SQ24T10050-NEC0G [BEL]

DC-DC Regulated Power Supply Module, 1 Output, 50W, Hybrid, EIGHTH BRICK PACKAGE-8;
SQ24T10050-NEC0G
型号: SQ24T10050-NEC0G
厂家: BEL FUSE INC.    BEL FUSE INC.
描述:

DC-DC Regulated Power Supply Module, 1 Output, 50W, Hybrid, EIGHTH BRICK PACKAGE-8

输入元件 输出元件
文件: 总51页 (文件大小:2437K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
The SemiQ™ Family of DC-DC converters provides a high efficiency single output  
in a size that is only 60% of industry-standard quarter-bricks, while preserving the  
same pinout and functionality.  
In high temperature environments, for output voltages ranging from 3.3 V to 1.0 V,  
the thermal performance of SemiQ™ converters exceeds that of most competitors'  
20 -30 A quarter-bricks. This is accomplished through the use of patent pending  
circuit, packaging and processing techniques to achieve ultra-high efficiency,  
excellent thermal management and a very low body profile.  
Low body profile and the preclusion of heat sinks minimize airflow shadowing, thus  
enhancing cooling for downstream devices. The use of 100% automation for  
assembly, coupled with advanced electric and thermal design, results in a product  
with extremely high reliability.  
Operating from an 18-36 V input, the SQ24 Series converters of the SemiQ™ Family  
provide any standard output voltage from 12 V down to 1.0 V. Outputs can be  
trimmed from 20% to +10% of the nominal output voltage (±10% for output  
voltages 1.2 V and 1.0 V), thus providing outstanding design flexibility.  
With a standard pinout and trim equations, the SQ24 Series converters are perfect  
drop-in replacements for existing quarter brick designs. Inclusion of this converter  
in new designs can result in significant board space and cost savings. The device  
is also available in a surface mount package.  
In both cases the designer can expect reliability improvement over other available  
converters because of the SQ24 Series’ optimized thermal efficiency.  
18-36 VDC Input; Outputs from 1-12 VDC  
Available in through-hole and SM packages  
Outputs available in 12.0, 8.0, 6.0, 5.0, 3.3, 2.5, 2.0, 1.8, 1.5, 1.2 & 1.0 V  
High efficiency no heat sink required  
On-board input differential LC-filter  
Extremely low output and input ripple  
Start-up into pre-biased output  
No minimum load required  
Fixed-frequency operation  
Fully protected  
Remote output sense  
Output voltage trim range: +10%/−20% (except 1.2 V and 1.0 V outputs  
with trim range ±10%) with industry standard trim equations  
High reliability: MTBF of 3.4 million hours, calculated per Telcordia TR-  
332, Method I Case 1  
Positive or negative logic ON/OFF option  
All materials meet UL94, V-0 flammability rating  
Approved to the latest edition and amendment of ITE Safety standards,  
UL/CSA 60950-1 and IEC60950-1  
RoHS lead-free solder and lead-solder-exempted products are available  
2
SQ24 Series  
1
ELECTRICAL SPECIFICATIONS  
Conditions: TA = 25 ºC, Airflow = 300 LFM (1.5 m/s), Vin = 24 VDC, All output voltages, unless otherwise specified.  
PARAMETER  
NOTES  
MIN  
TYP  
MAX  
UNITS  
Absolute Maximum Ratings  
Input Voltage  
Continuous  
0
40  
85  
VDC  
°C  
Operating Ambient Temperature  
Storage Temperature  
Input Characteristics  
Operating Input Voltage Range  
-40  
-55  
125  
°C  
18  
16  
15  
24  
17  
16  
36  
VDC  
VDC  
VDC  
Turn-on Threshold  
Turn-off Threshold  
17.5  
16.5  
Input Under Voltage Lockout (Non-latching)  
Isolation Characteristics  
I/O Isolation  
2000  
VDC  
pF  
1.0 - 3.3 V  
5.0 - 6.0 V  
8.0 V, 12 V  
160  
260  
230  
Isolation Capacitance  
pF  
pF  
Isolation Resistance  
Feature Characteristics  
Switching Frequency  
10  
M  
415  
kHz  
%
Industry-std. equations (1.5 - 12 V)  
Industry-std. equations (1.0 - 1.2 V)  
Percent of VOUT(NOM)  
-20  
-10  
+10  
+10  
+10  
140  
140  
Output Voltage Trim Range1  
Remote Sense Compensation1  
Output Over-Voltage Protection  
%
%
Non-latching (1.5 - 12 V)  
117  
124  
125  
132  
100  
4
%
Non-latching (1.0 - 1.2 V)  
%
Auto-Restart Period  
Turn-On Time  
Applies to all protection features  
ms  
ms  
VDC  
VDC  
VDC  
VDC  
Converter Off  
Converter On  
Converter Off  
Converter On  
-20  
2.4  
2.4  
-20  
0.8  
20  
ON/OFF Control (Positive Logic)  
ON/OFF Control (Negative Logic)  
20  
0.8  
1 Vout can be increased up to 10% via the sense leads or up to 10% via the trim function, however total output voltage trim from all sources should not  
exceed 10% of VOUT(NOM), in order to insure specified operation of over-voltage protection circuitry. See “Output Voltage Adjust/Trim” for detailed  
information.  
tech.support@psbel.com  
3
SQ24 Series  
2
OPERATIONS  
2.1 INPUT AND OUTPUT IMPEDANCE  
These power converters have been designed to be stable with no external capacitors when used in low inductance input and output  
circuits.  
However, in many applications, the inductance associated with the distribution from the power source to the input of the converter can  
affect the stability of the converter. The addition of a 100 µF electrolytic capacitor with an ESR < 1 across the input helps ensure stability  
of the converter. In many applications, the user has to use decoupling capacitance at the load. The power converter will exhibit stable  
operation with external load capacitance up to 1000 µF on 12 V, 2,200 µF on 8.0 V, 10,000 µF on 5.0 V 6.0 V, and 15,000 µF on 3.3 V  
1.0 V outputs.  
2.2 ON/OFF (Pin 2)  
The ON/OFF pin is used to turn the power converter on or off remotely via a system signal. There are two remote control options  
available, positive logic and negative logic and both are referenced to Vin(-). Typical connections are shown in Fig. A.  
TM Family  
Converter  
Semi  
Q
Vin (+)  
ON/OFF  
Vin (-)  
Vout (+)  
SENSE (+)  
TRIM  
(Top View )  
Rload  
Vin  
SENSE (-)  
Vout (-)  
CONTROL  
INPUT  
Fig. A: Circuit configuration for ON/OFF function.  
The positive logic version turns on when the ON/OFF pin is at logic high and turns off when at logic low. The converter is on when the  
ON/OFF pin is left open.  
The negative logic version turns on when the pin is at logic low and turns off when the pin is at logic high. The ON/OFF pin can be hard  
wired directly to Vin(-) to enable automatic power up of the converter without the need of an external control signal.  
ON/OFF pin is internally pulled-up to 5 V through a resistor. A mechanical switch, open collector transistor, or FET can be used to drive  
the input of the ON/OFF pin. The device must be capable of sinking up to 0.2mA at a low level voltage of 0.8V. An external voltage  
source (±20V maximum) may be connected directly to the ON/OFF input, in which case it must be capable of sourcing or sinking up to  
1mA depending on the signal polarity. See the Start-up Information section for system timing waveforms associated with use of the  
ON/OFF pin.  
2.3 REMOTE SENSE (PINS 5 AND 7)  
The remote sense feature of the converter compensates for voltage drops occurring between the output pins of the converter and the  
load. The SENSE(-) (Pin 5) and SENSE(+) (Pin 7) pins should be connected at the load or at the point where regulation is required (see  
Fig. B).  
TM Family  
Converter  
Rw  
Semi  
Q
Vout (+)  
100  
Vin (+)  
ON/OFF  
Vin (-)  
SENSE (+)  
TRIM  
SENSE (-)  
(Top View 
Rload  
Vin  
10  
Vout (-)  
Rw  
Fig. B: Remote sense circuit configuration.  
North America  
+1 408 785 5200  
Asia-Pacific  
+86 755 298 85888  
Europe, Middle East  
+353 61 225 977  
© 2018 Bel Power Solutions & Protection  
BCD.00706_AB  
4
SQ24 Series  
If remote sensing is not required, the SENSE(-) pin must be connected to the Vout(-) pin (Pin 4), and the SENSE(+) pin must be connected  
to the Vout(+) pin (Pin 8) to ensure the converter will regulate at the specified output voltage. If these connections are not made, the  
converter will deliver an output voltage that is slightly higher than the specified value.  
Because the sense leads carry minimal current, large traces on the end-user board are not required. However, sense traces should be  
located close to a ground plane to minimize system noise and insure optimum performance. When wiring discretely, twisted pair wires  
should be used to connect the sense lines to the load to reduce susceptibility to noise.  
The converter’s output over-voltage protection (OVP) senses the voltage across Vout(+) and Vout(-), and not across the sense lines, so  
the resistance (and resulting voltage drop) between the output pins of the converter and the load should be minimized to prevent  
unwanted triggering of the OVP.  
When utilizing the remote sense feature, care must be taken not to exceed the maximum allowable output power capability of the  
converter, equal to the product of the nominal output voltage and the allowable output current for the given conditions.  
When using remote sense, the output voltage at the converter can be increased by as much as 10% above the nominal rating in order  
to maintain the required voltage across the load. Therefore, the designer must, if necessary, decrease the maximum current (originally  
obtained from the derating curves) by the same percentage to ensure the converter’s actual output power remains at or below the  
maximum allowable output power.  
2.4 OUTPUT VOLTAGE ADJUST/TRIM (PIN 6)  
The converter’s output voltage can be adjusted up 10% or down 20% for Vout 1.5V, and ±10% for Vout = 1.2V and 1.0 V, relative to  
the rated output voltage by the addition of an externally connected resistor. For output voltages 3.3V, trim up to 10% is guaranteed only  
at Vin 20V, and it is marginal (8% to 10%) at Vin = 18V depending on load current.  
The TRIM pin should be left open if trimming is not being used. To minimize noise pickup, a 0.1 µF capacitor is connected internally  
between the TRIM and SENSE(-) pins.  
To increase the output voltage, refer to Fig. C. A trim resistor, RT-INCR, should be connected between the TRIM (Pin 6) and SENSE(+) (Pin  
7), with a value of:  
5.11(100 Δ)VONOM 626  
RTINCR  
10.22  
[k] (1.5-12 V)  
1.225Δ  
485  
[k] (1.2 V)  
R
TINCR  
TINCR  
Δ
323  
[k] (1.0 V)  
R
2  
Δ
where,  
RTINCR Required value of trim-up resistor [k]  
VONOM Nominal value of output voltage [V]  
(VO-REQ VO-NOM)  
Δ   
X 100  
VO -NOM  
[%]  
VOREQ Desired (trimmed) output voltage [V].  
When trimming up, care must be taken not to exceed the converter‘s maximum allowable output power. See previous section for a  
complete discussion of this requirement.  
TM Family  
Converter  
Semi  
Q
Vin (+)  
ON/OFF  
Vin (-)  
Vout (+)  
SENSE (+)  
TRIM  
(Top View )  
R
T-INCR  
Rload  
Vin  
SENSE (-)  
Vout (-)  
Fig. C: Configuration for increasing output voltage.  
tech.support@psbel.com  
5
SQ24 Series  
To decrease the output voltage (Fig. D), a trim resistor, RT-DECR, should be connected between the TRIM (Pin 6) and SENSE(-) (Pin 5), with  
a value of:  
511  
RTDECR  
10.22  
[k] (1.0 12 V)  
| Δ |  
where,  
RTDECR Required value of trim-down resistor [k] and  
Δ
is defined above.  
Note: The above equations for calculation of trim resistor values match those typically used in conventional industry standard quarter  
bricks and one-eighth bricks.  
Converters with output voltage 1.2V and 1.0V have specific trim schematic and equations, to provide the customers with the flexibility  
of second sourcing. For these converters, the last character of part number is “T”. More information about trim feature, including  
corresponding schematic portions, can be found in Application Note 103.  
TM Family  
Converter  
Semi  
Q
Vin (+)  
ON/OFF  
Vin (-)  
Vout (+)  
SENSE (+)  
TRIM  
(Top View )  
Rload  
Vin  
R T-DECR  
SENSE (-)  
Vout (-)  
Fig. D: Configuration for decreasing output voltage.  
Trimming/sensing beyond 110% of the rated output voltage is not an acceptable design practice, as this condition could cause unwanted  
triggering of the output over-voltage protection (OVP) circuit. The designer should ensure that the difference between the voltages across  
the converter’s output pins and its sense pins does not exceed 10% of  
VOUT(NOM), or:  
[VOUT()VOUT()][VSENSE()VSENSE()] VO - NOM X10% [V]  
This equation is applicable for any condition of output sensing and/or output trim.  
3
PROTECTION FEATURES  
3.1 INPUT UNDERVOLTAGE LOCKOUT  
Input undervoltage lockout is standard with this converter. The converter will shut down when the input voltage drops below a pre-  
determined voltage.  
The input voltage must be at least 17.5V for the converter to turn on. Once the converter has been turned on, it will shut off when the  
input voltage drops below 15V. This feature is beneficial in preventing deep discharging of batteries used in telecom applications.  
3.2 OUTPUT OVERCURRENT PROTECTION (OCP)  
The converter is protected against overcurrent or short circuit conditions. Upon sensing an overcurrent condition, the converter will  
switch to constant current operation and thereby begin to reduce output voltage. When the output voltage drops below 50% of the  
nominal value of output voltage, the converter will shut down.  
Once the converter has shut down, it will attempt to restart nominally every 100 ms with a typical 1-2% duty cycle. The attempted restart  
will continue indefinitely until the overload or short circuit conditions are removed or the output voltage rises above 50% of its nominal  
value.  
3.3 OUTPUT OVERVOLTAGE PROTECTION (OVP)  
The converter will shut down if the output voltage across Vout(+) (Pin 8) and Vout(-) (Pin 4) exceeds the threshold of the OVP circuitry.  
The OVP circuitry contains its own reference, independent of the output voltage regulation loop. Once the converter has shut down, it  
will attempt to restart every 100 ms until the OVP condition is removed.  
North America  
+1 408 785 5200  
Asia-Pacific  
+86 755 298 85888  
Europe, Middle East  
+353 61 225 977  
© 2018 Bel Power Solutions & Protection  
BCD.00706_AB  
6
SQ24 Series  
3.4 OVERTEMPERATURE PROTECTION (OTP)  
The converter will shut down under an overtemperature condition to protect itself from overheating caused by operation outside the  
thermal derating curves, or operation in abnormal conditions such as system fan failure. After the converter has cooled to a safe operating  
temperature, it will automatically restart.  
3.5 SAFETY REQUIREMENTS  
The converters meet the requirements of the latest edition and amendment of ITE Safety standards UL/CSA 60950-1.  
Basic Insulation is provided between input and output. To comply with safety agencies requirements, an input line fuse must be used  
external to the converter. The table below provides the recommended fuse rating for use with this family of products.  
OUTPUT VOLTAGE  
3.3 V  
FUSE RATING  
8 A  
6 A  
4 A  
12 V - 5.0 V, 2.5 V  
2.0 V - 1.0 V  
If one input fuse is used for a group of modules, the maximum fuse rating should not exceed 15-A (SQ modules are UL approved with  
up to a 15-A fuse).  
3.6 ELECTROMAGNETIC COMPATIBILITY (EMC)  
EMC requirements must be met at the end-product system level, as no specific standards dedicated to EMC characteristics of board  
mounted component dc-dc converters exist. However, Bel Power Solutions tests its converters to several system level standards,  
primary of which is the more stringent EN55022, Information technology equipment - Radio disturbance characteristics - Limits and  
methods of measurement.  
With the addition of a simple external filter (see application notes), all versions of the SQ24 Series of converters pass the requirements  
of Class B conducted emissions per EN55022 and FCC, and meet at a minimum, Class A radiated emissions per EN 55022 and Class  
B per FCC Title 47CFR, Part 15-J. Please contact di/dt Applications Engineering for details of this testing.  
4
CHARACTERIZATION  
GENERAL INFORMATION  
4.1  
The converter has been characterized for many operational aspects, to include thermal derating (maximum load current as a function of  
ambient temperature and airflow) for vertical and horizontal mounting, efficiency, start-up and shutdown parameters, output ripple and  
noise, transient response to load step-change, overload and short circuit.  
The figures are numbered as Fig. x.y, where x indicates the different output voltages, and y is associated with a specific plot (y = 1 for  
the vertical thermal derating, …). For example, Fig. x.1 will refer to the vertical thermal derating for all the output voltages in general.  
The following pages contain specific plots or waveforms associated with the converter. Additional comments for specific data are  
provided below.  
4.2  
TEST CONDITIONS  
All data presented were taken with the converter soldered to a test board, specifically a 0.060” thick printed wiring board (PWB) with  
four layers. The top and bottom layers were not metalized. The two inner layers, comprising two-ounce copper, were used to provide  
traces for connectivity to the converter.  
The lack of metalization on the outer layers as well as the limited thermal connection ensured that heat transfer from the converter to the  
PWB was minimized. This provides a worst-case but consistent scenario for thermal derating purposes.  
All measurements requiring airflow were made in vertical and horizontal wind tunnel facilities using Infrared (IR) thermography and  
thermocouples for thermometry.  
Ensuring components on the converter do not exceed their ratings is important to maintaining high reliability. If one anticipates operating  
the converter at or close to the maximum loads specified in the derating curves, it is prudent to check actual operating temperatures in  
the application. Thermographic imaging is preferable; if this capability is not available, then thermocouples may be used. Bel Power  
Solutions recommends the use of AWG #40 gauge thermocouples to ensure measurement accuracy. Careful routing of the thermocouple  
leads will further minimize measurement error. Refer to Figure H for optimum measuring thermocouple location.  
tech.support@psbel.com  
7
SQ24 Series  
4.3 THERMAL DERATING  
Load current vs. ambient temperature and airflow rates are given in Fig. x.1 for through-hole version. Ambient temperature was varied  
between 25 °C and 85 °C, with airflow rates from 30 to 500 LFM (0.15 to 2.5 m/s), and vertical and horizontal converter mounting.  
For each set of conditions, the maximum load current was defined as the lowest of:  
(i)  
The output current at which any FET junction temperature did not exceed a maximum specified temperature (120 °C) as indicated  
by the thermographic image, or  
(ii) The nominal rating of the converter (4 A on 12 V, 5.3 A on 8.0 V, 8 A on 6.0 V, 10 A on 5.0 V, and 15 A on 3.3 1.0 V).  
During normal operation, derating curves with maximum FET temperature less than or equal to 120 °C should not be exceeded.  
Temperature on the PCB at the thermocouple location shown in Fig. H should not exceed 118 °C in order to operate inside the derating  
curves.  
Fig. H: Location of the thermocouple for thermal testing.  
4.4 EFFICIENCY  
Fig. x.5 shows the efficiency vs. load current plot for ambient temperature of 25 ºC, airflow rate of 300 LFM (1.5 m/s) with vertical  
mounting and input voltages of 18 V, 24 V and 36 V. Also, a plot of efficiency vs. load current, as a function of ambient temperature with  
Vin = 24 V, airflow rate of 200 LFM (1 m/s) with vertical mounting is shown in Fig. x.6.  
4.5 POWER DISSIPATION  
Fig. x.7 shows the power dissipation vs. load current plot for Ta = 25 ºC, airflow rate of 300 LFM (1.5 m/s) with vertical mounting and  
input voltages of 18 V, 24 V and 36 V. Also, a plot of power dissipation vs. load current, as a function of ambient temperature with Vin =  
24 V, airflow rate of 200 LFM (1 m/s) with vertical mounting is shown in Fig. x.8.  
4.6 START-UP  
Output voltage waveforms, during the turn-on transient using the ON/OFF pin for full rated load currents (resistive load) are shown  
without and with external load capacitance in Fig. x.9 and Fig. x.10, respectively.  
4.7 RIPPLE AND NOISE  
Fig. x.13 shows the output voltage ripple waveform, measured at full rated load current with a 10 µF tantalum and 1 µF ceramic  
capacitor across the output. Note that all output voltage waveforms are measured across a 1 F ceramic capacitor.  
The input reflected ripple current waveforms are obtained using the test setup shown in Fig x.14. The corresponding waveforms are  
shown in Fig. x.15 and Fig. x.16.  
North America  
+1 408 785 5200  
Asia-Pacific  
+86 755 298 85888  
Europe, Middle East  
+353 61 225 977  
© 2018 Bel Power Solutions & Protection  
BCD.00706_AB  
8
SQ24 Series  
4.8 START-UP INFORMATION (USING NEGATIVE ON/OFF)  
VIN  
Scenario #1: Initial Start-up From Bulk Supply  
ON/OFF function enabled, converter started via application of VIN.  
See Figure E.  
Time  
t0  
Comments  
ON/OFF pin is ON; system front end power is toggled  
on, VIN to converter begins to rise.  
ON/OFF  
STATE  
t1  
t2  
t3  
VIN crosses Under-Voltage Lockout protection circuit  
threshold; converter enabled.  
Converter begins to respond to turn-on command  
(converter turn-on delay).  
OFF  
ON  
Converter VOUT reaches 100% of nominal value.  
For this example, the total converter start-up time (t3- t1) is typically  
4 ms.  
VOUT  
t
t0  
t1 t2  
t3  
Fig. E: Start-up scenario #1  
Scenario #2: Initial Start-up Using ON/OFF Pin  
With VIN previously powered, converter started via ON/OFF pin.  
See Figure F.  
VIN  
Time  
t0  
Comments  
VINPUT at nominal value.  
t1  
Arbitrary time when ON/OFF pin is enabled  
(converter enabled).  
ON/OFF  
STATE  
t2  
t3  
End of converter turn-on delay.  
Converter VOUT reaches 100% of nominal value.  
OFF  
ON  
For this example, the total converter start-up time (t3- t1) is  
typically 4 ms.  
VOUT  
t
t0  
t1 t2  
t3  
Fig. F: Start-up scenario #2.  
Scenario #3: Turn-off and Restart Using ON/OFF Pin  
IN  
V
With VIN previously powered, converter is disabled and then  
enabled via ON/OFF pin. See Figure G.  
Time  
t0  
t1  
Comments  
VIN and VOUT are at nominal values; ON/OFF pin ON.  
ON/OFF pin arbitrarily disabled; converter output falls to  
zero; turn-on inhibit delay period (100 ms typical) is initiated, and  
100 ms  
ON/OFF  
STATE  
ON/OFF pin action is internally inhibited. t2  
externally re-enabled.  
ON/OFF pin is  
OFF  
ON  
If (t2- t1) 100 ms, external action of ON/OFF pin  
is locked out by start-up inhibit timer.  
If (t2- t1) > 100 ms, ON/OFF pin action is internally  
enabled.  
OUT  
V
t3  
Turn-on inhibit delay period ends. If ON/OFF pin is ON,  
converter begins turn-on; if off, converter awaits ON/OFF pin  
ON signal; see Figure F. t4 End of converter turn-on delay.  
t5  
Converter VOUT reaches 100% of nominal value. For  
t
t1  
t2  
t3 t4  
t5  
the condition, (t2- t1) 100 ms, the total converter start-up time  
(t5- t2) is typically 104 ms. For (t2- t1) > 100 ms, start-up will be  
typically 4 ms after release of ON/OFF pin.  
Fig. G: Start-up scenario #3  
tech.support@psbel.com  
9
SQ24T/S04120 (12.0 VOUT  
)
SQ24 Series  
5
ELECTRICAL SPECIFICATIONS: SQ24T/S04120 (12 VOLTS OUT)  
Conditions: TA = 25ºC, Airflow = 300 LFM (1.5 m/s), Vin = 24 VDC, Vout = 12 VDC unless otherwise specified.  
Input Characteristics  
Maximum Input Current  
4 ADC, 12 VDC Out @ 18 VDC In  
Vin = 24 V, converter disabled  
Vin = 24 V, converter enabled  
25 MHz bandwidth  
3.1  
ADC  
Input Stand-by Current  
3
100  
6
mADC  
mADC  
mAPK-PK  
dB  
Input No Load Current (0 load on the output)  
Input Reflected-Ripple Current  
Input Voltage Ripple Rejection  
Output Characteristics  
120 Hz  
TBD  
Output Voltage Set Point (no load)  
11.88  
11.82  
0
12.00  
±4  
12.12  
±10  
±10  
12.18  
120  
1000  
4
VDC  
mV  
Over Line  
Output Regulation  
Over Load  
±4  
mV  
Output Voltage Range  
Output Ripple and Noise - 25 MHz bandwidth  
External Load Capacitance  
Output Current Range  
Current Limit Inception  
Peak Short-Circuit Current  
RMS Short-Circuit Current  
Dynamic Response  
Over line, load and temperature (-40ºC to 85ºC)  
Full load + 10 μF tantalum + 1 μF ceramic  
Plus full load (resistive)  
VDC  
mVPK-PK  
μF  
90  
ADC  
ADC  
A
Non-latching  
5
5.5  
Non-latching. Short = 10 m.  
Non-latching  
7.5  
10  
1
Arms  
Load Change 25% of Iout Max, di/dt = 0.1 A/μs  
di/dt = 5 A/μs  
Co = 1 μF ceramic  
1 μF ceramic  
150  
200  
20  
mV  
mV  
µs  
Setting Time to 1%  
Efficiency  
100% Load  
87  
87  
%
%
50% Load  
North America  
+1 408 785 5200  
Asia-Pacific  
+86 755 298 85888  
Europe, Middle East  
+353 61 225 977  
© 2018 Bel Power Solutions & Protection  
BCD.00706_AB  
10  
SQ24T/S04120 (12.0 VOUT  
)
SQ24 Series  
Ambient Temperature [°C]  
Ambient Temperature [°C]  
Fig. 12V.1: Available load current vs. ambient air temperature and  
airflow rates for SQ24T04120 converter with B height pins  
mounted vertically with Vin = 24V, air flowing from pin 3 to pin 1  
and maximum FET temperature 120°C.  
Fig. 12V.2: Available load current vs. ambient air temperature and  
airflow rates for SQ24T04120 converter with B height pins  
mounted horizontally with Vin = 24V, air flowing from pin 3 to pin 1  
and maximum FET temperature 120°C.  
Ambient Temperature [°C]  
Ambient Temperature [°C]  
Fig. 12V.3: Available load current vs. ambient temperature and  
airflow rates for SQ24S04120 converter mounted vertically with  
Vin = 24V, air flowing from pin 3 to pin 1 and maximum FET  
temperature 120°C.  
Fig. 12V.4: Available load current vs. ambient temperature and  
airflow rates for SQ24S04120 converter mounted horizontally with  
Vin = 24V, air flowing from pin 3 to pin 1 and maximum FET  
temperature 120°C.  
0.95  
0.90  
0.85  
0.80  
0.95  
0.90  
0.85  
0.80  
36 V  
24 V  
18 V  
70 C  
55 C  
40 C  
0.75  
0.75  
0.70  
0.65  
0.70  
0.65  
0
1
2
3
4
5
0
1
2
3
4
5
Load Current [Adc]  
Load Current [Adc]  
Fig. 12V.5: Efficiency vs. load current and input voltage for  
SQ24T/S04120 converter mounted vertically with air flowing from  
pin 3 to pin 1 at a rate of 300 LFM (1.5 m/s) and Ta = 25°C.  
Fig. 12V.6: Efficiency vs. load current and ambient temperature  
for SQ24T/S04120 converter mounted vertically with Vin = 24V  
and air flowing from pin 3 to pin 1 at a rate of 200 LFM (1.0 m/s).  
tech.support@psbel.com  
11  
SQ24T/S04120 (12.0 VOUT  
)
SQ24 Series  
10.00  
8.00  
6.00  
4.00  
2.00  
0.00  
10.00  
8.00  
6.00  
4.00  
2.00  
0.00  
36 V  
24 V  
18 V  
70 C  
55 C  
40 C  
0
1
2
3
4
5
0
1
2
3
4
5
Load Current [Adc]  
Load Current [Adc]  
Fig. 12V.7: Power dissipation vs. load current and input voltage  
for SQ24T/S04120 converter mounted vertically with air flowing  
from pin 3 to pin 1 at a rate of 300 LFM (1.5 m/s) and Ta = 25°C.  
Fig. 12V.8: Power dissipation vs. load current and ambient  
temperature for SQ24T/S04120 converter mounted vertically with  
Vin = 24V and air flowing from pin 3 to pin 1 at a rate of 200 LFM  
(1.0 m/s).  
Fig. 12V.9: Turn-on transient at full rated load current (resistive)  
with no output capacitor at Vin = 24V, triggered via ON/OFF pin.  
Top trace: ON/OFF signal (5 V/div.). Bottom trace: output voltage  
(5 V/div.). Time scale: 1 ms/div.  
Fig. 12V.10: Turn-on transient at full rated load current (resistive)  
plus 1,000F at Vin = 24V, triggered via ON/OFF pin. Top trace:  
ON/OFF signal (5 V/div.). Bottom trace: output voltage (5 V/div.).  
Time scale: 2 ms/div.  
Fig. 12V.11: Output voltage response to load current step-change  
(1A 2A 1A) at Vin = 24V. Top trace: output voltage (200  
mV/div.). Bottom trace: load current (1 A/div.). Current slew rate:  
0.1 A/s. Co = 1 F ceramic. Time scale: 0.5 ms/div.  
Fig. 12V.12: Output voltage response to load current step-change  
(1A 2A 1A) at Vin = 24V. Top trace: output voltage (200  
mV/div.). Bottom trace: load current (1 A/div.). Current slew rate: 5  
A/s. Co = 1 F ceramic. Time scale: 0.5 ms/div.  
North America  
+1 408 785 5200  
Asia-Pacific  
+86 755 298 85888  
Europe, Middle East  
+353 61 225 977  
© 2018 Bel Power Solutions & Protection  
BCD.00706_AB  
12  
SQ24T/S04120 (12.0 VOUT  
)
SQ24 Series  
iS  
iC  
10 H  
source  
inductance  
TM  
33 F  
ESR <1  
electrolytic  
capacitor  
1 F  
ceramic  
capacitor  
Family  
SemiQ  
DC/DC  
Converter  
Vout  
Vsource  
Fig. 12V.14: Test setup for measuring input reflected ripple  
currents, ic and is.  
Fig. 12V.13: Output voltage ripple (50 mV/div.) at full rated load  
current into a resistive load with Co = 10 F tantalum + 1uF  
ceramic and Vin = 24 V. Time scale: 1 s/div.  
Fig. 12V.15: Input reflected ripple current, ic (100 mA/div.),  
measured at input terminals at full rated load current and Vin =  
24V. Refer to Fig. 12V.14 for test setup. Time scale: 1 s/div.  
Fig. 12V.16: Input reflected ripple current, is (10 mA/div.),  
measured through 10H at the source at full rated load current  
and Vin = 24V. Refer to Fig. 12V.14 for test setup. Time scale:  
1s/div.  
15  
10  
5
0
6
0
1
2
3
4
5
Iout [Adc]  
Fig. 12V.18: Load current (top trace, 5 A/div., 20 ms/div.) into a 10  
mshort circuit during restart, at Vin = 24V. Bottom trace (5  
A/div., 1 ms/div.) is an expansion of the on-time portion of the top  
trace.  
Fig. 12V.17: Output voltage vs. load current showing current limit  
point and converter shutdown point. Input voltage has almost no  
effect on current limit characteristic.  
tech.support@psbel.com  
13  
SQ24T/S05080 (12.0 VOUT  
)
SQ24 Series  
6
ELECTRICAL SPECIFICATIONS: SQ24T/S05080 (8.0 VOLTS OUT)  
Conditions: TA = 25 ºC, Airflow = 300 LFM (1.5 m/s), Vin = 24 VDC, Vout = 8.0 VDC unless otherwise specified.  
Input Characteristics  
Maximum Input Current  
5.3 ADC, 8.0 VDC Out @ 18 VDC In  
Vin = 24 V, converter disabled  
Vin = 24 V, converter enabled  
25 MHz bandwidth  
2.8  
ADC  
Input Stand-by Current  
2.6  
68  
mADC  
mADC  
mAPK-PK  
dB  
Input No Load Current (0 load on the output)  
Input Reflected-Ripple Current  
Input Voltage Ripple Rejection  
Output Characteristics  
6
120 Hz  
TBD  
Output Voltage Set Point (no load)  
7.92  
7.88  
8.00  
±4  
8.08  
±10  
±10  
8.12  
VDC  
mV  
Over Line  
Output Regulation  
Over Load  
±4  
mV  
Output Voltage Range  
Over line, load and temperature (-40ºC to 85ºC)  
VDC  
Full load + 10 μF tantalum + 1 μF ceramic  
Output Ripple and Noise - 25 MHz bandwidth  
External Load Capacitance  
Output Current Range  
70  
100  
2200  
5.3  
6.75  
12  
mVPK-PK  
μF  
Plus full load (resistive)  
0
ADC  
ADC  
A
Current Limit Inception  
Non-latching  
6.25  
10  
Peak Short-Circuit Current  
RMS Short-Circuit Current  
Non-latching. Short=10m.  
Non-latching  
1
Arms  
Dynamic Response  
Load Change 25% of Iout Max, di/dt = 0.1 A/μs  
di/dt = 5 A/μs  
Co = 1 μF ceramic  
160  
160  
400  
mV  
mV  
µs  
Co = 94 μF tant. + 1 μF ceramic  
Setting Time to 1%  
Efficiency  
100% Load  
50% Load  
85.5  
87  
%
%
6
5
4
3
0.95  
0.90  
0.85  
0.80  
0.75  
0.70  
0.65  
500 LFM (2.5 m/s)  
400 LFM (2.0 m/s)  
300 LFM (1.5 m/s)  
200 LFM (1.0 m/s)  
100 LFM (0.5 m/s)  
30 LFM (0.15 m/s)  
36 V  
24 V  
18 V  
2
1
0
20  
30  
40  
50  
60  
70  
80  
90  
0
1
2
3
4
5
6
Ambient Temperature [°C]  
Load Current [Adc]  
Fig. 8.0V.1: Available load current vs. ambient air temperature and  
airflow rates for SQ24T05080 converter with D height pins  
mounted vertically with Vin = 24 V, air flowing from pin 3 to pin 1  
and maximum FET temperature 120C.  
Fig. 8.0V.2: Efficiency vs. load current and input voltage for  
SQ24T/S05080 converter mounted vertically with air flowing from  
pin 3 to pin 1 at a rate of 300 LFM (1.5 m/s) and Ta = 25C.  
North America  
+1 408 785 5200  
Asia-Pacific  
+86 755 298 85888  
Europe, Middle East  
+353 61 225 977  
© 2018 Bel Power Solutions & Protection  
BCD.00706_AB  
14  
SQ24T/S08060 (6.0 VOUT  
)
SQ24 Series  
7
ELECTRICAL SPECIFICATIONS: SQ24T/S08060 (6.0 VOLTS OUT)  
Conditions: TA = 25 ºC, Airflow = 300 LFM (1.5 m/s), Vin = 24 VDC, Vout = 6.0 VDC unless otherwise specified.  
Input Characteristics  
Maximum Input Current  
8 ADC, 6.0 VDC Out @ 18 VDC In  
Vin = 24 V, converter disabled  
Vin = 24 V, converter enabled  
25 MHz bandwidth  
3.1  
ADC  
mADC  
mADC  
mAPK-PK  
dB  
Input Stand-by Current  
2.6  
88  
Input No Load Current (0 load on the output)  
Input Reflected-Ripple Current  
Input Voltage Ripple Rejection  
Output Characteristics  
6
120 Hz  
TBD  
Output Voltage Set Point (no load)  
5.940  
5.910  
0
6.000  
±2  
6.060  
±5  
VDC  
mV  
Over Line  
Output Regulation  
Over Load  
±2  
±5  
mV  
Output Voltage Range  
Output Ripple and Noise - 25 MHz bandwidth  
External Load Capacitance  
Output Current Range  
Current Limit Inception  
Peak Short-Circuit Current  
RMS Short-Circuit Current  
Dynamic Response  
Over line, load and temperature (-40ºC to 85ºC)  
Full load + 10 μF tantalum + 1 μF ceramic  
Plus full load (resistive)  
6.090  
60  
VDC  
mVPK-PK  
μF  
45  
10,000  
8
ADC  
ADC  
A
Non-latching  
10  
15  
11.5  
25  
Non-latching. Short=10m.  
Non-latching  
2.5  
Arms  
Load Change 25% of Iout Max, di/dt = 0.1 A/μs  
di/dt = 5 A/μs  
Co = 1 μF ceramic  
100  
80  
mV  
mV  
µs  
Co = 450 μF tant. + 1 μF ceramic  
Setting Time to 1%  
200  
Efficiency  
100% Load  
89  
89  
%
%
50% Load  
tech.support@psbel.com  
15  
SQ24T/S08060 (6.0 VOUT  
)
SQ24 Series  
10  
10  
8
8
6
6
500 LFM (2.5 m/s)  
400 LFM (2.0 m/s)  
300 LFM (1.5 m/s)  
200 LFM (1.0 m/s)  
100 LFM (0.5 m/s)  
500 LFM (2.5 m/s)  
4
4
400 LFM (2.0 m/s)  
300 LFM (1.5 m/s)  
200 LFM (1.0 m/s)  
100 LFM (0.5 m
30 LFM (0
2
2
30 LFM (0.15 m/s)  
0
0
20  
30  
40  
50  
60  
70  
80  
90  
20  
30  
40  
50  
60  
70  
80  
90  
Ambient Temperature [°C]  
Ambient Temperature [°C]  
Fig. 6.0V.1: Available load current vs. ambient air temperature and  
airflow rates for SQ24T08060 converter with B height pins  
mounted vertically with Vin = 24V, air flowing from pin 3 to pin 1  
and maximum FET temperature 120C.  
Fig. 6.0V.2: Available load current vs. ambient air temperature and  
airflow rates for SQ24T08060 converter with B height pins  
mounted horizontally with Vin = 24V, air flowing from pin 3 to pin 1  
and maximum FET temperature 120C.  
10  
10  
8
8
6
6
500 LFM (2.5 m/s)  
400 LFM (2.0 m/s)  
500 LFM (2.5 m/s)  
400 LFM (2.0 m/s)  
4
4
300 LFM (1.5 m/s)  
200 LFM (1.0 m/s)  
300 LFM (1.5 m/s)  
200 LFM (1.0 m/s)  
100 LFM (0.5 m
30 LFM (0
100 LFM (0.5 m/
30 LFM (0.
2
2
0
0
20  
30  
40  
50  
60  
70  
80  
90  
20  
30  
40  
50  
60  
70  
80  
90  
Ambient Temperature [°C]  
Ambient Temperature [°C]  
Fig. 6.0V.3: Available load current vs. ambient temperature and  
airflow rates for SQ24S08060 converter mounted vertically with  
Vin = 24V, air flowing from pin 3 to pin 1 and maximum FET  
temperature 120C.  
Fig. 6.0V.4: Available load current vs. ambient temperature and  
airflow rates for SQ24S08060 converter mounted horizontally with  
Vin = 24V, air flowing from pin 3 to pin 1 and maximum FET  
temperature 120C.  
0.95  
0.90  
0.85  
0.80  
0.95  
0.90  
0.85  
0.80  
36 V  
24 V  
18 V  
70 C  
55 C  
40 C  
0.75  
0.75  
0.70  
0.65  
0.70  
0.65  
0
2
4
6
8
10  
0
2
4
6
8
10  
Load Current [Adc]  
Load Current [Adc]  
Fig. 6.0V.5: Efficiency vs. load current and input voltage for  
SQ24T/S08060 converter mounted vertically with air flowing from  
Fig. 6.0V.6: Efficiency vs. load current and ambient temperature  
for SQ24T/S08060 converter mounted vertically with Vin = 24V  
and air flowing from pin 3 to pin 1 at a rate of 200 LFM (1.0 m/s).  
pin 3 to pin 1 at a rate of 300 LFM (1.5 m/s) and Ta = 25C.  
North America  
+1 408 785 5200  
Asia-Pacific  
+86 755 298 85888  
Europe, Middle East  
+353 61 225 977  
© 2018 Bel Power Solutions & Protection  
BCD.00706_AB  
16  
SQ24T/S08060 (6.0 VOUT  
)
SQ24 Series  
10.00  
10.00  
8.00  
6.00  
4.00  
2.00  
0.00  
8.00  
6.00  
4.00  
2.00  
0.00  
72 V  
48 V  
36 V  
70 C  
55 C  
40 C  
0
2
4
6
8
10  
0
2
4
6
8
10  
Load Current [Adc]  
Load Current [Adc]  
Fig. 6.0V.7: Power dissipation vs. load current and ambient  
Fig. 6.0V.8: Power dissipation vs. load current and ambient  
temperature for SQ24T/S08060 converter mounted vertically with  
air flowing from pin 3 to pin 1 at a rate of 300 LFM (1.5 m/s) and  
Ta = 25C.  
temperature for SQ24T/S08060 converter mounted vertically with  
Vin = 24V and air flowing from pin 3 to pin 1 at a rate of 200 LFM  
(1.0 m/s).  
Fig. 6.0V.9: Turn-on transient at full rated load current (resistive)  
with no output capacitor at Vin = 24V, triggered via ON/OFF pin.  
Top trace: ON/OFF signal (5 V/div.). Bottom trace: output voltage  
(2 V/div.). Time scale: 1 ms/div.  
Fig. 6.0V.10: Turn-on transient at full rated load current (resistive)  
plus 10,000F at Vin = 24V, triggered via ON/OFF pin. Top trace:  
ON/OFF signal (5 V/div.). Bottom trace: output voltage (2 V/div.).  
Time scale: 2 ms/div.  
Fig. 6.0V.11: Output voltage response to load current step-change  
(2A 4A 2A) at Vin = 24V. Top trace: output voltage  
(100mV/div.). Bottom trace: load current (2A/div.). Current slew  
Fig. 6.0V.12: Output voltage response to load current step-change  
(2A 4A 2A) at Vin = 24V. Top trace: output voltage  
(100mV/div.). Bottom trace: load current (2A/div.). Current slew  
rate: 5 A/s. Co = 450 F tantalum + 1 F ceramic. Time scale:  
0.2 ms/div.  
rate: 0.1 A/s. Co = 1 F ceramic. Time scale: 0.2 ms/div.  
tech.support@psbel.com  
SQ24T/S08060 (6.0 VOUT  
)
17  
SQ24 Series  
iS  
iC  
10 H  
source  
inductance  
TM  
33 F  
ESR <1  
electrolytic  
capacitor  
1 F  
ceramic  
capacitor  
Family  
SemiQ  
DC/DC  
Converter  
Vout  
Vsource  
Fig. 6.0V.14: Test setup for measuring input reflected ripple  
currents, ic and is.  
Fig. 6.0V.13: Output voltage ripple (50 mV/div.) at full rated load  
current into a resistive load with Co = 10 F tantalum + 1uF  
ceramic and Vin = 24 V. Time scale: 1 s/div.  
Fig. 6.0V.15: Input reflected ripple current, ic (100 mA/div.),  
measured at input terminals at full rated load current and Vin =  
24V. Refer to Fig. 6.0V.14 for test setup. Time scale: 1 s/div.  
Fig. 6.0V.16: Input reflected ripple current, is (10 mA/div.),  
measured through 10 H at the source at full rated load current  
and Vin = 24V. Refer to Fig. 6.0V.14 for test setup. Time scale:  
1s/div.  
8
6
4
2
0
12  
0
3
6
9
Iout [Adc]  
Fig. 6.0V.18: Load current (top trace, 20 A/div., 20 ms/div.) into a  
10 mshort circuit during restart, at Vin = 24V. Bottom trace (20  
A/div., 2 ms/div.) is an expansion of the on-time portion of the top  
trace.  
Fig. 6.0V.17: Output voltage vs. load current showing current limit  
point and converter shutdown point. Input voltage has almost no  
effect on current limit characteristic.  
North America  
+1 408 785 5200  
Asia-Pacific  
+86 755 298 85888  
Europe, Middle East  
+353 61 225 977  
© 2018 Bel Power Solutions & Protection  
BCD.00706_AB  
18  
SQ24T/S08060 (5.0 VOUT  
)
SQ24 Series  
8
ELECTRICAL SPECIFICATIONS: SQ24T/S10050 (5.0 VOLTS OUT)  
Conditions: TA = 25 ºC, Airflow=300 LFM (1.5 m/s), Vin = 24 VDC, Vout = 5.0 VDC unless otherwise specified.  
Input Characteristics  
Maximum Input Current  
10 ADC, 5.0 VDC Out @ 18 VDC In  
Vin = 24 V, converter disabled  
Vin = 24 V, converter enabled  
25 MHz bandwidth  
3.3  
ADC  
mADC  
mADC  
mAPK-PK  
dB  
Input Stand-by Current  
3
93  
6
Input No Load Current (0 load on the output)  
Input Reflected-Ripple Current  
Input Voltage Ripple Rejection  
Output Characteristics  
120 Hz  
TBD  
Output Voltage Set Point (no load)  
4.950  
4.925  
0
5.000  
±2  
5.050  
±5  
VDC  
mV  
Over Line  
Output Regulation  
Over Load  
±2  
±5  
mV  
Output Voltage Range  
Output Ripple and Noise - 25 MHz bandwidth  
External Load Capacitance  
Output Current Range  
Current Limit Inception  
Peak Short-Circuit Current  
RMS Short-Circuit Current  
Dynamic Response  
Over line, load and temperature (-40ºC to 85ºC)  
Full load + 10 μF tantalum + 1 μF ceramic  
Plus full load (resistive)  
5.075  
80  
VDC  
mVPK-PK  
μF  
45  
10,000  
10  
ADC  
ADC  
A
Non-latching  
12.5  
20  
14  
Non-latching. Short=10 m.  
Non-latching  
30  
3
Arms  
Load Change 25% of Iout Max, di/dt = 0.1 A/μs  
di/dt = 5 A/μs  
Co = 1 μF ceramic  
140  
90  
mV  
mV  
µs  
Co = 450 μF tant. + 1 μF ceramic  
Setting Time to 1%  
200  
Efficiency  
100% Load  
86  
87  
%
%
50% Load  
tech.support@psbel.com  
19  
SQ24T/S08060 (5.0 VOUT  
)
SQ24 Series  
Ambient Temperature [°C]  
Ambient Temperature [°C]  
Fig. 5.0V.1: Available load current vs. ambient air temperature and  
airflow rates for SQ24T10050 converter with B height pins  
mounted vertically with Vin = 24V, air flowing from pin 3 to pin 1  
and maximum FET temperature 120C.  
Fig. 5.0V.2: Available load current vs. ambient air temperature  
and airflow rates for SQ24T10050 converter with B height pins  
mounted horizontally with Vin = 24V, air flowing from pin 3 to pin 1  
and maximum FET temperature 120C.  
Ambient Temperature [°C]  
Fig. 5.0V.4: Available load current vs. ambient temperature and  
airflow rates for SQ24S10050 converter mounted horizontally with  
Vin = 24V, air flowing from pin 3 to pin 1 and maximum FET  
temperature 120C.  
Ambient Temperature [°C]  
Fig. 5.0V.3: Available load current vs. ambient temperature and  
airflow rates for SQ24S10050 converter mounted vertically with  
Vin = 24V, air flowing from pin 3 to pin 1 and maximum FET  
temperature 120C..  
0.95  
0.95  
0.90  
0.85  
0.80  
0.90  
0.85  
0.80  
36 V  
24 V  
18 V  
70 C  
55 C  
40 C  
0.75  
0.75  
0.70  
0.65  
0.70  
0.65  
0
2
4
6
8
10  
12  
0
2
4
6
8
10  
12  
Load Current [Adc]  
Load Current [Adc]  
Fig. 5.0V.5: Efficiency vs. load current and input voltage for  
SQ24T/S10050 converter mounted vertically with air flowing from  
pin 3 to pin 1 at a rate of 300 LFM (1.5 m/s) and Ta = 25C.  
Fig. 5.0V.6: Efficiency vs. load current and ambient temperature  
for SQ24T/S10050 converter mounted vertically with Vin = 24V  
and air flowing from pin 3 to pin 1 at a rate of 200 LFM (1.0 m/s).  
North America  
+1 408 785 5200  
Asia-Pacific  
+86 755 298 85888  
Europe, Middle East  
+353 61 225 977  
© 2018 Bel Power Solutions & Protection  
BCD.00706_AB  
20  
SQ24T/S08060 (5.0 VOUT  
)
SQ24 Series  
10.00  
8.00  
6.00  
4.00  
2.00  
0.00  
10.00  
8.00  
6.00  
4.00  
2.00  
0.00  
70 C  
55 C  
40 C  
36 V  
24 V  
18 V  
0
2
4
6
8
10  
12  
Load Current [Adc]  
0
2
4
6
8
10  
12  
Fig. 5.0V.8: Power dissipation vs. load current and ambient  
Load Current [Adc]  
temperature for SQ24T/S10050 converter mounted vertically with  
Vin = 24V and air flowing from pin 3 to pin 1 at a rate of 200 LFM  
(1.0 m/s).  
Fig. 5.0V.7: Power dissipation vs. load current and input voltage  
for SQ24T/S10050 converter mounted vertically with air flowing  
from pin 3 to pin 1 at a rate of 300 LFM (1.5 m/s) and Ta = 25C..  
Fig. 5.0V.9: Turn-on transient at full rated load current (resistive)  
with no output capacitor at Vin = 24V, triggered via ON/OFF pin.  
Top trace: ON/OFF signal (5 V/div.). Bottom trace: output voltage  
(2 V/div.). Time scale: 2 ms/div.  
Fig. 5.0V.10: Turn-on transient at full rated load current (resistive)  
plus 10,000 F at Vin = 24V, triggered via ON/OFF pin. Top trace:  
ON/OFF signal (5 V/div.). Bottom trace: output voltage (2 V/div.).  
Time scale: 2 ms/div.  
Fig. 5.0V.11: Output voltage response to load current step-change  
(2.5A 5A 2.5A) at Vin = 24V. Top trace: output voltage (100  
mV/div.). Bottom trace: load current (2 A/div.). Current slew rate:  
0.1 A/s. Co = 1 F ceramic. Time scale: 0.2 ms/div.  
Fig. 5.0V.12: Output voltage response to load current step-change  
(2.5A 5A 2.5A) at Vin = 24V. Top trace: output voltage (100  
mV/div.). Bottom trace: load current (2 A/div.). Current slew rate: 5  
A/s. Co = 450 F tantalum + 1 F ceramic. Time scale: 0.2  
ms/div.  
tech.support@psbel.com  
21  
SQ24T/S08060 (5.0 VOUT  
)
SQ24 Series  
iS  
iC  
10 H  
source  
inductance  
TM  
33 F  
ESR <1  
electrolytic  
capacitor  
1 F  
ceramic  
capacitor  
Family  
SemiQ  
DC/DC  
Converter  
Vout  
Vsource  
Fig. 5.0V.14: Test setup for measuring input reflected ripple  
currents, ic and is.  
Fig. 5.0V.13: Output voltage ripple (20 mV/div.) at full rated load  
current into a resistive load with Co = 10 F tantalum + 1uF  
ceramic and Vin = 24 V. Time scale: 1 s/div.  
Fig. 5.0V.15: Input reflected ripple current, ic (100 mA/div.),  
measured at input terminals at full rated load current and Vin =  
24V. Refer to Fig. 5.0V.14 for test setup. Time scale: 1 s/div.  
Fig. 5.0V.16: Input reflected ripple current, is (10 mA/div.),  
measured through 10 H at the source at full rated load current  
and Vin = 24V. Refer to Fig. 5.0V.14 for test setup. Time scale:  
1s/div.  
6.0  
5.0  
4.0  
3.0  
2.0  
1.0  
0
0
5
10  
15  
Iout [Adc]  
Fig. 5.0V.18: Load current (top trace, 10 A/div., 20 ms/div.) into a  
10 mshort circuit during restart, at Vin = 24V. Bottom trace (10  
A/div., 1 ms/div.) is an expansion of the on-time portion of the top  
trace.  
Fig. 5.0V.17: Output voltage vs. load current showing current limit  
point and converter shutdown point. Input voltage has almost no  
effect on current limit characteristic.  
North America  
+1 408 785 5200  
Asia-Pacific  
+86 755 298 85888  
Europe, Middle East  
+353 61 225 977  
© 2018 Bel Power Solutions & Protection  
BCD.00706_AB  
22  
SQ24T/S15033 (3.3 VOUT  
)
SQ24 Series  
9
ELECTRICAL SPECIFICATIONS: SQ24T/S15033 (3.3 VOLTS OUT)  
Conditions: TA = 25 ºC, Airflow = 300 LFM (1.5 m/s), Vin = 24 VDC, Vout = 3.3 VDC unless otherwise specified.  
PARAMETER  
NOTES  
MIN  
TYP  
MAX  
UNITS  
Input Characteristics  
Maximum Input Current  
15 ADC, 3.3 VDC Out @ 18 VDC In  
Vin = 24 V, converter disabled  
Vin = 24 V, converter enabled  
25 MHz bandwidth  
3.2  
ADC  
mADC  
mADC  
mAPK-PK  
dB  
Input Stand-by Current  
3
100  
6
Input No Load Current (0 load on the output)  
Input Reflected-Ripple Current  
Input Voltage Ripple Rejection  
Output Characteristics  
120 Hz  
TBD  
Output Voltage Set Point (no load)  
3.267  
3.250  
0
3.300  
±2  
3.333  
±5  
VDC  
mV  
Over Line  
Output Regulation  
Over Load  
±2  
±5  
mV  
Output Voltage Range  
Output Ripple and Noise - 25 MHz bandwidth  
External Load Capacitance  
Output Current Range  
Current Limit Inception  
Peak Short-Circuit Current  
RMS Short-Circuit Current  
Dynamic Response  
Over line, load and temperature (-40ºC to 85ºC)  
Full load + 10 μF tantalum + 1 μF ceramic  
Plus full load (resistive)  
3.350  
50  
VDC  
mVPK-PK  
μF  
30  
15,000  
15  
ADC  
ADC  
A
Non-latching  
18  
30  
20  
Non-latching. Short=10m.  
Non-latching  
40  
5.3  
Arms  
Load Change 25% of Iout Max, di/dt = 0.1 A/μs  
di/dt = 5 A/μs  
Co = 1 μF ceramic  
100  
100  
100  
mV  
mV  
µs  
Co = 450 μF tant. + 1 μF ceramic  
Setting Time to 1%  
Efficiency  
100% Load  
88  
88  
%
%
50% Load  
tech.support@psbel.com  
23  
SQ24T/S15033 (3.3 VOUT  
)
SQ24 Series  
20  
15  
10  
20  
15  
10  
5
500 LFM (2.5 m/s)  
400 LFM (2.0 m/s)  
300 LFM (1.5 m/s)  
200 LFM (1.0 m/s)  
100 LFM (0.5 m/s)  
500 LFM (2.5 m/s)  
400 LFM (2.0 m/s)  
300 LFM (1.5 m/s)  
200 LFM (1.0 m/s)  
100 LFM (0.5 m/s)  
30 LFM (0.15 m/s)  
5
30 LFM (0.15 m/s)  
0
0
20  
30  
40  
50  
60  
70  
80  
90  
20  
30  
40  
50  
60  
70  
80  
90  
Ambient Temperature [°C]  
Ambient Temperature [°C]  
Fig. 3.3V.1: Available load current vs. ambient air temperature and  
airflow rates for SQ24T15033 converter with B height pins  
mounted vertically with Vin = 24V, air flowing from pin 3 to pin 1  
and maximum FET temperature 120C.  
Fig. 3.3V.2: Available load current vs. ambient air temperature and  
airflow rates for SQ24T15033 converter with B height pins  
mounted horizontally with Vin = 24V, air flowing from pin 3 to pin 1  
and maximum FET temperature 120C.  
20  
15  
10  
20  
15  
10  
500 LFM (2.5 m/s)  
400 LFM (2.0 m/s)  
300 LFM (1.5 m/s)  
200 LFM (1.0 m/s)  
100 LFM (0.5 m/s)  
500 LFM (2.5 m/s)  
400 LFM (2.0 m/s)  
300 LFM (1.5 m/s)  
200 LFM (1.0 m/s)  
5
5
100 LFM (0.5 m/s)  
30 LFM (0.15 m/s)  
30 LFM (0.15 m/s)  
0
0
20  
30  
40  
50  
60  
70  
80  
90  
20  
30  
40  
50  
60  
70  
80  
90  
Ambient Temperature [°C]  
Ambient Temperature [°C]  
Fig. 3.3V.3: Available load current vs. ambient temperature and  
airflow rates for SQ24S15033 converter mounted vertically with  
Vin = 24V, air flowing from pin 3 to pin 1 and maximum FET  
temperature 120C.  
Fig. 3.3V.4: Available load current vs. ambient temperature and  
airflow rates for SQ24S15033 converter mounted horizontally with  
Vin = 24V, air flowing from pin 3 to pin 1 and maximum FET  
temperature 120C.  
0.95  
0.90  
0.85  
0.80  
0.95  
0.90  
0.85  
0.80  
36 V  
24 V  
18 V  
70 C  
55 C  
40 C  
0.75  
0.75  
0.70  
0.65  
0.70  
0.65  
0
2
4
6
8
10  
12  
14  
16  
0
2
4
6
8
10  
12  
14  
16  
Load Current [Adc]  
Load Current [Adc]  
Fig. 3.3V.5: Efficiency vs. load current and input voltage for  
SQ24T/S15033 converter mounted vertically with air flowing from  
Fig. 3.3V.6: Efficiency vs. load current and ambient temperature  
for SQ24T/S15033 converter mounted vertically with Vin = 24V  
and air flowing from pin 3 to pin 1 at a rate of 200 LFM (1.0 m/s).  
pin 3 to pin 1 at a rate of 300 LFM (1.5 m/s) and Ta = 25C.  
North America  
+1 408 785 5200  
Asia-Pacific  
+86 755 298 85888  
Europe, Middle East  
+353 61 225 977  
© 2018 Bel Power Solutions & Protection  
BCD.00706_AB  
24  
SQ24T/S15033 (3.3 VOUT  
)
SQ24 Series  
8.00  
6.00  
4.00  
2.00  
0.00  
8.00  
6.00  
4.00  
2.00  
0.00  
70 C  
55 C  
40 C  
36 V  
24 V  
18 V  
0
2
4
6
8
10  
12  
14  
16  
0
2
4
6
8
10  
12  
14  
16  
Load Current [Adc]  
Load Current [Adc]  
Fig. 3.3V.8: Power dissipation vs. load current and ambient  
Fig. 3.3V.7: Power dissipation vs. load current and input voltage  
for SQ24T/S15033 converter mounted vertically with air flowing  
from pin 3 to pin 1 at a rate of 300 LFM (1.5 m/s) and Ta = 25C.  
temperature for SQ24T/S15033 converter mounted vertically with  
Vin = 24V and air flowing from pin 3 to pin 1 at a rate of 200 LFM  
(1.0 m/s).  
Fig. 3.3V.9: Turn-on transient at full rated load current (resistive)  
with no output capacitor at Vin = 24V, triggered via ON/OFF pin.  
Top trace: ON/OFF signal (5 V/div.). Bottom trace: output voltage  
(1 V/div.). Time scale: 2 ms/div.  
Fig. 3.3V.10: Turn-on transient at full rated load current (resistive)  
plus 10,000 F at Vin = 24V, triggered via ON/OFF pin. Top trace:  
ON/OFF signal (5 V/div.). Bottom trace: output voltage (1 V/div.).  
Time scale: 2 ms/div.  
Fig. 3.3V.11: Output voltage response to load current step-change  
(3.75A 7.5A 3.75A) at Vin = 24V. Top trace: output voltage (100  
mV/div.). Bottom trace: load current (5 A/div.). Current slew rate:  
0.1 A/s. Co = 1 F ceramic. Time scale: 0.2 ms/div.  
Fig. 3.3V.12: Output voltage response to load current step-change  
(3.75A 7.5A 3.75A) at Vin = 24V. Top trace: output voltage (100  
mV/div.). Bottom trace: load current (5 A/div.). Current slew rate: 5  
A/s. Co = 450 F tantalum + 1 F ceramic. Time scale: 0.2  
ms/div.  
tech.support@psbel.com  
25  
SQ24T/S15033 (3.3 VOUT  
)
SQ24 Series  
iS  
iC  
10 H  
source  
inductance  
TM  
33 F  
ESR <1  
electrolytic  
capacitor  
1 F  
ceramic  
capacitor  
Family  
SemiQ  
DC/DC  
Converter  
Vout  
Vsource  
Fig. 3.3V.14: Test setup for measuring input reflected ripple  
currents, ic and is.  
Fig. 3.3V.13: Output voltage ripple (20 mV/div.) at full rated load  
current into a resistive load with Co = 10 F tantalum + 1uF  
ceramic and Vin = 24 V. Time scale: 1 s/div.  
Fig. 3.3V.15: Input reflected ripple current, ic (100 mA/div.),  
measured at input terminals at full rated load current and Vin =  
24V. Refer to Fig. 3.3V.14 for test setup. Time scale: 1 s/div.  
Fig. 3.3V.16: Input reflected ripple current, is (10 mA/div.),  
measured through 10 H at the source at full rated load current  
and Vin = 24V. Refer to Fig. 3.3V.14 for test setup. Time scale:  
1s/div.  
4
3
2
1
0
20  
0
5
10  
15  
Iout [Adc]  
Fig. 3.3V.18: Load current (top trace, 20 A/div., 20 ms/div.) into a  
10 mshort circuit during restart, at Vin = 24V. Bottom trace (20  
A/div., 1 ms/div.) is an expansion of the on-time portion of the top  
trace.  
Fig. 3.3V.17: Output voltage vs. load current showing current limit  
point and converter shutdown point. Input voltage has almost no  
effect on current limit characteristic.  
North America  
+1 408 785 5200  
Asia-Pacific  
+86 755 298 85888  
Europe, Middle East  
+353 61 225 977  
© 2018 Bel Power Solutions & Protection  
BCD.00706_AB  
26  
SQ24T/S15025 (2.5 VOUT  
)
SQ24 Series  
10 ELECTRICAL SPECIFICATIONS: SQ24T/S15025 (2.5 VOLTS OUT)  
Conditions: TA = 25 ºC, Airflow = 300 LFM (1.5 m/s), Vin = 24 VDC, Vout = 2.5 VDC unless otherwise specified.  
PARAMETER  
NOTES  
MIN  
TYP  
MAX  
UNITS  
Input Characteristics  
Maximum Input Current  
15 ADC, 2.5 VDC Out @ 18 VDC In  
Vin = 24 V, converter disabled  
Vin = 24 V, converter enabled  
25 MHz bandwidth  
2.5  
ADC  
mADC  
mADC  
mAPK-PK  
dB  
Input Stand-by Current  
3
Input No Load Current (0 load on the output)  
Input Reflected-Ripple Current  
Input Voltage Ripple Rejection  
Output Characteristics  
67  
6
120 Hz  
TBD  
Output Voltage Set Point (no load)  
2.475  
2.500  
±2  
2.525  
±5  
VDC  
mV  
Over Line  
Output Regulation  
Over Load  
±2  
±5  
mV  
Output Voltage Range  
Output Ripple and Noise - 25 MHz bandwidth  
External Load Capacitance  
Output Current Range  
Current Limit Inception  
Peak Short-Circuit Current  
RMS Short-Circuit Current  
Dynamic Response  
Over line, load and temperature(-40ºC to 85ºC)  
Full load + 10 μF tantalum + 1 μF ceramic  
Plus full load (resistive)  
2.462  
2.538  
50  
VDC  
mVPK-PK  
μF  
30  
15,000  
15  
0
ADC  
ADC  
A
Non-latching  
18  
30  
20  
Non-latching. Short = 10 m.  
Non-latching  
40  
5.3  
Arms  
Load Change 25% of Iout Max, di/dt = 0.1 A/μs  
di/dt = 5 A/μs  
Co = 1 μF ceramic)  
110  
120  
150  
mV  
mV  
µs  
Co = 450 μF tant. + 1 μF ceramic  
Setting Time to 1%  
Efficiency  
100% Load  
86.5  
87  
%
%
50% Load  
tech.support@psbel.com  
27  
SQ24T/S15025 (2.5 VOUT  
)
SQ24 Series  
20  
15  
10  
20  
15  
10  
5
500 LFM (2.5 m/s)  
400 LFM (2.0 m/s)  
300 LFM (1.5 m/s)  
200 LFM (1.0 m/s)  
100 LFM (0.5 m/s)  
500 LFM (2.5 m/s)  
400 LFM (2.0 m/s)  
300 LFM (1.5 m/s)  
200 LFM (1.0 m/s)  
100 LFM (0.5 m/s)  
30 LFM (0.15 m/s)  
5
30 LFM (0.15 m/s)  
0
0
20  
30  
40  
50  
60  
70  
80  
90  
20  
30  
40  
50  
60  
70  
80  
90  
Ambient Temperature [°C]  
Ambient Temperature [°C]  
Fig. 2.5V.1: Available load current vs. ambient air temperature and  
airflow rates for SQ24T15025 converter with B height pins  
mounted vertically with Vin = 24V, air flowing from pin 3 to pin 1  
and maximum FET temperature 120C.  
Fig. 2.5V.2: Available load current vs. ambient air temperature and  
airflow rates for SQ24T15025 converter with B height pins  
mounted horizontally with Vin = 24V, air flowing from pin 3 to pin 1  
and maximum FET temperature 120C.  
20  
15  
10  
20  
15  
10  
500 LFM (2.5 m/s)  
400 LFM (2.0 m/s)  
300 LFM (1.5 m/s)  
200 LFM (1.0 m/s)  
100 LFM (0.5 m/s)  
500 LFM (2.5 m/s)  
400 LFM (2.0 m/s)  
300 LFM (1.5 m/s)  
200 LFM (1.0 m/s)  
5
5
100 LFM (0.5 m/s)  
30 LFM (0.15 m/s)  
30 LFM (0.15 m/s)  
0
0
20  
30  
40  
50  
60  
70  
80  
90  
20  
30  
40  
50  
60  
70  
80  
90  
Ambient Temperature [°C]  
Ambient Temperature [°C]  
Fig. 2.5V.3: Available load current vs. ambient temperature and  
airflow rates for SQ24S15025 converter mounted vertically with  
Vin = 24V, air flowing from pin 3 to pin 1 and maximum FET  
temperature 120C.  
Fig. 2.5V.4: Available load current vs. ambient temperature and  
airflow rates for SQ24S15025 converter mounted horizontally with  
Vin = 24V, air flowing from pin 3 to pin 1 and maximum FET  
temperature 120C.  
0.95  
0.90  
0.85  
0.80  
0.95  
0.90  
0.85  
0.80  
36 V  
24 V  
18 V  
70 C  
55 C  
40 C  
0.75  
0.75  
0.70  
0.65  
0.70  
0.65  
0
2
4
6
8
10  
12  
14  
16  
0
2
4
6
8
10  
12  
14  
16  
Load Current [Adc]  
Load Current [Adc]  
Fig. 2.5V.5: Efficiency vs. load current and input voltage for  
SQ24T/S15025 converter mounted vertically with air flowing from  
Fig. 2.5V.6: Efficiency vs. load current and ambient temperature  
for SQ24T/S15025 converter mounted vertically with Vin = 24V  
and air flowing from pin 3 to pin 1 at a rate of 200 LFM (1.0 m/s).  
pin 3 to pin 1 at a rate of 300 LFM (1.5 m/s) and Ta = 25C.  
North America  
+1 408 785 5200  
Asia-Pacific  
+86 755 298 85888  
Europe, Middle East  
+353 61 225 977  
© 2018 Bel Power Solutions & Protection  
BCD.00706_AB  
28  
SQ24T/S15025 (2.5 VOUT  
)
SQ24 Series  
8.00  
6.00  
4.00  
2.00  
0.00  
8.00  
6.00  
4.00  
2.00  
0.00  
36 V  
24 V  
18 V  
70 C  
55 C  
40 C  
0
2
4
6
8
10  
12  
14  
16  
0
2
4
6
8
10  
12  
14  
16  
Load Current [Adc]  
Load Current [Adc]  
Fig. 2.5V.7: Power dissipation vs. load current and input voltage  
for SQ24T/S15025 converter mounted vertically with air flowing  
from pin 3 to pin 1 at a rate of 300 LFM (1.5 m/s) and Ta = 25C.  
Fig. 2.5V.8: Power dissipation vs. load current and ambient  
temperature for SQ24T/S15025 converter mounted vertically with  
Vin = 24V and air flowing from pin 3 to pin 1 at a rate of 200 LFM  
(1.0 m/s).  
Fig. 2.5V.9: Turn-on transient at full rated load current (resistive)  
with no output capacitor at Vin = 24V, triggered via ON/OFF pin.  
Top trace: ON/OFF signal (5 V/div.). Bottom trace: output voltage  
(1 V/div.). Time scale: 1 ms/div.  
Fig. 2.5V.10: Turn-on transient at full rated load current (resistive)  
plus 10,000 F at Vin = 24V, triggered via ON/OFF pin. Top trace:  
ON/OFF signal (5 V/div.). Bottom trace: output voltage (1 V/div.).  
Time scale: 1 ms/div.  
Fig. 2.5V.11: Output voltage response to load current step-change  
(3.75 A 7.5 A 3.75 A) at Vin = 24V. Top trace: output voltage  
(100 mV/div.). Bottom trace: load current (5 A/div.). Current slew  
rate: 0.1 A/s. Co = 1 F ceramic. Time scale: 0.2 ms/div.  
Fig. 2.5V.12: Output voltage response to load current step-change  
(3.75 A 7.5 A 3.75 A) at Vin = 24V. Top trace: output voltage  
(100 mV/div.). Bottom trace: load current (5 A/div.). Current slew  
rate: 5 A/s. Co = 450 F tantalum + 1 F ceramic. Time scale:  
0.2 ms/div.  
tech.support@psbel.com  
SQ24T/S15025 (2.5 VOUT  
)
29  
SQ24 Series  
iS  
iC  
10 H  
source  
inductance  
TM  
33 F  
ESR <1  
electrolytic  
capacitor  
1 F  
ceramic  
capacitor  
Family  
SemiQ  
DC/DC  
Converter  
Vout  
Vsource  
Fig. 2.5V.14: Test setup for measuring input reflected ripple  
currents, ic and is.  
Fig. 2.5V.13: Output voltage ripple (20 mV/div.) at full rated load  
current into a resistive load with Co = 10 F tantalum + 1uF  
ceramic and Vin = 24 V. Time scale: 1 s/div.  
Fig. 2.5V.15: Input reflected ripple current, ic (100 mA/div.),  
measured at input terminals at full rated load current and Vin =  
24V. Refer to Fig. 2.5V.14 for test setup. Time scale: 1 s/div.  
Fig. 2.5V.16: Input reflected ripple current, is (10 mA/div.),  
measured through 10 H at the source at full rated load current  
and Vin = 24V. Refer to Fig. 2.5V.14 for test setup. Time scale:  
1s/div.  
3
2
1
0
20  
0
5
10  
15  
Iout [Adc]  
Fig. 2.5V.18: Load current (top trace, 20 A/div., 20 ms/div.) into a  
10 mshort circuit during restart, at Vin = 24V. Bottom trace (20  
A/div., 1 ms/div.) is an expansion of the on-time portion of the top  
trace.  
Fig. 2.5V.17: Output voltage vs. load current showing current limit  
point and converter shutdown point. Input voltage has almost no  
effect on current limit characteristic.  
North America  
+1 408 785 5200  
Asia-Pacific  
+86 755 298 85888  
Europe, Middle East  
+353 61 225 977  
© 2018 Bel Power Solutions & Protection  
BCD.00706_AB  
30  
SQ24T/S15020 (2.0 VOUT  
)
SQ24 Series  
11 ELECTRICAL SPECIFICATIONS: SQ24T/S15020 (2.0 VOLTS OUT)  
Conditions: TA = 25 ºC, Airflow = 300 LFM (1.5 m/s), Vin = 24 VDC, Vout = 2.0 VDC unless otherwise specified.  
PARAMETER  
NOTES  
MIN  
TYP  
MAX  
UNITS  
Input Characteristics  
Maximum Input Current  
15 ADC, 2.0 VDC Out @ 18 VDC In  
Vin = 24 V, converter disabled  
Vin = 24 V, converter enabled  
25 MHz bandwidth  
2
ADC  
mADC  
mADC  
mAPK-PK  
dB  
Input Stand-by Current  
3
57  
6
Input No Load Current (0 load on the output)  
Input Reflected-Ripple Current  
Input Voltage Ripple Rejection  
Output Characteristics  
120 Hz  
TBD  
Output Voltage Set Point (no load)  
1.98  
1.970  
0
2.000  
±2  
2.02  
±5  
VDC  
mV  
Over Line  
Output Regulation  
Over Load  
±2  
±5  
mV  
Output Voltage Range  
Output Ripple and Noise - 25 MHz bandwidth  
External Load Capacitance  
Output Current Range  
Current Limit Inception  
Peak Short-Circuit Current  
RMS Short-Circuit Current  
Dynamic Response  
Over line, load and temperature (-40ºC to 85ºC)  
Full load + 10 μF tantalum + 1 μF ceramic  
Plus full load (resistive)  
2.030  
50  
VDC  
mVPK-PK  
μF  
30  
15,000  
15  
ADC  
ADC  
A
Non-latching  
18  
30  
20  
Non-latching. Short = 10 m.  
Non-latching  
40  
5.3  
Arms  
Load Change 25% of Iout Max, di/dt = 0.1 A/μs  
di/dt = 5 A/μs  
Co = 1 μF ceramic  
100  
120  
150  
mV  
mV  
µs  
Co = 450 μF tant. + 1 μF ceramic  
Setting Time to 1%  
Efficiency  
100% Load  
85  
85  
%
%
50% Load  
tech.support@psbel.com  
31  
SQ24T/S15020 (2.0 VOUT  
)
SQ24 Series  
20  
15  
10  
20  
15  
10  
5
500 LFM (2.5 m/s)  
400 LFM (2.0 m/s)  
300 LFM (1.5 m/s)  
200 LFM (1.0 m/s)  
100 LFM (0.5 m/s)  
500 LFM (2.5 m/s)  
400 LFM (2.0 m/s)  
300 LFM (1.5 m/s)  
200 LFM (1.0 m/s)  
100 LFM (0.5 m/s)  
30 LFM (0.15 m/s)  
5
30 LFM (0.15 m/s)  
0
0
20  
30  
40  
50  
60  
70  
80  
90  
20  
30  
40  
50  
60  
70  
80  
90  
Ambient Temperature [°C]  
Ambient Temperature [°C]  
Fig. 2.0V.1: Available load current vs. ambient air temperature and  
airflow rates for SQ24T15020 converter with B height pins  
mounted vertically with Vin = 24V, air flowing from pin 3 to pin 1  
and maximum FET temperature 120C.  
Fig. 2.0V.2: Available load current vs. ambient air temperature and  
airflow rates for SQ24T15020 converter with B height pins  
mounted horizontally with Vin = 24V, air flowing from pin 3 to pin 1  
and maximum FET temperature 120C.  
20  
15  
10  
20  
15  
10  
500 LFM (2.5 m/s)  
400 LFM (2.0 m/s)  
300 LFM (1.5 m/s)  
500 LFM (2.5 m/s)  
400 LFM (2.0 m/s)  
300 LFM (1.5 m/s)  
200 LFM (1.0 m/s)  
100 LFM (0.5 m/s)  
200 LFM (1.0 m/s)  
100 LFM (0.5 m/s)  
5
5
30 LFM (0.15 m/s)  
30 LFM (0.15 m/s)  
0
0
20  
30  
40  
50  
60  
70  
80  
90  
20  
30  
40  
50  
60  
70  
80  
90  
Ambient Temperature [°C]  
Ambient Temperature [°C]  
Fig. 2.0V.3: Available load current vs. ambient temperature and  
airflow rates for SQ24S15020 converter mounted vertically with  
Vin = 24V, air flowing from pin 3 to pin 1 and maximum FET  
temperature 120C.  
Fig. 2.0V.4: Available load current vs. ambient temperature and  
airflow rates for SQ24S15020 converter mounted horizontally with  
Vin = 24V, air flowing from pin 3 to pin 1 and maximum FET  
temperature 120C.  
0.95  
0.90  
0.85  
0.80  
0.95  
0.90  
0.85  
0.80  
36 V  
24 V  
18 V  
70 C  
55 C  
40 C  
0.75  
0.75  
0.70  
0.65  
0.70  
0.65  
0
2
4
6
8
10  
12  
14  
16  
0
2
4
6
8
10  
12  
14  
16  
Load Current [Adc]  
Load Current [Adc]  
Fig. 2.0V.5: Efficiency vs. load current and input voltage for  
SQ24T/S15020 converter mounted vertically with air flowing from  
Fig. 2.0V.6: Efficiency vs. load current and ambient temperature  
for SQ24T/S15020 converter mounted vertically with Vin = 24V  
and air flowing from pin 3 to pin 1 at a rate of 200 LFM (1.0 m/s).  
pin 3 to pin 1 at a rate of 300 LFM (1.5 m/s) and Ta = 25C.  
North America  
+1 408 785 5200  
Asia-Pacific  
+86 755 298 85888  
Europe, Middle East  
+353 61 225 977  
© 2018 Bel Power Solutions & Protection  
BCD.00706_AB  
32  
SQ24T/S15020 (2.0 VOUT  
)
SQ24 Series  
6.00  
5.00  
4.00  
3.00  
2.00  
1.00  
0.00  
6.00  
5.00  
4.00  
3.00  
2.00  
1.00  
0.00  
36 V  
24 V  
18 V  
70 C  
55 C  
40 C  
0
2
4
6
8
10  
12  
14  
16  
0
2
4
6
8
10  
12  
14  
16  
Load Current [Adc]  
Load Current [Adc]  
Fig. 2.0V.7: Power dissipation vs. load current and input voltage  
for SQ24T/S15020 converter mounted vertically with air flowing  
from pin 3 to pin 1 at a rate of 300 LFM (1.5 m/s) and Ta = 25C.  
Fig. 2.0V.8: Power dissipation vs. load current and ambient  
temperature for SQ24T/S15020 converter mounted vertically with  
Vin = 24V and air flowing from pin 3 to pin 1 at a rate of 200 LFM  
(1.0 m/s).  
Fig. 2.0V.9: Turn-on transient at full rated load current (resistive)  
with no output capacitor at Vin = 24V, triggered via ON/OFF pin.  
Top trace: ON/OFF signal (5 V/div.). Bottom trace: output voltage  
(1 V/div.). Time scale: 1 ms/div.  
Fig. 2.0V.10: Turn-on transient at full rated load current (resistive)  
plus 10,000F at Vin = 24V, triggered via ON/OFF pin. Top trace:  
ON/OFF signal (5 V/div.). Bottom trace: output voltage (1 V/div.).  
Time scale: 1 ms/div.  
Fig. 2.0V.11: Output voltage response to load current step-change  
(3.75A 7.5A 3.75A) at Vin = 24V. Top trace: output voltage (100  
mV/div.). Bottom trace: load current (5 A/div.). Current slew rate:  
0.1 A/s. Co = 1 F ceramic. Time scale: 0.2 ms/div.  
Fig. 2.0V.12: Output voltage response to load current step-change  
(3.75A 7.5A 3.75A) at Vin = 24V. Top trace: output voltage (100  
mV/div.). Bottom trace: load current (5 A/div.). Current slew rate: 5  
A/s. Co = 450 F tantalum + 1 F ceramic.  
Time scale: 0.2 ms/div.  
tech.support@psbel.com  
33  
SQ24T/S15020 (2.0 VOUT  
)
SQ24 Series  
iS  
iC  
10 H  
source  
inductance  
TM  
33 F  
ESR <1  
electrolytic  
capacitor  
1 F  
ceramic  
capacitor  
Family  
SemiQ  
DC/DC  
Converter  
Vout  
Vsource  
Fig. 2.0V.14: Test setup for measuring input reflected ripple  
currents, ic and is.  
Fig. 2.0V.13: Output voltage ripple (20 mV/div.) at full rated load  
current into a resistive load with Co = 10 F tantalum + 1uF  
ceramic and Vin = 24 V. Time scale: 1 s/div.  
Fig. 2.0V.15: Input reflected ripple current, ic (100 mA/div.),  
measured at input terminals at full rated load current and  
Vin = 24V. Refer to Fig. 2.0V.14 for test setup.  
Time scale: 1 s/div.  
Fig. 2.0V.16: Input reflected ripple current, is (10 mA/div.),  
measured through 10 H at the source at full rated load current  
and Vin = 24V. Refer to Fig. 2.0V.14 for test setup.  
Time scale: 1s/div.  
3
2
1
0
20  
0
5
10  
15  
Iout [Adc]  
Fig. 2.0V.18: Load current (top trace, 20 A/div., 20 ms/div.) into a  
10 mshort circuit during restart, at Vin = 24V. Bottom trace (20  
A/div., 2 ms/div.) is an expansion of the on-time portion of the top  
trace.  
Fig. 2.0V.17: Output voltage vs. load current showing current limit  
point and converter shutdown point. Input voltage has almost no  
effect on current limit characteristic.  
North America  
+1 408 785 5200  
Asia-Pacific  
+86 755 298 85888  
Europe, Middle East  
+353 61 225 977  
© 2018 Bel Power Solutions & Protection  
BCD.00706_AB  
34  
SQ24T/S15018 (1.8 VOUT  
)
SQ24 Series  
12 ELECTRICAL SPECIFICATIONS: SQ24T/S15018 (1.8 VOLTS OUT)  
Conditions: TA = 25 ºC, Airflow = 300 LFM (1.5 m/s), Vin = 24 VDC, Vout = 1.8 VDC unless otherwise specified.  
PARAMETER  
NOTES  
MIN  
TYP  
MAX  
UNITS  
Input Characteristics  
Maximum Input Current  
15 ADC, 1.8 VDC Out @ 18 VDC In  
Vin = 24 V, converter disabled  
Vin = 24 V, converter enabled  
25 MHz bandwidth  
1.8  
ADC  
mADC  
mADC  
mAPK-PK  
dB  
Input Stand-by Current  
3
53  
6
Input No Load Current (0 load on the output)  
Input Reflected-Ripple Current  
Input Voltage Ripple Rejection  
Output Characteristics  
120 Hz  
TBD  
Output Voltage Set Point (no load)  
1.782  
1.773  
0
1.800  
±2  
1.818  
±4  
VDC  
mV  
Over Line  
Output Regulation  
Over Load  
±2  
±5  
mV  
Output Voltage Range  
Output Ripple and Noise - 25 MHz bandwidth  
External Load Capacitance  
Output Current Range  
Current Limit Inception  
Peak Short-Circuit Current  
RMS Short-Circuit Current  
Dynamic Response  
Over line, load and temperature (-40ºC to 85ºC)  
Full load + 10 μF tantalum + 1 μF ceramic  
Plus full load (resistive)  
1.827  
50  
VDC  
mVPK-PK  
μF  
30  
15,000  
15  
ADC  
ADC  
A
Non-latching  
18  
30  
20  
Non-latching. Short = 10 m.  
Non-latching  
40  
5.3  
Arms  
Load Change 25% of Iout Max, di/dt = 0.1 A/μs  
di/dt = 5 A/μs  
Co = 1 μF ceramic  
100  
120  
150  
mV  
mV  
µs  
Co = 450 μF tant. + 1 μF ceramic  
Setting Time to 1%  
Efficiency  
100% Load  
84.5  
84  
%
%
50% Load  
tech.support@psbel.com  
35  
SQ24T/S15018 (1.8 VOUT  
)
SQ24 Series  
20  
15  
10  
20  
15  
10  
5
500 LFM (2.5 m/s)  
400 LFM (2.0 m/s)  
300 LFM (1.5 m/s)  
200 LFM (1.0 m/s)  
100 LFM (0.5 m/s)  
500 LFM (2.5 m/s)  
400 LFM (2.0 m/s)  
300 LFM (1.5 m/s)  
200 LFM (1.0 m/s)  
100 LFM (0.5 m/s)  
30 LFM (0.15 m/s)  
5
30 LFM (0.15 m/s)  
0
0
20  
30  
40  
50  
60  
70  
80  
90  
20  
30  
40  
50  
60  
70  
80  
90  
Ambient Temperature [°C]  
Ambient Temperature [°C]  
Fig. 1.8V.1: Available load current vs. ambient air temperature and  
airflow rates for SQ24T15018 converter with B height pins  
mounted vertically with Vin = 24V, air flowing from pin 3 to pin 1  
and maximum FET temperature 120C.  
Fig. 1.8V.2: Available load current vs. ambient air temperature and  
airflow rates for SQ24T15018 converter with B height pins  
mounted horizontally with Vin = 24V, air flowing from pin 3 to pin 1  
and maximum FET temperature 120C.  
20  
15  
10  
20  
15  
10  
500 LFM (2.5 m/s)  
400 LFM (2.0 m/s)  
300 LFM (1.5 m/s)  
500 LFM (2.5 m/s)  
400 LFM (2.0 m/s)  
300 LFM (1.5 m/s)  
200 LFM (1.0 m/s)  
100 LFM (0.5 m/s)  
200 LFM (1.0 m/s)  
100 LFM (0.5 m/s)  
5
5
30 LFM (0.15 m/s)  
30 LFM (0.15 m/s)  
0
0
20  
30  
40  
50  
60  
70  
80  
90  
20  
30  
40  
50  
60  
70  
80  
90  
Ambient Temperature [°C]  
Ambient Temperature [°C]  
Fig. 1.8V.3: Available load current vs. ambient temperature and  
airflow rates for SQ24S15018 converter mounted vertically with  
Vin = 24V, air flowing from pin 3 to pin 1 and maximum FET  
temperature 120C.  
Fig. 1.8V.4: Available load current vs. ambient temperature and  
airflow rates for SQ24S15018 converter mounted horizontally with  
Vin = 24V, air flowing from pin 3 to pin 1 and maximum FET  
temperature 120C.  
0.95  
0.90  
0.85  
0.80  
0.95  
0.90  
0.85  
0.80  
36 V  
24 V  
18 V  
70 C  
55 C  
40 C  
0.75  
0.75  
0.70  
0.65  
0.70  
0.65  
0
2
4
6
8
10  
12  
14  
16  
0
2
4
6
8
10  
12  
14  
16  
Load Current [Adc]  
Load Current [Adc]  
Fig. 1.8V.5: Efficiency vs. load current and input voltage for  
SQ24T/S15018 converter mounted vertically with air flowing from  
Fig. 1.8V.6: Efficiency vs. load current and ambient temperature  
for SQ24T/S15018 converter mounted vertically with Vin = 24V  
and air flowing from pin 3 to pin 1 at a rate of 200 LFM (1.0 m/s).  
pin 3 to pin 1 at a rate of 300 LFM (1.5 m/s) and Ta = 25C.  
North America  
+1 408 785 5200  
Asia-Pacific  
+86 755 298 85888  
Europe, Middle East  
+353 61 225 977  
© 2018 Bel Power Solutions & Protection  
BCD.00706_AB  
36  
SQ24T/S15018 (1.8 VOUT  
)
SQ24 Series  
6.00  
5.00  
4.00  
3.00  
2.00  
1.00  
0.00  
6.00  
5.00  
4.00  
3.00  
2.00  
1.00  
0.00  
36 V  
24 V  
18 V  
70 C  
55 C  
40 C  
0
2
4
6
8
10  
12  
14  
16  
0
2
4
6
8
10  
12  
14  
16  
Load Current [Adc]  
Load Current [Adc]  
Fig. 1.8V.7: Power dissipation vs. load current and input voltage  
for SQ24T/S15018 converter mounted vertically with air flowing  
from pin 3 to pin 1 at a rate of 300 LFM (1.5 m/s) and Ta = 25C.  
Fig. 1.8V.8: Power dissipation vs. load current and ambient  
temperature for SQ24T/S15018 converter mounted vertically with  
Vin = 24V and air flowing from pin 3 to pin 1 at a rate of 200 LFM  
(1.0 m/s).  
Fig. 1.8V.9: Turn-on transient at full rated load current (resistive)  
with no output capacitor at Vin = 24V, triggered via ON/OFF pin.  
Top trace: ON/OFF signal (5 V/div.). Bottom trace: output voltage  
(1 V/div.). Time scale: 1 ms/div.  
Fig. 1.8V.10: Turn-on transient at full rated load current (resistive)  
plus 10,000F at Vin = 24V, triggered via ON/OFF pin. Top trace:  
ON/OFF signal (5 V/div.). Bottom trace: output voltage (1 V/div.).  
Time scale: 1 ms/div.  
Fig. 1.8V.11: Output voltage response to load current step-change  
(3.75A 7.5A 3.75A) at Vin = 24V. Top trace: output voltage (100  
mV/div.). Bottom trace: load current (5 A/div.). Current slew rate:  
0.1 A/s. Co = 1 F ceramic. Time scale: 0.2 ms/div.  
Fig. 1.8V.12: Output voltage response to load current step-change  
(3.75A 7.5A 3.75A) at Vin = 24V. Top trace: output voltage (100  
mV/div.). Bottom trace: load current (5 A/div.). Current slew rate: 5  
A/s. Co = 450 F tantalum + 1 F ceramic. Time scale: 0.2  
ms/div.  
tech.support@psbel.com  
37  
SQ24T/S15018 (1.8 VOUT  
)
SQ24 Series  
iS  
iC  
10 H  
source  
inductance  
TM  
33 F  
ESR <1  
electrolytic  
capacitor  
1 F  
ceramic  
capacitor  
Family  
SemiQ  
DC/DC  
Converter  
Vout  
Vsource  
Fig. 1.8V.14: Test setup for measuring input reflected ripple  
currents, ic and is.  
Fig. 1.8V.13: Output voltage ripple (20 mV/div.) at full rated load  
current into a resistive load with Co = 10 F tantalum + 1uF  
ceramic and Vin = 24 V. Time scale: 1 s/div.  
Fig. 1.8V.15: Input reflected ripple current, ic (100 mA/div.),  
measured at input terminals at full rated load current and Vin =  
24V. Refer to Fig. 1.8V.14 for test setup. Time scale: 1 s/div.  
Fig. 1.8V.16: Input reflected ripple current, is (10 mA/div.),  
measured through 10 H at the source at full rated load current  
and Vin = 24V. Refer to Fig. 1.8V.14 for test setup. Time scale:  
1s/div.  
3
2
1
0
20  
0
5
10  
15  
Iout [Adc]  
Fig. 1.8V.18: Load current (top trace, 20 A/div., 20 ms/div.) into a  
10 mshort circuit during restart, at Vin = 24V. Bottom trace (20  
A/div., 2 ms/div.) is an expansion of the on-time portion of the top  
trace.  
Fig. 1.8V.17: Output voltage vs. load current showing current limit  
point and converter shutdown point. Input voltage has almost no  
effect on current limit characteristic.  
North America  
+1 408 785 5200  
Asia-Pacific  
+86 755 298 85888  
Europe, Middle East  
+353 61 225 977  
© 2018 Bel Power Solutions & Protection  
BCD.00706_AB  
38  
SQ24T/S15015 (1.5 VOUT  
)
SQ24 Series  
13 ELECTRICAL SPECIFICATIONS: SQ24T/S15015 (1.5 VOLTS OUT)  
Conditions: TA = 25 ºC, Airflow = 300 LFM (1.5 m/s), Vin = 24 VDC, Vout = 1.5 VDC unless otherwise specified.  
PARAMETER  
NOTES  
MIN  
TYP  
MAX  
UNITS  
Input Characteristics  
Maximum Input Current  
15 ADC, 1.5 VDC Out @ 18 VDC In  
Vin = 24 V, converter disabled  
Vin = 24 V, converter enabled  
25 MHz bandwidth  
1.6  
ADC  
mADC  
mADC  
mAPK-PK  
dB  
Input Stand-by Current  
2.6  
48  
Input No Load Current (0 load on the output)  
Input Reflected-Ripple Current  
Input Voltage Ripple Rejection  
Output Characteristics  
6
120 Hz  
TBD  
Output Voltage Set Point (no load)  
1.485  
1.477  
0
1.500  
±2  
1.515  
±4  
VDC  
mV  
Over Line  
Output Regulation  
Over Load  
±2  
±4  
mV  
Output Voltage Range  
Output Ripple and Noise - 25 MHz bandwidth  
External Load Capacitance  
Output Current Range  
Current Limit Inception  
Peak Short-Circuit Current  
RMS Short-Circuit Current  
Dynamic Response  
Over line, load and temperature (-40ºC to 85ºC)  
Full load + 10 μF tantalum + 1 μF ceramic  
Plus full load (resistive)  
1.523  
50  
VDC  
mVPK-PK  
μF  
30  
15,000  
15  
ADC  
ADC  
A
Non-latching  
18  
30  
20  
Non-latching. Short = 10 m.  
Non-latching  
40  
5.3  
Arms  
Load Change 25% of Iout Max, di/dt = 0.1 A/μs  
di/dt = 5 A/μs  
Co = 1 μF ceramic  
80  
mV  
mV  
µs  
Co = 450 μF tant. + 1 μF ceramic  
120  
170  
Setting Time to 1%  
Efficiency  
100% Load  
83  
83  
%
%
50% Load  
tech.support@psbel.com  
39  
SQ24T/S15015 (1.5 VOUT  
)
SQ24 Series  
20  
15  
10  
20  
15  
10  
5
500 LFM (2.5 m/s)  
400 LFM (2.0 m/s)  
300 LFM (1.5 m/s)  
200 LFM (1.0 m/s)  
100 LFM (0.5 m/s)  
500 LFM (2.5 m/s)  
400 LFM (2.0 m/s)  
300 LFM (1.5 m/s)  
200 LFM (1.0 m/s)  
100 LFM (0.5 m/s)  
30 LFM (0.15 m/s)  
5
30 LFM (0.15 m/s)  
0
0
20  
30  
40  
50  
60  
70  
80  
90  
20  
30  
40  
50  
60  
70  
80  
90  
Ambient Temperature [°C]  
Ambient Temperature [°C]  
Fig. 1.5V.1: Available load current vs. ambient air temperature and  
airflow rates for SQ24T15015 converter with B height pins  
mounted vertically with Vin = 24V, air flowing from pin 3 to pin 1  
and maximum FET temperature 120C.  
Fig. 1.5V.2: Available load current vs. ambient air temperature and  
airflow rates for SQ24T15015 converter with B height pins  
mounted horizontally with Vin = 24V, air flowing from pin 3 to pin 1  
and maximum FET temperature 120C.  
20  
15  
10  
20  
15  
10  
500 LFM (2.5 m/s)  
400 LFM (2.0 m/s)  
300 LFM (1.5 m/s)  
500 LFM (2.5 m/s)  
400 LFM (2.0 m/s)  
300 LFM (1.5 m/s)  
200 LFM (1.0 m/s)  
100 LFM (0.5 m/s)  
200 LFM (1.0 m/s)  
100 LFM (0.5 m/s)  
5
5
30 LFM (0.15 m/s)  
30 LFM (0.15 m/s)  
0
0
20  
30  
40  
50  
60  
70  
80  
90  
20  
30  
40  
50  
60  
70  
80  
90  
Ambient Temperature [°C]  
Ambient Temperature [°C]  
Fig. 1.5V.3: Available load current vs. ambient temperature and  
airflow rates for SQ24S15015 converter mounted vertically with  
Vin = 24V, air flowing from pin 3 to pin 1 and maximum FET  
temperature 120C.  
Fig. 1.5V.4: Available load current vs. ambient temperature and  
airflow rates for SQ24S15015 converter mounted horizontally with  
Vin = 24V, air flowing from pin 3 to pin 1 and maximum FET  
temperature 120C.  
0.95  
0.90  
0.85  
0.80  
0.95  
0.90  
0.85  
0.80  
36 V  
24 V  
18 V  
70 C  
55 C  
40 C  
0.75  
0.75  
0.70  
0.65  
0.70  
0.65  
0
2
4
6
8
10  
12  
14  
16  
0
2
4
6
8
10  
12  
14  
16  
Load Current [Adc]  
Load Current [Adc]  
Fig. 1.5V.5: Efficiency vs. load current and input voltage for  
SQ24T/S15015 converter mounted vertically with air flowing from  
Fig. 1.5V.6: Efficiency vs. load current and ambient temperature  
for SQ24T/S15015 converter mounted vertically with Vin = 24V  
and air flowing from pin 3 to pin 1 at a rate of 200 LFM (1.0 m/s).  
pin 3 to pin 1 at a rate of 300 LFM (1.5 m/s) and Ta = 25C.  
North America  
+1 408 785 5200  
Asia-Pacific  
+86 755 298 85888  
Europe, Middle East  
+353 61 225 977  
© 2018 Bel Power Solutions & Protection  
BCD.00706_AB  
40  
SQ24T/S15015 (1.5 VOUT  
)
SQ24 Series  
6.00  
5.00  
4.00  
3.00  
2.00  
1.00  
0.00  
6.00  
5.00  
4.00  
3.00  
2.00  
1.00  
0.00  
36 V  
24 V  
18 V  
70 C  
55 C  
40 C  
0
2
4
6
8
10  
12  
14  
16  
0
2
4
6
8
10  
12  
14  
16  
Load Current [Adc]  
Load Current [Adc]  
Fig. 1.5V.7: Power dissipation vs. load current and input voltage  
for SQ24T/S15015 converter mounted vertically with air flowing  
from pin 3 to pin 1 at a rate of 300 LFM (1.5 m/s) and Ta = 25C.  
Fig. 1.5V.8: Power dissipation vs. load current and ambient  
temperature for SQ24T/S15015 converter mounted vertically with  
Vin = 24V and air flowing from pin 3 to pin 1 at a rate of 200 LFM  
(1.0 m/s).  
Fig. 1.5V.9: Turn-on transient at full rated load current (resistive)  
with no output capacitor at Vin = 24V, triggered via ON/OFF pin.  
Top trace: ON/OFF signal (5 V/div.). Bottom trace: output voltage  
(0.5 V/div.). Time scale: 1 ms/div.  
Fig. 1.5V.10: Turn-on transient at full rated load current (resistive)  
plus 10,000 F at Vin = 24V, triggered via ON/OFF pin. Top trace:  
ON/OFF signal (5 V/div.). Bottom trace: output voltage (0.5  
V/div.). Time scale: 1 ms/div.  
Fig. 1.5V.11: Output voltage response to load current step-change  
(3.75 A 7.5 A 3.75 A) at Vin = 24V. Top trace: output voltage  
(100 mV/div.). Bottom trace: load current (5 A/div.). Current slew  
rate: 0.1 A/s. Co = 1 F ceramic. Time scale: 0.2 ms/div.  
Fig. 1.5V.12: Output voltage response to load current step-change  
(3.75 A 7.5 A 3.75 A) at Vin = 24V. Top trace: output voltage  
(100 mV/div.). Bottom trace: load current (5 A/div.). Current slew  
rate: 5 A/s. Co = 450 F tantalum + 1 F ceramic. Time scale:  
0.2 ms/div.  
tech.support@psbel.com  
41  
SQ24T/S15015 (1.5 VOUT  
)
SQ24 Series  
iS  
iC  
10 H  
source  
inductance  
TM  
33 F  
ESR <1  
electrolytic  
capacitor  
1 F  
ceramic  
capacitor  
Family  
SemiQ  
DC/DC  
Converter  
Vout  
Vsource  
Fig. 1.5V.14: Test setup for measuring input reflected ripple  
currents, ic and is.  
Fig. 1.5V.13: Output voltage ripple (20 mV/div.) at full rated load  
current into a resistive load with Co = 10 F tantalum + 1uF  
ceramic and Vin = 24 V. Time scale: 1 s/div.  
Fig. 1.5V.15: Input reflected ripple current, ic (100 mA/div.),  
measured at input terminals at full rated load current and Vin =  
24V. Refer to Fig. 1.5V.14 for test setup. Time scale: 1 s/div.  
Fig. 1.5V.16: Input reflected ripple current, is (10 mA/div.),  
measured through 10 H at the source at full rated load current  
and Vin = 24V. Refer to Fig. 1.5V.14 for test setup. Time scale:  
1s/div.  
2.0  
1.5  
1.0  
0.5  
0
20  
0
5
10  
15  
Iout [Adc]  
Fig. 1.5V.18: Load current (top trace, 20 A/div., 20 ms/div.) into a  
10 mshort circuit during restart, at Vin = 24V. Bottom trace (20  
A/div., 2 ms/div.) is an expansion of the on-time portion of the top  
trace.  
Fig. 1.5V.17: Output voltage vs. load current showing current limit  
point and converter shutdown point. Input voltage has almost no  
effect on current limit characteristic.  
North America  
+1 408 785 5200  
Asia-Pacific  
+86 755 298 85888  
Europe, Middle East  
+353 61 225 977  
© 2018 Bel Power Solutions & Protection  
BCD.00706_AB  
42  
SQ24T/S15012 (1.2 VOUT  
)
SQ24 Series  
14 ELECTRICAL SPECIFICATIONS: SQ24T/S15012 (1.2 VOLTS OUT)  
Conditions: TA = 25ºC, Airflow = 300 LFM (1.5 m/s), Vin = 24 VDC, Vout = 1.2 VDC unless otherwise specified.  
PARAMETER  
NOTES  
MIN  
TYP  
MAX  
UNITS  
Input Characteristics  
Maximum Input Current  
15 ADC, 1.2 VDC Out @ 18 VDC In  
Vin = 24 V, converter disabled  
Vin = 24 V, converter enabled  
25 MHz bandwidth  
1.25  
ADC  
mADC  
mADC  
mAPK-PK  
dB  
Input Stand-by Current  
2.6  
43  
Input No Load Current (0 load on the output)  
Input Reflected-Ripple Current  
Input Voltage Ripple Rejection  
Output Characteristics  
6
120 Hz  
TBD  
Output Voltage Set Point (no load)  
1.188  
1.182  
0
1.200  
±1  
1.212  
±3  
VDC  
mV  
Over Line  
Output Regulation  
Over Load  
±1  
±3  
mV  
Output Voltage Range  
Output Ripple and Noise - 25 MHz bandwidth  
External Load Capacitance  
Output Current Range  
Current Limit Inception  
Peak Short-Circuit Current  
RMS Short-Circuit Current  
Dynamic Response  
Over line, load and temperature (-40ºC to 85ºC)  
Full load + 10 μF tantalum + 1 μF ceramic  
Plus full load (resistive)  
1.218  
50  
VDC  
mVPK-PK  
μF  
30  
15,000  
15  
ADC  
ADC  
A
Non-latching  
18  
30  
20  
Non-latching. Short=10 m.  
Non-latching  
40  
5.3  
Arms  
Load Change 25% of Iout Max, di/dt = 0.1 A/μs  
di/dt = 5 A/μs  
Co = 1 μF ceramic  
90  
mV  
mV  
µs  
Co = 450 μF tant. + 1 μF ceramic  
120  
200  
Setting Time to 1%  
Efficiency  
100% Load  
81  
81  
%
%
50% Load  
tech.support@psbel.com  
43  
SQ24T/S15012 (1.2 VOUT  
)
SQ24 Series  
20  
15  
10  
20  
15  
10  
5
500 LFM (2.5 m/s)  
400 LFM (2.0 m/s)  
300 LFM (1.5 m/s)  
200 LFM (1.0 m/s)  
100 LFM (0.5 m/s)  
500 LFM (2.5 m/s)  
400 LFM (2.0 m/s)  
300 LFM (1.5 m/s)  
200 LFM (1.0 m/s)  
100 LFM (0.5 m/s)  
30 LFM (0.15 m/s)  
5
30 LFM (0.15 m/s)  
0
0
20  
30  
40  
50  
60  
70  
80  
90  
20  
30  
40  
50  
60  
70  
80  
90  
Ambient Temperature [°C]  
Ambient Temperature [°C]  
Fig. 1.2V.1: Available load current vs. ambient air temperature and  
airflow rates for SQ24T15012 converter with B height pins  
mounted vertically with Vin = 24V, air flowing from pin 3 to pin 1  
and maximum FET temperature 120C.  
Fig. 1.2V.2: Available load current vs. ambient air temperature and  
airflow rates for SQ24T15012 converter with B height pins  
mounted horizontally with Vin = 24V, air flowing from pin 3 to pin 1  
and maximum FET temperature 120C.  
20  
15  
10  
20  
15  
10  
500 LFM (2.5 m/s)  
400 LFM (2.0 m/s)  
300 LFM (1.5 m/s)  
500 LFM (2.5 m/s)  
400 LFM (2.0 m/s)  
300 LFM (1.5 m/s)  
200 LFM (1.0 m/s)  
100 LFM (0.5 m/s)  
200 LFM (1.0 m/s)  
100 LFM (0.5 m/s)  
5
5
30 LFM (0.15 m/s)  
30 LFM (0.15 m/s)  
0
0
20  
30  
40  
50  
60  
70  
80  
90  
20  
30  
40  
50  
60  
70  
80  
90  
Ambient Temperature [°C]  
Ambient Temperature [°C]  
Fig. 1.2V.3: Available load current vs. ambient temperature and  
airflow rates for SQ24S15012 converter mounted vertically with  
Vin = 24V, air flowing from pin 3 to pin 1 and maximum FET  
temperature 120C.  
Fig. 1.2V.4: Available load current vs. ambient temperature and  
airflow rates for SQ24S15012 converter mounted horizontally with  
Vin = 24V, air flowing from pin 3 to pin 1 and maximum FET  
temperature 120C.  
0.95  
0.90  
0.85  
0.80  
0.95  
0.90  
0.85  
0.80  
36 V  
24 V  
18 V  
70 C  
55 C  
40 C  
0.75  
0.75  
0.70  
0.65  
0.70  
0.65  
0
2
4
6
8
10  
12  
14  
16  
0
2
4
6
8
10  
12  
14  
16  
Load Current [Adc]  
Load Current [Adc]  
Fig. 1.2V.5: Efficiency vs. load current and input voltage for  
SQ24T/S15012 converter mounted vertically with air flowing from  
Fig. 1.2V.6: Efficiency vs. load current and ambient temperature  
for SQ24T/S15012 converter mounted vertically with Vin = 24V  
and air flowing from pin 3 to pin 1 at a rate of 200 LFM (1.0 m/s).  
pin 3 to pin 1 at a rate of 300 LFM (1.5 m/s) and Ta = 25C.  
North America  
+1 408 785 5200  
Asia-Pacific  
+86 755 298 85888  
Europe, Middle East  
+353 61 225 977  
© 2018 Bel Power Solutions & Protection  
BCD.00706_AB  
44  
SQ24T/S15012 (1.2 VOUT  
)
SQ24 Series  
6.00  
5.00  
4.00  
3.00  
2.00  
1.00  
0.00  
6.00  
5.00  
4.00  
3.00  
2.00  
1.00  
0.00  
36 V  
24 V  
18 V  
70 C  
55 C  
40 C  
0
2
4
6
8
10  
12  
14  
16  
0
2
4
6
8
10  
12  
14  
16  
Load Current [Adc]  
Load Current [Adc]  
Fig. 1.2V.7: Power dissipation vs. load current and input voltage  
for SQ24T/S15012 converter mounted vertically with air flowing  
from pin 3 to pin 1 at a rate of 300 LFM (1.5 m/s) and Ta = 25C.  
Fig. 1.2V.8: Power dissipation vs. load current and ambient  
temperature for SQ24T/S15012 converter mounted vertically with  
Vin = 24V and air flowing from pin 3 to pin 1 at a rate of 200 LFM  
(1.0 m/s).  
Fig. 1.2V.9: Turn-on transient at full rated load current (resistive)  
with no output capacitor at Vin = 24V, triggered via ON/OFF pin.  
Top trace: ON/OFF signal (5 V/div.). Bottom trace: output voltage  
(0.5 V/div.). Time scale: 1 ms/div.  
Fig. 1.2V.10: Turn-on transient at full rated load current (resistive)  
plus 10,000 F at Vin = 24V, triggered via ON/OFF pin. Top trace:  
ON/OFF signal (5 V/div.). Bottom trace: output voltage (0.5 V/div.).  
Time scale: 1 ms/div.  
Fig. 1.2V.11: Output voltage response to load current step-change  
(3.75 A 7.5 A 3.75 A) at Vin = 24V. Top trace: output voltage  
(100 mV/div.). Bottom trace: load current (5 A/div.). Current slew  
rate: 0.1 A/s. Co = 1 F ceramic. Time scale: 0.2 ms/div.  
Fig. 1.2V.12: Output voltage response to load current step-change  
(3.75 A 7.5 A 3.75 A) at Vin = 24V. Top trace: output voltage  
(100 mV/div.). Bottom trace: load current (5 A/div.). Current slew  
rate: 5 A/s. Co = 450 F tantalum + 1 F ceramic. Time scale:  
0.2 ms/div.  
tech.support@psbel.com  
45  
SQ24T/S15012 (1.2 VOUT  
)
SQ24 Series  
iS  
iC  
10 H  
source  
inductance  
TM  
33 F  
ESR <1  
electrolytic  
capacitor  
1 F  
ceramic  
capacitor  
Family  
SemiQ  
DC/DC  
Converter  
Vout  
Vsource  
Fig. 1.2V.14: Test setup for measuring input reflected ripple  
currents, ic and is.  
Fig. 1.2V.13: Output voltage ripple (20 mV/div.) at full rated load  
current into a resistive load with Co = 10 F tantalum + 1uF  
ceramic and Vin = 24 V. Time scale: 1 s/div.  
Fig. 1.2V.15: Input reflected ripple current, ic (100 mA/div.),  
measured at input terminals at full rated load current and Vin =  
24V. Refer to Fig. 1.2V.14 for test setup. Time scale: 1 s/div.  
Fig. 1.2V.16: Input reflected ripple current, is (10 mA/div.),  
measured through 10 H at the source at full rated load current  
and Vin = 24V. Refer to Fig. 1.2V.14 for test setup. Time scale:  
1s/div.  
1.5  
1.0  
0.5  
0
20  
0
5
10  
15  
Iout [Adc]  
Fig. 1.2V.18: Load current (top trace, 20 A/div., 20 ms/div.) into a  
10 mshort circuit during restart, at Vin = 24V. Bottom trace (20  
A/div., 2 ms/div.) is an expansion of the on-time portion of the top  
trace.  
Fig. 1.2V.17: Output voltage vs. load current showing current limit  
point and converter shutdown point. Input voltage has almost no  
effect on current limit characteristic.  
North America  
+1 408 785 5200  
Asia-Pacific  
+86 755 298 85888  
Europe, Middle East  
+353 61 225 977  
© 2018 Bel Power Solutions & Protection  
BCD.00706_AB  
46  
SQ24T/S15010 (1.0 VOUT  
)
SQ24 Series  
15 ELECTRICAL SPECIFICATIONS: SQ24T/S15010 (1.0 VOLT OUT)  
Conditions: TA = 25 ºC, Airflow = 300 LFM (1.5 m/s), Vin = 24 VDC, Vout = 1.0 VDC unless otherwise specified.  
PARAMETER  
NOTES  
MIN  
TYP  
MAX  
UNITS  
Input Characteristics  
Maximum Input Current  
15 ADC, 1.0 VDC Out @ 18 VDC In  
Vin = 24 V, converter disabled  
Vin = 24 V, converter enabled  
25 MHz bandwidth  
1.1  
ADC  
mADC  
mADC  
mAPK-PK  
dB  
Input Stand-by Current  
2.6  
43  
Input No Load Current (0 load on the output)  
Input Reflected-Ripple Current  
Input Voltage Ripple Rejection  
Output Characteristics  
7.5  
120 Hz  
TBD  
Output Voltage Set Point (no load)  
0.990  
0.985  
0
1.000  
±1  
1.010  
±2  
VDC  
mV  
Over Line  
Output Regulation  
Over Load  
±1  
±3  
mV  
Output Voltage Range  
Output Ripple and Noise - 25 MHz bandwidth  
External Load Capacitance  
Output Current Range  
Current Limit Inception  
Peak Short-Circuit Current  
RMS Short-Circuit Current  
Dynamic Response  
Over line, load and temperature (-40ºC to 85ºC )  
Full load + 10 μF tantalum + 1 μF ceramic  
Plus full load (resistive)  
1.015  
50  
VDC  
mVPK-PK  
μF  
30  
15,000  
15  
ADC  
ADC  
A
Non-latching  
18  
30  
20  
Non-latching. Short = 10 m.  
Non-latching  
40  
5.3  
Arms  
Load Change 25% of Iout Max, di/dt = 0.1 A/μs  
di/dt = 5 A/μs  
Co = 1 μF ceramic  
80  
mV  
mV  
µs  
Co = 450 μF tant. + 1 μF ceramic  
140  
180  
Setting Time to 1%  
Efficiency  
100% Load  
79  
79  
%
%
50% Load  
tech.support@psbel.com  
47  
SQ24T/S15010 (1.0 VOUT  
)
SQ24 Series  
20  
15  
10  
20  
15  
10  
5
500 LFM (2.5 m/s)  
400 LFM (2.0 m/s)  
300 LFM (1.5 m/s)  
200 LFM (1.0 m/s)  
100 LFM (0.5 m/s)  
500 LFM (2.5 m/s)  
400 LFM (2.0 m/s)  
300 LFM (1.5 m/s)  
200 LFM (1.0 m/s)  
100 LFM (0.5 m/s)  
30 LFM (0.15 m/s)  
5
30 LFM (0.15 m/s)  
0
0
20  
30  
40  
50  
60  
70  
80  
90  
20  
30  
40  
50  
60  
70  
80  
90  
Ambient Temperature [°C]  
Ambient Temperature [°C]  
Fig. 1.0V.1: Available load current vs. ambient air temperature and  
airflow rates for SQ24T15010 converter with B height pins  
mounted vertically with Vin = 24V, air flowing from pin 3 to pin 1  
and maximum FET temperature 120C.  
Fig. 1.0V.2: Available load current vs. ambient air temperature and  
airflow rates for SQ24T15010 converter with B height pins  
mounted horizontally with Vin = 24V, air flowing from pin 3 to pin 1  
and maximum FET temperature 120C.  
20  
15  
10  
20  
15  
10  
500 LFM (2.5 m/s)  
400 LFM (2.0 m/s)  
300 LFM (1.5 m/s)  
500 LFM (2.5 m/s)  
400 LFM (2.0 m/s)  
300 LFM (1.5 m/s)  
200 LFM (1.0 m/s)  
100 LFM (0.5 m/s)  
200 LFM (1.0 m/s)  
100 LFM (0.5 m/s)  
5
5
30 LFM (0.15 m/s)  
30 LFM (0.15 m/s)  
0
0
20  
30  
40  
50  
60  
70  
80  
90  
20  
30  
40  
50  
60  
70  
80  
90  
Ambient Temperature [°C]  
Ambient Temperature [°C]  
Fig. 1.0V.3: Available load current vs. ambient temperature and  
airflow rates for SQ24S15010 converter mounted vertically with  
Vin = 24V, air flowing from pin 3 to pin 1 and maximum FET  
temperature 120C.  
Fig. 1.0V.4: Available load current vs. ambient temperature and  
airflow rates for SQ24S15010 converter mounted horizontally with  
Vin = 24V, air flowing from pin 3 to pin 1 and maximum FET  
temperature 120C.  
0.95  
0.90  
0.85  
0.80  
0.95  
0.90  
0.85  
0.80  
36 V  
24 V  
18 V  
70 C  
55 C  
40 C  
0.75  
0.75  
0.70  
0.65  
0.70  
0.65  
0
2
4
6
8
10  
12  
14  
16  
0
2
4
6
8
10  
12  
14  
16  
Load Current [Adc]  
Load Current [Adc]  
Fig. 1.0V.5: Efficiency vs. load current and input voltage for  
SQ24T/S15010 converter mounted vertically with air flowing from  
Fig. 1.0V.6: Efficiency vs. load current and ambient temperature  
for SQ24T/S15010 converter mounted vertically with Vin = 24V  
and air flowing from pin 3 to pin 1 at a rate of 200 LFM (1.0 m/s).  
pin 3 to pin 1 at a rate of 300 LFM (1.5 m/s) and Ta = 25C.  
North America  
+1 408 785 5200  
Asia-Pacific  
+86 755 298 85888  
Europe, Middle East  
+353 61 225 977  
© 2018 Bel Power Solutions & Protection  
BCD.00706_AB  
48  
SQ24T/S15010 (1.0 VOUT  
)
SQ24 Series  
6.00  
5.00  
4.00  
3.00  
2.00  
1.00  
0.00  
6.00  
5.00  
4.00  
3.00  
2.00  
1.00  
0.00  
36 V  
24 V  
18 V  
70 C  
55 C  
40 C  
0
2
4
6
8
10  
12  
14  
16  
0
2
4
6
8
10  
12  
14  
16  
Load Current [Adc]  
Load Current [Adc]  
Fig. 1.0V.7: Power dissipation vs. load current and input voltage  
for SQ24T/S15010 converter mounted vertically with air flowing  
from pin 3 to pin 1 at a rate of 300 LFM (1.5 m/s) and Ta = 25C.  
Fig. 1.0V.8: Power dissipation vs. load current and ambient  
temperature for SQ24T/S15010 converter mounted vertically with  
Vin = 24V and air flowing from pin 3 to pin 1 at a rate of 200 LFM  
(1.0 m/s).  
Fig. 1.0V.9: Turn-on transient at full rated load current (resistive)  
with no output capacitor at Vin = 24V, triggered via ON/OFF pin.  
Top trace: ON/OFF signal (5 V/div.). Bottom trace: output voltage  
(0.5 V/div.). Time scale: 1 ms/div.  
Fig. 1.0V.10: Turn-on transient at full rated load current (resistive)  
plus 10,000F at Vin = 24V, triggered via ON/OFF pin. Top trace:  
ON/OFF signal (5 V/div.). Bottom trace: output voltage (0.5  
V/div.). Time scale: 1 ms/div.  
Fig. 1.0V.10: Turn-on transient at full rated load current (resistive)  
plus 10,000F at Vin = 24V, triggered via ON/OFF pin. Top trace:  
ON/OFF signal (5 V/div.). Bottom trace: output voltage (0.5 V/div.).  
Time scale: 1 ms/div.  
Fig. 1.0V.12: Output voltage response to load current step-change  
(3.75 A 7.5 A 3.75 A) at Vin = 24V. Top trace: output voltage  
(100 mV/div.). Bottom trace: load current (5 A/div.). Current slew  
rate: 5 A/s. Co = 450 F tantalum + 1 F ceramic. Time scale:  
0.2 ms/div.  
tech.support@psbel.com  
49  
SQ24T/S15010 (1.0 VOUT  
)
SQ24 Series  
iS  
iC  
10 H  
source  
inductance  
TM  
33 F  
ESR <1  
electrolytic  
capacitor  
1 F  
ceramic  
capacitor  
Family  
SemiQ  
DC/DC  
Converter  
Vout  
Vsource  
Fig. 1.0V.14: Test setup for measuring input reflected ripple  
currents, ic and is.  
Fig. 1.0V.13: Output voltage ripple (20 mV/div.) at full rated load  
current into a resistive load with Co = 10 F tantalum + 1uF  
ceramic and Vin = 24 V. Time scale: 1 s/div.  
Fig. 1.0V.15: Input reflected ripple current, ic (100 mA/div.),  
measured at input terminals at full rated load current and Vin =  
24V. Refer to Fig. 1.0V.14 for test setup. Time scale: 1 s/div.  
Fig. 1.0V.16: Input reflected ripple current, is (10 mA/div.),  
measured through 10 H at the source at full rated load current  
and Vin = 24V. Refer to Fig. 1.0V.14 for test setup. Time scale:  
1s/div.  
1.5  
1.0  
0.5  
0
20  
0
5
10  
15  
Iout [Adc]  
Fig. 1.0V.18: Load current (top trace, 20 A/div., 20 ms/div.) into a  
10 mshort circuit during restart, at Vin = 24V. Bottom trace (20  
A/div., 2 ms/div.) is an expansion of the on-time portion of the top  
trace.  
Fig. 1.0V.17: Output voltage vs. load current showing current limit  
point and converter shutdown point. Input voltage has almost no  
effect on current limit characteristic.  
North America  
+1 408 785 5200  
Asia-Pacific  
+86 755 298 85888  
Europe, Middle East  
+353 61 225 977  
© 2018 Bel Power Solutions & Protection  
BCD.00706_AB  
50  
SQ24 Series  
16 MECHANICAL SPECIFICATIONS  
SQ24S Platform Notes  
All dimensions are in inches [mm]  
Connector Material: Copper  
Connector Finish: Gold over Nickel  
Optional: Tin/Lead over Nickel  
Converter Weight: 0.53 oz [15 g]  
Recommended Surface-Mount Pads:  
o
o
Min. 0.080” X 0.112” [2.03 x 2.84]  
Max. 0.092” X 0.124” [2.34 x 3.15]  
PAD / PIN CONNECTIONS  
Pad/Pin #  
Function  
Vin (+)  
1
2
3
4
5
6
7
8
ON/OFF  
Vin (-)  
Vout (-)  
SENSE(-)  
TRIM  
SQ24S Pinout (Surface Mount)  
SENSE(+)  
Vout (+)  
HT  
CL  
(Max. Height)  
+0.000 [+0.00] -  
0.038 [- 0.97]  
(Min. Clearance)  
+0.016 [+0.41] -  
0.000 [- 0.00]  
Height  
Option  
A
B
C
D
E
0.319 [8.10]  
0.352 [8.94]  
0.516 [13.11]  
0.416 [10.57]  
0.298 [7.57]  
0.030 [0.77]  
0.063 [1.60]  
0.227 [5.77]  
0.127 [3.23]  
0.009 [0.23]  
PL Pin Length  
Pin Option  
±0.005 [±0.13]  
0.188 [4.77]  
0.145 [3.68]  
0.110 [2.79]  
A
B
C
SQ24T Platform Notes  
All dimensions are in inches [mm]  
Pins 1-3 and 5-7 are Ø 0.040” [1.02] with Ø  
0.078” [1.98] shoulder  
SQ24T Pinout (Through-hole)  
Pins 4 and 8 are Ø 0.062” [1.57] without  
shoulder  
Pin Material and Finish: CDA 360 (brass) with  
200-300 u" matte SN over 100-150 u" N  
Converter Weight: 0.53 oz [15 g]  
tech.support@psbel.com  
51  
SQ24 Series  
17 CONVERTER PART NUMBERING / ORDERING INFORMATION  
Maximum  
Height  
[HT]  
Pin  
Length  
[PL]  
Product  
Series  
Input  
Voltage  
Mounting  
Scheme  
Rated Load  
Current  
Output  
Voltage  
ON/OFF  
Logic  
Special  
Features  
RoHS  
SQ  
24  
S
05  
080  
-
N
S
0
0
15 15 A  
(1.0 3.3 V)  
S   
010 1.0 V  
012 1.2 V  
015 1.5 V  
018 1.8 V  
020 2.0 V  
025 2.5 V  
033 3.3 V  
050 5.0 V  
060 6.0 V  
080 8.0 V  
120 12.0 V  
No Suffix   
RoHS  
lead-solder-  
exemption  
compliant  
Optional  
Connector  
Finish:  
Tin/Lead  
over Nickel  
10 10 A  
(5.0 V)  
N   
Negative  
1/8th  
Brick  
Format  
S   
Surface  
Mount  
SMT  
S 0.289”  
SMT  
0 0.00”  
18-36 V  
08 8 A  
(6.0 V)  
0 STD  
P   
Positive  
G RoHS  
compliant  
for all six  
05 5.3 A  
(8.0 V)  
T Special  
Trim2  
(For 1.2V &  
1.0V only)  
substances  
04 4 A  
(12.0 V)  
Product  
Series3  
Input  
Voltage  
Mounting  
Scheme  
Rated Load  
Current  
Output  
Voltage  
ON/OFF  
Logic  
Maximum  
Height [HT]  
Pin  
Length [PL]  
Special  
Features  
RoHS  
SQ  
24  
T
05  
080  
-
N
B
A
0
0 STD  
15 15 A  
(1.0 3.3 V)  
010 1.0 V  
012 1.2 V  
015 1.5 V  
018 1.8 V  
020 2.0 V  
025 2.5 V  
033 3.3 V  
050 5.0 V  
060 6.0 V  
080 8.0 V  
120 12.0 V  
No Suffix   
RoHS  
T   
Special  
Trim2  
lead-solder-  
exemption  
compliant  
10 10 A  
(5.0 V)  
Through hole  
Through hole  
N   
Negative  
(For 1.2V &  
1.0V only)  
1/8th  
Brick  
Format  
A 0.319”  
B 0.352”  
C 0.516”  
D 0.416”  
E 0.298”  
T  
Through-  
hole  
A 0.188”  
B 0.145”  
C 0.110”  
18-36 V  
08 8 A  
(6.0 V)  
P   
Positive  
H   
Flexible  
termination  
of C406  
(max height  
2.5 mm)  
G RoHS  
compliant  
for all six  
05 5.3 A  
(8.0 V)  
substances  
04 4 A  
(12.0 V)  
1
The example above describes P/N SQ24T05080-NBA0: 18-36 V input, through-hole mounting, 5.3 A @ 8.0 V output, negative ON/OFF logic,  
a maximum height of 0.352”, a through the board pin length of 0.188”, and RoHS lead-solder-exemption compliancy. Please consult factory  
regarding availability of a specific version.  
For definitions, operation, and associated trim equations for all trim options please refer to Application Note 103, Trim Feature for Isolated  
DC-DC converters.  
2
3
All possible option combinations are not necessarily available for every model. Contact Customer Service to confirm availability.  
Model numbers highlighted in yellow or shaded are not recommended for new designs.  
NUCLEAR AND MEDICAL APPLICATIONS - Products are not designed or intended for use as critical components in life support systems,  
equipment used in hazardous environments, or nuclear control systems.  
TECHNICAL REVISIONS - The appearance of products, including safety agency certifications pictured on labels, may change depending on  
the date manufactured. Specifications are subject to change without notice.  
North America  
+1 408 785 5200  
Asia-Pacific  
+86 755 298 85888  
Europe, Middle East  
+353 61 225 977  
© 2018 Bel Power Solutions & Protection  
BCD.00706_AB  

相关型号:

SQ24T10050-NECS

1-OUTPUT DC-DC REG PWR SUPPLY MODULE
BEL

SQ24T10050-NECTG

DC-DC Regulated Power Supply Module
BEL

SQ24T10050-PAA0

DC-DC Regulated Power Supply Module, 1 Output, 50W, Hybrid, EIGHTH BRICK PACKAGE-8
BEL

SQ24T10050-PAA0G

DC-DC Regulated Power Supply Module, 1 Output, 50W, Hybrid, ROHS COMPLIANT, EIGHTH BRICK PACKAGE-8
BEL

SQ24T10050-PAASG

1-OUTPUT DC-DC REG PWR SUPPLY MODULE
BEL

SQ24T10050-PAATG

DC-DC Regulated Power Supply Module
BEL

SQ24T10050-PABSG

1-OUTPUT DC-DC REG PWR SUPPLY MODULE
BEL

SQ24T10050-PAC0G

DC-DC Regulated Power Supply Module, 1 Output, 50W, Hybrid, ROHS COMPLIANT, EIGHTH BRICK PACKAGE-8
BEL

SQ24T10050-PACS

DC-DC Regulated Power Supply Module, 1 Output, 50W, Hybrid, ONE-EIGHTH BRICK PACKAGE-8
BEL

SQ24T10050-PACSG

DC-DC Regulated Power Supply Module, 1 Output, 50W, Hybrid, ROHS COMPLIANT, ONE-EIGHTH BRICK PACKAGE-8
BEL

SQ24T10050-PACT

DC-DC Regulated Power Supply Module
BEL

SQ24T10050-PBA0

DC-DC Regulated Power Supply Module, 1 Output, 50W, Hybrid, EIGHTH BRICK PACKAGE-8
BEL