Hazardous voltage  
secondary circuit  
Double or reinforced  
60 V  
SELV circuit  
Operational insulation (provi-  
ded by the DC-DC converter)  
SELV circuit  
>60 V  
Double or reinforced insu- Input fuse 3, output suppressor  
lated unearthed hazardous diodes 4 and non user  
voltage secondary circuit 5 accessible case 5  
1 The front end output voltage should match the specified input voltage range of the DC-DC converter.  
2 The earth connection has to be provided by the installer according to the relevant safety standard, e.g. IEC/EN 60950.  
3 The installer shall provide an approved fuse (type with the lowest rating suitable for the application) in a non-earthed input conductor  
directly at the input of the DC-DC converter (see fig.: Schematic safety concept). For ULs purpose, the fuse needs to be UL-listed.  
4 Each suppressor diode should be dimensioned in such a way, that in the case of an insulation fault the diode is able to limit the output  
voltage to SELV (<60 V) until the input fuse blows (see fig.: Schematic safety concept).  
5 Has to be insulated from earth by double or reinforced insulation according to the relevant safety standard, based on the maximum  
output voltage from the front end.  
10004  
Fuse  
+
~
Mains  
Suppressor  
diode  
AC-DC  
front  
DC-DC  
con-  
Battery  
SELV  
end  
verter  
~
Earth  
connection  
Earth  
connection  
Fig. 24  
Schematic safety concept. Use fuse, diode and earth con-  
nection as per table: Safety concept leading to an SELV  
output circuit.  
Edition 1/06.2002  
13/16  
Board Mountable  
DC-DC Converters  
G Series  
Description of Options  
D
Voltage monitor and reset sequencer including  
Generation of start-up and reset control signals  
CT1, CT2 Timing control  
(/PWD, /SDW, /RST, CT1, CT2)  
The delays t1 and t2 can be defined by capacitors con-  
nected between CT1 and CT2 to Go according to the for-  
mula:  
Output voltage monitor with diagnostics  
/FAIL, /SRQ)  
t1 = k0 + k1 CT1; t2 = k0 + k1 CT2  
Start-up and reset control signals  
These control signals can be used in micro controller, micro  
processor or sequencer applications where start-up and  
shut-down sequences need to be adapted to the status of  
their supply voltage. The pins allocated to this option are:  
The /PDW (power down) input, e.g. the AC-fail signal of a  
front-end, the /SDW (shut-down) and the /RST (reset) out-  
puts, the CT1 and CT2 adjustment pins.  
Table 16: Parameters for t1 and t2  
Parameter  
k0  
min.  
10  
95  
0
typ.  
20  
max.  
30  
Units  
µs  
k1  
100  
105  
2500  
µs/nF  
nF  
CT1; CT2  
All secondary inputs and outputs are electrically isolated  
from the input circuitry and referenced to Go. In applications  
where this isolation is essential, opto-couplers are recom-  
mended to provide the signal link between primary and sec-  
ondary side.  
Table 17: Timing tolerance for t3 and t4  
Delay  
min.  
25  
max.  
27.5  
220  
Units  
ms  
t3  
t4  
200  
+
/SDW (/shut down), /RST (/reset)  
Open collector outputs with internal pull-up resistors of  
4.7 k typ. connected to Vo1.  
G-family  
DC-DC  
Converter  
Front-End  
AC-DC  
Converter  
Micro-  
processor  
/SDW  
/RST  
/PDW  
/PDW (/power down)  
+
Digital input with internal pull-up resistor of 6.8 ktyp. con-  
nected to Vo1+.  
AC-Fail signal  
Opto-coupler  
Table 18: Input/output data of /PDW, /SDW, /RST  
Fig. 25  
Example of system architecture  
Parameter Condition  
min.  
max.  
48  
Units  
Isink /SDW  
Isink /RST  
U/PDW High  
U/PDW Low  
U/SDW <0.6 V  
U/RST <0.6 V  
mA  
Example of a system configuration: A central AC-DC con-  
verter delivers a main DC bus voltage. On local electronic  
boards, decentralized DC-DC converters stabilize and con-  
dition the main DC voltage to one or several specific DC  
voltages.  
48  
0.7 Uo1  
0.3 Uo1  
If the AC mains fails and the AC-DC converter delivers an  
AC fail signal, it can be used to trigger a predefined signal  
sequence between the G series DC-DC converter and the  
microprocessor (or other circuitry).  
Important: No voltage higher than Uo1 should be applied  
to /PDW, /SDW and /RST otherwise the unit may be  
damaged.  
Functional description  
After the detection of a mains failure (/PDW) a routine to  
save volatile memory can be started by /SDW after the time  
t1, before the microprocessor is reset by /RST, after t2.  
The /SDW and the /RST outputs are not only controlled by  
the /PDW input, but also by the voltage of the main output. If  
Uo1 falls below 4.58 V ±2% /SDW, /RST are immediately  
taken low independently of the status of the /PDW. At start-  
up the /SDW, /RST signals will only be released if Uo1 is  
higher than 4.58 V ±2%.  
At start-up /SDW will be released before /RST goes high (t3,  
t4). Both delays, t1 and t2, can individually be adjusted by a  
capacitor in the range of 20 µs to 250 ms. The delays t3 and  
t4 are fixed and can not be adjusted.  
In any case a /SDW will be followed by an /RST.  
t1 < t/PDW < t1 + t2  
t/PDW  
t
/PDW < t1  
Uo1 < 4.58 V  
4.58 V  
11024  
t/PDW > t1 + t2  
t/PDW  
Uo1  
t/PDW  
/PDW  
/SDW  
/RST  
t1  
t2 t3 t4  
t1  
t2  
t3  
t4  
t3  
t4  
Fig. 26  
Timing of the control signals  
Edition 1/06.2002  
14/16  
Board Mountable  
DC-DC Converters  
G Series  
Output Voltage Monitor  
Table 20: Bit Code of Failure Identification Register (FIR)  
Option D also includes an extended monitoring and diag-  
nostic circuitry which continuously monitors all output  
voltages and compares them with their high and low thresh-  
old values. The circuit can also be used to check the con-  
verter for correct function prior to e.g. a general system  
check-up in avionic applications or for identification of pos-  
sible failures.  
Bit State  
Conditions  
Limit min.  
Limit max.  
[% of Uo ref]  
1
1
[% of Uo ref  
]
Bit 0 = 0  
Bit 1 = 0  
Bit 2 = 0  
Bit 3 = 0  
Bit 4 = 0  
Bit 5 = 0  
Uo1 < limit  
Uo1 > limit  
Uo2 < limit  
Uo2 > limit  
Uo3 < limit  
Uo3 > limit  
90  
105  
85  
110  
115  
90  
95  
110  
90  
115  
110  
85  
The /FAIL output is a failure indicator which can deliver ei-  
ther a boolean type or a serial type message. The type of  
serial message that will be generated depends upon the  
level and chronology applied to /SRQ and /FAIL. The serial  
link is asynchronous, with one start bit (low level), 8 data  
bits and one stop bit (high level), transmitting at 9600 bauds  
±2%.  
Bit 6 = 0  
Bit 7 = 0  
overload condition  
malfunction of the converter  
1 The limits won't track the output voltages if adjusted by means  
of the R pin. Uo ref = 5 V resp. 12.5 V resp. 15 V.  
Transmission of Failure Identification Register (FIR)  
The contents of the Failure Identification Register will be  
transmitted to the user whenever the /SRQ is pulsed low.  
/FAIL  
The /FAIL signal is an open collector input/output allowing  
bidirectional communication. It has an internal pull-up resis-  
tor of 4.7 ktyp. connected to Vo1+.  
/SRQ needs to be kept low for at least T2 (see figure: Trans-  
mission of FIR). After T1 /FAIL will change to high state.  
When /SRQ is taken high, the transmission of the FIR starts  
after T3. Its content is the one which at the time /SRQ was  
taken low. The bits are coded according to table: Bit Code  
of FIR. After the transmission of the FIR the circuit returns  
/SRQ  
The /SRQ signal is a Schmitt-Trigger input with an internal  
pull-up resistor of 6.8 ktyp. connected to Vo1+.  
Table 19: Input/output data of /FAIL and /SRQ  
to idle state.  
11015  
Parameter Conditions  
min.  
max.  
48  
Units  
mA  
V
/FAIL  
ST B0 B1 B2 B3 B4 B5 B6 B7  
S
Isink /FAIL  
U/FAIL <0.6 V  
/FAIL = Input  
U/FAIL High  
U/FAIL Low  
U/SRQ High  
U/SRQ Low  
0.7 Uo1  
/SRQ  
T1  
0.3 Uo1  
0.3 Uo1  
T1 = max 10 µs  
T2 = min 20 µs  
T3 = max 10 µs  
0.7 Uo1  
T2  
T3  
Fig. 27  
Transmission of FIR  
Important: No voltage higher than Uo1 should be applied  
to /FAIL and /SRQ otherwise the unit may be damaged.  
Transmission of Self Test Results  
The diagnostic circuit has the capability to perform a self  
test on its own diagnostic functions in order to increase the  
detected failure rate. All possible defined failures will be in-  
ternally simulated. The user can check the recognition of  
the failures by the setting of the bits in the serial message.  
All bits should be in the high state for correct functioning of  
the circuit. (See table: Bit Code of FIR.)  
There are 4 possible modes for the monitoring circuit/  
serial link.  
Idle state (/FAIL = static failure indicator)  
Transmission of Failure Identification Register (FIR)  
Transmission of Self Test Result  
Programming of the Failure Reporting Mask (FRM)  
To enter the self test routine the user should take the /SRQ  
signal low and force the /FAIL signal to low state for at least  
T5. The self test result is transmitted at a time T7 after the  
/SRQ was taken high.  
Idle State (/SRQ high)  
In the idle state the /FAIL output is a static failure indicator  
with the possibility to mask reported failures. (See: Pro-  
gramming of the FRM.)  
forced to low by user  
If one of the monitored output voltages goes outside of its  
threshold values or in the case of an overload or malfunc-  
tion of the converter, the corresponding bit (according to  
table Bit Code of FIR) is cleared in the Failure Identification  
Register (FIR). If the corresponding bit in the Failure Re-  
porting Mask (FRM) is programmed for reporting, the  
/FAIL output is set to low.  
11016  
/FAIL  
/SRQ  
ST B0 B1 B2 B3 B4 B5 B6 B7  
S
T4 = min 10 µs 1  
T5 = min 20 µs  
T6 = min 10 µs  
T7 = max 10 µs  
T4  
T7  
T6  
T5  
All bits which are cleared in the FIR and have the corre-  
sponding bit programmed in the FRM will be erased 25 ms  
after the disappearance of the last failure with reporting  
enabled or last continuous idle state, whichever occurs last.  
This will result in /FAIL going high. The bits of the FIR whose  
corresponding bits in the FRM are at a low level (no report-  
ing) will remain unchanged.  
1 The negative value of T4 means that /FAIL can be  
forced low latest 10 µs after /SRQ was forced low.  
Fig. 28  
Self test  
After the transmission of the self test the circuit returns into  
idle state. If the self test routine detects any failure which is  
programmed in the FRM for being reported then /FAIL will  
remain low in idle state until the next self test routine is  
started.  
Edition 1/06.2002  
15/16  
Board Mountable  
DC-DC Converters  
G Series  
Programming of the Failure Reporting Mask  
Should some failures not need to be reported to the /FAIL  
line the user can send a serial message to the converter to  
program a new Failure Report Mask (FRM).  
newly programmed FRM. Should the converter consider  
the reception incorrect the last valid FRM remains valid and  
is returned to the user when /SRQ is taken high.  
To enter the programming mode the user should force  
/SRQ to low state for at least T8 before sending the appro-  
priate message (as e.g. according to figure: Programming  
of the FRM and table Bit code for programming the FRM),  
by forcing /FAIL to low whenever needed whilst /SRQ is  
kept low. The parameters for the serial reception are the  
same as for transmission; (Baud rate 9600), one start bit  
(low level), 8 data bits, one stop bit (high level). During the  
whole transmission /SRQ needs to be kept low. The new  
FRM will be used when /SRQ goes high.  
When the system is powered-up all bits of the FRM are high  
(all failures reported).  
Table 21: Bit code for programming the FRM  
Bit  
Failure reporting inhibited for  
B0 = 0 Uo1 < low limit  
B1 = 0 Uo1 > high limit  
B2 = 0 Uo2 < low limit  
B3 = 0 Uo2 > high limit  
B4 = 0 Uo3 < low limit  
B5 = 0 Uo3 > high limit  
B6 = 0 overload condition  
B7 = 0 malfunction of the converter  
After reception the converter will automatically send the  
new FRM to the /FAIL line enabling the user to check the  
11017  
S
/FAIL  
/SRQ  
ST B0 B1 B2 B3 B4 B5 B6 B7  
S
ST B0 B1 B2 B3 B4 B5 B6 B7  
T1  
Sending FRM by user  
T9  
T3  
Acknowledgement by converter  
T8  
T1 = max 10 µs  
T3 = max 10 µs  
T8 = min 20 µs  
T9 = min 10 µs  
Fig. 29  
Programming of the FRM.  
B
Fixing Holes  
Case with fixing holes for extremely high vibration environ-  
ments. (See: Mechanical Data.)  
Edition 1/06.2002  
16/16  

相关型号:

BG3020-9DB

DC-DC Regulated Power Supply Module, 3 Output, 25W, Hybrid
BEL
ETC
ETC
ETC
ETC
ETC
ETC
ETC
ETC
ETC

BG3031B

Open fuse blocks
COOPER

BG3031P

Open fuse blocks
COOPER