SQ48S10050-NS00G [BEL]

DC-DC Regulated Power Supply Module, 1 Output, 50W, Hybrid, ROHS COMPLIANT, 1/8 BRICK PACKAGE-8;
SQ48S10050-NS00G
型号: SQ48S10050-NS00G
厂家: BEL FUSE INC.    BEL FUSE INC.
描述:

DC-DC Regulated Power Supply Module, 1 Output, 50W, Hybrid, ROHS COMPLIANT, 1/8 BRICK PACKAGE-8

文件: 总66页 (文件大小:3447K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
The SemiQ™ Series of dc-dc converters provides a high-  
efficiency single output in a size that is only 60% of industry-  
standard quarter-bricks, while preserving the same pinout and  
functionality.  
In high temperature environments, for output voltages ranging  
from 3.3 V to 1.0 V, the thermal performance of SemiQ™  
converters exceeds that of most competitors' 20-25 A quarter-  
bricks. This performance is accomplished through the use of  
patent-pending circuit, packaging, and processing techniques to  
achieve ultra-high efficiency, excellent thermal management, and  
a very low body profile.  
Low body profile and the preclusion of heat sinks minimize  
airflow shadowing, thus enhancing cooling for downstream  
devices. The use of 100% automation for assembly, coupled with  
advanced electronic circuits and thermal design, results in a  
product with extremely high reliability.  
RoHS lead-free solder and lead-solder-exempted products are  
available  
Delivers up to 15A (50W)  
Industry-standard quarter-brick pinout  
Outputs available in 12.0, 8.0, 6.0, 5.0, 3.3, 2.5, 2.0, 1.8, 1.5, 1.2,  
and 1.0 V  
Operating from a 36-75 V input, the SQ48 Series converters  
provide any standard output voltage from 12 V down to 1.0 V.  
Outputs can be trimmed from 20% to +10% of the nominal  
output voltage (± 10% for output voltages 1.2 V and 1.0 V), thus  
providing outstanding design flexibility.  
Available in through-hole and SMT packages  
Low profile: 0.258” (6.55 mm)  
Low weight: 0.53 oz (15 g)  
On-board input differential LC-filter  
Startup into pre-biased output  
No minimum load required  
With a standard pinout and trim equations, the SQ48 Series  
converters are perfect drop-in replacements for existing quarter-  
brick designs. Inclusion of this converter in new designs can  
result in significant board space and cost savings. In both cases  
the designer can expect reliability improvement over other  
available converters because of the SQ48 Series’ optimized  
thermal efficiency.  
Meets Basic Insulation requirements  
Withstands 100 V input transient for 100 ms  
Fixed-frequency operation  
Fully protected  
Remote output sense  
Positive or negative logic ON/OFF option  
.
.
.
.
Telecommunications  
Data Communications  
Wireless Communications  
Servers  
Output voltage trim range: +10%/−20% with industry-standard  
trim equations (except 1.2 V and 1.0 V outputs with trim range  
± 10%)  
Output voltage trim range: +10%/−20% with industry-standard  
trim equations (except 1.2 V and 1.0 V outputs with trim range  
± 10%)  
.
.
High efficiency no heat sink required  
Safety according to IEC/EN 60950-1 2nd Edition and UL/CSA  
60950-1 2ndEdition  
For output voltages ranging from 3.3 to 1.0 V, 40% higher  
current capability at elevated temperatures than most  
competitors' 20-25A quarter-bricks  
Designed to meet Class B conducted emissions per FCC and  
EN55022 when used with external filter  
.
Extremely small footprint: 0.896” x 2.30” (2.06 in2 ), 40%  
All materials meet UL94, V-0 flammability rating  
smaller than conventional quarter-bricks  
North America  
+1-866.513.2839  
Asia-Pacific  
+86.755.29885888  
Europe, Middle East  
+353 61 225 977  
tech.support@psbel.com  
belpowersolutions.com  
© 2015 Bel Power Solutions, inc.  
BCD.00637_AA  
Conditions: TA = 25 ºC, Airflow = 300 LFM (1.5 m/s), Vin = 48 VDC, Cin=33 µ F, unless otherwise specified.  
PARAMETER  
Notes  
MIN  
TYP  
MAX  
UNITS  
Absolute Maximum Ratings  
Input Voltage  
Continuous  
0
80  
85  
VDC  
°C  
Operating Ambient Temperature  
Storage Temperature  
-40  
-55  
125  
°C  
Input Characteristics  
Operating Input Voltage Range  
36  
48  
75  
VDC  
Input Undervoltage Lockout  
Turn-on Threshold  
Non-latching  
100 ms  
33  
31  
34  
32  
35  
33  
VDC  
VDC  
VDC  
Turn-off Threshold  
Input Voltage Transient  
100  
Isolation Characteristics  
I/O Isolation  
2000  
10  
VDC  
pF  
Isolation Capacitance  
1.0 - 3.3 V  
5.0 - 6.0 V  
8.0 - 12 V  
160  
260  
230  
pF  
pF  
Isolation Resistance  
Feature Characteristics  
Switching Frequency  
M  
415  
kHz  
%
Industry-std. equations (1.5 - 12V)  
-20  
-10  
+10  
+10  
+10  
127  
140  
Output Voltage Trim Range1  
Use trim equation on Page 4 (1.0 -1.2 V)  
%
Remote Sense Compensation1  
Output Overvoltage Protection  
Percent of VOUT(NOM)  
%
Non-latching ( 1.5 12 V)  
Non-latching (1.0 -1.2 V)  
Applies to all protection features  
See Figures F, G and H  
117  
124  
122  
132  
100  
4
%
%
Auto-Restart Period  
ms  
ms  
Turn-On Time  
ON/OFF Control (Positive Logic)  
Converter Off (logic low)  
Converter On (logic high)  
ON/OFF Control (Negative Logic)  
Converter Off (logic high)  
Converter On (logic low)  
Additional Notes:  
-20  
2.4  
0.8  
20  
VDC  
VDC  
2.4  
-20  
20  
VDC  
VDC  
0.8  
1Vout can be increased up to 10% via the sense leads or up to 10% via the trim function. However, the total output voltage trim from all sources  
should not exceed 10% of V (NOM), in order to ensure specified operation of overvoltage protection circuitry.  
OUT  
These power converters have been designed to be stable with no external capacitors when used in low inductance input  
and output circuits.  
In many applications, the inductance associated with the distribution from the power source to the input of the converter  
can affect the stability of the converter. The addition of a 33 μF electrolytic capacitor with an ESR < 1 Ω across the input  
866.513.2839  
tech.support@psbel.com  
belpowersolutions.com  
© 2015 Bel Power Solutions, inc.  
BCD.00637_AA  
helps to ensure stability of the converter. In many applications, the user has to use decoupling capacitance at the load. The  
power converter will exhibit stable operation with external load capacitance up to 1000 μF on 12 V, 2,200 μF on 8.0 V,  
10,000 μF on 5.0 6.0 V, and 15,000 μF on 3.3 1.0 V outputs.  
Additionally, see the EMC section of this data sheet for discussion of other external components which may be required for  
control of conducted emissions.  
The ON/OFF pin is used to turn the power converter on or off remotely via a system signal. There are two remote control  
options available, positive logic and negative logic, with both referenced to Vin(-). A typical connection is shown in Fig. A.  
Fig. A: Circuit configuration for ON/OFF function  
The positive logic version turns on when the ON/OFF pin is at a logic high and turns off when at a logic low. The converter  
is on when the ON/OFF pin is left open. See Electrical Specifications for logic high/low definitions.  
The negative logic version turns on when the pin is at a logic low and turns off when the pin is at a logic high. The ON/OFF  
pin can be hardwired directly to Vin(-) to enable automatic power up of the converter without the need of an external control  
signal.  
The ON/OFF pin is internally pulled up to 5V through a resistor. A properly debounced mechanical switch, open collector  
transistor, or FET can be used to drive the input of the ON/OFF pin. The device must be capable of sinking up to 0.2 mA at  
a low level voltage of 0.8 V. An external voltage source (± 20 V maximum) may be connected directly to the ON/OFF input,  
in which case it must be capable of sourcing or sinking up to 1 mA depending on the signal polarity. See the Startup  
Information section for system timing waveforms associated with use of the ON/OFF pin.  
The remote sense feature of the converter compensates for voltage drops occurring between the output pins of the  
converter and the load. The SENSE(-) (Pin 5) and SENSE(+) (Pin 7) pins should be connected at the load or at the point  
where regulation is required (see Fig. B).  
Fig. B: Remote sense circuit configuration  
CAUTION  
If remote sensing is not utilized, the SENSE(-) pin must be connected to the Vout(-) pin (Pin 4), and the SENSE(+) pin must  
be connected to the Vout(+) pin (Pin 8) to ensure the converter will regulate at the specified output voltage. If these  
connections are not made, the converter will deliver an output voltage that is slightly higher than the specified data sheet  
value.  
Because the sense leads carry minimal current, large traces on the end-user board are not required. However, sense traces  
should be run side by side and located close to a ground plane to minimize system noise and ensure optimum  
performance.  
When using the remote sense function, the converter’s output overvoltage protection (OVP) senses the voltage across  
866.513.2839  
tech.support@psbel.com  
belpowersolutions.com  
© 2015 Bel Power Solutions, inc.  
BCD.00637_AA  
Vout(+) and Vout(-), and not across the sense lines, so the resistance (and resulting voltage drop) between the output pins  
of the converter and the load should be minimized to prevent unwanted triggering of the OVP.  
When utilizing the remote sense feature, care must be taken not to exceed the maximum allowable output power capability  
of the converter, which is equal to the product of the nominal output voltage and the allowable output current for the given  
conditions.  
When using remote sense, the output voltage at the converter can be increased by as much as 10% above the nominal  
rating in order to maintain the required voltage across the load. Therefore, the designer must, if necessary, decrease the  
maximum current (originally obtained from the derating curves) by the same percentage to ensure the converter’s actual  
output power remains at or below the maximum allowable output power.  
The output voltage can be adjusted up 10% or down 20% for Vout 1.5 V, and 10% for Vout = 1.2 V relative to the rated  
output voltage by the addition of an externally connected resistor. For output voltage 3.3 V, trim up to 10% is guaranteed  
only at Vin 40 V, and it is marginal (8% to 10%) at Vin = 36 V.  
The TRIM pin should be left open if trimming is not being used. To minimize noise pickup, a 0.1 μF capacitor is connected  
internally between the TRIM and SENSE(-) pins.  
To increase the output voltage, refer to Fig. C. A trim resistor, RT-INCR, should be connected between the TRIM (Pin 6) and  
SENSE(+) (Pin 7), with a value of:  
5.11(100Δ)VONOM 626  
[k],  
RTINCR  
10.22  
1.225Δ  
for 1.5 12 V.  
[kΩ] (1.2 V)  
[kΩ] (1.0 V)  
where,  
RTINCR   
Required value of trim-up resistor k]  
VONOM   
Nominal value of output voltage [V]  
(VO-REQ VO-NOM)  
Δ   
X 100  
VO-NOM  
[%]  
VOREQ   
Desired (trimmed) output voltage [V].  
Fig. C: Configuration for increasing output voltage  
When trimming up, care must be taken not to exceed the converter‘s maximum allowable output power. See the previous  
section for a complete discussion of this requirement.  
To decrease the output voltage (Fig. D), a trim resistor, RT-DECR, should be connected between the TRIM (Pin 6) and  
SENSE(-) (Pin 5), with a value of:  
866.513.2839  
tech.support@psbel.com  
belpowersolutions.com  
© 2015 Bel Power Solutions, inc.  
BCD.00637_AA  
where,  
RTDECR Required value of trim-down resistor [k] and  
Note:  
is defined above.  
Δ
The above equations for calculation of trim resistor values match those typically used in conventional industry-standard quarter-bricks and one-  
eighth bricks (except for 1.2 V and 1.0 V outputs).  
Converters with output voltages 1.2 V and 1.0 V are available with alternative trim feature to provide the customers with the  
flexibility of second sourcing. These converters have a “T” character in the part number. The trim equations of “T” version  
of converters and more information can be found in Application Note 103.  
Fig. D: Configuration for decreasing output voltage  
Trimming/sensing beyond 110% of the rated output voltage is not an acceptable design practice, as this condition could  
cause unwanted triggering of the output overvoltage protection (OVP) circuit. The designer should ensure that the  
difference between the voltages across the converter’s output pins and its sense pins does not exceed 10% of VOUT(NOM),  
or:  
[V]  
[VOUT()VOUT()] [VSENSE()VSENSE()] VO - NOM X10%  
This equation is applicable for any condition of output sensing and/or output trim.  
Input undervoltage lockout is standard with this converter. The converter will shut down when the input voltage drops  
below a pre-determined voltage.  
The input voltage must be typically 34 V for the converter to turn on. Once the converter has been turned on, it will shut off  
when the input voltage drops typically below 32 V. This feature is beneficial in preventing deep discharging of batteries  
used in telecom applications.  
The converter is protected against overcurrent or short circuit conditions. Upon sensing an overcurrent condition, the  
converter will switch to constant current operation and thereby begin to reduce output voltage. When the output voltage  
drops below 50% of the nominal value of output voltage, the converter will shut down (Fig. x.17).  
Once the converter has shut down, it will attempt to restart nominally every 100 ms with a typical 1-2% duty cycle (Fig.  
x.18). The attempted restart will continue indefinitely until the overload or short circuit conditions are removed or the output  
voltage rises above 50% of its nominal value.  
Once the output current is brought back into its specified range, the converter automatically exits the hiccup mode and  
continues normal operation.  
866.513.2839  
tech.support@psbel.com  
belpowersolutions.com  
© 2015 Bel Power Solutions, inc.  
BCD.00637_AA  
The converter will shut down if the output voltage across Vout(+) (Pin 8) and Vout(-) (Pin 4) exceeds the threshold of the  
OVP circuitry. The OVP circuitry contains its own reference, independent of the output voltage regulation loop. Once the  
converter has shut down, it will attempt to restart every 100 ms until the OVP condition is removed.  
The converter will shut down under an overtemperature condition to protect itself from overheating caused by operation  
outside the thermal derating curves, or operation in abnormal conditions such as system fan failure. After the converter has  
cooled to a safe operating temperature, it will automatically restart.  
The converters meet North American and International safety regulatory requirements. Basic Insulation is provided between  
input and output.  
To comply with safety agencies’ requirements, an input line fuse must be used external to the converter. The Table below  
provides the recommended fuse rating for use with this family of products.  
Output Voltage  
3.3 V  
Fuse Rating  
4 A  
3 A  
2 A  
12 5.0 V, 2.5 V  
2.0 1.2 V  
All SQ converters are UL approved for a maximum fuse rating of 15 Amps. To protect a group of converters with a single  
fuse, the rating can be increased from the recommended values above.  
EMC requirements must be met at the end-product system level, as no specific standards dedicated to EMC  
characteristics of board mounted component dc-dc converters exist. However, Bel Power Solutions tests its converters to  
several system level standards, primary of which is the more stringent EN55022, Information technology equipment - Radio  
disturbance characteristics - Limits and methods of measurement.  
An effective internal LC differential filter significantly reduces input reflected ripple current, and improves EMC.  
With the addition of a simple external filter (see Application Note 100), all versions of the SQ48 Series converters pass the  
requirements of Class B conducted emissions per EN55022 and FCC requirements. Please contact Bel Power Solutions  
Applications Engineering for details of this testing.  
The converter has been characterized for many operational aspects, to include thermal derating (maximum load current as  
a function of ambient temperature and airflow) for vertical and horizontal mounting, efficiency, startup and shutdown  
parameters, output ripple and noise, transient response to load step-change, overload, and short circuit.  
The figures are numbered as Fig. x.y, where x indicates the different output voltages, and y associates with specific plots (y  
= 1 for the vertical thermal derating, …). For example, Fig. x.1 will refer to the vertical thermal derating for all the output  
voltages in general.  
The following pages contain specific plots or waveforms associated with the converter. Additional comments for specific  
data are provided below.  
All data presented were taken with the converter soldered to a test board, specifically a 0.060” thick printed wiring board  
(PWB) with four layers. The top and bottom layers were not metalized. The two inner layers, comprised of two-ounce  
copper, were used to provide traces for connectivity to the converter.  
The lack of metalization on the outer layers as well as the limited thermal connection ensured that heat transfer from the  
converter to the PWB was minimized. This provides a worst-case but consistent scenario for thermal derating purposes.  
All measurements requiring airflow were made in the vertical and horizontal wind tunnel using Infrared (IR) thermography  
and thermocouples for thermometry.  
866.513.2839  
tech.support@psbel.com  
belpowersolutions.com  
© 2015 Bel Power Solutions, inc.  
BCD.00637_AA  
Ensuring components on the converter do not exceed their ratings is important to maintaining high reliability. If one  
anticipates operating the converter at or close to the maximum loads specified in the derating curves, it is prudent to check  
actual operating temperatures in the application. Thermographic imaging is preferable; if this capability is not available, then  
thermocouples may be used. The use of AWG #40 gauge thermocouples is recommended to ensure measurement  
accuracy. Careful routing of the thermocouple leads will further minimize measurement error. Refer to Fig. E for the  
optimum measuring thermocouple location.  
Fig. E: Location of the thermocouple for thermal testing  
Load current vs. ambient temperature and airflow rates are given in Fig. x.1 to Fig. x.4 for through-hole and surface-mount  
versions. Ambient temperature was varied between 25°C and 85°C, with airflow rates from 30 to 500LFM (0.15 to 2.5m/s),  
and vertical and horizontal converter mounting.  
For each set of conditions, the maximum load current was defined as the lowest of:  
(i) The output current at which any FET junction temperature does not exceed a maximum specified temperature (120°C) as  
indicated by the thermographic image, or  
(ii) The nominal rating of the converter (4A on 12V, 5.3A on 8.0V, 8A on 6.0V, 10A on 5.0V, and 15A on 3.3 1.0V).  
During normal operation, derating curves with maximum FET temperature less or equal to 120 °C should not be exceeded.  
Temperature on the PCB at thermocouple location shown in Fig. E should not exceed 118 °C in order to operate inside the  
derating curves.  
Fig. x.5 shows the efficiency vs. load current plot for ambient temperature of 25ºC, airflow rate of 300 LFM (1.5 m/s) with  
vertical mounting and input voltages of 36V, 48V and 72V. Also, a plot of efficiency vs. load current, as a function of  
ambient temperature with Vin = 48V, airflow rate of 200 LFM (1 m/s) with vertical mounting is shown in Fig. x.6.  
Fig. x.7 shows the power dissipation vs. load current plot for Ta = 25ºC, airflow rate of 300LFM (1.5 m/s) with vertical  
mounting and input voltages of 36V, 48V and 72V. Also, a plot of power dissipation vs. load current, as a function of  
ambient temperature with Vin = 48V, airflow rate of 200LFM (1 m/s) with vertical mounting is shown in Fig. x.8.  
Output voltage waveforms, during the turn-on transient using the ON/OFF pin for full rated load currents (resistive load) are  
shown without and with external load capacitance in Fig. x.9 and Fig. x.10, respectively.  
Fig. x.13 shows the output voltage ripple waveform, measured at full rated load current with a 10 μF tantalum and 1 μF  
ceramic capacitor across the output. Note that all output voltage waveforms are measured across a 1 μF ceramic  
capacitor.  
The input reflected ripple current waveforms are obtained using the test setup shown in Fig x.14. The corresponding  
waveforms are shown in Fig. x.15 and Fig. x.16.  
866.513.2839  
tech.support@psbel.com  
belpowersolutions.com  
© 2015 Bel Power Solutions, inc.  
BCD.00637_AA  
Fig. F: Startup scenario #1  
Scenario #1: Initial Startup From Bulk Supply  
ON/OFF function enabled, converter started via application of VIN.  
See Figure F.  
Time  
t0  
Comments  
ON/OFF pin is ON; system front-end power is toggled  
on, VIN to converter begins to rise.  
t1  
t2  
t3  
VIN crosses undervoltage Lockout protection circuit  
threshold; converter enabled.  
Converter begins to respond to turn-on command  
(converter turn-on delay).  
Converter VOUT reaches 100% of nominal value.  
For this example, the total converter startup time (t3- t1) is typically  
4 ms.  
Fig. G: Startup scenario #2.  
Scenario #2: Initial Startup Using ON/OFF Pin  
With VIN previously powered, converter started via ON/OFF pin.  
See Figure G.  
Time  
t0  
t1  
Comments  
VINPUT at nominal value.  
Arbitrary time when ON/OFF pin is enabled (converter  
enabled).  
t2  
t3  
End of converter turn-on delay.  
Converter VOUT reaches 100% of nominal value.  
For this example, the total converter startup time (t3- t1) is typically  
4 ms.  
Fig. H: Startup scenario #3.  
Scenario #3: Turn-off and Restart Using ON/OFF Pin  
With VIN previously powered, converter is disabled and then  
enabled via ON/OFF pin. See Figure H.  
Time  
t0  
t1  
Comments  
VIN and VOUT are at nominal values; ON/OFF pin ON.  
ON/OFF pin arbitrarily disabled; converter output falls  
to zero; turn-on inhibit delay period (100 ms typical) is  
initiated, and ON/OFF pin action is internally inhibited.  
ON/OFF pin is externally re-enabled.  
t2  
If (t2- t1) 100 ms, external action of ON/OFF pin  
is locked out by startup inhibit timer.  
If (t2- t1) > 100 ms, ON/OFF pin action is internally  
enabled.  
t3  
Turn-on inhibit delay period ends. If ON/OFF pin is  
ON, converter begins turn-on; if off, converter awaits  
ON/OFF pin ON signal; see Figure G.  
End of converter turn-on delay.  
t4  
t5  
Converter VOUT reaches 100% of nominal value.  
For the condition, (t2- t1) 100 ms, the total converter startup time  
(t5- t2) is typically 104 ms. For (t2- t1) > 100 ms, startup will be  
typically 4 ms after release of ON/OFF pin.  
866.513.2839  
tech.support@psbel.com  
belpowersolutions.com  
© 2015 Bel Power Solutions, inc.  
BCD.00637_AA  
Conditions: TA = 25 ºC, Airflow = 300 LFM (1.5 m/s), Vin = 48 VDC, Vout = 12 VDC, unless otherwise specified.  
Parameter  
Notes  
Min  
Typ  
Max  
Units  
Input Characteristics  
Maximum Input Current  
Input Stand-by Current  
4 ADC, 12 VDC Out @ 36 VDC In  
Vin = 48V, converter disabled  
1.53  
ADC  
3
mADC  
Input No Load Current (0 load on  
the output)  
Vin = 48V, converter enabled  
45  
mADC  
mAPK-  
PK  
Input Reflected-Ripple Current  
25MHz bandwidth  
120HZ  
6
Input Voltage Ripple Rejection  
Output Characteristics  
Output Voltage Set Point (no load)  
Output Regulation  
TBD  
dB  
11.880  
11.820  
12.000  
12.120  
VDC  
Over Line  
±4  
±4  
±5  
±5  
mV  
mV  
Over Load  
Over line, load and temperature1  
Output Voltage Range  
12.180  
VDC  
Output Ripple and Noise - 25 MHz  
bandwidth  
mVPK-  
PK  
Full load + 10 μF tantalum + 1 Μf ceramic  
80  
120  
External Load Capacitance  
Output Current Range  
Current Limit Inception  
Peak Short-Circuit Current  
RMS Short-Circuit Current  
Dynamic Response  
Plus full load (resistive)  
1,000  
4
μF  
0
ADC  
ADC  
A
Non-latching  
4.5  
5
5.5  
10  
Non-latching, Short =10 mΩ.  
Non-latching  
7.5  
4
Arms  
Load Change 25% of Iout Max,  
di/dt = 0.1 A/μs  
Co = 1 μF ceramic  
200  
mV  
di/dt = 5 A/μs  
Settling Time to 1%  
Efficiency  
Co = 47 μF tantalum + 1 μF ceramic  
200  
400  
mV  
μs  
100% Load  
87.0  
87.0  
%
%
50% Load  
1-40 ºC to 85 ºC.  
Fig. 12V.1: Available load current vs. ambient air  
temperature and airflow rates for SQ48T04120 converter  
with D height pins mounted vertically with Vin = 48V, air  
flowing from pin 3 to pin 1, and maximum FET  
Fig. 12V.2: Available load current vs. ambient air  
temperature and airflow rates for SQ48T04120 converter  
with D height pins mounted horizontally with Vin = 48V, air  
flowing from pin 3 to pin 1, and maximum FET  
temperature 120°C.  
temperature 120°C.  
866.513.2839  
tech.support@psbel.com  
belpowersolutions.com  
© 2015 Bel Power Solutions, inc.  
BCD.00637_AA  
Fig. 12V.3: Available load current vs. ambient air  
temperature and airflow rates for SQ48S04120 converter  
mounted vertically with Vin = 48V, air flowing from pin 3  
Fig. 12V.4: Available load current vs. ambient air  
temperature and airflow rates for SQ48S04120 conve  
mounted horizontally with Vin = 48V, air flowing from pin  
to pin 1, and maximum FET temperature 120°C.  
3 to pin 1, and maximum FET temperature 120  
Fig. 12V.5: Efficiency vs. load current and input voltage for  
SQ48T/S04120 converter mounted vertically with air  
flowing from pin 3 to pin 1 at a rate of 300LFM (1.5 m/s)  
and Ta = 25°C.  
Fig. 12V.6: Efficiency vs. load current and ambient  
temperature for SQ48T/S04120 converter mounted  
vertically with Vin = 48V and air flowing from pin 3 to pin  
1 at a rate of 200LFM (1.0 m/s).  
866.513.2839  
tech.support@psbel.com  
belpowersolutions.com  
© 2015 Bel Power Solutions, inc.  
BCD.00637_AA  
Fig. 12V.7: Power dissipation vs. load current and  
input voltage for SQ48T/S04120 converter mounted  
vertically with air flowing from pin 3 to pin 1 at a rate of  
300 LFM (1.5 m/s) and Ta = 25°C.  
Fig. 12V.8: Power dissipation vs. load current and  
ambient temperature for SQ48T/S04120 converter  
mounted vertically with Vin = 48V and air flowing from  
pin 3 to pin 1 at a rate of 200LFM (1.0m/s).  
Fig. 12V.9: Turn-on transient at full rated load current  
(resistive) with no output capacitor at Vin = 48V,  
triggered via ON/OFF pin. Top trace: ON/OFF signal  
(5V/div.). Bottom trace: output voltage (5V/div.). Time  
scale: 1ms/div.  
Fig. 12V.10: Turn-on transient at full rated load current  
μ
(resistive) plus 1,000 F at Vin = 48V, triggered via  
ON/OFF pin. Top trace: ON/OFF signal (5V/div.).  
Bottom trace: output voltage (5V/div.). Time scale:  
2ms/div.  
866.513.2839  
tech.support@psbel.com  
belpowersolutions.com  
© 2015 Bel Power Solutions, inc.  
BCD.00637_AA  
Fig. 12V.11: Output voltage response to load current  
step-change (1A 2A 1A) at Vin = 48V. Top trace:  
output voltage (200mV/div.). Bottom trace: load current  
Fig. 12V.12: Output voltage response to load current  
step-change (1A 2A 1A) at Vin = 48V. Top trace:  
output voltage (200 mV/div.). Bottom trace: load current  
μ
μ
μ μ  
(1A/div.). Current slew rate: 0.1A/ s. Co = 1 F ceramic.  
Time scale: 0.5 ms/div.  
(1A/div.). Current slew rate: 5 A/ s. Co = 47 F tantalum  
μ
+ 1 F ceramic. Time scale: 0.5 ms/div.  
Fig. 12V.13: Output voltage ripple (50 mV/div.) at full  
Fig. 12V.14: Test Setup for measuring input reflec  
ripple currents, ic and is  
μ
rated load current into a resistive load with Co = 10 F  
μ
μ
tantalum + 1 F ceramic and Vin = 48V. Time scale: 1 s/div.  
866.513.2839  
tech.support@psbel.com  
belpowersolutions.com  
© 2015 Bel Power Solutions, inc.  
BCD.00637_AA  
Fig. 12V.15: Input reflected ripple current, ic  
(100 mA/div.), measured at input terminals at full rated  
load current and Vin = 48V. Refer to Fig. 12V.14 for test  
Fig. 12V.16: Input reflected ripple current, is  
(100 mA/div.), measured at input terminals at full rated  
full rated load current and Vin = 48V. Refer to  
μ
μ
setup. Time scale: 1 s/div.  
Fig. 12V.14 for test setup. Time scale: 1 s/div.  
Fig. 12V.17: Output voltage vs. load current showing  
current limit point and converter shutdown point. Input  
voltage has almost no effect on current limit  
characteristic.  
Fig. 12V.18: Load current (top trace, 5A/div.,  
Ω
20 ms/div.) into a 10 m short circuit during restart, at  
Vin = 48V. Bottom trace (5A/div., 1ms/div.) is an  
expansion of the on-time portion of the top trace.  
866.513.2839  
tech.support@psbel.com  
belpowersolutions.com  
© 2015 Bel Power Solutions, inc.  
BCD.00637_AA  
Conditions: TA = 25 ºC, Airflow = 300 LFM (1.5 m/s), Vin = 48 VDC, Vout = 8.0 VDC, unless otherwise specified.  
Parameter  
Notes  
Min  
Typ  
Max  
Units  
Input Characteristics  
Maximum Input Current  
Input Stand-by Current  
5.3 ADC, 8.0 VDC Out @ 36 VDC In  
Vin = 48V, converter disabled  
1.38  
ADC  
3
mADC  
Input No Load Current (0 load on  
the output)  
Vin = 48V, converter enabled  
33  
mADC  
mAPK-  
PK  
Input Reflected-Ripple Current  
25MHz bandwidth  
120HZ  
6
Input Voltage Ripple Rejection  
Output Characteristics  
Output Voltage Set Point (no load)  
Output Regulation  
TBD  
dB  
7.920  
7.880  
8.000  
8.080  
VDC  
Over Line  
±4  
±4  
± 10  
± 10  
mV  
mV  
Over Load  
Over line, load and temperature1  
Output Voltage Range  
8.120  
VDC  
Output Ripple and Noise - 25 MHz  
bandwidth  
mVPK-  
PK  
Full load + 10 μF tantalum + 1 μF ceramic  
70  
100  
External Load Capacitance  
Output Current Range  
Current Limit Inception  
Peak Short-Circuit Current  
RMS Short-Circuit Current  
Dynamic Response  
Plus full load (resistive)  
2,200  
5.3  
6.75  
12  
μF  
0
ADC  
ADC  
A
Non-latching  
5.75  
6.25  
10  
Non-latching, Short =10 mΩ.  
Non-latching  
4
Arms  
Load Change 25% of Iout Max,  
di/dt = 0.1 A/μs  
Co = 1 μF ceramic  
160  
mV  
di/dt = 5 A/μs  
Settling Time to 1%  
Efficiency  
Co = 94 μF tantalum + 1 μF ceramic  
160  
400  
mV  
μs  
%
%
100% Load  
85.5  
87.0  
50% Load  
1-40 ºC to 85 ºC.  
Fig. 8.0V.1: Available load current vs. ambient air  
temperature and airflow rates for SQ48T05080 converter  
with D height pins mounted vertically with Vin = 48 V, air  
flowing from pin 3 to pin 1, and maximum FET  
Fig. 8.0V.2: Available load current vs. ambient air  
temperature and airflow rates for SQ48T05080 converter  
with D height pins mounted horizontally with Vin = 48 V,  
air flowing from pin 3 to pin 1, and maximum FET  
temperature 120°C.  
temperature 120°C.  
866.513.2839  
tech.support@psbel.com  
belpowersolutions.com  
© 2015 Bel Power Solutions, inc.  
BCD.00637_AA  
Fig. 8.0V.3: Available load current vs. ambient air  
temperature and airflow rates for SQ48S05080 converter  
mounted vertically with Vin = 48V, air flowing from pin 3  
Fig. 8.0V.4: Available load current vs. ambient ai  
temperature and airflow rates for SQ48S05080 converter  
mounted horizontally with Vin = 48V, air flowing from pin  
to pin 1, and maximum FET temperature 120°C.  
3 to pin 1, and maximum FET temperature 120°C.  
Fig. 8.0V.5: Efficiency vs. load current and input voltage  
or SQ48T/S05080 converter mounted vertically with air  
flowing from pin 3 to pin 1 at a rate of 300 LFM (1.5 m/s)  
and Ta = 25°C.  
Fig. 8.0V.6: Efficiency vs. load current and ambient  
temperature for SQ48T/S05080 converter mounted  
vertically with Vin = 4V and air flowing from pin 3 to pin 1  
at a rate of 200 LFM (1.0m/s).  
866.513.2839  
tech.support@psbel.com  
belpowersolutions.com  
© 2015 Bel Power Solutions, inc.  
BCD.00637_AA  
Fig. 8.0V.7: Power dissipation vs. load current and  
input voltage for SQ48T/S05080 converter mounted  
vertically with air flowing from pin 3 to pin 1 at a rate of  
300 LFM (1.5 m/s) and Ta = 25°C.  
Fig. 8.0V.8: Power dissipation vs. load current and  
ambient temperature for SQ48T/S05080 converter  
mounted vertically with Vin = 48V and air flowing from  
pin 3 to pin 1 at a rate of 200 LFM (1.0 m/s).  
Fig. 8.0V.9: Turn-on transient at full rated load current  
(resistive) with no output capacitor at Vin = 48V,  
triggered via ON/OFF pin. Top trace: ON/OFF signal  
(5 V/div.). Bottom trace: output voltage (2 V/div.). Time  
scale: 1 ms/div.  
Fig. 8.0V.10: Turn-on transient at full rated load  
μ
current (resistive) plus 2,200 F at Vin = 48V,  
triggered via ON/OFF pin. Top trace: ON/OFF signal  
(5 V/div.). Bottom trace: output voltage (2 V/div.). Time  
scale: 2 ms/div.  
866.513.2839  
tech.support@psbel.com  
belpowersolutions.com  
© 2015 Bel Power Solutions, inc.  
BCD.00637_AA  
Fig. 8.0V.11: Output voltage response to load current  
step-change (1.325A 2.65A 1.325A) at Vin = 48V.  
Top trace: output voltage (200 mV/div.). Bottom trace:  
Fig. 8.0V.12: Output voltage response to load current  
step-change (1.325A 2.65A 1.325A) at Vin = 48V.  
Top trace: output voltage (200 mV/div.). Bottom trace:  
μ
μ
load current (1 A/div.). Current slew rate: 0.1 A/ s.  
load current (1 A/div.). Current slew rate: 5 A/ s.  
μ
μ
μ
Co = 1 F ceramic. Time scale: 0.5 ms/div.  
Co = 94 F tantalum + 1 F ceramic. Time scale:  
0.5 ms/div.  
Fig. 8.0V.13: Output voltage ripple (50 mV/div.) at full  
Fig. 8.0V.14: Test Setup for measuring input reflected  
ripple currents, ic and is  
μ
rated load current into a resistive load with Co = 10  
F
μ
μ
tantalum + 1 F ceramic and Vin = 48V. Time scale: 1 s/div.  
866.513.2839  
tech.support@psbel.com  
belpowersolutions.com  
© 2015 Bel Power Solutions, inc.  
BCD.00637_AA  
Fig. 8.0V.15: Input reflected ripple current, ic  
(100 mA/div.), measured at input terminals at full rated  
load current and Vin = 48V. Refer to Fig. 8.0V.14 for test  
Fig. 8.0V.16: Input reflected ripple current, is  
μ
(10 mA/div.), measured through 10 H at the source at  
full rated load current and Vin = 48V. Refer to  
μ
μ
setup. Time scale: 1 s/div.  
Fig. 8.0V.14 for test setup. Time scale: 1 s/div.  
Fig. 8.0V.17: Output voltage vs. load current showing  
current limit point and converter shutdown point. Input  
voltage has almost no effect on current limit  
characteristic.  
Fig. 8.0V.18: Load current (top trace, 5A/div.,  
Ω
20 ms/div.) into a 10 m short circuit during restart, at  
Vin = 48V. Bottom trace (5 A/div., 1 ms/div.) is an  
expansion of the on-time portion of the top trace.  
866.513.2839  
tech.support@psbel.com  
belpowersolutions.com  
© 2015 Bel Power Solutions, inc.  
BCD.00637_AA  
Conditions: TA = 25 ºC, Airflow = 300 LFM (1.5 m/s), Vin = 48 VDC, Vout = 6.0 VDC, unless otherwise specified.  
Parameter  
Notes  
Min  
Typ  
Max  
Units  
Input Characteristics  
Maximum Input Current  
Input Stand-by Current  
8 ADC, 6.0 VDC Out @ 36 VDC In  
Vin = 48V, converter disabled  
1.5  
ADC  
3
mADC  
Input No Load Current (0 load on  
the output)  
Vin = 48V, converter enabled  
45  
mADC  
mAPK-  
PK  
Input Reflected-Ripple Current  
25MHz bandwidth  
120HZ  
6
Input Voltage Ripple Rejection  
Output Characteristics  
Output Voltage Set Point (no load)  
Output Regulation  
TBD  
dB  
5.940  
5.910  
6.000  
6.060  
VDC  
Over Line  
±2  
±2  
± 10  
± 10  
mV  
mV  
Over Load  
Over line, load and temperature1  
Output Voltage Range  
6.090  
VDC  
Output Ripple and Noise - 25 MHz  
bandwidth  
mVPK-  
PK  
Full load + 10 μF tantalum + 1 μF ceramic  
45  
60  
μF  
External Load Capacitance  
Output Current Range  
Current Limit Inception  
Peak Short-Circuit Current  
RMS Short-Circuit Current  
Dynamic Response  
Plus full load (resistive)  
10,000  
8
0
ADC  
ADC  
A
Non-latching  
8.4  
10  
15  
11.5  
25  
Non-latching, Short =10 mΩ.  
Non-latching  
5.3  
Arms  
Load Change 25% of Iout Max,  
di/dt = 0.1 A/μs  
Co = 1 μF ceramic  
160  
mV  
di/dt = 5 A/μs  
Settling Time to 1%  
Efficiency  
Co = 450© μF tantalum + 1 μF ceramic  
80  
mV  
μs  
200  
100% Load  
89.0  
89.0  
%
%
50% Load  
1-40 ºC to 85 ºC.  
Fig. 6.0V.1: Available load current vs. ambient air  
temperature and airflow rates for SQ48T08060 converter  
with D height pins mounted vertically with Vin = 48V, air  
flowing from pin 3 to pin 1, and maximum FET  
Fig. 6.0V.2: Available load current vs. ambient air  
temperature and airflow rates for SQ48T08060 converter  
with D height pins mounted horizontally with Vin = 48V,  
air flowing from pin 3 to pin 1, and maximum FET  
temperature 120°C.  
temperature 120°C.  
866.513.2839  
tech.support@psbel.com  
belpowersolutions.com  
© 2015 Bel Power Solutions, inc.  
BCD.00637_AA  
Fig. 6.0V.3: Available load current vs. ambient air  
temperature and airflow rates for SQ48S08060 converter  
mounted vertically with Vin = 48V, air flowing from pin 3  
Fig. 6.0V.4: Available load current vs. ambient air  
temperature and airflow rates for SQ48S08060 converter  
mounted horizontally with Vin = 48V, air flowing from pin  
to pin 1, and maximum FET temperature 120°C.  
3 to pin 1, and maximum FET temperature 120°C.  
Fig. 6.0V.5: Efficiency vs. load current and input voltage for  
SQ48T/S08060 converter mounted vertically with air  
flowing from pin 3 to pin 1 at a rate of 300 LFM (1.5 m/s)  
and Ta = 25°C.  
Fig. 6.0V.6: Efficiency vs. load current and ambient  
temperature for SQ48T/S08060 converter mou  
vertically with Vin = 48V and air flowing from pin 3 to pin  
1 at a rate of 200 LFM (1.0 m/s).  
866.513.2839  
tech.support@psbel.com  
belpowersolutions.com  
© 2015 Bel Power Solutions, inc.  
BCD.00637_AA  
Fig. 6.0V.7: Power dissipation vs. load current and  
input voltage for SQ48T/S08060 converter mounted  
vertically with air flowing from pin 3 to pin 1 at a rate of  
300 LFM (1.5 m/s) and Ta = 25°C.  
Fig. 6.0V.8: Power dissipation vs. load current and  
ambient temperature for SQ48T/S08060 converter  
mounted vertically with Vin = 48V and air flowing from  
pin 3 to pin 1 at a rate of 200 LFM (1.0 m/s).  
Fig. 6.0V.9: Turn-on transient at full rated load current  
(resistive) with no output capacitor at Vin = 48V,  
triggered via ON/OFF pin. Top trace: ON/OFF signal  
(5 V/div.). Bottom trace: output voltage (2V/div.). Time  
scale: 2 ms/div.  
Fig. 6.0V.10: Turn-on transient at full rated load  
μ
current (resistive) plus 10,000 F at Vin = 48V,  
triggered via ON/OFF pin. Top trace: ON/OFF signal  
(5 V/div.). Bottom trace: output voltage (2V/div.). Time  
scale: 5 ms/div.  
866.513.2839  
tech.support@psbel.com  
belpowersolutions.com  
© 2015 Bel Power Solutions, inc.  
BCD.00637_AA  
Fig. 6.0V.11: Output voltage response to load current  
step-change (2 A 4 A 2 A) at Vin = 48V. Top trace:  
output voltage (100 mV/div.). Bottom trace: load current  
Fig. 6.0V.12: Output voltage response to load current  
step-change (2 A 4 A 2 A) at Vin = 48V. Top trace:  
output voltage (100 mV/div.). Bottom trace: load current  
μ
μ
μ μ  
(2 A/div.). Current slew rate: 5A/ s. Co = 450 F  
(2 A/div.). Current slew rate: 0.1A/ s. Co = 1 F ceramic.  
μ
Time scale: 0.2 ms/div.  
tantalum + 1 F ceramic. Time scale: 0.2ms/div.  
Fig. 6.0V.13: Output voltage ripple (50mV/div.) at full  
Fig. 6.0V.14: Test Setup for measuring input reflected  
ripple currents, ic and is  
μ
rated load current into a resistive load with Co = 10  
F
μ
μ
tantalum + 1 F ceramic and Vin = 48V. Time scale: 1 s/div.  
866.513.2839  
tech.support@psbel.com  
belpowersolutions.com  
© 2015 Bel Power Solutions, inc.  
BCD.00637_AA  
Fig. 6.0V.15: Input reflected ripple current, ic  
(100 mA/div.), measured at input terminals at full rated  
load current and Vin = 48V. Refer to Fig. 6.0V.14 for test  
Fig. 6.0V.16: Input reflected ripple current, is  
μ
(10 mA/div.), measured through 10 H at the source at  
full rated load current and Vin = 48V. Refer to  
μ
μ
setup. Time scale: 1 s/div.  
Fig. 6.0V.14 for test setup. Time scale: 1 s/div.  
Fig. 6.0V.17: Output voltage vs. load current showing  
Fig. 6.0V.18: Load current (top trace, 10A/div.,  
866.513.2839  
tech.support@psbel.com  
belpowersolutions.com  
© 2015 Bel Power Solutions, inc.  
BCD.00637_AA  
Ω
current limit point and converter shutdown point. Input  
voltage has almost no effect on current limit  
characteristic.  
20 ms/div.) into a 10 m short circuit during restart, at  
Vin = 48V. Bottom trace (10A/div., 1ms/div.) is an  
expansion of the on-time portion of the top trace.  
Conditions: TA = 25 ºC, Airflow = 300 LFM (1.5 m/s), Vin = 48 VDC, Vout = 5.0 VDC, unless otherwise specified.  
Parameter  
Notes  
Min  
Typ  
Max  
Units  
Input Characteristics  
Maximum Input Current  
Input Stand-by Current  
Input No Load Current (0 load on  
the output)  
10 ADC, 5.0 VDC Out @ 36 VDC In  
Vin = 48V, converter disabled  
1.65  
ADC  
2.6  
40  
mADC  
Vin = 48V, converter enabled  
mADC  
mAPK-  
PK  
Input Reflected-Ripple Current  
25MHz bandwidth  
120HZ  
6
Input Voltage Ripple Rejection  
Output Characteristics  
Output Voltage Set Point (no load)  
Output Regulation  
TBD  
dB  
4.950  
4.925  
5.000  
5.050  
VDC  
Over Line  
±2  
±2  
±5  
±5  
mV  
mV  
Over Load  
Over line, load and temperature1  
Output Voltage Range  
5.075  
VDC  
Output Ripple and Noise - 25 MHz  
bandwidth  
mVPK-  
PK  
Full load + 10 μF tantalum + 1 μF ceramic  
45  
80  
μF  
External Load Capacitance  
Output Current Range  
Current Limit Inception  
Plus full load (resistive)  
10,000  
10  
0
ADC  
ADC  
Non-latching  
10.5  
12.5  
14  
866.513.2839  
tech.support@psbel.com  
belpowersolutions.com  
© 2015 Bel Power Solutions, inc.  
BCD.00637_AA  
Non-latching, Short =10 mΩ.  
Peak Short-Circuit Current  
RMS Short-Circuit Current  
Dynamic Response  
20  
30  
A
Non-latching  
5.3  
Arms  
Load Change 25% of Iout Max,  
di/dt = 0.1 A/μs  
Co = 1 μF ceramic  
200  
mV  
di/dt = 5 A/μs  
Settling Time to 1%  
Efficiency  
Co = 450 μF tantalum + 1 μF ceramic  
180  
400  
mV  
μs  
100% Load  
87.0  
88.0  
%
%
50% Load  
1-40 ºC to 85 ºC.  
Fig. 5.0V.1: Available load current vs. ambient air  
temperature and airflow rates for SQ48T10050 converter  
with D height pins mounted vertically with Vin = 48V, air  
flowing from pin 3 to pin 1, and maximum FET  
Fig. 5.0V.2: Available load current vs. ambient air  
temperature and airflow rates for SQ48T10050 converter  
with D height pins mounted horizontally with Vin = 48V,  
air flowing from pin 3 to pin 1, and maximum FET  
temperature 120°C.  
temperature 120°C.  
Fig. 5.0V.3: Available load current vs. ambient air  
temperature and airflow rates for SQ48S10050 converter  
mounted vertically with Vin = 48V, air flowing from pin 3  
Fig. 5.0V.4: Available load current vs. ambient air  
temperature and airflow rates for SQ48S10050 converter  
mounted horizontally with Vin = 48V, air flowing from pin  
to pin 1, and maximum FET temperature 120°C.  
3 to pin 1, and maximum FET temperature 120°C.  
866.513.2839  
tech.support@psbel.com  
belpowersolutions.com  
© 2015 Bel Power Solutions, inc.  
BCD.00637_AA  
Fig. 5.0V.5: Efficiency vs. load current and input voltage for  
SQ48T/S10050 converter mounted vertically with air  
flowing from pin 3 to pin 1 at a rate of 300 LFM (1.5 m/s)  
and Ta = 25°C.  
Fig. 5.0V.6: Efficiency vs. load current and ambient  
temperature for SQ48T/S10050 converter mounted  
vertically with Vin = 48V and air flowing from pin 3 to pin  
1 at a rate of 200 LFM (1.0m/s).  
Fig. 5.0V.7: Power dissipation vs. load current and  
input voltage for SQ48T/S10050 converter mounted  
vertically with air flowing from pin 3 to pin 1 at a rate of  
300 LFM (1.5m/s) and Ta = 25°C.  
Fig. 5.0V.8: Power dissipation vs. load current and  
ambient temperature for SQ48T/S10050 converter  
mounted vertically with Vin = 48V and air flowing from  
pin 3 to pin 1 at a rate of 200 LFM (1.0m/s).  
866.513.2839  
tech.support@psbel.com  
belpowersolutions.com  
© 2015 Bel Power Solutions, inc.  
BCD.00637_AA  
Fig. 5.0V.9: Turn-on transient at full rated load current  
(resistive) with no output capacitor at Vin = 48V,  
triggered via ON/OFF pin. Top trace: ON/OFF signal  
(5 V/div.). Bottom trace: output voltage (2 V/div.). Time  
scale: 2ms/div.  
Fig. 5.0V.10: Turn-on transient at full rated load  
μ
current (resistive) plus 10,000 F at Vin = 48V,  
triggered via ON/OFF pin. Top trace: ON/OFF signal  
(5 V/div.). Bottom trace: output voltage (2 V/div.). Time  
scale: 2ms/div.  
Fig. 5.0V.11: Output voltage response to load current  
step-change (2.5A 5A 2.5A) at Vin = 48V. Top trace:  
output voltage (200 mV/div.). Bottom trace: load current  
Fig. 5.0V.12: Output voltage response to load current  
step-change (2.5A 5A 2.5A) at Vin = 48V. Top trace:  
output voltage (200 mV/div.). Bottom trace: load current  
μ
μ
μ
(2 A/div.). Current slew rate: 0.1A/ s. Co = 1 F ceramic.  
Time scale: 0.2ms/div.  
(2A/div.). Current slew rate: 5A/ s.  
μ
μ
Co = 450 F tantalum + 1 F ceramic. Time scale:  
0.2 ms/div.  
866.513.2839  
tech.support@psbel.com  
belpowersolutions.com  
© 2015 Bel Power Solutions, inc.  
BCD.00637_AA  
Fig. 5.0V.13: Output voltage ripple (20 mV/div.) at full  
Fig. 5.0V.14: Test Setup for measuring input reflected  
ripple currents, ic and is.  
μ
rated load current into a resistive load with Co = 10  
F
μ
μ
tantalum + 1 F ceramic and Vin = 48V. Time scale: 1 s/div.  
Fig. 5.0V.15: Input reflected ripple current, ic  
(100 mA/div.), measured at input terminals at full rated  
load current and Vin = 48V. Refer to Fig. 5.0V.14 for test  
Fig. 5.0V.16: Input reflected ripple current, is  
μ
(10 mA/div.), measured through 10 H at the source at  
full rated load current and Vin = 48V. Refer to  
μ
μ
setup. Time scale: 1 s/div.  
Fig. 5.0V.14 for test setup. Time scale: 1 s/div.  
Fig. 5.0V.17: Output voltage vs. load current showing  
current limit point and converter shutdown point. Input  
Fig. 5.0V.18: Load current (top trace, 10A/div.,  
Ω
20 ms/div.) into a 10 m short circuit during restart, at  
866.513.2839  
tech.support@psbel.com  
belpowersolutions.com  
© 2015 Bel Power Solutions, inc.  
BCD.00637_AA  
voltage has almost no effect on current limit  
characteristic.  
Vin = 48V. Bottom trace (10A/div., 1ms/div.) is an  
expansion of the on-time portion of the top trace.  
Conditions: TA = 25 ºC, Airflow = 300 LFM (1.5 m/s), Vin = 48 VDC, Vout = 3.3 VDC, unless otherwise specified.  
Parameter  
Notes  
Min  
Typ  
Max  
Units  
Input Characteristics  
Maximum Input Current  
Input Stand-by Current  
Input No Load Current (0 load on  
the output)  
15 ADC, 3.3 VDC Out @ 36 VDC In  
Vin = 48V, converter disabled  
1.6  
ADC  
2.6  
42  
mADC  
Vin = 48V, converter enabled  
mADC  
mAPK-  
PK  
Input Reflected-Ripple Current  
25MHz bandwidth  
120HZ  
6
Input Voltage Ripple Rejection  
Output Characteristics  
Output Voltage Set Point (no load)  
Output Regulation  
TBD  
dB  
3.267  
3.250  
3.300  
3.333  
VDC  
Over Line  
±2  
±2  
±5  
±5  
mV  
mV  
Over Load  
Over line, load and temperature1  
Output Voltage Range  
3.350  
VDC  
Output Ripple and Noise - 25 MHz  
bandwidth  
External Load Capacitance  
Output Current Range  
Current Limit Inception  
mVPK-  
PK  
Full load + 10 μF tantalum + 1 μF ceramic  
30  
18  
50  
μF  
Plus full load (resistive)  
15,000  
15  
0
ADC  
ADC  
Non-latching  
15.75  
20  
866.513.2839  
tech.support@psbel.com  
belpowersolutions.com  
© 2015 Bel Power Solutions, inc.  
BCD.00637_AA  
Non-latching, Short =10 mΩ.  
Peak Short-Circuit Current  
RMS Short-Circuit Current  
Dynamic Response  
Load Change 25% of Iout Max,  
di/dt = 0.1 A/μs  
30  
80  
40  
A
Non-latching  
5.3  
Arms  
Co = 1 μF ceramic  
mV  
di/dt = 5 A/μs  
Settling Time to 1%  
Efficiency  
Co = 450 μF tantalum + 1 μF ceramic  
140  
100  
mV  
μs  
100% Load  
89.5  
89.5  
%
%
50% Load  
1-40 ºC to 85 ºC.  
Fig. 3.3V.1: Available load current vs. ambient air  
temperature and airflow rates for SQ48T15033 converter  
with D height pins mounted vertically with Vin = 48V, air  
flowing from pin 3 to pin 1, and maximum FET  
Fig. 3.3V.1: Available load current vs. ambient air  
temperature and airflow rates for SQ48T15033 converter  
with D height pins mounted horizontally with Vin = 48V,  
air flowing from pin 3 to pin 1, and maximum FET  
temperature 120°C.  
temperature 120°C.  
Fig. 3.3V.3: Available load current vs. ambient air  
temperature and airflow rates for SQ48S15033 converter  
mounted vertically with Vin = 48V, air flowing from pin 3  
Fig. 3.3V.4: Available load current vs. ambient air  
temperature and airflow rates for SQ48S15033 converter  
mounted horizontally with Vin = 48V, air flowing from pin  
to pin 1, and maximum FET temperature 120°C.  
3 to pin 1, and maximum FET temperature 120°C.  
866.513.2839  
tech.support@psbel.com  
belpowersolutions.com  
© 2015 Bel Power Solutions, inc.  
BCD.00637_AA  
Fig. 3.3V.5: Efficiency vs. load current and input voltage  
for SQ48T/S15033 converter mounted vertically with air  
flowing from pin 3 to pin 1 at a rate of 300 LFM (1.5m/s)  
and Ta = 25°C.  
Fig. 3.3V.6: Efficiency vs. load current and ambient  
temperature for SQ48T/S15033 converter mounted  
vertically with Vin = 48V and air flowing from pin 3 to pin  
1 at a rate of 200 LFM (1.0m/s).  
Fig. 3.3V.7: Power dissipation vs. load current and  
input voltage for SQ48T/S15033 converter mounted  
vertically with air flowing from pin 3 to pin 1 at a rate of  
300 LFM (1.5 m/s) and Ta = 25 °C.  
Fig. 3.3V.8: Power dissipation vs. load current and  
ambient temperature for SQ48T/S15033 converter  
mounted vertically with Vin = 48 V and air flowing from  
pin 3 to pin 1 at a rate of 200 LFM (1.0 m/s).  
866.513.2839  
tech.support@psbel.com  
belpowersolutions.com  
© 2015 Bel Power Solutions, inc.  
BCD.00637_AA  
Fig. 3.3V.9: Turn-on transient at full rated load current  
(resistive) with no output capacitor at Vin = 48 V,  
triggered via ON/OFF pin. Top trace: ON/OFF signal  
(5 V/div.). Bottom trace: output voltage (1 V/div.). Time  
scale: 2 ms/div.  
Fig. 3.3V.10: Turn-on transient at full rated load  
μ
current (resistive) plus 10,000 F at Vin = 48 V,  
triggered via ON/OFF pin. Top trace: ON/OFF signal  
(5 V/div.). Bottom trace: output voltage (1 V/div.). Time  
scale: 2 ms/div.  
Fig. 3.3V.11: Output voltage response to load current  
step-change (3.75 A 7.5 A 3.75 A) at Vin = 48 V.  
Top trace: output voltage (100 mV/div.). Bottom trace:  
Fig. 3.3V.12: Output voltage response to load current  
step-change (3.75 A 7.5 A 3.75 A) at Vin = 48 V.  
Top trace: output voltage (100 mV/div.). Bottom trace:  
μ
μ
load current (5 A/div.). Current slew rate: 0.1 A/ s.  
load current (5 A/div.). Current slew rate: 5 A/ s. Co =  
μ
μ μ  
450 F tantalum + 1 F ceramic. Time scale: 0.2 ms/div.  
Co = 1 F ceramic. Time scale: 0.2 ms/div.  
866.513.2839  
tech.support@psbel.com  
belpowersolutions.com  
© 2015 Bel Power Solutions, inc.  
BCD.00637_AA  
Fig. 3.3V.13: Output voltage ripple (20 mV/div.) at full  
Fig. 3.3V.14: Test Setup for measuring input reflected  
ripple currents, ic and is  
μ
rated load current into a resistive load with Co = 10  
F
μ
μ
tantalum + 1 F ceramic and Vin = 48 V. Time scale: 1 s/div.  
Fig. 3.3V.15: Input reflected ripple current, ic  
(100 mA/div.), measured at input terminals at full rated  
Fig. 3.3V.16: Input reflected ripple current, is  
μ
(10 mA/div.), measured through 10 H at the source at  
load current and Vin = 48 V. Refer to Fig. 3.3V.14 for  
full rated load current and Vin = 48 V. Refer to  
μ
μ
test setup. Time scale: 1 s/div.  
Fig. 3.3V.14 for test setup. Time scale: 1 s/div.  
866.513.2839  
tech.support@psbel.com  
belpowersolutions.com  
© 2015 Bel Power Solutions, inc.  
BCD.00637_AA  
Fig. 3.3V.17: Output voltage vs. load current showing  
current limit point and converter shutdown point. Input  
voltage has almost no effect on current limit  
characteristic.  
Fig. 3.3V.18: Load current (top trace, 20 A/div.,  
Ω
20 ms/div.) into a 10 m short circuit during restart, at  
Vin = 48 V. Bottom trace (20 A/div., 1 ms/div.) is an  
expansion of the on-time portion of the top trace.  
Conditions: TA = 25ºC, Airflow = 300 LFM (1.5 m/s), Vin = 48 VDC, Vout = 2.5 VDC, unless otherwise specified.  
866.513.2839  
tech.support@psbel.com  
belpowersolutions.com  
© 2015 Bel Power Solutions, inc.  
BCD.00637_AA  
Parameter  
Notes  
Min  
Typ  
Max  
1.2  
Units  
Input Characteristics  
Maximum Input Current  
Input Stand-by Current  
Input No Load Current (0 load on  
the output)  
15 ADC, 2.5 VDC Out @ 36 VDC In  
Vin = 48V, converter disabled  
ADC  
2.6  
34  
mADC  
Vin = 48V, converter enabled  
mADC  
mAPK-  
PK  
Input Reflected-Ripple Current  
25MHz bandwidth  
120HZ  
6
Input Voltage Ripple Rejection  
Output Characteristics  
Output Voltage Set Point (no load)  
Output Regulation  
TBD  
dB  
2.475  
2.462  
2.500  
2.525  
VDC  
Over Line  
±2  
±2  
±5  
±5  
mV  
mV  
Over Load  
Over line, load and temperature1  
Output Voltage Range  
2.538  
VDC  
Output Ripple and Noise - 25 MHz  
bandwidth  
mVPK-  
PK  
Full load + 10 μF tantalum + 1 μF ceramic  
30  
50  
External Load Capacitance  
Output Current Range  
Current Limit Inception  
Peak Short-Circuit Current  
RMS Short-Circuit Current  
Dynamic Response  
Plus full load (resistive)  
15,000  
15  
μF  
0
ADC  
ADC  
A
Non-latching  
15.75  
18  
30  
20  
Non-latching, Short =10 mΩ.  
Non-latching  
40  
5.3  
Arms  
Load Change 25% of Iout Max,  
di/dt = 0.1 A/μs  
Co = 1 μF ceramic  
120  
mV  
di/dt = 5 A/μs  
Settling Time to 1%  
Efficiency  
Co = 450 μF tantalum + 1 μF ceramic  
120  
100  
mV  
μs  
100% Load  
87.0  
87.5  
%
%
50% Load  
1-40 ºC to 85 ºC.  
Fig. 2.5V.1: Available load current vs. ambient air  
temperature and airflow rates for SQ48T15025 converter  
with D height pins mounted vertically with Vin = 48 V, air  
flowing from pin 3 to pin 1, and maximum FET  
Fig. 2.5V.2: Available load current vs. ambient air  
temperature and airflow rates for SQ48T15025 converter  
with D height pins mounted horizontally with Vin = 48 V, air  
flowing from pin 3 to pin 1, and maximum FET temperature  
temperature 120 °C.  
120 °C.  
Fig. 2.5V.3: Available load current vs. ambient air  
temperature and airflow rates for SQ48S15025 converter  
Fig. 2.5V.4: Available load current vs. ambient air  
temperature and airflow rates for SQ48S15025 converter  
866.513.2839  
tech.support@psbel.com  
belpowersolutions.com  
© 2015 Bel Power Solutions, inc.  
BCD.00637_AA  
mounted vertically with Vin = 48 V, air flowing from pin 3  
mounted horizontally with Vin = 48 V, air flowing from pin  
to pin 1, and maximum FET temperature 120 °C.  
3 to pin 1, and maximum FET temperature 120 °C.  
Fig. 2.5V.5: Efficiency vs. load current and input voltage  
for SQ48T/S15025 converter mounted vertically with air  
flowing from pin 3 to pin 1 at a rate of 300 LFM (1.5 m/s)  
and Ta = 25 °C.  
Fig. 2.5V.6: Efficiency vs. load current and ambient  
temperature for SQ48T/S15025 converter mounted  
vertically with Vin = 48 V and air flowing from pin 3 to pin  
1 at a rate of 200 LFM (1.0 m/s).  
Fig. 2.5V.7: Power dissipation vs. load current and  
input voltage for SQ48T/S15025 converter mounted  
Fig. 2.5V.8: Power dissipation vs. load current and  
ambient temperature for SQ48T/S15025 converter  
866.513.2839  
tech.support@psbel.com  
belpowersolutions.com  
© 2015 Bel Power Solutions, inc.  
BCD.00637_AA  
vertically with air flowing from pin 3 to pin 1 at a rate of  
300 LFM (1.5 m/s) and Ta = 25 °C.  
mounted vertically with Vin = 48 V and air flowing from  
pin 3 to pin 1 at a rate of 200 LFM (1.0 m/s).  
Fig. 2.5V.9: Turn-on transient at full rated load current  
(resistive) with no output capacitor at Vin = 48 V,  
triggered via ON/OFF pin. Top trace: ON/OFF signal  
(5 V/div.). Bottom trace: output voltage (1 V/div.). Time  
scale: 2 ms/div.  
Fig. 2.5V.10: Turn-on transient at full rated load  
μ
current (resistive) plus 10,000 F at Vin = 48 V,  
triggered via ON/OFF pin. Top trace: ON/OFF signal  
(5 V/div.). Bottom trace: output voltage (1 V/div.). Time  
scale: 2 ms/div.  
Fig. 2.5V.11: Output voltage response to load current  
step-change (3.75 A 7.5 A 3.75 A) at Vin = 48 V.  
Fig. 2.5V.12: Output voltage response to load current  
step-change (3.75 A 7.5 A 3.75 A) at Vin = 48 V  
866.513.2839  
tech.support@psbel.com  
belpowersolutions.com  
© 2015 Bel Power Solutions, inc.  
BCD.00637_AA  
Top trace: output voltage (100 mV/div.). Bottom trace:  
Top trace: output voltage (100 mV/div.). Bottom trace:  
μ
μ
load current (5 A/div.). Current slew rate: 0.1 A/ s  
load current (5 A/div.). Current slew rate: 5 A/ s. Co =  
μ
μ
μ
Co = 1 F ceramic. Time scale: 0.2 ms/div.  
450 F tantalum + 1 F ceramic. Time scale: 0.2 ms/div.  
Fig. 2.5V.13: Output voltage ripple (20 mV/div.) at full  
Fig. 2.5V.14: Test Setup for measuring input reflected  
ripple currents, ic and is  
μ
rated load current into a resistive load with Co = 10  
F
μ
μ
tantalum + 1 F ceramic and Vin = 48 V. Time scale: 1 s/div.  
Fig. 2.5V.15: Input reflected ripple current, ic  
(100 mA/div.), measured at input terminals at full rated  
Fig. 2.5V.16: Input reflected ripple current, is  
μ
(10 mA/div.), measured through 10 H at the source at  
866.513.2839  
tech.support@psbel.com  
belpowersolutions.com  
© 2015 Bel Power Solutions, inc.  
BCD.00637_AA  
load current and Vin = 48 V. Refer to Fig. 2.5V.14 for  
full rated load current and Vin = 48 V. Refer to  
μ
μ
test setup. Time scale: 1 s/div.  
Fig. 2.5V.14 for test setup. Time scale: 1 s/div.  
Fig. 2.5V.17: Output voltage vs. load current showing  
current limit point and converter shutdown point. Input  
voltage has almost no effect on current limit  
characteristic.  
Fig. 2.5V.18: Load current (top trace, 20 A/div.,  
Ω
20 ms/div.) into a 10 m short circuit during restart, at  
Vin = 48 V. Bottom trace (20 A/div., 1 ms/div.) is an  
expansion of the on-time portion of the top trace.  
866.513.2839  
tech.support@psbel.com  
belpowersolutions.com  
© 2015 Bel Power Solutions, inc.  
BCD.00637_AA  
Conditions: TA = 25 ºC, Airflow = 300 LFM (1.5 m/s), Vin = 48 VDC, Vout = 2.0 VDC, unless otherwise specified.  
Parameter  
Notes  
Min  
Typ  
Max  
Units  
Input Characteristics  
Maximum Input Current  
Input Stand-by Current  
15 ADC, 2.0 VDC Out @ 36 VDC In  
Vin = 48V, converter disabled  
1.0  
ADC  
3
mADC  
Input No Load Current (0 load on  
the output)  
Vin = 48V, converter enabled  
31  
mADC  
mAPK-  
PK  
Input Reflected-Ripple Current  
25MHz bandwidth  
120HZ  
6
Input Voltage Ripple Rejection  
Output Characteristics  
Output Voltage Set Point (no load)  
Output Regulation  
TBD  
dB  
1.98  
2.000  
2.02  
VDC  
Over Line  
±2  
±2  
±5  
±5  
mV  
mV  
Over Load  
Over line, load and temperature1  
Output Voltage Range  
1.970  
2.030  
VDC  
Output Ripple and Noise - 25 MHz  
bandwidth  
mVPK-  
PK  
Full load + 10 μF tantalum + 1 μF ceramic  
30  
50  
μF  
External Load Capacitance  
Output Current Range  
Current Limit Inception  
Peak Short-Circuit Current  
RMS Short-Circuit Current  
Dynamic Response  
Plus full load (resistive)  
15,000  
15  
0
ADC  
ADC  
A
Non-latching  
15.75  
18  
30  
20  
Non-latching, Short =10 mΩ.  
Non-latching  
40  
5.3  
Arms  
Load Change 25% of Iout Max,  
di/dt = 0.1 A/μs  
Co = 1 μF ceramic  
80  
mV  
di/dt = 5 A/μs  
Co = 450 μF tantalum + 1 μF ceramic  
60  
60  
mV  
μs  
Settling Time to 1%  
Efficiency  
100% Load  
86.5  
87.0  
%
%
50% Load  
1-40 ºC to 85 ºC.  
Fig. 2.0V.1: Available load current vs. ambient air  
temperature and airflow rates for SQ48T15020 converter  
with D height pins mounted vertically with Vin = 48 V, air  
flowing from pin 3 to pin 1, and maximum FET  
Fig. 2.0V.2: Available load current vs. ambient air  
temperature and airflow rates for SQ48T15020 converter  
with D height pins mounted horizontally with Vin = 48 V,  
air flowing from pin 3 to pin 1, and maximum FET  
temperature 120 °C.  
temperature 120 °C.  
Fig. 2.0V.3: Available load current vs. ambient air  
Fig. 2.0V.4: Available load current vs. ambient air  
866.513.2839  
tech.support@psbel.com  
belpowersolutions.com  
© 2015 Bel Power Solutions, inc.  
BCD.00637_AA  
temperature and airflow rates for SQ48S15020 converter  
mounted vertically with Vin = 48 V, air flowing from pin 3  
temperature and airflow rates for SQ48S15020 converter  
mounted horizontally with Vin = 48 V, air flowing from pin  
to pin 1, and maximum FET temperature 120 °C.  
3 to pin 1, and maximum FET temperature 120 °C.  
Fig. 2.0V.5: Efficiency vs. load current and input voltage  
for SQ48T/S15020 converter mounted vertically with air  
flowing from pin 3 to pin 1 at a rate of 300 LFM (1.5 m/s)  
and Ta = 25 °C.  
Fig. 2.0V.6: Efficiency vs. load current and ambient  
for SQ48T/S15020 converter mounted vertically with air  
vertically with Vin = 48 V and air flowing from pin 3 to pin  
1 at a rate of 200 LFM (1.0 m/s).  
Fig. 2.0V.7: Power dissipation vs. load current and  
Fig. 2.0V.8: Power dissipation vs. load current and  
866.513.2839  
tech.support@psbel.com  
belpowersolutions.com  
© 2015 Bel Power Solutions, inc.  
BCD.00637_AA  
input voltage for SQ48T/S15020 converter mounted  
vertically with air flowing from pin 3 to pin 1 at a rate of  
300 LFM (1.5 m/s) and Ta = 25 °C.  
ambient temperature for SQ48T/S15020 converter  
mounted vertically with Vin = 48 V and air flowing from  
pin 3 to pin 1 at a rate of 200 LFM (1.0 m/s).  
Fig. 2.0V.9: Turn-on transient at full rated load current  
(resistive) with no output capacitor at Vin = 48 V,  
triggered via ON/OFF pin. Top trace: ON/OFF signal  
(5 V/div.). Bottom trace: output voltage (1 V/div.). Time  
scale: 2 ms/div.  
Fig. 2.0V.9: Turn-on transient at full rated load current  
μ
current (resistive) plus 10,000 F at Vin = 48 V,  
riggered via ON/OFF pin. Top trace: ON/OFF signal  
(5 V/div.). Bottom trace: output voltage (1 V/div.). Time  
scale: 2 ms/div.  
Fig. 2.0V.11: Output voltage response to load current  
Fig. 2.0V.12: Output voltage response to load current  
866.513.2839  
tech.support@psbel.com  
belpowersolutions.com  
© 2015 Bel Power Solutions, inc.  
BCD.00637_AA  
step-change (3.75 A 7.5 A 3.75 A) at Vin = 48 V.  
Top trace: output voltage (100 mV/div.). Bottom trace:  
step-change (3.75 A 7.5 A 3.75 A) at Vin = 48 V.  
Top trace: output voltage (100 mV/div.). Bottom trace:  
μ
μ
load current (5 A/div.). Current slew rate: 0.1 A/ s.  
load current (5 A/div.). Current slew rate: 5 A/ s. Co =  
μ
μ
μ
Co = 1 F ceramic. Time scale: 0.2 ms/div.  
450 F tantalum + 1 F ceramic. Time scale: 0.2 ms/div.  
Fig. 2.0V.13: Output voltage ripple (20 mV/div.) at full  
Fig. 2.0V.13: Output voltage ripple (20 mV/div.) at full  
ripple currents, ic and is  
μ
rated load current into a resistive load with Co = 10  
F
μ
tantalum + 1 F ceramic and Vin = 48 V. Time scale:  
μ
1
s/div.  
Fig. 2.0V.15: Input reflected ripple current, ic  
Fig. 2.0V.16: Input reflected ripple current, is  
866.513.2839  
tech.support@psbel.com  
belpowersolutions.com  
© 2015 Bel Power Solutions, inc.  
BCD.00637_AA  
μ
(100 mA/div.), measured at input terminals at full rated  
load current and Vin = 48 V. Refer to Fig. 2.0V.14 for  
(10 mA/div.), measured through 10 H at the source at  
full rated load current and Vin = 48 V. Refer to  
μ
μ
test setup. Time scale: 1 s/div.  
test setup. Time scale: 1 s/div.  
Fig. 2.0V.17: Output voltage vs. load current showing  
current limit point and converter shutdown point. Input  
voltage has almost no effect on current limit  
characteristic.  
Fig. 2.0V.18: Load current (top trace, 20 A/div.,  
Ω
20 ms/div.) into a 10 m short circuit during restart, at  
Vin = 48 V. Bottom trace (20 A/div., 1 ms/div.) is an  
expansion of the on-time portion of the top trace.  
866.513.2839  
tech.support@psbel.com  
belpowersolutions.com  
© 2015 Bel Power Solutions, inc.  
BCD.00637_AA  
Conditions: TA = 25 ºC, Airflow = 300 LFM (1.5 m/s), Vin = 48 VDC, Vout = 1.8 VDC, unless otherwise specified.  
Parameter  
Notes  
Min  
Typ  
Max  
Units  
Input Characteristics  
Maximum Input Current  
Input Stand-by Current  
Input No Load Current (0 load on  
the output)  
15 ADC, 1.8 VDC Out @ 36 VDC In  
Vin = 48V, converter disabled  
0.9  
ADC  
2.6  
29  
mADC  
Vin = 48V, converter enabled  
mADC  
mAPK-  
PK  
Input Reflected-Ripple Current  
25MHz bandwidth  
120HZ  
6
Input Voltage Ripple Rejection  
Output Characteristics  
Output Voltage Set Point (no load)  
Output Regulation  
TBD  
dB  
1.782  
1.773  
1.800  
1.818  
VDC  
Over Line  
±2  
±2  
±4  
±5  
mV  
mV  
Over Load  
Over line, load and temperature1  
Output Voltage Range  
1.827  
VDC  
Output Ripple and Noise - 25 MHz  
bandwidth  
mVPK-  
PK  
Full load + 10 μF tantalum + 1 μF ceramic  
30  
50  
External Load Capacitance  
Output Current Range  
Current Limit Inception  
Peak Short-Circuit Current  
RMS Short-Circuit Current  
Dynamic Response  
Plus full load (resistive)  
15,000  
15  
μF  
0
ADC  
ADC  
A
Non-latching  
15.75  
18  
30  
20  
Non-latching, Short =10 mΩ.  
Non-latching  
40  
5.3  
Arms  
Load Change 25% of Iout Max,  
di/dt = 0.1 A/μs  
Co = 1 μF ceramic  
80  
mV  
di/dt = 5 A/μs  
Settling Time to 1%  
Efficiency  
Co = 450 μF tantalum + 1 μF ceramic  
100  
100  
mV  
μs  
100% Load  
85.5  
86.0  
%
%
50% Load  
1-40 ºC to 85 ºC.  
Fig. 1.8V.1: Available load current vs. ambient air  
temperature and airflow rates for SQ48T15018 converter  
with D height pins mounted vertically with Vin = 48 V, air  
flowing from pin 3 to pin 1, and maximum FET  
Fig. 1.8V.2: Available load current vs. ambient air  
temperature and airflow rates for SQ48T15018 converter  
with D height pins mounted horizontally with Vin = 48 V,  
air flowing from pin 3 to pin 1, and maximum FET  
temperature 120 °C.  
temperature 120 °C.  
866.513.2839  
tech.support@psbel.com  
belpowersolutions.com  
© 2015 Bel Power Solutions, inc.  
BCD.00637_AA  
Fig. 1.8V.3: Available load current vs. ambient air  
temperature and airflow rates for SQ48S15018 converter  
mounted vertically with Vin = 48 V, air flowing from pin 3  
Fig. 1.8V.4: Available load current vs. ambient air  
temperature and airflow rates for SQ48S15018 converter  
mounted horizontally with Vin = 48 V, air flowing from pin  
to pin 1, and maximum FET temperature 120 °C.  
3 to pin 1, and maximum FET temperature 120 °C.  
Fig. 1.8V.5: Efficiency vs. load current and input voltage  
for SQ48T/S15018 converter mounted vertically with air  
flowing from pin 3 to pin 1 at a rate of 300 LFM (1.5 m/s)  
and Ta = 25 °C.  
Fig. 1.8V.6: Efficiency vs. load current and ambient  
temperature for SQ48T/S15018 converter mounted  
vertically with Vin = 48 V and air flowing from pin 3 to pin  
1 at a rate of 200 LFM (1.0 m/s).  
866.513.2839  
tech.support@psbel.com  
belpowersolutions.com  
© 2015 Bel Power Solutions, inc.  
BCD.00637_AA  
Fig. 1.8V.7: Power dissipation vs. load current and  
input voltage for SQ48T/S15018 converter mounted  
vertically with air flowing from pin 3 to pin 1 at a rate of  
300 LFM (1.5 m/s) and Ta = 25 °C.  
Fig. 1.8V.8: Power dissipation vs. load current and  
ambient temperature for SQ48T/S15018 converter  
vertically with air flowing from pin 3 to pin 1 at a rate of  
pin 3 to pin 1 at a rate of 200 LFM (1.0 m/s).  
Fig. 1.8V.9: Turn-on transient at full rated load current  
(resistive) with no output capacitor at Vin = 48 V,  
triggered via ON/OFF pin. Top trace: ON/OFF signal  
(5 V/div.). Bottom trace: output voltage (1 V/div.). Time  
scale: 2 ms/div.  
Fig. 1.8V.10: Turn-on transient at full rated load  
μ
current (resistive) plus 10,000 F at Vin = 48 V,  
triggered via ON/OFF pin. Top trace: ON/OFF signal  
(5 V/div.). Bottom trace: output voltage (1 V/div.). Time  
scale: 2 ms/div.  
866.513.2839  
tech.support@psbel.com  
belpowersolutions.com  
© 2015 Bel Power Solutions, inc.  
BCD.00637_AA  
Fig. 1.8V.11: Output voltage response to load current  
step-change (3.75 A 7.5 A 3.75 A) at Vin = 48 V.  
Top trace: output voltage (100 mV/div.). Bottom trace:  
Fig. 1.8V.12: Output voltage response to load current  
step-change (3.75 A 7.5 A 3.75 A) at Vin = 48 V.  
Top trace: output voltage (100 mV/div.). Bottom trace:  
μ
μ
load current (5 A/div.). Current slew rate: 0.1 A/ s.  
load current (5 A/div.). Current slew rate: 5 A/ s. Co =  
μ
μ
μ
Co = 1 F ceramic. Time scale: 0.2 ms/div.  
450 F tantalum + 1 F ceramic. Time scale: 0.2 ms/div.  
Fig. 1.8V.13: Output voltage ripple (20 mV/div.) at full  
Fig. 1.8V.14: Test Setup for measuring input reflected  
ripple currents, ic and is  
μ
rated load current into a resistive load with Co = 10  
F
μ
μ
tantalum + 1 F ceramic and Vin = 48 V. Time scale: 1 s/div.  
866.513.2839  
tech.support@psbel.com  
belpowersolutions.com  
© 2015 Bel Power Solutions, inc.  
BCD.00637_AA  
Fig. 1.8V.15: Input reflected ripple current, ic  
(100 mA/div.), measured at input terminals at full rated  
Fig. 1.8V.16: Input reflected ripple current, is  
μ
(10 mA/div.), measured through 10 H at the source at  
load current and Vin = 48 V. Refer to Fig. 1.8V.14 for  
full rated load current and Vin = 48 V. Refer to  
μ
μ
test setup. Time scale: 1 s/div.  
Fig. 1.8V.14 for test setup. Time scale: 1 s/div.  
Fig. 1.8V.17: Output voltage vs. load current showing  
Fig. 1.8V.18: Load current (top trace, 20 A/div.,  
voltage has almost no effect on current limit  
characteristic.  
Fig. 1.8V.18: Load current (top trace, 20 A/div.,  
Ω
20 ms/div.) into a 10 m short circuit during restart, at  
Vin = 48 V. Bottom trace (20 A/div., 1 ms/div.) is an  
expansion of the on-time portion of the top trace.  
866.513.2839  
tech.support@psbel.com  
belpowersolutions.com  
© 2015 Bel Power Solutions, inc.  
BCD.00637_AA  
Conditions: TA = 25 ºC, Airflow = 300 LFM (1.5 m/s), Vin = 48 VDC, Vout = 1.5 VDC, unless otherwise specified.  
Parameter  
Notes  
Min  
Typ  
Max  
Units  
Input Characteristics  
Maximum Input Current  
Input Stand-by Current  
Input No Load Current (0 load on  
the output)  
15 ADC, 1.5 VDC Out @ 36 VDC In  
Vin = 48V, converter disabled  
0.75  
ADC  
2.6  
25  
mADC  
Vin = 48V, converter enabled  
mADC  
mAPK-  
PK  
Input Reflected-Ripple Current  
25MHz bandwidth  
120HZ  
6
Input Voltage Ripple Rejection  
Output Characteristics  
Output Voltage Set Point (no load)  
Output Regulation  
TBD  
dB  
1.485  
1.477  
1.500  
1.515  
VDC  
Over Line  
±2  
±2  
±4  
±4  
mV  
mV  
Over Load  
Over line, load and temperature1  
Output Voltage Range  
1.523  
VDC  
Output Ripple and Noise - 25 MHz  
bandwidth  
mVPK-  
PK  
Full load + 10 μF tantalum + 1 μF ceramic  
30  
50  
External Load Capacitance  
Output Current Range  
Current Limit Inception  
Peak Short-Circuit Current  
RMS Short-Circuit Current  
Dynamic Response  
Plus full load (resistive)  
15,000  
15  
μF  
0
ADC  
ADC  
A
Non-latching  
15.75  
18  
30  
20  
Non-latching, Short =10 mΩ.  
Non-latching  
40  
5.3  
Arms  
Load Change 25% of Iout Max,  
di/dt = 0.1 A/μs  
Co = 1 μF ceramic  
80  
mV  
di/dt = 5 A/μs  
Settling Time to 1%  
Efficiency  
Co = 450 μF tantalum + 1 μF ceramic  
120  
100  
mV  
μs  
100% Load  
84.5  
85.0  
%
%
50% Load  
1-40 ºC to 85 ºC.  
Fig. 1.5V.1: Available load current vs. ambient air  
temperature and airflow rates for SQ48T15015 converter  
with D height pins mounted vertically with Vin = 48 V, air  
flowing from pin 3 to pin 1, and maximum FET  
Fig. 1.5V.2: Available load current vs. ambient air  
temperature and airflow rates for SQ48T15015 converter  
with D height pins mounted horizontally with Vin = 48 V,  
air flowing from pin 3 to pin 1, and maximum FET  
temperature 120 °C.  
temperature 120 °C.  
866.513.2839  
tech.support@psbel.com  
belpowersolutions.com  
© 2015 Bel Power Solutions, inc.  
BCD.00637_AA  
Fig. 1.5V.3: Available load current vs. ambient air  
temperature and airflow rates for SQ48S15015 converter  
mounted vertically with Vin = 48 V, air flowing from pin 3  
Fig. 1.5V.4: Available load current vs. ambient air  
temperature and airflow rates for SQ48S15015 converte  
mounted horizontally with Vin = 48 V, air flowing from pin  
to pin 1, and maximum FET temperature 120 °C.  
3 to pin 1, and maximum FET temperature 120 °C.  
Fig. 1.5V.5: Efficiency vs. load current and input voltage  
for SQ48T/S15015 converter mounted vertically with air  
flowing from pin 3 to pin 1 at a rate of 300 LFM (1.5 m/s)  
and Ta = 25 °C.  
Fig. 1.5V.6: Efficiency vs. load current and ambient  
temperature for SQ48T/S15015 converter mounted  
vertically with Vin = 48 V and air flowing from pin 3 to pin  
1 at a rate of 200 LFM (1.0 m/s).  
866.513.2839  
tech.support@psbel.com  
belpowersolutions.com  
© 2015 Bel Power Solutions, inc.  
BCD.00637_AA  
Fig. 1.5V.7: Power dissipation vs. load current and  
input voltage for SQ48T/S15015 converter mounted  
vertically with air flowing from pin 3 to pin 1 at a rate of  
300 LFM (1.5 m/s) and Ta = 25 °C.  
Fig. 1.5V.8: Power dissipation vs. load current and  
ambient temperature for SQ48T/S15015 converter  
mounted vertically with Vin = 48 V and air flowing from  
pin 3 to pin 1 at a rate of 200 LFM (1.0 m/s).  
Fig. 1.5V.9: Turn-on transient at full rated load current  
(resistive) with no output capacitor at Vin = 48 V,  
triggered via ON/OFF pin. Top trace: ON/OFF signal  
(5 V/div.). Bottom trace: output voltage (0.5 V/div.). Time  
scale: 2 ms/div.  
Fig. 1.5V.10: Turn-on transient at full rated load  
μ
current (resistive) plus 10,000 F at Vin = 48 V,  
triggered via ON/OFF pin. Top trace: ON/OFF signal  
(5 V/div.). Bottom trace: output voltage (0.5 V/div.).  
Time scale: 2 ms/div.  
866.513.2839  
tech.support@psbel.com  
belpowersolutions.com  
© 2015 Bel Power Solutions, inc.  
BCD.00637_AA  
Fig. 1.5V.11: Output voltage response to load current  
step-change (3.75 A 7.5 A 3.75 A) at Vin = 48 V.  
Top trace: output voltage (100 mV/div.). Bottom trace:  
Fig. 1.5V.12: Output voltage response to load current  
step-change (3.75 A 7.5 A 3.75 A) at Vin = 48 V.  
Top trace: output voltage (100 mV/div.). Bottom trace:  
μ
μ
load current (5 A/div.). Current slew rate: 0.1 A/ s.  
load current (5 A/div.). Current slew rate: 5 A/ s. Co =  
μ
μ
μ
Co = 1 F ceramic. Time scale: 0.2 ms/div.  
450 F tantalum + 1 F ceramic. Time scale: 0.2 ms/div.  
Fig. 1.5V.13: Output voltage ripple (20 mV/div.) at full  
Fig. 1.5V.14: Test Setup for measuring input reflected  
ripple currents, ic and is  
μ
rated load current into a resistive load with Co = 10  
F
μ
μ
tantalum + 1 F ceramic and Vin = 48 V. Time scale: 1 s/div.  
866.513.2839  
tech.support@psbel.com  
belpowersolutions.com  
© 2015 Bel Power Solutions, inc.  
BCD.00637_AA  
Fig. 1.5V.15: Input reflected ripple current, ic  
(100 mA/div.), measured at input terminals at full rated  
Fig. 1.5V.16: Input reflected ripple current, is  
μ
(10 mA/div.), measured through 10 H at the source at  
load current and Vin = 48 V. Refer to Fig. 1.5V.14 for  
full rated load current and Vin = 48 V. Refer to  
μ
μ
test setup. Time scale: 1 s/div.  
Fig. 1.5V.14 for test setup. Time scale: 1 s/div.  
Fig. 1.5V.17: Output voltage vs. load current showing  
current limit point and converter shutdown point. Input  
voltage has almost no effect on current limit  
characteristic.  
Fig. 1.5V.18: Load current (top trace, 20 A/div.,  
Ω
20 ms/div.) into a 10 m short circuit during restart, at  
Vin = 48 V. Bottom trace (20 A/div., 1 ms/div.) is an  
expansion of the on-time portion of the top trace.  
866.513.2839  
tech.support@psbel.com  
belpowersolutions.com  
© 2015 Bel Power Solutions, inc.  
BCD.00637_AA  
Conditions: T = 25 ºC, Airflow = 300 LFM (1.5 m/s), Vin = 48 VDC, Vout = 1.2 VDC, unless otherwise specified.  
A
Parameter  
Notes  
Min  
Typ  
Max  
0.62  
Units  
Input Characteristics  
Maximum Input Current  
Input Stand-by Current  
Input No Load Current (0 load on  
the output)  
15 ADC, 1.2 VDC Out @ 36 VDC In  
Vin = 48V, converter disabled  
ADC  
2.6  
22  
mADC  
Vin = 48V, converter enabled  
mADC  
Input Reflected-Ripple Current  
Input Voltage Ripple Rejection  
Output Characteristics  
Output Voltage Set Point (no load)  
Output Regulation  
25MHz bandwidth  
120HZ  
6
mAPK-PK  
dB  
TBD  
1.188  
1.182  
1.200  
1.212  
VDC  
Over Line  
±1  
±1  
±3  
±3  
mV  
mV  
Over Load  
Over line, load and temperature1  
Output Voltage Range  
1.218  
VDC  
Output Ripple and Noise - 25 MHz  
bandwidth  
Full load + 10 μF tantalum + 1 μF ceramic  
30  
50  
mVPK-PK  
μF  
ADC  
ADC  
A
External Load Capacitance  
Output Current Range  
Current Limit Inception  
Peak Short-Circuit Current  
RMS Short-Circuit Current  
Dynamic Response  
Plus full load (resistive)  
15,000  
15  
0
Non-latching  
15.75  
18  
30  
20  
Non-latching, Short =10 mΩ.  
Non-latching  
40  
5.3  
Arms  
Load Change 25% of Iout Max,  
di/dt = 0.1 A/μs  
Co = 1 μF ceramic  
90  
mV  
di/dt = 5 A/μs  
Settling Time to 1%  
Efficiency  
Co = 450 μF tantalum + 1 μF ceramic  
120  
100  
mV  
μs  
100% Load  
82.0  
83.0  
%
%
50% Load  
1-40 ºC to 85 ºC.  
Fig. 1.2V.1: Available load current vs. ambient air  
temperature and airflow rates for SQ48T15012 converter  
with D height pins mounted vertically with Vin = 48 V, air  
flowing from pin 3 to pin 1, and maximum FET  
Fig. 1.2V.2: Available load current vs. ambient air  
temperature and airflow rates for SQ48T15012 converter  
with D height pins mounted horizontally with Vin = 48 V,  
air flowing from pin 3 to pin 1, and maximum FET  
temperature 120 °C.  
temperature 120 °C.  
866.513.2839  
tech.support@psbel.com  
belpowersolutions.com  
© 2015 Bel Power Solutions, inc.  
BCD.00637_AA  
Fig. 1.2V.3: Available load current vs. ambient air  
temperature and airflow rates for SQ48S15012 converter  
mounted vertically with Vin = 48 V, air flowing from pin 3  
Fig. 1.2V.4: Available load current vs. ambient air  
temperature and airflow rates for SQ48S15012 converter  
mounted horizontally with Vin = 48 V, air flowing from pin  
to pin 1, and maximum FET temperature 120 °C.  
3 to pin 1, and maximum FET temperature 120 °C.  
Fig. 1.2V.5: Efficiency vs. load current and input voltage for  
SQ48T/S15012 converter mounted vertically with air  
flowing from pin 3 to pin 1 at a rate of 300 LFM (1.5 m/s)  
and Ta = 25 °C.  
Fig. 1.2V.6: Efficiency vs. load current and ambient  
temperature for SQ48T/S15012 converter mounted  
vertically with Vin = 48 V and air flowing from pin 3 to pin  
1 at a rate of 200 LFM (1.0 m/s).  
866.513.2839  
tech.support@psbel.com  
belpowersolutions.com  
© 2015 Bel Power Solutions, inc.  
BCD.00637_AA  
Fig. 1.2V.7: Power dissipation vs. load current and  
input voltage for SQ48T/S15012 converter mounted  
vertically with air flowing from pin 3 to pin 1 at a rate of  
300 LFM (1.5 m/s) and Ta = 25 °C.  
Fig. 1.2V.8: Power dissipation vs. load current and  
ambient temperature for SQ48T/S15012 converter  
mounted vertically with Vin = 48 V and air flowing from  
pin 3 to pin 1 at a rate of 200 LFM (1.0 m/s).  
Fig. 1.2V.9: Turn-on transient at full rated load current  
(resistive) with no output capacitor at Vin = 48 V,  
triggered via ON/OFF pin. Top trace: ON/OFF signal  
(5 V/div.). Bottom trace: output voltage (0.5 V/div.). Time  
scale: 2 ms/div.  
Fig. 1.2V.10: Turn-on transient at full rated load  
μ
current (resistive) plus 10,000 F at Vin = 48 V,  
triggered via ON/OFF pin. Top trace: ON/OFF signal  
(5 V/div.). Bottom trace: output voltage (0.5 V/div.).  
Time scale: 2 ms/div.  
866.513.2839  
tech.support@psbel.com  
belpowersolutions.com  
© 2015 Bel Power Solutions, inc.  
BCD.00637_AA  
Fig. 1.2V.11: Output voltage response to load current  
step-change (3.75 A 7.5 A 3.75 A) at Vin = 48 V.  
Top trace: output voltage (100 mV/div.). Bottom trace:  
Fig. 1.2V.12: Output voltage response to load current  
step-change (3.75 A 7.5 A 3.75 A) at Vin = 48 V.  
Top trace: output voltage (100 mV/div.). Bottom trace:  
μ
μ
load current (5 A/div.). Current slew rate: 0.1 A/ s.  
load current (5 A/div.). Current slew rate: 5 A/ s. Co =  
μ
μ
μ
Co = 1 F ceramic. Time scale: 0.2 ms/div.  
450 F tantalum + 1 F ceramic. Time scale: 0.2 ms/div.c  
Fig. 1.2V.13: Output voltage ripple (20 mV/div.) at full  
Fig. 1.2V.14: Test Setup for measuring input reflected  
ripple currents, ic and is  
μ
rated load current into a resistive load with Co = 10  
F
μ
μ
tantalum + 1 F ceramic and Vin = 48 V. Time scale: 1 s/div.  
866.513.2839  
tech.support@psbel.com  
belpowersolutions.com  
© 2015 Bel Power Solutions, inc.  
BCD.00637_AA  
Fig. 1.2V.15: Input reflected ripple current, ic  
(100 mA/div.), measured at input terminals at full rated  
Fig. 1.2V.16: Input reflected ripple current, is  
μ
(10 mA/div.), measured through 10 H at the source at  
load current and Vin = 48 V. Refer to Fig. 1.2V.14 for  
full rated load current and Vin = 48 V. Refer to  
μ
μ
test setup. Time scale: 1 s/div.  
Fig. 1.2V.14 for test setup. Time scale: 1 s/div.  
Fig. 1.2V.17: Output voltage vs. load current showing  
current limit point and converter shutdown point. Input  
voltage has almost no effect on current limit  
characteristic.  
Fig. 1.2V.18: Load current (top trace, 20 A/div.,  
Ω
20 ms/div.) into a 10 m short circuit during restart, at  
Vin = 48 V. Bottom trace (20 A/div., 1 ms/div.) is an  
expansion of the on-time portion of the top trace.  
866.513.2839  
tech.support@psbel.com  
belpowersolutions.com  
© 2015 Bel Power Solutions, inc.  
BCD.00637_AA  
Conditions: TA = 25 ºC, Airflow = 300 LFM (1.5 m/s), Vin = 48 VDC, Vout = 1.0 VDC, unless otherwise specified.  
Parameter  
Notes  
Min  
Typ  
Max  
Units  
Input Characteristics  
Maximum Input Current  
Input Stand-by Current  
15 ADC, 1.0 VDC Out @ 36 VDC In  
Vin = 48V, converter disabled  
0.52  
ADC  
3
mADC  
Input No Load Current (0 load on  
the output)  
Vin = 48V, converter enabled  
22  
mADC  
Input Reflected-Ripple Current  
Input Voltage Ripple Rejection  
Output Characteristics  
Output Voltage Set Point (no load)  
Output Regulation  
25MHz bandwidth  
120HZ  
7.5  
mAPK-PK  
dB  
TBD  
0.990  
0.985  
1.000  
1.010  
VDC  
Over Line  
±1  
±1  
±2  
±3  
mV  
mV  
Over Load  
Over line, load and temperature1  
Output Voltage Range  
1.015  
VDC  
Output Ripple and Noise - 25 MHz  
bandwidth  
Full load + 10 μF tantalum + 1 μF ceramic  
30  
50  
mVPK-PK  
μF  
ADC  
ADC  
A
External Load Capacitance  
Output Current Range  
Current Limit Inception  
Peak Short-Circuit Current  
RMS Short-Circuit Current  
Dynamic Response  
Plus full load (resistive)  
15,000  
15  
0
Non-latching  
15.75  
18  
30  
20  
Non-latching, Short =10 mΩ.  
Non-latching  
40  
5.3  
Arms  
Load Change 25% of Iout Max,  
di/dt = 0.1 A/μs  
Co = 1 μF ceramic  
90  
mV  
di/dt = 5 A/μs  
Settling Time to 1%  
Efficiency  
Co = 450 μF tantalum + 1 μF ceramic  
140  
100  
mV  
μs  
100% Load  
80.5  
81.0  
%
%
50% Load  
1-40 ºC to 85 ºC.  
Fig. 1.0V.1: Available load current vs. ambient air  
temperature and airflow rates for SQ48T15010 converter  
with D height pins mounted vertically with Vin = 48 V, air  
flowing from pin 3 to pin 1, and maximum FET  
Fig. 1.0V.2: Available load current vs. ambient air  
temperature and airflow rates for SQ48T15010 converter  
with D height pins mounted horizontally with Vin = 48 V,  
air flowing from pin 3 to pin 1, and maximum FET  
temperature 120 °C.  
temperature 120 °C.  
866.513.2839  
tech.support@psbel.com  
belpowersolutions.com  
© 2015 Bel Power Solutions, inc.  
BCD.00637_AA  
Fig. 1.0V.3: Available load current vs. ambient air  
temperature and airflow rates for SQ48S15010 converter  
mounted vertically with Vin = 48 V, air flowing from pin 3  
Fig. 1.0V.4: Available load current vs. ambient air  
temperature and airflow rates for SQ48S15010 converter  
mounted horizontally with Vin = 48 V, air flowing from pin  
to pin 1, and maximum FET temperature 120 °C.  
3 to pin 1, and maximum FET temperature 120 °C.  
Fig. 1.0V.5: Efficiency vs. load current and input voltage for  
SQ48T/S15010 converter mounted vertically with air  
flowing from pin 3 to pin 1 at a rate of 300 LFM (1.5 m/s)  
and Ta = 25 °C.  
Fig. 1.0V.6: Efficiency vs. load current and ambient  
temperature for SQ48T/S15010 converter mounted  
vertically with Vin = 48 V and air flowing from pin 3 to pin  
1 at a rate of 200 LFM (1.0 m/s).  
866.513.2839  
tech.support@psbel.com  
belpowersolutions.com  
© 2015 Bel Power Solutions, inc.  
BCD.00637_AA  
Fig. 1.0V.7: Power dissipation vs. load current and  
input voltage for SQ48T/S15010 converter mounted  
vertically with air flowing from pin 3 to pin 1 at a rate of  
300 LFM (1.5 m/s) and Ta = 25 °C.  
Fig. 1.0V.8: Power dissipation vs. load current and  
ambient temperature for SQ48T/S15010 converter  
mounted vertically with Vin = 48 V and air flowing from  
pin 3 to pin 1 at a rate of 200 LFM (1.0 m/s).  
Fig. 1.0V.9: Turn-on transient at full rated load current  
(resistive) with no output capacitor at Vin = 48 V,  
triggered via ON/OFF pin. Top trace: ON/OFF signal  
(5 V/div.). Bottom trace: output voltage (0.5 V/div.). Time  
scale: 2 ms/div.  
Fig. 1.0V.10: Turn-on transient at full rated load  
μ
current (resistive) plus 10,000 F at Vin = 48 V,  
triggered via ON/OFF pin. Top trace: ON/OFF signal  
(5 V/div.). Bottom trace: output voltage (0.5 V/div.)  
Time scale: 2 ms/div.  
866.513.2839  
tech.support@psbel.com  
belpowersolutions.com  
© 2015 Bel Power Solutions, inc.  
BCD.00637_AA  
Fig. 1.0V.11: Output voltage response to load current  
step-change (3.75 A 7.5 A 3.75 A) at Vin = 48 V.  
Top trace: output voltage (100 mV/div.). Bottom trace:  
Fig. 1.0V.12: Output voltage response to load current  
step-change (3.75 A 7.5 A 3.75 A) at Vin = 48 V.  
Top trace: output voltage (100 mV/div.). Bottom trace:  
μ
μ
load current (5 A/div.). Current slew rate: 0.1 A/ s.  
load current (5 A/div.). Current slew rate: 5 A/ s. Co =  
μ
μ
μ
Co = 1 F ceramic. Time scale: 0.2 ms/div.  
450 F tantalum + 1 F ceramic. Time scale: 0.2 ms/div.  
Fig. 1.0V.13: Output voltage ripple (20 mV/div.) at full  
Fig. 1.0V.14: Test Setup for measuring input reflected  
ripple currents, ic and is  
μ
rated load current into a resistive load with Co = 10  
F
μ
μ
tantalum + 1 F ceramic and Vin = 48 V. Time scale: 1 s/div.  
866.513.2839  
tech.support@psbel.com  
belpowersolutions.com  
© 2015 Bel Power Solutions, inc.  
BCD.00637_AA  
Fig. 1.0V.15: Input reflected ripple current, ic  
(100 mA/div.), measured at input terminals at full rated  
Fig. 1.0V.16: Input reflected ripple current, is  
μ
(10 mA/div.), measured through 10 H at the source at  
load current and Vin = 48 V. Refer to Fig. 1.0V.14 for  
full rated load current and Vin = 48 V. Refer to  
μ
μ
test setup. Time scale: 1 s/div.  
Fig. 1.0V.14 for test setup. Time scale: 1 s/div.  
Fig. 1.0V.17: Output voltage vs. load current showing  
current limit point and converter shutdown point. Input  
voltage has almost no effect on current limit  
characteristic.  
Fig. 1.0V.18: Load current (top trace, 20 A/div.,  
Ω
20 ms/div.) into a 10 m short circuit during restart, at  
Vin = 48 V. Bottom trace (20 A/div., 1 ms/div.) is an  
expansion of the on-time portion of the top trace.  
866.513.2839  
tech.support@psbel.com  
belpowersolutions.com  
© 2015 Bel Power Solutions, inc.  
BCD.00637_AA  
SQ48S Pinout (Surface Mount)  
SQ48T Pinout (Through-hole)  
866.513.2839  
tech.support@psbel.com  
belpowersolutions.com  
© 2015 Bel Power Solutions, inc.  
BCD.00637_AA  
HT  
CL  
PL  
(Max. Height)  
(Min. Clearance)  
Height  
Option  
Pin Length  
Pin Option  
+0.000 [+0.00]  
-0.038 [- 0.97]  
+0.016 [+0.41]  
-0.000 [- 0.00]  
± 0.005 [± 0.13]  
0.188 [4.77]  
0.145 [3.68]  
0.110 [2.79]  
A
B
C
A
B
C
D
E
0.303 [7.69]  
0.336 [8.53]  
0.030 [0.77]  
0.063 [1.60]  
0.500 [12.70]  
0.400 [10.16]  
0.282 [7.16]  
0.227 [5.77]  
0.127 [3.23]  
0.009 [0.23]  
SQE48S Platform Notes  
Pad/Pin Connections  
All dimensions are in inches [mm]  
Connector Material: Copper  
Connector Finishe: Gold over Nickel  
Converter Weight: 0.66 oz [18.5 g]  
Recommended Surface-Mount Pads:  
Min. 0.080” X 0.112” [2.03 x 2.84]  
Max. 0.092” X 0.124” [2.34 x 3.15]  
Pad/Pin #  
Function  
Vin (+)  
1
2
3
4
5
6
7
8
ON/OFF  
Vin (-)  
Vout (-)  
SENSE(-)  
TRIM  
SQE48T Platform Notes  
All dimensions are in inches [mm]  
Pins 1-3 and 5-7 are Ø 0.040” [1.02] with Ø 0.078” [1.98]  
shoulder  
Pins 4 and 8 are Ø 0.062” [1.57]  
without shoulder  
SENSE(+)  
Vout (+)  
Pin Material: Brass  
Pin Finish: Tin / Lead over Nickel or Matte Tin over Nickel for  
“G” version  
Converter Weight: 0.53 oz [15 g]  
Product  
Series Voltage Scheme  
Input  
Mounting  
Rated Load  
Current  
ON/OFF  
Logic  
Maximum  
Height [HT]  
Pin Length  
[PL]  
Output Voltage  
012  
Special Features Environmental  
SQ  
48  
T
15  
-
N
B
A
0
15 15 A (1.0 –  
010 1.0 V  
012 1.2 V  
015 1.5 V  
018 1.8 V  
020 2.0 V  
025 2.5 V  
033 3.3 V  
050 5.0 V  
060 6.0 V  
080 8.0 V  
120 12.0 V  
SMT  
S 0.273”  
No Suffix   
3.3 V)  
SMT  
0 0.00”  
0 STD  
RoHS  
S   
Surface  
Mount  
N   
Negative  
lead-solder-  
exemption  
compliant  
10 10 A (5.0 V)  
08 8 A (6.0 V)  
One-  
Eighth  
Brick  
Through  
hole  
T ⇒  
Alternative  
Trim  
Option  
(For 1.2 V, 1.0 V  
Through  
hole  
A 0.188”  
B 0.145”  
C 0.110”  
36-75 V  
A 0.303”  
B 0.336”  
C 0.500”  
D 0.400”  
E 0.282”  
T   
Format  
P   
Positive  
G RoHS  
compliant for  
all six  
Through- 05 5.3 A (8.0 V)  
hole  
only)  
04 4 A (12.0 V)  
substances  
The example above describes P/N SQ48T15012-NBA0: 36-75 V input, through-hole mounting, 15 A @ 1.2 V output,  
negative ON/OFF logic, a maximum height of 0.336”, a through the board pin length of 0.188”, standard trim equations, and  
Eutectic Tin/Lead solder. Please consult factory for the complete list of available options.  
NUCLEAR AND MEDICAL APPLICATIONS - Products are not designed or intended for use as critical components in life support systems, equipment used in  
hazardous environments, or nuclear control systems.  
TECHNICAL REVISIONS - The appearance of products, including safety agency certifications pictured on labels, may change depending on the date  
manufactured. Specifications are subject to change without notice.  
866.513.2839  
tech.support@psbel.com  
belpowersolutions.com  
© 2015 Bel Power Solutions, inc.  
BCD.00637_AA  

相关型号:

SQ48S10050-PS00G

DC-DC Regulated Power Supply Module, 1 Output, 50W, Hybrid, ROHS COMPLIANT, 1/8 BRICK PACKAGE-8

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
BEL

SQ48S10060-NS00G

DC-DC Regulated Power Supply Module, 1 Output, Hybrid, ROHS COMPLIANT

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
BEL

SQ48S10060-PS00G

DC-DC Regulated Power Supply Module, 1 Output, Hybrid, ROHS COMPLIANT

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
BEL

SQ48S10080-NS00

DC-DC Regulated Power Supply Module, 1 Output, Hybrid

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
BEL

SQ48S10080-NS00G

DC-DC Regulated Power Supply Module, 1 Output, Hybrid, ROHS COMPLIANT

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
BEL

SQ48S10080-PS00

DC-DC Regulated Power Supply Module, 1 Output, Hybrid,

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
BEL

SQ48S10120-NS00

DC-DC Regulated Power Supply Module, 1 Output, Hybrid

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
BEL

SQ48S10120-NS00G

DC-DC Regulated Power Supply Module, 1 Output, Hybrid, ROHS COMPLIANT

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
BEL

SQ48S10120-PS00

DC-DC Regulated Power Supply Module, 1 Output, Hybrid,

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
BEL

SQ48S10120-PS00G

DC-DC Regulated Power Supply Module, 1 Output, Hybrid, ROHS COMPLIANT

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
BEL

SQ48S15012-PS00

DC-DC Regulated Power Supply Module, 1 Output, 18W, Hybrid, 1/8 BRICK PACKAGE-8

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
BEL

SQ48S15012-PS00G

DC-DC Regulated Power Supply Module, 1 Output, 18W, Hybrid, ROHS COMPLIANT, 1/8 BRICK PACKAGE-8

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
BEL