AMMC-6550 [BOARDCOM]

15 to 50 GHz Image Rejection Mixer;
AMMC-6550
型号: AMMC-6550
厂家: Broadcom Corporation.    Broadcom Corporation.
描述:

15 to 50 GHz Image Rejection Mixer

文件: 总8页 (文件大小:131K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
AMMC-6550  
15 to 50 GHz Image Rejection Mixer  
Data Sheet  
Chip Size: 1600 x 1300 m (63 x 51 mils)  
Chip Size Tolerance: 10 m ( 0ꢀ. mils)  
Chip Thickness: 100 10 m (. 0ꢀ. mils)  
Pad Dimensions: 100 x 100 m (. x . 0ꢀ. mils)  
Description  
Features  
Wide frequency range: 15 - 50 GHz  
Low conversion loss: 10 dB (Typ.)  
Image Rejection: 15 dB (Typ.)  
High Input IP3: +20dBm  
AMMC-6550 is an image rejection mixer (IRM), which  
can also be used as an IQ mixer. The AMMC-6550 utilizes  
two distributed passive FET mixers and a Lange coupler  
realized in Avago Technologies unique 0.25m gate  
length Enhancement mode PHEMT (E-PHEMT) technol-  
ogy. Although the AMMC-6550 works as a resistive mixer, Positive polarity for Gate and Drain Bias  
the mixer can be biased with a positive DC voltage (+0.4V  
Typ.).  
Schematic  
AMMC-6550 is designed for use in commercial digital  
radios and wireless LANs. The mixer requires an off-chip  
90-degree hybrid to achieve signal image rejection and  
RF  
Vg  
drain  
+0.4V (Typ.) DC bias.  
Applications  
Microwave Radio systems  
Satellite VSAT, DBS Up/Down Link  
LMDS & Pt-Pt mmW Long Haul  
IF1  
IF2  
Broadband Wireless Access  
(including 802.16 and 802.20 WiMax)  
WLL and MMDS loops  
LO  
gate  
Note: These devices are ESD sensitive. The following precautions are strongly recommended. Ensure  
that an ESD approved carrier is used when units are transported from one destination to another.  
Personal grounding is to be worn at all times when handling these devices. The manufacturer as-  
sumes no responsibilities for ESD damage due to improper storage and handling of these devices.  
[1]  
AMMC-6550 Maximum Ratings  
Symbol  
Vg  
Parameters and Conditions  
Units  
V
Minimum  
Maximum  
+1.2  
Gate Supply Voltage  
-1.2  
Pin  
CW Input Power (IF and LO port)  
Operating Channel Temperature  
Storage Case Temperature  
Max. Assembly Temp (60 sec. max)  
dBm  
°C  
25  
Tch  
+150  
+150  
+300  
Tstg  
Tmax  
°C  
-65  
°C  
Note: 1. Operation in excess of any one of these conditions may result in permanent damage to this device.  
[1]  
AMMC-6550 DC Specifications/Physical Properties  
Symbol  
Vg  
Parameters and Test Conditions  
Units  
V
Typical  
+0.4  
0
Gate Supply Operating Voltage  
Ig  
Gate Supply Current (under any RF power drive and temperature)  
mA  
Note: 1. Ambient operational temperature Ta=25°C unless otherwise noted.  
AMMC-6550 Typical performances (T = 25°C, V =+0ꢀ. V, IF frequency=1GHz, Z =50 )  
A
g
o
Symbol  
FRF  
Parameters and Test Conditions  
RF Frequency Range  
LO Frequency Range  
IF Frequency Range  
Lo port pumping power  
RF to IF conversion gain  
RF Port Return Loss  
Units  
GHz  
GHz  
GHz  
dBm  
dB  
Typical  
15 - 50  
15 - 50  
DC - 5  
>10  
-10  
FLO  
FIF  
PLO  
CG  
RL_RF  
RL_LO  
RL_IF  
IR  
dB  
-10  
LO Port Return Loss  
dB  
-15  
IF Port Return Loss  
dB  
-10  
Image rejection ratio  
LO to RF port Isolation  
LO to IF port Isolation  
RF to IF port Isolation  
dB  
15  
LO-RF Iso.  
LO-IF Iso.  
RF-IF Iso.  
IIP3  
dB  
20  
dB  
20  
dB  
15  
Input IP3, Fdelta=100MHz, Prf=-10dBm, Plo=15dBm  
Input port power at 1dB gin compression point, Plo=+15dBm  
Noise Figure  
dBm  
dBm  
dB  
20  
P-1  
+10  
10  
NF  
2
[2, 3, 6, 7]  
AMMC-6550 RF Specifications  
(T = 25°C, V =+0ꢀ.V, Plo=+10dBm, Z =50 )  
A g o  
LO=17GHz  
LO=28GHz  
LO=.0GHz  
Parameters and  
Symbol  
CG  
Test Conditions  
Units  
Minꢀ Typꢀ Maxꢀ Minꢀ Typꢀ Maxꢀ Minꢀ Typꢀ Maxꢀ  
[4]  
Conversion Gain  
dB  
dB  
-11.5  
-10  
-14  
-10.5 -9.5  
-18.6  
-12  
-10.3  
[5]  
IR  
Image Rejection Ratio  
-12  
-12  
-17.5 -12  
Notes:  
2. Small/Large signal data measured in a fully de-embedded test fixture from Ta=25°C.  
3. Specifications are derived from measurements in 50test environment.  
4. 100% on-wafer RF testing is done at RF frequency = 19, 30, and 42GHz; IF frequency = 1GHz.  
5. 100% on-wafer RF testing is done at RF frequency = 15, 26, and 38GHz; IF frequency = 2GHz.  
6. The external 90 degree hybrid coupler is from M/A-COM: PN 2032-6344-00. Frequency = 1.0-2.0GHz  
7. All tested parameters guaranteed with measurement accuracy +/-1dB/dBm/dBc.  
Typical distribution of conversion gain and image rejection ratio based on 5000 partsꢀ  
StdDev=0ꢀ26  
StdDev=0ꢀ2.  
Conversion Gain LO=17GHz,RF=19GHz  
StdDev=0ꢀ27  
Conversion Gain LO=28GHz, RF=30GHz  
StdDev=0ꢀ53  
Conversion Gain LO=.0GHz, RF=.2GHz  
StdDev=0ꢀ89  
Image Rejection Ratio LO=17GHz, RF=15GHz  
StdDev=1ꢀ15  
Image Rejection Ratio LO=28GHz, RF=26GHz  
Image Rejection Ratio LO=.0GHz, RF=38GHz  
3
Biasing and Operation  
The recommended DC bias condition for optimum  
performance, and reliability is Vg=+0.4 volts. There is  
approximately zero current consumption for the gate  
biasing because the FET mixer was designed as the pas-  
sive operation.  
Vg  
RF  
IF1  
IF2  
Figure 1 is a simple block diagram, as reference for  
Figure 2. Figure 2 is a schematic of the image-rejection  
(SSB) mixer MMIC connected to an off-chip quadrature  
hybrid.  
Figures 3 through Figure 11 show typical down conver-  
sion measurement results under the image rejection  
operation. Data presented for the AMMC-6550 was  
obtained using the circuit described here. Please note  
that the image rejection and isolation performance  
is dependent on the selection of the low frequency  
quadrature hybrid. The performance specification of the  
low frequency quadrature hybrid as well as the phase  
balance and VSWR of the interface to the AMMC-6550  
will affect the overall mixer performance.  
LO  
Figure 1ꢀ AMMC-6550 Schematic  
No ground wires are needed since ground connections  
are made with plated through-holes to the backside of  
the device.  
The AMMC-6550 is not recommended for up conversion  
applications.  
LSB  
USB  
RF  
15-50GHz  
IF  
IF  
LO  
+0.4V  
Vg  
100pF  
RF  
IF1  
LSB  
USB  
IF2  
LO  
LO  
15-50GHz  
+10dBm  
Figure 2ꢀ AMMC-6550 Assembly diagram for SSB mixer applicationsꢀ 50termination is required for the unwanted side-band termination  
4
AMMC-6550 Typical performances (T = 25°C, V =+0ꢀ. V)  
A
g
0
-5  
0
-5  
LSB  
USB  
USB  
LSB  
-10  
-15  
-20  
-25  
-30  
-35  
-10  
-15  
-20  
-25  
-30  
-35  
10  
15  
20  
25  
30  
35  
.0  
.5  
50  
55  
10  
15  
20  
25  
30  
35  
.0  
.5  
50  
55  
Frequency [GHz]  
Frequency [GHz]  
Figure 3ꢀ Typical conversion Gain, Plo=+10dBm, IF1=1GHz  
Figure .ꢀ Typical conversion Gain, Plo=+10dBm, IF2=1GHz  
15  
20  
15  
10  
5
P-1[dBm] @Plo=1.dBm  
10  
5
P-1[dBm] @Plo=10dBm  
0
-5  
CG[dB] @Plo=1.dBm  
-10  
CG[dB] @Plo=10dBm  
-15  
0
15  
20  
25  
30  
35  
.0  
.5  
50  
15  
20  
25  
30  
35  
.0  
.5  
50  
Frequency [GHz]  
Frequency [GHz]  
Figure 5ꢀ Typical RF port input power (@P-1), Plo=+10dBm, Fif=1GHz  
Figure 6ꢀ Typical Noise Figure, Plo=10dBm, Fif=1GHz  
0
-5  
25  
USB  
20  
IIP3[15dBm]  
-10  
-15  
-20  
-25  
-30  
-35  
-.0  
15  
IIP3[10dBm]  
10  
LSB  
5
0
15  
20  
25  
30  
35  
.0  
.5  
50  
-20  
-15  
-10  
-5  
0
5
10  
15  
20  
Frf [GHz]  
Plo [dBm]  
Figure 8ꢀ Typical Conversion gain vsꢀ LO power, Prf=-20dBm, and  
Flo=30GHz  
Figure 7ꢀ Typical IP3, Fif=1GHz, Plo=10dBm and 15dBm  
5
0
-5  
0
-5  
USB(13dBm)  
USB(10dBm)  
-10  
-15  
-20  
-25  
-30  
-35  
-10  
-15  
-20  
-25  
-30  
LSB(10dBm)  
LSB(13dBm)  
15  
20  
25  
30  
35  
.0  
.5  
50  
0
0ꢀ2  
0ꢀ.  
0ꢀ6  
0ꢀ8  
1
1ꢀ2  
Vgs[V]  
Frf [GHz]  
Figure 10ꢀ Typical RF port Return Loss vsꢀ Frequency, Plo=+10dBm  
Figure 9ꢀ Typical Conversion gain vsꢀ Gate voltage, Flo=30GHz,  
Plo=+10dBm and +13dBm  
0
-5  
0
-5  
-10  
-15  
-20  
-25  
-30  
-35  
-10  
-15  
-20  
-25  
-30  
-35  
0
1
2
3
.
5
6
15  
20  
25  
30  
35  
.0  
.5  
50  
Flo [GHz]  
IF Frequency [GHz]  
Figure 12ꢀ Typical LO port return Loss vsꢀ Frequency, Plo=+10dBm,  
Fif=1GHz  
Figure 11ꢀ Typical IF port Return Loss vsꢀ IF frequency, Frf=35GHz, and  
Plo=+10dBm  
Figure 13ꢀ Bond pad location (um)  
6
Assembly Techniques  
The backside of the MMIC chip is RF ground. For mi-  
crostrip applications the chip should be attached directly  
duration of 76 8mS. A guided wedge at an ultrasonic  
power level of 64dB can be used for the 0.7mil wire. The  
recommended wire bonding stage temperature is 150  
2C.  
to the ground plane (e.g. circuit carrier or heatsink) using  
[1,2]  
electrically conductive epoxy  
. For conductive epoxy,  
the amount should be just enough to provide a thin fil-  
let around the bottom perimeter of the die. The ground  
plane should be free of any residue that may jeopardize  
electrical or mechanical attachment. Caution should be  
taken to not exceed the Absolute Maximum Rating for  
assembly temperature and time.  
The chip is 100ìm thick and should be handled with  
care.  
This MMIC has exposed air bridges on the top surface.  
Handle at the edges or with a custom collet (do not pick  
up die with vacuum on die center).  
Thermo-sonic wedge bonding is the preferred method  
for wire attachment to the bond pads. The RF connec-  
tions should be kept as short as possible to minimize  
inductance. Gold mesh or double-bonding with 0.7mil  
gold wire is recommended. Mesh can be attached using a  
2mil round tracking tool and a too force of approximately  
22grams with an ultrasonic power of roughly 55dB for a  
This MMIC is also static sensitive and ESD handling pre-  
cautions should be taken.  
Notes:  
1. Ablebond 84-1 LM1 silver epoxy is recommended.  
2. Eutectic attach is not recommended and may jeopardize reliability  
of the device.  
Vgs  
100pF  
Note:  
1. Flares on thin film  
substrate compensate  
bonding wire inductance.  
LO  
RF  
IF1  
IF2  
Figure 1.ꢀ Recommended die assembly  
7
Ordering Information:  
AMMC-6550-W10 = 10 devices per tray  
AMMC-6550-W50 = 50 devices per tray  
For product information and a complete list of distributors, please go to our web site:  
wwwꢀavagotechꢀcom  
Avago, Avago Technologies, and the A logo are trademarks of Avago Technologies in the United States and other countries.  
Data subject to change. Copyright © 2005-2011 Avago Technologies. All rights reserved. Obsoletes AV01-0394EN  
AV02-1285EN - September 23, 2011  

相关型号:

AMMC-6550-W10

15 to 50 GHz Image Rejection Mixer
BOARDCOM

AMMC-6550-W50

15 to 50 GHz Image Rejection Mixer
BOARDCOM

AMMC002ANP-150

Flash Card, 2MX8, 150ns
SPANSION

AMMC002AWP

2, 4, or 8 Megabyte 5.0 Volt-only Flash Miniature Card
AMD

AMMC004ANP-150

Flash Card, 4MX8, 150ns
SPANSION

AMMC004AWP

2, 4, or 8 Megabyte 5.0 Volt-only Flash Miniature Card
AMD

AMMC008ANP-150

Flash Card, 8MX8, 150ns
SPANSION

AMMC008AWP

2, 4, or 8 Megabyte 5.0 Volt-only Flash Miniature Card
AMD

AMMC0XXA

2, 4, or 8 Megabyte 5.0 Volt-only Flash Miniature Card
AMD

AMMCL002ANP-150

x8/x16 Flash EEPROM Module
ETC

AMMCL002AWP

2 or 4 Megabyte 3.0 Volt-only Flash Miniature Card
AMD

AMMCL002AWP-150

2 or 4 Megabyte 3.0 Volt-only Flash Miniature Card
AMD