DEMO-MGA-7X543B [BOARDCOM]

Low Noise Amplifier with Mitigated Bypass Switch;
DEMO-MGA-7X543B
型号: DEMO-MGA-7X543B
厂家: Broadcom Corporation.    Broadcom Corporation.
描述:

Low Noise Amplifier with Mitigated Bypass Switch

文件: 总24页 (文件大小:564K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
MGA-71543  
Low Noise Amplifier with Mitigated Bypass Switch  
Data Sheet  
Description  
Features  
Avago’s MGA-71543 is an economical, easy-to-use GaAs Lead-free Option Available  
MMIC Low Noise Amplifier (LNA), which is designed for  
Operating frequency: 0.1 GHz ~ 6.0 GHz  
adaptive CDMA and W-CDMA receiver systems. The MGA-  
71543 is part of the Avago Technologies complete CD-  
MAdvantage RF chipset.  
Noise figure: 0.8 dB (NFmin)  
Gain: 16 dB  
Average Idd = 2mA in CDMA handset  
The MGA-71543 features a minimum noise figure of 0.8 dB  
and 16 dB available gain from a single stage, feedback FET  
amplifier. The input and output are partially matched, and  
only a simple series/shunt inductor match is required to  
achieve low noise figure and VSWR into 50Ω.  
Bypass switch on chip Loss = -5.6 dB (Id < 5 μA) IIP3 =  
+35 dBm  
Adjustable input IP3: 0 to +9 dBm  
2.7 V to 4.2V operation  
When set into the bypass mode, both input and output  
are internally matched through a mitigative circuit. This  
circuit draws no current, yet duplicates the in and out im-  
pedance of the LNA. This allows the system user to have  
minimum mismatch change from LNA to bypass mode,  
which is very important when the MGA-71543 is used be-  
tween duplexers and/or filters.  
Applications  
CDMA (IS-95, J-STD-008) Receiver LNA  
Transmit Driver Amp  
W-CDMA Receiver LNA  
TDMA (IS-136) handsets  
The MGA-71543 offers an integrated solution of LNA with  
adjustable IIP3. The IIP3 can be fixed to a desired current  
level for the receiver’s linearity requirements.  
Attention:  
Observe precautions for handling  
electrostatic sensitive devices.  
ESD Machine Model (Class A)  
ESD Human Body Model (Class 0)  
Refer to Avago Application Note A004R:  
Electrostatic Discharge Damage and Control.  
The LNA has a bypass switch function, which provides low  
insertion loss at zero current. The bypass mode also boosts  
dynamic range when high level signal is being received.  
The MGA-71543 is designed for CDMA and W-CDMA re-  
ceiver systems. The IP3, Gain, and mitigative network are  
tailored to these applications where filters are used. Many  
CDMA systems operate 20% LNA mode, 80% bypass. With  
the bypass current draw of zero and LNA of 10 mA, the  
MGA-71543 allows an average 2 mA current.  
Surface Mount Package SOT-343/4-lead SC70  
The MGA-71543 is a GaAs MMIC, processed on Avago’s  
cost effective PHEMT (Pseudomorphic High Electron Mo-  
bility Transistor Technology). It is housed in the SOT343  
(SC70 4-lead) package.  
Pin Connections and Package Marking  
3
1
INPUT  
& V  
RF Gnd  
& V  
s
ref  
71= Unit marking  
x = Date Code marking  
4
2
RF Gnd  
& V  
OUTPUT  
d
& V  
s
Functional Block Diagram  
Simplified Schematic  
Evaluation Test Circuit  
(single positive bias)  
1.5 nH  
Input  
+
+
2.7 nH  
RF IN  
RF OUT  
Control  
Output  
Input  
Output  
& V  
d
& V  
ref  
Gain FET  
R
bias  
V
Switch & Bias  
d
RF Gnd  
& Vs  
RF Gnd  
control  
MGA-71543 Absolute Maximum Ratings[1]  
Symbol Parameter  
Thermal Resistance:[2, 3]  
Units Absolute  
Maximum  
Operation  
Maximum  
θ
jc = 240°C/W  
Notes:  
Vd  
Vc  
Maximum Input to Output Voltage[4]  
V
V
5.5  
4.2  
1. Operation of this device in excess of any of  
these limits may cause permanent damage.  
2. Ground lead temperature at 25°C.  
3. Thermal resistance measured by 150°C Liquid  
Crystal Measurement method.  
Maximum Input to Ground DC Voltage[4]  
+.3  
-5.5  
+.1  
-4.2  
Id  
Supply Current  
mA  
mW  
dBm  
°C  
60  
50  
4. Maximum rating assumes other parameters  
are at DC quiescent conditions.  
Pd  
Power Dissipation[2]  
CW RF Input Power  
Junction Temperature  
Storage Temperature  
240  
200  
Pin  
Tj  
+15  
+10  
170  
150  
TSTG  
°C  
-65 to +150  
-40 to +85  
Product Consistency Distribution Charts[5,6]  
150  
150  
120  
90  
60  
30  
0
150  
Cpk = 2.33  
Std = 0.02  
Cpk = 2.00  
Std = 0.24  
Cpk = 1.16  
Std = 0.96  
120  
120  
90  
60  
30  
0
90  
+3 Std  
+3 Std  
+3 Std  
-3 Std  
-3 Std  
-3 Std  
60  
30  
0
0.85 0.95  
1.05  
1.15  
1.25  
1.35 1.45  
14.4  
15.4  
16.4  
17.4  
1
2
3
4
5
6
7
8
NF (dB)  
GAIN (dB)  
IIP3 (dBm)  
Figure 3. NF @ 2 GHz, 3V, 10 mA.  
LSL = 0.85, Nominal = 1.08, USL = 1.45  
Figure 1. Gain @ 2 GHz, 3V, 10 mA.  
LSL = 14.4, Nominal = 15.9, USL = 17.4  
Figure 2. IIP3 @ 2 GHz, 3V, 10 mA.  
LSL = 1.0, Nominal = 3.0, USL = 8.0  
Notes:  
5. Distribution data sample size is 450 samples  
taken from 9 different wafers. Future wafers  
allocated to this product may have nominal  
values anywhere within the upper and lower  
specification limits.  
Excess circuit losses have been de-embedded  
from actual measurements. Performance may  
be optimized for different bias conditions and  
applications. Consult Application Note for  
details.  
6. Measurements made on production test  
board, Figure 4. This circuit represents a  
trade-off between an optimal noise match  
and a realizable match based on production  
test requirements at 10 mA bias current.  
2
MGA-71543 Electrical Specifications  
Tc = +25°C, Zo = 50, Id = 10 mA, Vd = 3V, unless noted  
Symbol  
Parameter and Test Condition  
Units  
Min.  
Typ.  
Max.  
σ [1]  
Vref test  
NF test  
Vds = 2.4V  
Id = 10 mA  
Id = 10 mA  
Id = 10 mA  
Id = 10 mA  
Id = 0 mA  
V
-0.86  
-0.65  
1.1  
-0.43  
1.45  
17.4  
0.041  
0.02  
0.24  
0.96  
0.12  
f = 2.01 GHz  
f = 2.01 GHz  
f = 2.01 GHz  
Vd = 3.0V (= Vds - Vref)  
Vd = 3.0V (= Vds - Vref)  
Vd = 3.0V (= Vds - Vref)  
Vds = 0 V, Vref = -3 V  
dB  
dB  
dBm  
dB  
Gain test  
IIP3 test  
14.4  
1
15.9  
3.0  
Gain, Bypass  
f = 2.01 GHz  
Bypass Mode[6]  
-6.4  
-5.6  
Ig test  
Bypass Mode Vds = 0 V, Vref = -3 V[6]  
Id = 0 mA  
µA  
2.0  
1.5  
NFmin[3]  
Minimum Noise Figure  
f = 0.9 GHz  
f = 1.5 GHz  
f = 1.9 GHz  
f = 2.1 GHz  
f = 2.5 GHz  
f = 6.0 GHz  
dB  
0.7  
0.7  
0.8  
0.8  
0.8  
1.1  
As measured in Figure 5 Test Circuit  
(Γopt computed from s-parameter and  
noise parameter performance as measured  
in a 50impedance fixture)  
Ga[3]  
Associated Gain at Nfo  
f = 0.9 GHz  
f = 1.5 GHz  
f = 1.9 GHz  
f = 2.1 GHz  
f = 2.5 GHz  
f = 6.0 GHz  
dB  
17.1  
16.4  
15.8  
15.4  
14.9  
10.0  
As measured in Figure 5 Test Circuit  
(Gopt computed from s-parameter and  
noise parameter performance as measured  
in a 50impedance fixture)  
P1dB  
IIP3  
Output Power at 1 dB Gain Compression  
As measured in Evaluation Test Circuit with  
source resistor biasing[4,5]  
Id = 6 mA  
Id = 10 mA  
Id = 20 mA  
Id = 40 mA  
dBm  
dBm  
+3.0  
+7.4  
+13.1  
+15.5  
Frequency = 2.01 GHz  
Input Third Order Intercept Point  
As measured in Figure 4 Test Circuit[5]  
Frequencies = 2.01 GHz, 2.02 GHz  
Id = 6 mA  
-0.5  
Id = 10 mA  
Id = 20 mA  
Id = 40 mA  
+3.0  
+7.4  
+8.7  
Switch  
Bypass Switch Rise/Fall Time  
(10% - 90%)  
Intrinsic  
10  
As measured in Evaluation Test Circuit  
Eval Circuit  
nS  
dB  
dB  
dB  
100  
RLin  
Input Return Loss as measured in Fig. 4  
Output Return Loss as measured in Fig. 4  
Isolation |s12|2 as measured in Fig. 5  
f = 2.01 GHz  
f = 2.01 GHz  
f = 2.01 GHz  
6.0  
0.31  
0.65  
RLout  
ISOL  
10.9  
-22.5  
Notes:  
1. Standard Deviation and Typical Data based at least 450 part sample size from 9 wafers. Future wafers allocated to this product may have nominal values  
anywhere within the upper and lower spec limits.  
2. Measurements made on a fixed tuned production test circuit (Figure 4) that represents a trade-off between optimal noise match, maximum gain match,  
and a realizable match based on production test board requirements at 10 mA bias current. Excess circuit losses have been de-embedded from actual  
measurements. Vd=Vds-Vref where Vds is adjusted to maintain a constant Vd bias equivalent to a single supply 3V bias application. Consult Applica-  
tions Note for circuit biasing options.  
3. Minimum Noise Figure and Associated Gain data computed from s-parameter and noise parameter data measured in a 50system using ATN NP5 test  
system. Data based on 10 typical parts from 9 wafers. Associated Gain is the gain when the product input is matched for minimum Noise Figure.  
4. P1dB measurements were performed in the evaluation circuit with source resistance biasing. As P1dB is approached, the drain current is maintained  
near the quiescent value by the feedback effect of the source resistor in the evaluation circuit. Consult Applications Note for circuit biasing options.  
5. Measurements made on a fixed tuned production test circuit that represents a trade-off between optimal noise match, maximum gain match, and a  
realizable match based on production test board requirements at 10 mA bias current. Performance may be optimized for different bias conditions and  
applications. Consult Applications Note.  
6. The Bypass Mode test conditions are required only for the production test circuit (Figure 4) using the gate bias method. In the preferred source resistor  
bias configuration, the Bypass Mode is engaged by presenting a DC open circuit instead of the bias resistor on Pin 4.  
3
MGA-71543 Typical Performance  
Tc = 25°C, Zo = 50, Vd = 3V, Id = 10 mA unless stated otherwise. Data vs. frequency was measured in Figure 5 test system  
and was optimized for each frequency with external tuners.  
960 pF  
V
ds  
Test Fixture  
RF  
Input  
Bias Tee  
V
ds  
RF  
56 pF  
1.5 nH  
Input  
56 pF  
Bias  
Tee  
RF  
Output  
3
4
V
ref  
RF  
Output  
1
2
2.7 nH  
3.9 nH  
V
ref  
56 pF  
Figure 4. MGA-71543 Production Test Circuit.  
Figure 5. MGA-71543 Test Circuit for S, Noise, and  
Power Parameters over Frequency.  
1.5  
1.3  
1.1  
0.9  
20  
17  
14  
11  
8
18  
15  
12  
9
6
3
0.7  
2.7V  
3.0V  
3.3V  
2.7V  
3.0V  
3.3V  
2.7V  
0
3.0V  
3.3V  
0.5  
5
-3  
0
1
2
3
4
5
6
0
1
2
3
4
5
6
0
1
2
3
4
5
6
FREQUENCY (GHz)  
FREQUENCY (GHz)  
FREQUENCY (GHz)  
Figure 6. Minimum Noise Figure vs.  
Frequency and Voltage.  
Figure 7. Associated Gain with Fmin vs.  
Frequency and Voltage.  
Figure 8. Input Third Order Intercept Point vs.  
Frequency and Voltage.  
20  
18  
15  
12  
9
-40°C  
+25°C  
+85°C  
17  
m3  
14  
6
11  
8
m2  
m1  
3
-40°C  
+25°C  
0
+85°C  
5
-3  
0
1
2
3
4
5
6
0
1
2
3
4
5
6
FREQUENCY (GHz)  
FREQUENCY (GHz)  
500 MHz to 6 GHz  
Figure 10. Input Third Order Intercept Point  
vs. Frequency and Temperature.  
Figure 11. S11 Impedance vs. Frequency.  
(m1 = Sw, m2 = 6 mA, m3 = 10 mA)  
Figure 9. Associated Gain with Fmin vs.  
Frequency.  
18  
15  
12  
9
0
-2  
-4  
-6  
-8  
6
m3  
m2  
m1  
3
2.7V  
G
w/Fmin  
0
ass  
3.0V  
Minimum  
3.3V  
-3  
-10  
0
1
2
3
4
5
6
0
1
2
3
4
5
6
500 MHz to 6 GHz  
FREQUENCY (GHz)  
FREQUENCY (GHz)  
Figure 12. S22 Impedance vs. Frequency.  
(m1 = Sw, m2 = 6 mA, m3 = 10 mA)  
Figure 14. Output Power at 1 dB Compression  
vs. Frequency and Voltage.  
Figure 13. Bypass Mode Associated  
Insertion Loss with Fmin Match and  
Minimum Loss vs. Frequency.  
[4]  
4  
MGA-71543 Typical Performance, continued  
Tc = 25°C, Zo = 50, Vd = 3V, Id = 10 mA unless stated otherwise. Data vs. frequency was measured in Figure 5 test system  
and was optimized for each frequency with external tuners.  
18  
15  
12  
9
18  
15  
12  
9
18  
15  
12  
9
6
-6  
3
6
3
3
-40°C  
+25°C  
+85°C  
-40°C  
+25°C  
+85°C  
6 mA  
10 mA  
20 mA  
0
0
0
-3  
-3  
-3  
0
1
2
3
4
5
6
0
20  
30  
40  
0
20  
30  
40  
10  
10  
FREQUENCY (GHz)  
I
CURRENT (mA)  
I
d
CURRENT (mA)  
dsq  
Figure 15. Input Third Order Intercept Point  
vs. Frequency and Current.  
Figure 16. Output Power at 1 dB Compression  
Figure 17. Output Power at 1 dB Compression  
vs. I Current and Temperature (Passive  
vs. Current and Temperature (Source Resistor  
dsq  
[4]  
[5]  
Bias, V Fixed)  
ref  
.
Bias in Evaluation Circuit)  
12  
.
20  
17  
14  
11  
8
2.2  
2.0  
1.8  
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0
9
6
3
-40°C  
+25°C  
+85°C  
-40°C  
+25°C  
+85°C  
0
5
-3  
2
0
20  
30  
40  
0
20  
CURRENT (mA)  
30  
40  
0
20  
I CURRENT (mA)  
d
30  
40  
10  
10  
10  
I
d
CURRENT (mA)  
I
d
Figure 18. Minimum Noise Figure vs. Current  
(2 GHz).  
Figure 19. Gain vs. Current and Temperature  
(2 GHz).  
Figure 20. Input Third Intercept Point vs.  
Current and Temperature (2 GHz).  
1.0  
0.8  
0.6  
0.4  
0.2  
0
0
20  
30  
40  
10  
I
d
CURRENT (mA)  
Figure 21. Control Voltage vs. Current.  
Notes:  
4. P1dB measurements were performed with  
passive biasing in Production Test Circuit  
(Figure 4.). Quiescent drain current, Idsq, is  
set by a fixed Vref with no RF drive applied.  
As P1dB is approached, the drain current may  
increase or decrease depending on frequency  
and DC bias point which typically results in  
higher P1dB than if the drain current is  
maintained constant by active biasing.  
5. P1dB measurements were performed in  
Evaluation Test Circuit with source resistor  
biasing which maintains the drain current  
near the quiescent value under large signal  
conditions.  
5
MGA-71543 Typical Scattering Parameters  
TC = 25°C, Vds = 0V, Vref = -3.0V, Id = 0 mA (bypass mode), ZO = 50Ω  
Freq  
S11  
S11  
S21  
S21  
S12  
S12  
S22  
S22  
S21  
Gmax RLin RLout Isolation  
(GHz) Mag. Ang.  
Mag. Ang.  
Mag. Ang.  
Mag. Ang.  
(dB) (dB) (dB) (dB) (dB)  
0.1  
0.2  
0.3  
0.4  
0.5  
0.6  
0.7  
0.8  
0.9  
1
0.968  
0.961  
0.951  
0.947  
0.937  
0.929  
0.921  
0.913  
0.905  
0.895  
0.887  
0.878  
0.869  
0.862  
0.854  
0.847  
0.839  
0.832  
0.825  
0.819  
0.812  
0.806  
0.8  
-4.5  
0.021  
0.039  
0.065  
0.09  
41.1  
70.5  
73.7  
70.9  
65.7  
61.4  
57  
0.021  
0.039  
0.064  
0.09  
41.3  
70.8  
73.9  
71  
0.936  
0.916  
0.901  
0.89  
-5.9  
-33.6  
-28.2  
-23.7  
-20.9  
-18.9  
-17.3  
-16.1  
-15.1  
-14.2  
-13.5  
-12.9  
-12.4  
-12.0  
-11.6  
-11.2  
-11.0  
-10.7  
-10.5  
-10.2  
-10.1  
-9.9  
-12.5  
-9.1  
-6.3  
-4.2  
-3.6  
-2.8  
-2.4  
-2.2  
-2.0  
-1.9  
-1.9  
-2.0  
-2.1  
-2.1  
-2.2  
-2.3  
-2.4  
-2.5  
-2.6  
-2.7  
-2.8  
-2.9  
-3.0  
-3.1  
-3.2  
-3.6  
-3.9  
-4.3  
-4.6  
-4.9  
-5.2  
-5.7  
-6.1  
-6.7  
-8.3  
-10.4  
-12.7  
-16.5  
-23.5  
-39.7  
-21.9  
-17.4  
-15.2  
-13.6  
-11.9  
-0.3  
-0.3  
-0.4  
-0.5  
-0.6  
-0.6  
-0.7  
-0.8  
-0.9  
-1.0  
-1.0  
-1.1  
-1.2  
-1.3  
-1.4  
-1.4  
-1.5  
-1.6  
-1.7  
-1.7  
-1.8  
-1.9  
-1.9  
-2.0  
-2.1  
-2.4  
-2.6  
-2.8  
-3.0  
-3.1  
-3.1  
-3.1  
-3.0  
-3.0  
-3.0  
-2.8  
-2.1  
-1.8  
-1.5  
-1.4  
-1.4  
-1.4  
-1.4  
-1.5  
-1.2  
-0.6  
-0.8  
-0.9  
-1.0  
-1.2  
-1.3  
-1.5  
-1.6  
-1.7  
-1.9  
-2.0  
-2.2  
-2.4  
-2.5  
-2.7  
-2.9  
-3.0  
-3.2  
-3.4  
-3.5  
-3.7  
-3.9  
-4.1  
-4.2  
-4.4  
-5.2  
-6.1  
-6.9  
-7.6  
-8.1  
-8.5  
-8.8  
-9.1  
-9.5  
-10.7  
-12.3  
-12.1  
-10.3  
-8.7  
-7.7  
-6.4  
-5.1  
-4.1  
-3.5  
-3.0  
-33.6  
-28.2  
-23.9  
-20.9  
-18.9  
-17.3  
-16.1  
-15.1  
-14.2  
-13.5  
-12.9  
-12.4  
-12.0  
-11.6  
-11.2  
-11.0  
-10.7  
-10.5  
-10.3  
-10.1  
-9.9  
-8.4  
-9.5  
-11.4  
-14.8  
-18.1  
-21.3  
-24.5  
-27.7  
-30.8  
-33.7  
-36.6  
-39.4  
-42.1  
-44.7  
-47.3  
-49.8  
-52.4  
-54.8  
-57.1  
-59.5  
-61.7  
-63.9  
-66.3  
-68.5  
-70.9  
-81.8  
-93.4  
-106  
-13.1  
-16.5  
-20.2  
-23.7  
-27.1  
-30.3  
-33.3  
-36.3  
-39.2  
-41.9  
-44.4  
-46.9  
-49.2  
-51.4  
-53.5  
-55.5  
-57.6  
-59.4  
-61.2  
-63  
0.114  
0.136  
0.157  
0.176  
0.194  
0.211  
0.226  
0.239  
0.252  
0.264  
0.274  
0.283  
0.293  
0.3  
0.114  
0.136  
0.157  
0.176  
0.194  
0.211  
0.226  
0.239  
0.252  
0.263  
0.274  
0.283  
0.292  
0.3  
65.9  
61.5  
57.1  
52.8  
48.7  
44.6  
40.6  
36.9  
33.3  
29.8  
26.4  
23.2  
20  
0.871  
0.861  
0.846  
0.833  
0.82  
52.7  
48.6  
44.5  
40.6  
36.8  
33.2  
29.7  
26.3  
23.1  
19.9  
16.8  
13.8  
11  
0.806  
0.791  
0.776  
0.762  
0.748  
0.732  
0.719  
0.705  
0.692  
0.679  
0.665  
0.653  
0.639  
0.627  
0.616  
0.603  
0.548  
0.497  
0.452  
0.418  
0.393  
0.376  
0.361  
0.35  
1.1  
1.2  
1.3  
1.4  
1.5  
1.6  
1.7  
1.8  
1.9  
2
16.9  
14  
0.308  
0.314  
0.321  
0.326  
0.331  
0.336  
0.341  
0.359  
0.371  
0.377  
0.379  
0.374  
0.362  
0.347  
0.328  
0.307  
0.262  
0.202  
0.141  
0.083  
0.034  
0.005  
0.037  
0.058  
0.072  
0.083  
0.088  
0.307  
0.314  
0.32  
11.1  
8.2  
2.1  
2.2  
2.3  
2.4  
2.5  
3
8.1  
5.3  
0.326  
0.331  
0.336  
0.34  
5.4  
-9.7  
-9.7  
2.6  
2.7  
-64.6  
-66.3  
-67.8  
-75.5  
-83.4  
-91.6  
-100.7  
-110.7  
-121.1  
-130.9  
-141.7  
-152  
-9.6  
-9.6  
0.792  
0.787  
0.76  
0
0.1  
-9.5  
-9.5  
-2.7  
-2.5  
-9.3  
-9.4  
-15.1  
-27.1  
-39.1  
-51  
0.358  
0.37  
-15  
-8.9  
-8.9  
3.5  
4
0.74  
-27  
-8.6  
-8.6  
0.721  
0.708  
0.7  
0.377  
0.378  
0.374  
0.362  
0.347  
0.328  
0.307  
0.262  
0.201  
0.141  
0.083  
0.034  
0.005  
0.036  
0.057  
0.072  
0.083  
0.088  
-39  
-8.5  
-8.5  
4.5  
5
-119.8  
-134.7  
-150.2  
-165.1  
179.7  
165.3  
136.3  
106.4  
75  
-50.9  
-63  
-8.4  
-8.5  
-63.2  
-75.2  
-86.7  
-98.1  
-109.4  
-133.2  
-157.3  
179.6  
156.7  
134.9  
-22.1  
-73.5  
-94  
-8.5  
-8.5  
5.5  
6
0.7  
-75.1  
-86.5  
-98  
-8.8  
-8.8  
0.699  
0.705  
0.708  
0.705  
0.728  
0.781  
0.815  
0.838  
0.847  
0.85  
-9.2  
-9.2  
6.5  
7
-9.7  
-9.7  
-109.4  
-133.1  
-157.2  
179.8  
156.8  
135.6  
-19.9  
-73.5  
-94.1  
-112.2  
-127.3  
-144.4  
0.336  
0.292  
0.242  
0.247  
0.306  
0.367  
0.414  
0.478  
0.555  
0.626  
0.669  
0.706  
-10.3  
-11.6  
-13.9  
-17.0  
-21.6  
-29.4  
-46.0  
-28.6  
-24.7  
-22.9  
-21.6  
-21.1  
-10.3  
-11.6  
-13.9  
-17.0  
-21.6  
-29.4  
-46.0  
-28.9  
-24.9  
-22.9  
-21.6  
-21.1  
8
-173.9  
156.3  
114.9  
80.3  
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
48.9  
28.2  
54.2  
8.5  
29.4  
-10.6  
-28.5  
-43.4  
-53.9  
-65.2  
4.7  
0.856  
0.848  
0.844  
0.873  
-15.7  
-30.1  
-44  
-112.3  
-127.4  
-145.2  
-58.7  
6
MGA-71543 Typical Scattering Parameters and Noise Parameters  
TC = 25°C, Vds = 2.25V, Vref = -0.77V, Id = 3 mA, ZO = 50Ω  
Freq  
S11  
S11  
S21  
S21  
S12  
S12  
S22  
S22  
S21  
Gmax RLin RLout Isolation  
(GHz) Mag. Ang.  
Mag. Ang.  
Mag. Ang.  
Mag. Ang.  
(dB) (dB) (dB) (dB) (dB)  
0.3  
0.5  
0.7  
0.9  
1.1  
1.3  
1.5  
1.7  
1.9  
2
0.927  
0.921  
0.915  
0.909  
0.899  
0.891  
0.883  
0.873  
0.863  
0.858  
0.852  
0.846  
0.841  
0.833  
0.828  
0.794  
0.758  
0.717  
0.679  
0.644  
0.594  
0.565  
0.536  
0.545  
0.608  
0.665  
0.707  
0.735  
0.76  
-10.1  
-16.4  
-22.7  
-28.8  
-34.8  
-40.5  
-46.2  
-51.7  
-57  
2.945  
2.939  
2.907  
2.871  
2.826  
2.783  
2.728  
2.693  
2.652  
2.63  
170.7  
164.1  
158.3  
152.6  
147  
0.028  
0.032  
0.039  
0.047  
0.054  
0.062  
0.069  
0.076  
0.082  
0.086  
0.089  
0.092  
0.095  
0.098  
0.1  
23.9  
32.9  
38.7  
41.3  
41.5  
40.5  
38.8  
36.7  
34.3  
33  
0.754  
0.744  
0.742  
0.74  
-7.9  
9.4  
9.4  
9.3  
9.2  
9.0  
8.9  
8.7  
8.6  
8.5  
8.4  
8.3  
8.3  
8.2  
8.1  
8.1  
7.9  
7.7  
7.5  
7.3  
7.1  
6.3  
5.5  
4.7  
4.1  
3.5  
2.5  
1.3  
0.3  
-0.9  
-2.4  
-4.3  
-6.0  
-7.4  
21.6  
21.1  
20.6  
20.2  
19.6  
19.1  
18.6  
18.0  
17.5  
17.2  
17.0  
16.7  
16.5  
16.2  
15.9  
14.7  
13.6  
12.5  
11.6  
10.7  
9.2  
-0.7  
-0.7  
-0.8  
-0.8  
-0.9  
-1.0  
-1.1  
-1.2  
-1.3  
-1.3  
-1.4  
-1.5  
-1.5  
-1.6  
-1.6  
-2.0  
-2.4  
-2.9  
-3.4  
-3.8  
-4.5  
-5.0  
-5.4  
-5.3  
-4.3  
-3.5  
-3.0  
-2.7  
-2.4  
-2.1  
-1.9  
-1.9  
-1.5  
-2.5  
-2.6  
-2.6  
-2.6  
-2.7  
-2.7  
-2.8  
-2.8  
-2.9  
-3.0  
-3.0  
-3.1  
-3.1  
-3.2  
-3.2  
-3.6  
-4.1  
-4.6  
-5.2  
-5.8  
-6.9  
-7.8  
-9.3  
-11.0  
-11.9  
-11.2  
-10.0  
-9.0  
-7.5  
-5.8  
-4.4  
-3.7  
-3.1  
-31.1  
-29.9  
-28.2  
-26.6  
-25.4  
-24.2  
-23.2  
-22.4  
-21.7  
-21.3  
-21.0  
-20.7  
-20.4  
-20.2  
-20.0  
-18.9  
-18.1  
-17.5  
-17.0  
-16.8  
-16.9  
-17.2  
-18.0  
-18.6  
-18.4  
-18.4  
-18.5  
-18.4  
-18.3  
-18.6  
-18.8  
-18.9  
-19.2  
-12.6  
-17.5  
-22.1  
-26.7  
-30.9  
-34.9  
-38.7  
-42.5  
-44.2  
-46  
0.736  
0.732  
0.727  
0.721  
0.716  
0.711  
0.707  
0.703  
0.698  
0.695  
0.689  
0.66  
141.5  
136.3  
131.1  
126.1  
123.7  
121.2  
118.7  
116.3  
113.9  
111.5  
99.7  
-59.7  
-62.3  
-64.8  
-67.5  
-70  
2.1  
2.2  
2.3  
2.4  
2.5  
3
2.609  
2.593  
2.579  
2.554  
2.544  
2.479  
2.43  
31.7  
30.4  
28.9  
27.5  
26.1  
18.5  
10.7  
2.1  
-47.9  
-49.5  
-51.3  
-52.9  
-61.6  
-70.5  
-80  
-72.8  
-85.6  
-99.1  
-113.5  
-129  
-145.1  
-176.1  
155  
0.114  
0.125  
0.134  
0.141  
0.144  
0.143  
0.138  
0.126  
0.117  
0.12  
3.5  
4
87.7  
0.626  
0.587  
0.549  
0.511  
0.454  
0.408  
0.344  
0.281  
0.254  
0.274  
0.317  
0.356  
0.421  
0.511  
0.6  
2.373  
2.323  
2.252  
2.073  
1.885  
1.715  
1.611  
1.503  
1.332  
1.167  
1.03  
75.6  
4.5  
5
63.1  
-6.4  
-90.3  
-100.9  
-120.8  
-140.1  
-157.3  
-177.8  
145.5  
106.1  
75.4  
50.5  
-15.4  
-31  
6
26.9  
7
4.6  
-45.3  
-58.8  
-63.7  
-71.8  
-81.5  
-90  
8.0  
8
127  
-16.6  
-37  
6.7  
9
99.4  
6.0  
10  
11  
12  
13  
14  
15  
16  
17  
18  
70.4  
-59.7  
-82  
5.8  
46.2  
0.12  
5.4  
27.2  
-101.9  
-121.7  
-142.2  
-162.1  
180  
0.119  
0.12  
4.8  
8.7  
-99.8  
-110.9  
-122.8  
-134.2  
-144.3  
-157.8  
47.9  
4.2  
-9.7  
0.904  
0.757  
0.609  
0.5  
0.122  
0.118  
0.115  
0.113  
0.11  
20.1  
3.7  
0.788  
0.802  
0.808  
0.845  
-27.4  
-42.4  
-53.1  
-64.7  
-4.1  
3.1  
-21.1  
-36.7  
-52.6  
2.1  
165.7  
150.7  
0.653  
0.699  
1.0  
0.429  
1.0  
Freq  
Fmin  
GAMMA OPT  
Rn/50  
Ga  
(GHz)  
(dB)  
Mag  
Ang  
(dB)  
0.7  
0.9  
1.1  
1.3  
1.5  
1.7  
1.9  
2
0.88  
0.87  
0.9  
0.61  
0.64  
0.65  
0.6  
16.3  
22.4  
28.4  
33.5  
37.2  
40.2  
45.4  
47.6  
49.2  
50.9  
53.9  
55.4  
57.6  
67.9  
120  
0.45  
0.43  
0.44  
0.43  
0.42  
0.41  
0.4  
14.8  
14.8  
14.7  
14.2  
14.2  
14  
0.92  
0.95  
0.95  
0.99  
1
0.64  
0.63  
0.62  
0.62  
0.61  
0.63  
0.62  
0.6  
13.7  
13.6  
13.4  
13.4  
13.2  
12.9  
12.9  
12.1  
9.6  
0.4  
2.1  
2.2  
2.3  
2.4  
2.5  
3
1.02  
1.03  
1.03  
1.04  
1.04  
1.08  
1.21  
1.36  
0.4  
0.39  
0.38  
0.37  
0.37  
0.33  
0.14  
0.08  
0.61  
0.58  
0.49  
0.46  
5
6
151.2  
8.4  
7
MGA-71543 Typical Scattering Parameters and Noise Parameters  
TC = 25°C, Vds = 2.3 V, Vref = -0.7 V, Id = 6 mA, ZO = 50Ω  
Freq  
S11  
S11  
S21  
S21  
S12  
S12  
S22  
S22  
S21  
Gmax RLin RLout Isolation  
(GHz) Mag. Ang.  
Mag. Ang.  
Mag. Ang.  
Mag. Ang.  
(dB) (dB) (dB) (dB) (dB)  
0.3  
0.5  
0.7  
0.9  
1.1  
1.3  
1.5  
1.7  
1.9  
2
0.911  
0.904  
0.896  
0.887  
0.875  
0.864  
0.853  
0.84  
-11  
4.164  
4.148  
4.094  
4.029  
3.953  
3.877  
3.791  
3.723  
3.649  
3.611  
3.576  
3.55  
170.2  
163.3  
157.1  
151.1  
145.2  
139.5  
134  
0.026  
0.03  
23.5  
32.6  
38.5  
41  
0.667  
0.658  
0.656  
0.654  
0.648  
0.643  
0.638  
0.631  
0.624  
0.619  
0.615  
0.609  
0.604  
0.6  
-8.4  
12.4  
12.4  
12.2  
12.1  
11.9  
11.8  
11.6  
11.4  
11.2  
11.2  
11.1  
11.0  
10.9  
10.8  
10.7  
10.4  
10.1  
9.7  
22.6  
22.2  
21.7  
21.2  
20.6  
20.0  
19.5  
18.9  
18.4  
18.1  
17.8  
17.6  
17.3  
16.9  
16.7  
15.5  
14.3  
13.3  
12.4  
11.5  
10.1  
8.9  
-0.8  
-0.9  
-1.0  
-1.0  
-1.2  
-1.3  
-1.4  
-1.5  
-1.7  
-1.7  
-1.8  
-1.9  
-2.0  
-2.1  
-2.2  
-2.6  
-3.2  
-3.8  
-4.3  
-4.8  
-5.5  
-5.9  
-6.3  
-6.0  
-4.8  
-3.9  
-3.3  
-2.9  
-2.6  
-2.2  
-2.1  
-2.0  
-1.6  
-3.5  
-3.6  
-3.7  
-3.7  
-3.8  
-3.8  
-3.9  
-4.0  
-4.1  
-4.2  
-4.2  
-4.3  
-4.4  
-4.4  
-4.5  
-5.0  
-5.6  
-6.3  
-7.1  
-7.8  
-9.1  
-10.2  
-12.1  
-14.5  
-15.2  
-13.2  
-11.3  
-10.0  
-8.2  
-6.3  
-4.9  
-4.1  
-3.5  
-31.7  
-30.5  
-28.9  
-27.3  
-26.0  
-24.9  
-24.0  
-23.2  
-22.5  
-22.2  
-21.8  
-21.5  
-21.3  
-21.0  
-20.8  
-19.8  
-19.0  
-18.5  
-18.1  
-17.9  
-17.7  
-17.8  
-18.2  
-18.2  
-17.6  
-17.5  
-17.3  
-17.3  
-17.3  
-17.7  
-18.1  
-18.3  
-18.6  
-17.7  
-24.5  
-31.2  
-37.5  
-43.7  
-49.7  
-55.6  
-61.2  
-64  
-13.4  
-18.5  
-23.5  
-28.2  
-32.6  
-36.8  
-40.7  
-44.6  
-46.4  
-48.2  
-50.1  
-51.7  
-53.5  
-55.1  
-63.7  
-72.6  
-82  
0.036  
0.043  
0.05  
41.3  
40.4  
38.8  
36.7  
34.5  
33.3  
32.1  
30.7  
29.4  
28.1  
26.7  
19.7  
12.6  
4.9  
0.057  
0.063  
0.069  
0.075  
0.078  
0.081  
0.084  
0.086  
0.089  
0.091  
0.102  
0.112  
0.119  
0.125  
0.128  
0.13  
128.7  
123.4  
121  
0.826  
0.82  
2.1  
2.2  
2.3  
2.4  
2.5  
3
0.812  
0.806  
0.797  
0.787  
0.78  
-66.7  
-69.4  
-72.3  
-74.9  
-77.8  
-91.2  
-105.2  
-120.2  
-136.2  
-152.7  
175.9  
147.2  
119.4  
92.5  
118.4  
115.7  
113.3  
110.9  
108.3  
96.3  
3.511  
3.474  
3.446  
3.309  
3.193  
3.072  
2.962  
2.83  
0.593  
0.561  
0.523  
0.482  
0.443  
0.406  
0.352  
0.308  
0.247  
0.189  
0.174  
0.218  
0.272  
0.318  
0.388  
0.482  
0.57  
0.738  
0.695  
0.649  
0.609  
0.573  
0.529  
0.507  
0.485  
0.502  
0.574  
0.639  
0.686  
0.715  
0.741  
0.774  
0.789  
0.797  
0.833  
3.5  
4
84.2  
72.2  
4.5  
5
59.9  
-2.6  
-92.3  
-103  
-123  
-142.4  
-159.2  
178.9  
132.2  
88.5  
9.4  
47.8  
-10.4  
-23.6  
-36  
9.0  
6
2.555  
2.295  
2.072  
1.922  
1.78  
25  
8.1  
7
3.6  
0.129  
0.123  
0.123  
0.132  
0.134  
0.136  
0.137  
0.137  
0.131  
0.125  
0.121  
0.117  
7.2  
8
-16.8  
-36.5  
-58.3  
-79.6  
-98.8  
-118.1  
-138.4  
-158  
-47.7  
-52.7  
-63.1  
-75  
6.3  
7.8  
9
5.7  
7.1  
10  
11  
12  
13  
14  
15  
16  
17  
18  
65  
5.0  
6.9  
42.1  
1.576  
1.388  
1.236  
1.094  
0.926  
0.761  
0.634  
0.549  
4.0  
6.4  
23.9  
-85.8  
-97.7  
-110.5  
-123.3  
-135.2  
-145.5  
-159  
59.8  
2.8  
5.9  
5.8  
34.5  
1.8  
5.4  
-12  
9.3  
0.8  
4.9  
-29.2  
-43.9  
-54.3  
-65.8  
-11.4  
-26.3  
-40.6  
-55.4  
-0.7  
-2.4  
-4.0  
-5.2  
4.4  
-175.8  
169.4  
153.8  
3.6  
0.622  
0.67  
2.5  
2.5  
Freq  
Fmin  
GAMMA OPT  
Rn/50  
Ga  
(GHz)  
(dB)  
Mag  
Ang  
(dB)  
0.7  
0.9  
1.1  
1.3  
1.5  
1.7  
1.9  
2
0.71  
0.74  
0.76  
0.79  
0.81  
0.8  
0.56  
0.58  
0.56  
0.54  
0.58  
0.57  
0.57  
0.56  
0.55  
0.58  
0.56  
0.54  
0.55  
0.53  
0.42  
0.38  
15.7  
21.8  
28.3  
33.8  
36.5  
40  
0.32  
0.3  
16.3  
16.3  
15.9  
15.6  
15.6  
15.3  
15.1  
14.9  
14.7  
14.8  
14.5  
14.3  
14.2  
13.5  
10.7  
9.4  
0.31  
0.3  
0.29  
0.29  
0.28  
0.28  
0.28  
0.27  
0.26  
0.26  
0.26  
0.23  
0.11  
0.07  
0.82  
0.83  
0.85  
0.85  
0.87  
0.87  
0.88  
0.9  
45.2  
47.8  
49.3  
50.7  
53.9  
55.3  
57.7  
67.7  
120.7  
152.7  
2.1  
2.2  
2.3  
2.4  
2.5  
3
5
1.03  
1.14  
6
8
MGA-71543 Typical Scattering Parameters and Noise Parameters  
TC = 25°C, Vds = 2.4 V, Vref = -0.6 V, Id = 10 mA, ZO = 50Ω  
Freq  
S11  
S11  
S21  
S21  
S12  
S12  
S22  
S22  
S21  
Gmax RLin RLout Isolation  
(GHz) Mag. Ang.  
Mag. Ang.  
Mag. Ang.  
Mag. Ang.  
(dB) (dB) (dB) (dB) (dB)  
0.3  
0.5  
0.7  
0.9  
1.1  
1.3  
1.5  
1.7  
1.9  
2
0.9  
-11.5  
-18.6  
-25.7  
-32.7  
-39.4  
-45.8  
-52  
5.023  
4.993  
4.919  
4.83  
169.8  
162.7  
156.3  
150  
0.024  
0.029  
0.034  
0.041  
0.047  
0.053  
0.059  
0.065  
0.07  
23.3  
32.4  
38.3  
40.9  
41.3  
40.5  
39.1  
37.2  
35  
0.608  
0.599  
0.597  
0.595  
0.589  
0.584  
0.578  
0.571  
0.563  
0.558  
0.553  
0.549  
0.543  
0.538  
0.531  
0.499  
0.461  
0.42  
-8.7  
14.0  
14.0  
13.8  
13.7  
13.5  
13.3  
13.1  
12.9  
12.7  
12.6  
12.5  
12.4  
12.3  
12.2  
12.1  
11.7  
11.3  
10.9  
10.5  
10.0  
9.0  
23.2  
22.8  
22.4  
21.8  
21.2  
20.5  
20.0  
19.4  
18.8  
18.5  
18.2  
18.0  
17.7  
17.4  
17.1  
15.8  
14.7  
13.7  
12.8  
12.0  
10.6  
9.5  
-0.9  
-1.0  
-1.1  
-1.2  
-1.3  
-1.5  
-1.6  
-1.8  
-1.9  
-2.0  
-2.1  
-2.2  
-2.3  
-2.4  
-2.5  
-3.1  
-3.7  
-4.3  
-4.9  
-5.5  
-6.1  
-6.4  
-6.8  
-6.4  
-5.1  
-4.1  
-3.4  
-3.0  
-2.7  
-2.3  
-2.1  
-2.0  
-1.6  
-4.3  
-4.5  
-4.5  
-4.5  
-4.6  
-4.7  
-4.8  
-4.9  
-5.0  
-5.1  
-5.1  
-5.2  
-5.3  
-5.4  
-5.5  
-6.0  
-6.7  
-7.5  
-8.4  
-9.2  
-10.6  
-11.9  
-14.2  
-17.0  
-17.1  
-14.0  
-11.7  
-10.2  
-8.4  
-6.5  
-5.1  
-4.3  
-3.7  
-32.4  
-30.8  
-29.4  
-27.7  
-26.6  
-25.5  
-24.6  
-23.7  
-23.1  
-22.7  
-22.5  
-22.2  
-21.9  
-21.6  
-21.4  
-20.4  
-19.7  
-19.2  
-18.7  
-18.4  
-18.1  
-18.0  
-18.1  
-17.9  
-17.1  
-17.0  
-16.8  
-16.8  
-16.8  
-17.3  
-17.7  
-18.0  
-18.3  
0.892  
0.884  
0.873  
0.859  
0.845  
0.832  
0.816  
0.801  
0.793  
0.784  
0.776  
0.767  
0.757  
0.749  
0.701  
0.655  
0.607  
0.567  
0.533  
0.493  
0.476  
0.458  
0.48  
-13.8  
-19.1  
-24.2  
-29.1  
-33.6  
-37.8  
-41.8  
-45.7  
-47.4  
-49.2  
-51  
4.728  
4.623  
4.509  
4.412  
4.312  
4.259  
4.211  
4.171  
4.117  
4.07  
143.9  
138  
132.4  
126.9  
121.5  
119  
-58.1  
-63.9  
-66.8  
-69.6  
-72.4  
-75.3  
-78  
0.073  
0.075  
0.078  
0.08  
33.9  
32.7  
31.6  
30.3  
29  
2.1  
2.2  
2.3  
2.4  
2.5  
3
116.4  
113.7  
111.2  
108.7  
106.2  
94  
-52.7  
-54.5  
-56  
0.083  
0.085  
0.095  
0.103  
0.11  
-80.9  
-94.7  
-108.9  
-124.2  
-140.4  
-157.2  
171.3  
142.7  
115.1  
88.8  
4.029  
3.829  
3.659  
3.49  
27.7  
21.2  
14.7  
7.6  
-64.4  
-73.1  
-82.2  
-92.6  
-103.3  
-123.4  
-143.1  
-159.7  
176.8  
120.6  
76.5  
3.5  
4
81.9  
70  
4.5  
5
3.335  
3.163  
2.828  
2.526  
2.271  
2.094  
1.935  
1.712  
1.512  
1.351  
1.2  
58  
0.116  
0.12  
0.8  
0.382  
0.346  
0.296  
0.255  
0.195  
0.141  
0.14  
46.1  
-6.3  
6
23.9  
0.124  
0.126  
0.124  
0.128  
0.139  
0.142  
0.145  
0.145  
0.145  
0.137  
0.131  
0.126  
0.122  
-18.3  
-30.1  
-41.4  
-47.3  
-58.9  
-71.7  
-83.5  
-96.3  
-109.7  
-123.1  
-135.2  
-145.7  
-159.2  
7
2.9  
8.0  
8
-17  
7.1  
8.3  
9
-36.3  
-57.6  
-78.3  
-97.2  
-116.2  
-136.2  
-155.6  
-173.3  
171.8  
156  
6.4  
7.6  
10  
11  
12  
13  
14  
15  
16  
17  
18  
0.558  
0.627  
0.675  
0.706  
0.732  
0.767  
0.783  
0.792  
0.828  
62.2  
5.7  
7.4  
39.9  
0.2  
4.7  
7.0  
22.1  
0.26  
50.1  
3.6  
6.5  
4.4  
0.308  
0.379  
0.473  
0.558  
0.609  
0.656  
26.4  
2.6  
6.0  
-13.3  
-30.2  
-44.7  
-55.1  
-66.5  
3.1  
1.6  
5.6  
1.022  
0.849  
0.713  
0.622  
-15.8  
-29.5  
-43  
0.2  
5.1  
-1.4  
-2.9  
-4.1  
4.3  
3.4  
-57.3  
3.3  
Freq  
Fmin  
GAMMA OPT  
Rn/50  
Ga  
(GHz)  
(dB)  
Mag  
Ang  
(dB)  
0.7  
0.9  
1.1  
1.3  
1.5  
1.7  
1.9  
2
0.63  
0.66  
0.68  
0.7  
0.53  
0.54  
0.55  
0.52  
0.55  
0.56  
0.53  
0.53  
0.52  
0.54  
0.53  
0.51  
0.52  
15.3  
21.4  
28.5  
33.8  
37  
0.27  
0.26  
0.26  
0.25  
0.25  
0.25  
0.24  
0.23  
0.23  
0.23  
0.22  
0.22  
0.22  
0.2  
17.2  
17.1  
16.9  
16.5  
16.4  
16.2  
15.8  
15.6  
15.4  
15.4  
15.2  
15  
0.72  
0.72  
0.73  
0.74  
0.76  
0.78  
0.78  
0.79  
0.8  
39.9  
45.5  
48.3  
49.6  
50.7  
54  
2.1  
2.2  
2.3  
2.4  
2.5  
3
55.6  
57.6  
67.5  
121.3  
155  
14.9  
14.2  
11.2  
10  
0.82  
0.94  
1.05  
0.5  
5
0.38  
0.34  
0.1  
6
0.07  
9
MGA-71543 Typical Scattering Parameters and Noise Parameters  
TC = 25°C, Vds = 2.5 V, Vref = -0.5 V, Id = 20 mA, ZO = 50Ω  
Freq  
S11  
S11  
S21  
S21  
S12  
S12  
S22  
S22  
S21  
Gmax RLin RLout Isolation  
(GHz) Mag. Ang.  
Mag. Ang.  
Mag. Ang.  
Mag. Ang.  
(dB) (dB) (dB) (dB) (dB)  
0.3  
0.5  
0.7  
0.9  
1.1  
1.3  
1.5  
1.7  
1.9  
2
0.889  
0.88  
-12.1  
-19.5  
-27  
5.952  
5.901  
5.803  
5.684  
5.548  
5.407  
5.26  
169.3  
162  
0.023  
0.027  
0.032  
0.037  
0.043  
0.049  
0.055  
0.06  
22.8  
32  
0.541  
0.532  
0.531  
0.528  
0.523  
0.518  
0.511  
0.505  
0.497  
0.493  
0.488  
0.483  
0.477  
0.473  
0.467  
0.435  
0.399  
0.36  
-9  
15.5  
15.4  
15.3  
15.1  
14.9  
14.7  
14.4  
14.2  
14.0  
13.8  
13.7  
13.6  
13.5  
13.4  
13.3  
12.7  
12.3  
11.8  
11.3  
10.8  
9.8  
23.8  
23.3  
22.9  
22.3  
21.6  
21.0  
20.4  
19.8  
19.2  
18.9  
18.6  
18.3  
18.0  
17.7  
17.5  
16.2  
15.1  
14.1  
13.2  
12.4  
11.1  
9.9  
-1.0  
-1.1  
-1.2  
-1.3  
-1.5  
-1.7  
-1.8  
-2.0  
-2.2  
-2.3  
-2.4  
-2.5  
-2.7  
-2.8  
-2.9  
-3.6  
-4.2  
-4.9  
-5.5  
-6.1  
-6.7  
-7.0  
-7.2  
-6.7  
-5.3  
-4.2  
-3.5  
-3.1  
-2.8  
-2.3  
-2.2  
-2.1  
-1.7  
-5.3  
-5.5  
-5.5  
-5.5  
-5.6  
-5.7  
-5.8  
-5.9  
-6.1  
-6.1  
-6.2  
-6.3  
-6.4  
-6.5  
-6.6  
-7.2  
-8.0  
-8.9  
-9.8  
-10.7  
-12.2  
-13.6  
-16.5  
-20.1  
-18.9  
-14.4  
-11.8  
-10.3  
-8.5  
-6.6  
-5.2  
-4.5  
-3.8  
-32.8  
-31.4  
-29.9  
-28.6  
-27.3  
-26.2  
-25.2  
-24.4  
-23.7  
-23.5  
-23.2  
-22.9  
-22.6  
-22.4  
-22.2  
-21.2  
-20.4  
-19.8  
-19.3  
-18.9  
-18.5  
-18.1  
-18.1  
-17.5  
-16.7  
-16.5  
-16.3  
-16.3  
-16.3  
-16.8  
-17.3  
-17.6  
-18.0  
-14.1  
-19.6  
-24.7  
-29.7  
-34.2  
-38.4  
-42.4  
-46.2  
-47.9  
-49.6  
-51.5  
-53  
0.87  
155.3  
148.8  
142.5  
136.5  
130.6  
125  
38.2  
40.9  
41.5  
40.9  
39.6  
38  
0.858  
0.842  
0.826  
0.81  
-34.3  
-41.2  
-47.9  
-54.3  
-60.7  
-66.6  
-69.6  
-72.5  
-75.4  
-78.3  
-81  
0.792  
0.774  
0.765  
0.755  
0.746  
0.736  
0.724  
0.716  
0.664  
0.616  
0.566  
0.528  
0.495  
0.46  
5.126  
4.99  
119.5  
116.9  
114.3  
111.5  
109  
0.065  
0.067  
0.069  
0.072  
0.074  
0.076  
0.078  
0.087  
0.095  
0.102  
0.108  
0.113  
0.119  
0.124  
0.125  
0.133  
0.146  
0.15  
36.1  
35  
4.922  
4.857  
4.797  
4.729  
4.668  
4.612  
4.34  
2.1  
2.2  
2.3  
2.4  
2.5  
3
34  
32.9  
31.8  
30.6  
29.4  
23.6  
17.8  
11.3  
5.1  
106.5  
103.9  
91.7  
-54.7  
-56.2  
-64.1  
-72.4  
-81.1  
-91.4  
-102.1  
-122.3  
-142.5  
-158.6  
175.9  
106.8  
65.3  
-84  
-98  
3.5  
4
-112.4  
-128  
-144.5  
-161.5  
166.9  
138.5  
111.1  
85.4  
4.107  
3.886  
3.686  
3.473  
3.078  
2.737  
2.452  
2.252  
2.075  
1.836  
1.626  
1.457  
1.299  
1.111  
0.93  
79.7  
67.9  
4.5  
5
56.1  
0.324  
0.291  
0.245  
0.208  
0.15  
44.5  
-1.3  
6
22.8  
-12.5  
-24.1  
-35.3  
-42.2  
-54.9  
-68.5  
-81  
7
0.448  
0.436  
0.462  
0.544  
0.617  
0.668  
0.7  
2.4  
8.7  
8
-17.1  
-36  
7.8  
8.8  
9
0.099  
0.114  
0.191  
0.256  
0.305  
0.377  
0.469  
0.552  
0.599  
0.645  
7.1  
8.1  
10  
11  
12  
13  
14  
15  
16  
17  
18  
59.7  
-56.8  
-77.2  
-95.6  
-114.4  
-134.1  
-153.3  
-170.8  
174.2  
158.3  
6.3  
7.9  
38.1  
5.3  
7.5  
20.6  
0.153  
0.153  
0.153  
0.144  
0.137  
0.132  
0.126  
41.5  
4.2  
7.1  
3.1  
-94.4  
-108.4  
-122.2  
-134.6  
-145.3  
-159  
19.4  
3.3  
6.6  
0.728  
0.763  
0.78  
-14.4  
-31.2  
-45.5  
-55.8  
-67.1  
-2.4  
2.3  
6.2  
-19.6  
-32.5  
-45.4  
-59  
0.9  
5.8  
-0.6  
-2.1  
-3.2  
5.0  
0.789  
0.825  
0.788  
0.691  
4.1  
4.1  
Freq  
Fmin  
GAMMA OPT  
Rn/50  
Ga  
(GHz)  
(dB)  
Mag  
Ang  
(dB)  
0.7  
0.9  
1.1  
1.3  
1.5  
1.7  
1.9  
2
0.59  
0.64  
0.66  
0.68  
0.68  
0.69  
0.72  
0.73  
0.74  
0.75  
0.76  
0.77  
0.79  
0.82  
0.93  
1.06  
0.52  
0.53  
0.53  
0.51  
0.54  
0.54  
0.51  
0.51  
0.5  
15.7  
21.7  
28.9  
34.2  
38.5  
40.8  
46.4  
48.8  
50.5  
52.4  
55.4  
56.3  
59  
0.25  
0.24  
0.24  
0.23  
0.23  
0.23  
0.22  
0.22  
0.21  
0.21  
0.2  
18.1  
17.9  
17.7  
17.3  
17.2  
17  
16.5  
16.4  
16.2  
16.1  
15.9  
15.6  
15.6  
14.7  
11.7  
10.5  
2.1  
2.2  
2.3  
2.4  
2.5  
3
0.51  
0.51  
0.48  
0.2  
0.5  
0.2  
0.47  
0.34  
0.31  
68.6  
125.1  
160.6  
0.18  
0.09  
0.07  
5
6
10  
MGA-71543 Typical Scattering Parameters and Noise Parameters  
TC = 25°C, Vds = 2.7 V, Vref = -0.3 V, Id = 40 mA, ZO = 50Ω  
Freq  
S11  
S11  
S21  
S21  
S12  
S12  
S22  
S22  
S21  
Gmax RLin RLout Isolation  
(GHz) Mag. Ang.  
Mag. Ang.  
Mag. Ang.  
Mag. Ang.  
(dB) (dB) (dB) (dB) (dB)  
0.3  
0.5  
0.7  
0.9  
1.1  
1.3  
1.5  
1.7  
1.9  
2
0.889  
0.88  
-12.3  
-19.8  
-27.4  
-34.9  
-41.9  
-48.7  
-55.2  
-61.6  
-67.6  
-70.6  
-73.5  
-76.3  
-79.4  
-82.2  
-85.2  
-99.3  
-113.8  
-129.5  
-146  
6.174  
6.117  
6.012  
5.885  
5.74  
169.2  
161.8  
155.1  
148.5  
142.1  
136  
0.022  
0.025  
0.029  
0.035  
0.04  
22.3  
31.6  
37.9  
40.9  
41.7  
41.4  
40.2  
38.7  
37  
0.508  
0.501  
0.499  
0.497  
0.493  
0.488  
0.483  
0.477  
0.47  
-8.9  
15.8  
15.7  
15.6  
15.4  
15.2  
14.9  
14.7  
14.5  
14.2  
14.1  
14.0  
13.9  
13.7  
13.6  
13.5  
13.0  
12.5  
12.0  
11.5  
11.0  
9.9  
23.9  
23.5  
23.0  
22.4  
21.7  
21.0  
20.4  
19.8  
19.2  
18.9  
18.6  
18.3  
18.0  
17.7  
17.5  
16.2  
15.1  
14.1  
13.3  
12.5  
11.2  
10.0  
8.9  
-1.0  
-1.1  
-1.2  
-1.3  
-1.5  
-1.7  
-1.9  
-2.1  
-2.3  
-2.4  
-2.5  
-2.6  
-2.7  
-2.9  
-3.0  
-3.7  
-4.3  
-5.1  
-5.7  
-6.2  
-6.8  
-7.0  
-7.2  
-6.7  
-5.3  
-4.1  
-3.5  
-3.0  
-2.7  
-2.3  
-2.1  
-2.0  
-1.6  
-5.9  
-6.0  
-6.0  
-6.1  
-6.1  
-6.2  
-6.3  
-6.4  
-6.6  
-6.6  
-6.7  
-6.8  
-6.9  
-7.0  
-7.1  
-7.7  
-8.4  
-9.3  
-10.2  
-11.1  
-12.5  
-13.9  
-16.7  
-20.4  
-19.9  
-15.0  
-12.3  
-10.7  
-8.7  
-6.7  
-5.3  
-4.5  
-3.9  
-33.2  
-32.0  
-30.8  
-29.1  
-28.0  
-26.7  
-25.8  
-25.2  
-24.4  
-24.2  
-23.9  
-23.6  
-23.3  
-23.1  
-22.9  
-21.8  
-21.0  
-20.4  
-19.9  
-19.5  
-18.9  
-18.4  
-18.3  
-17.6  
-16.7  
-16.4  
-16.2  
-16.1  
-16.1  
-16.5  
-17.0  
-17.3  
-17.7  
-13.7  
-19.1  
-24.2  
-29  
0.87  
0.857  
0.841  
0.823  
0.807  
0.788  
0.769  
0.76  
5.589  
5.435  
5.289  
5.145  
5.072  
5.003  
4.93  
0.046  
0.051  
0.055  
0.06  
-33.4  
-37.5  
-41.3  
-45  
130.2  
124.5  
119  
116.3  
113.7  
111  
0.062  
0.064  
0.066  
0.068  
0.07  
36.1  
35.1  
34.2  
33.1  
32  
0.466  
0.462  
0.458  
0.452  
0.448  
0.442  
0.413  
0.38  
-46.5  
-48.2  
-50  
2.1  
2.2  
2.3  
2.4  
2.5  
3
0.75  
0.739  
0.73  
4.865  
4.801  
4.739  
4.447  
4.197  
3.963  
3.751  
3.53  
108.4  
105.9  
103.3  
91  
-51.4  
-53  
0.718  
0.709  
0.656  
0.608  
0.559  
0.521  
0.49  
0.072  
0.081  
0.089  
0.095  
0.101  
0.106  
0.114  
0.12  
30.9  
25.5  
20  
-54.5  
-61.9  
-69.7  
-77.9  
-87.7  
-98  
3.5  
4
79  
67.3  
14  
0.344  
0.31  
4.5  
5
55.6  
8.2  
-163  
44.1  
2
0.278  
0.236  
0.201  
0.146  
0.096  
0.101  
0.177  
0.244  
0.293  
0.366  
0.461  
0.545  
0.595  
0.641  
6
0.457  
0.447  
0.436  
0.462  
0.546  
0.621  
0.672  
0.705  
0.733  
0.768  
0.786  
0.794  
0.83  
165.4  
137.1  
109.8  
84.5  
3.124  
2.776  
2.484  
2.28  
22.5  
-8.6  
-117.5  
-137.1  
-151.4  
-173.8  
112  
7
2.2  
-19.8  
-30.9  
-37.8  
-50.8  
-64.7  
-77.6  
-91.3  
-105.8  
-119.7  
-132.5  
-143.6  
-157.4  
8.9  
8
-17.2  
-36  
0.122  
0.132  
0.146  
0.152  
0.155  
0.157  
0.157  
0.149  
0.141  
0.136  
0.131  
7.9  
9
7.2  
8.2  
10  
11  
12  
13  
14  
15  
16  
17  
18  
59.1  
2.102  
1.861  
1.649  
1.478  
1.32  
-56.7  
-77  
6.5  
8.0  
37.8  
66.8  
5.4  
7.6  
20.3  
-95.4  
-114.1  
-133.9  
-153.1  
-170.6  
174.5  
158.5  
42.3  
4.3  
7.2  
2.9  
19.8  
3.4  
6.8  
-14.6  
-31.3  
-45.7  
-56.1  
-67.4  
-2.2  
2.4  
6.4  
1.129  
0.946  
0.801  
0.703  
-19.1  
-32.1  
-45.1  
-58.8  
1.1  
6.0  
-0.5  
-1.9  
-3.1  
5.2  
4.3  
4.3  
Freq  
Fmin  
GAMMA OPT  
Rn/50  
Ga  
(GHz)  
(dB)  
Mag  
Ang  
(dB)  
0.7  
0.9  
1.1  
1.3  
1.5  
1.7  
1.9  
2
0.69  
0.73  
0.73  
0.77  
0.77  
0.8  
0.56  
0.57  
0.56  
0.54  
0.58  
0.57  
0.55  
0.54  
0.54  
0.54  
0.54  
0.52  
0.52  
0.49  
0.37  
0.35  
17.3  
23.9  
30.8  
36.5  
40.7  
43.9  
49.7  
52.1  
54.3  
55.5  
59.3  
61  
0.32  
0.3  
18.5  
18.3  
18  
0.31  
0.3  
17.6  
17.6  
17.3  
16.9  
16.7  
16.5  
16.4  
16.2  
16  
0.29  
0.29  
0.28  
0.27  
0.27  
0.26  
0.26  
0.25  
0.25  
0.22  
0.1  
0.83  
0.85  
0.86  
0.9  
2.1  
2.2  
2.3  
2.4  
2.5  
3
0.91  
0.91  
0.93  
0.98  
1.19  
1.35  
63.2  
74.7  
136  
15.8  
15  
5
11.9  
10.7  
6
172.8  
0.08  
11  
Part Number Ordering Information  
Part Number  
No. of Devices Container  
MGA-71543-TR1G  
MGA-71543-TR2G  
MGA-71543-BLKG  
3000  
10000  
100  
7" Reel  
13" Reel  
Antistatic bag  
Package Dimensions Outline 43  
SOT-343 (SC70 4-lead)  
Recommended PCB Pad Layout for  
Avago’s SC70 4L/SOT-343 Products  
1.30 (.051)  
BSC  
1.30  
(0.051)  
1.00  
(0.039)  
HE  
E
2.00  
(0.079)  
0.60  
(0.024)  
1.15 (.045) BSC  
b1  
0.9  
(0.035)  
D
1.15  
(0.045)  
mm  
(inches)  
Dimensions in  
A
A2  
A1  
b
C
L
DIMENSIONS (mm)  
SYMBOL  
E
D
HE  
A
A2  
A1  
b
MIN.  
1.15  
1.85  
1.80  
0.80  
0.80  
0.00  
0.15  
0.55  
0.10  
0.10  
MAX.  
1.35  
2.25  
2.40  
1.10  
1.00  
0.10  
0.40  
0.70  
0.20  
0.46  
NOTES:  
1. All dimensions are in mm.  
2. Dimensions are inclusive of plating.  
3. Dimensions are exclusive of mold ꢀash & metal burr.  
4. All speciꢁcations comply to EIAJ SC70.  
5. Die is facing up for mold and facing down for trim/form,  
ie: reverse trim/form.  
b1  
c
L
6. Package surface to be mirror ꢁnish.  
12  
Device Orientation  
REEL  
4 mm  
71x  
8 mm  
71x  
CARRIER  
TAPE  
71x  
71x  
USER  
TOP VIEW  
END VIEW  
FEED  
DIRECTION  
COVER TAPE  
Tape Dimensions For Outline 4T  
P
2
P
P
D
o
E
F
W
C
D
1
t (CARRIER TAPE THICKNESS)  
1
T (COVER TAPE THICKNESS)  
t
K
10 MAX.  
10 MAX.  
o
A
B
o
o
DESCRIPTION  
SYMBOL  
SIZE (mm)  
2.40 0.10  
2.40 0.10  
1.20 0.10  
4.00 0.10  
1.00 + 0.25  
SIZE (INCHES)  
CAVITY  
LENGTH  
WIDTH  
DEPTH  
PITCH  
A
B
K
P
0.094 0.004  
0.094 0.004  
0.047 0.004  
0.157 0.004  
0.039 + 0.010  
o
o
o
BOTTOM HOLE DIAMETER  
D
1
PERFORATION  
DIAMETER  
PITCH  
POSITION  
D
1.55 0.10  
4.00 0.10  
1.75 0.10  
0.061 + 0.002  
0.157 0.004  
0.069 0.004  
P
E
o
CARRIER TAPE  
COVER TAPE  
DISTANCE  
WIDTH  
THICKNESS  
W
8.00 + 0.30 - 0.10 0.315 + 0.012  
t
0.254 0.02  
0.0100 0.0008  
1
WIDTH  
TAPE THICKNESS  
C
T
5.40 0.10  
0.062 0.001  
0.205 + 0.004  
0.0025 0.0004  
t
CAVITY TO PERFORATION  
(WIDTH DIRECTION)  
F
3.50 0.05  
0.138 0.002  
CAVITY TO PERFORATION  
(LENGTH DIRECTION)  
P
2
2.00 0.05  
0.079 0.002  
13  
The MGA-71543 is a small LNA/  
Bypass Switch MMIC that pro-  
vides a low noise figure, a high  
gain and high third order input  
intercept point (IIP3) ideal for the  
first stage LNA of PCS CDMA and  
W-CDMA.  
ing the same matching network at  
both states (LNA State and Bypass  
State). This makes the MGA-71543  
ideal for use between duplexers  
and image reject filters.  
Designing with MGA-71543,  
a Low Noise Amplifier with  
Built-in Mitigated Bypass  
Switches  
The MGA-71543 offers an inte-  
grated solution of LNA with  
Introduction  
The MGA-71543 is a single stage  
GaAs RFIC low noise amplifier  
with an integrated bypass switch  
(Figure 1).  
adjustable IIP3. The IIP3 can be  
fixed to a desired current level for  
the receiver’s linearity require-  
ments. The LNA has a bypass  
switch function, which sets the  
current to zero (2 µA) and pro-  
vides low insertion loss when in  
bypass mode. The bypass mode  
also boosts dynamic range when  
high level signal is being received.  
Device Description  
The MGA-71543 is a single stage  
GaAs IC with a built-in bypass  
switch housed in a SOT-343  
package. The device diagram is  
shown in Figures 1 and 2.  
RF IN  
RF OUT  
Bypass Mode  
RF in  
RF out  
Amplifier Mode  
Figure 2. Simplified Schematic.  
Switch & Bias  
Many CDMA systems operate  
20% LNA and 80% bypass mode.  
For example, with the bypass  
draw of zero and LNA of 10 mA,  
the MGA-71543 allows an average  
of only 2 mA current.  
Figure 1. MGA-71543 Functional Diagram.  
This application note describes a  
low noise amplifier design using  
Avago Technologies’ MGA-71543.  
+
+
Control  
Input  
&
The MGA-71543 is a GaAs MMIC,  
processed on Avago’s cost effec-  
tive PHEMT (Pseudomorphic High  
Electron Mobility Transistor  
Technology). It is housed in the  
SOT343 (SC70 4-lead) package.  
The MGA-71543 is designed for  
receivers and transmitters operat-  
ing from 100 MHz to 6 GHz, mainly  
for CDMA applications i.e. IS-95  
CDMA1900, CDMA800 and  
Output  
& V  
d
DC  
ref  
Gain FET  
GND  
& Vc  
GND  
W-CDMA. It can be used as a first  
stage (Q1) in a CDMA PCS  
Figure 3. Bypass State Duplicates the In and  
Out Impedance.  
1900 MHz application currently  
filled by a single transistor. Its  
bypass capability adds features  
over the single transistor solution  
with no performance loss. The  
device can also be used as a driver  
amplifier for CDMA800.  
Biasing  
This IC can be biased like a  
depletion mode discrete GaAsFET.  
Two kinds of passive biasing can  
be used: gate bias (Figure 4) and  
source resistor bias method  
(Figure 6).  
The MGA-71543 features a mini-  
mum noise figure of 0.8 dB and  
16 dB available gain. The input  
and output are partially matched,  
and only a simple series/shunt  
inductor match is required to  
achieve low noise figure and  
VSWR into 50.  
The purpose of the switch feature  
is to prevent distortion of high  
signal levels in receiver applica-  
tions by bypassing the amplifier.  
Furthermore, zero current draw,  
when in bypass mode, saves  
current thus improving battery  
life.  
Gate Bias  
Pins 1 and 4 (Figure 4) are DC  
grounded and a negative bias  
voltage is applied to Pin 3 in  
addition to the power supply (2.7  
or 3V) applied to Pin 2. This  
method of biasing has the advan-  
tage of minimizing parasitic  
source inductance because the  
device is directly DC and RF  
grounded.  
When set into the bypass mode,  
both input and output are inter-  
nally matched through a mitigative  
circuit. This circuit draws no  
current (less than 2 µA), yet  
duplicates the in and out imped-  
ance of the LNA (Figure 3). This  
allows the system user to have  
minimum mismatch change from  
LNA to Bypass mode, thus allow-  
The internally matched switching  
circuit provides a 20 dB gain step  
and also reduces gain ripple and  
mismatch in system usage.  
14  
3
4
1
2
Input  
The current of the amplifier (Id) is  
set by the value of the resistor  
Rbias. This resistor (Rbias) is  
The approximate value of the  
external resistor, R , may also  
bias  
be calculated from:  
connected at Pin 4 as shown in  
Figure 6 and RF bypassed. At least  
two capacitors in parallel are  
recommended for RF bypassing.  
One capacitor (100 pF) for high  
frequency bypassing and a second,  
large value capacitor for better  
low frequency bypassing. The  
large value capacitor is added in  
parallel to improve the IP3  
Output  
& V  
964  
I
V
ref  
d
R
=
(1 – 0.112 I )  
d
bias  
d
Figure 4. Gate Bias Method.  
where Rbias is in ohms and Id is the  
desired device current in mA.  
The DC supply at the input  
terminal (Vref) can be applied  
through a RF choke (inductor).  
A simple method for DC ground-  
ing the input terminal (Pin 3) is to  
use a shunt inductor that is also  
part of the noise-matching  
network.  
The voltage at Vref (Pin 3) with  
respect to ground determines the  
device current, Id. A plot of typical frequency mixing terms that are  
Id vs. Vref is shown in Figure 5.  
Maximum device current  
(approximately 60 mA) occurs at  
Vref = 0 (i.e. Vgs= 0).  
because they help ground the low  
generated during a two tones test  
(i.e. f1 f2 term which is the  
separation of the two tones  
usually 1 to a few MHz) and thus  
improve the IIP3.  
Adaptive Biasing  
For applications in which input  
power levels vary over a wide  
range, it may be useful to dynami-  
cally adapt the bias of the  
When using the gate biasing  
method, the bypass mode is  
activated when Vds = 0V and  
Vref < -2V.  
3
1
Input  
MGA-71543 to match the signal  
level. A sensor senses the signal  
level at some point in the system  
(usually in the baseband circuitry)  
and automatically adjusts the bias  
current of the amplifier accord-  
ingly. The main advantage of  
adaptive biasing is conservation of  
supply current (longer battery life)  
by using only the amount of  
current necessary to handle the  
input signal without distortion.  
Output  
& V  
4
2
70  
60  
50  
40  
30  
20  
10  
0
d
R
bias  
Figure 6. Source Resistor Bias Method.  
Maximum current (about 60 mA)  
occurs when Rbias=0.  
Adaptive biasing of the  
A plot of typical Id vs. Rbias is  
shown in Figure 7.  
-1  
-0.8  
-0.6  
(V)  
-0.4  
-0.2  
MGA-71543 can be accomplished  
by simple digital means (Figure 8).  
For instance simple electronic  
switches can be used to control  
the value of the source resistor in  
discrete increment.  
V
ref  
60  
50  
Figure 5. Device Current vs. Vref  
.
This kind of biasing would not  
40  
30  
20  
usually be used unless a negative  
supply voltage was readily  
available.  
3
2
DC  
Return  
Path  
1
4
Source Resistor Bias  
10  
0
This is the recommended method  
because it only requires one  
(positive) power supply. As shown  
in Figure 6, Pin 3 is DC grounded  
and pins 1 and 4 are RF bypassed.  
0
20  
40  
60  
80 100 120 140  
R
()  
bias  
Digital  
Control  
Figure 7. Device Current vs. Rbias  
.
Figure 8. Adaptive Bias Control using Digital  
Method.  
15  
Applying the Device Voltage  
Common to all methods of  
Controlling the Switch  
constants of the external bias  
circuit components (current  
setting resistor and bypass  
capacitors). These external  
components increase the switch-  
ing time to around 100ns. Further-  
The device current controls the  
state of the MGA-71543 (amplifier  
or bypass mode). For device  
currents greater than 3 mA, it  
functions as an amplifier. If a  
lower current is drawn, the gain of more, the switching ON time is  
the amplifier is significantly  
reduced and the performance will  
degrade. If the device current is  
biasing, voltage Vd is applied to  
the MGA-71543 through the RF  
output connection (Pin 2). The  
bias line is capacitively bypassed  
to keep RF from the DC supply  
lines and prevent resonant dips or  
peaks in the response of the  
amplifier. Where practical, it may  
slightly lower (faster) than the  
switching OFF time (i.e. It  
switches on faster).  
be cost effective to use a length of set to zero, the MGA-71543 is  
high impedance transmission line  
switched into a bypass mode in  
which the signal is routed around  
the amplifier with a loss of about  
5.6 dB.  
Thermal issues  
λ
(usually / line) in place of the  
RFC.  
4
The Mean Time To Failure (MTTF)  
of semiconductors is inversely  
proportional to the operating  
temperature.  
When using the gate bias method,  
the applied device voltage, Vds, is  
The simplest way of switching the  
equal to voltage Vd (at pin 2) since MGA-71543 to the bypass mode is  
When biased at 3V and 10 mA for  
LNA applications, the power  
Vs is zero.  
to open-circuit the terminals at  
Pins 1 and 4. The bypass mode is  
also set by increasing the source  
resistance Rbias to greater than  
1 M. With the DC ground con-  
nection open, the internal control  
circuit of the MGA-71543 auto-  
switches from amplifier mode into  
a bypass mode and the device  
current drops to near zero. Typical  
bypass mode current is 2 µA.  
dissipation is 3V x 10 mA = 30 mW.  
The temperature increment from  
the RFIC channel to its case is  
then 30 mW x θjc = 0.030 watt x  
240°C/watt = 7.2°C. Subtracting  
the channel-to-case temperature  
rise from the suggested maximum  
junction temperature of 150°C, the  
resulting maximum allowable case  
temperature is 143°C.  
V
~ +2.5 V  
d
RF  
Output  
2
1
71  
RF  
Input  
3
4
Vref = -0.5 V  
Figure 9. DC Schematic for Gate Bias.  
The worst case thermal situation  
occurs when the MGA-71543 is  
operated at its maximum operat-  
ing conditions in an effort to  
maximize output power or achieve  
minimum distortion. A similar  
calculation for the maximum  
operating bias of 4.2 volts and  
50 mA yields a maximum allow-  
able case temperature of 100°C.  
(i.e. 210 mW x θjc = 0.210 watt x  
240°C/watt = 50.4°C  
3
2
For source resistor biasing  
method, the applied device  
1
4
voltage, Vds, is Vd – Vs. The bias  
control voltage is Vs (Pin 4) which  
is set by the external bias resistor.  
A source resistor bias circuit is  
shown in Figure 10.  
R
bias  
Bypass Switch  
Enable  
Figure 11. MGA-71543 Amplifier/Bypass State  
Switching.  
V
= +3 V  
d
150°C – 50.4°C = 100°C.)  
This calculation assumes the  
worst case of no RF power being  
extracted from the device. When  
operated in a saturated mode,  
both power-added efficiency and  
the maximum allowable case  
temperature will increase.  
A digital switch can be used to  
control the amplifier and Bypass  
State as shown in Figure 11.  
RF  
Output  
2
1
71  
RF  
Input  
3
4
Switching Speed  
The speed at which the  
R
bias  
MGA-71543 switches between  
states is extremely fast. The  
intrinsic switching speed is  
typically around 10 ns. However in  
practical circuits, the switching  
speed is limited by the time  
Note: “Case” temperature for  
Figure 10. DC Schematic for Source Bias.  
surface mount packages such as  
the SOT-343 refers to the interface  
between the package pins and the  
16  
mounting surface, i.e., the tem-  
perature at the PCB mounting  
pads. The primary heat path from  
the RFIC chip to the system  
heatsink is by means of conduc-  
tion through the package leads  
and ground vias to the ground  
plane of the PCB.  
RF bypass  
For layouts using the source  
LNA Application  
In the following sections the LNA  
resistor method of biasing, both of design is described in a more  
the ground terminals of the general way. Sample evaluation  
MGA-71543 must be well bypassed boards for 1900 MHz and 800 MHz  
to maintain device stability.  
Beginning with the package pad  
print in Figure 12, and RF layout  
similar to the one shown in  
Figure 13 is a good starting point  
for using the MGA-71543 with  
capacitor-bypassed ground  
terminals. It is a best practice to  
use multiple vias to minimize  
overall ground path inductance.  
are shown in a table (Table 1) and  
the appropriate board diagram is  
shown (Figures 22 and 23). A  
second smaller size board is also  
shown (Figures 25 and 26) with  
the corresponding table (Table 2).  
The smaller board is an example  
of reducing the size of the layout,  
more suitable for handset manu-  
facturers. For low noise amplifier  
application, the LNA is typically  
biased 6 to 20 mA.  
Grounding Consideration in  
PCB Layout  
The MGA-71543 requires careful  
attention during grounding. Any  
device with gain can be made to  
oscillate if feedback is added.  
Since poor grounding adds series  
feedback, it can cause the device  
to oscillate. Poor grounding is one  
of the most common causes of  
oscillation in RF components.  
Careful attention should be used  
when RF bypassing the ground  
terminals when the device is  
biased using the source resistor  
method.  
The MGA-71543 is a conditionally  
stable device, therefore, the  
proper input and output loads  
must be presented in addition to  
properly RF grounding the device.  
Please refer to the stability section  
for tips on preventing oscillation.  
The LNA can be switched ON or  
OFF by a simply varying the  
Size 0402  
71  
recommended  
for the bypass  
capacitors  
Package Footprint  
resistor to its ground leads as  
described in previous sections.  
The PCB pad print for the minia-  
ture, 4-lead SOT-343 (SC70)  
package is shown in Figure 12.  
Figure 13. Layout for RF Bypass.  
Matching Networks for the LNA  
PCB Materials  
1.30  
0.051  
0.031 inches thick of FR-4 or G-10  
type dielectric materials are  
typical choices for most low cost  
wireless applications using single  
layer printed boards. As an  
alternative, a Getek material with  
a multilayer printed circuit board  
can be used for a smaller size  
board, where:  
Γ
Γ
L
in  
1.00  
0.039  
Input  
Output  
Match  
LNA  
Match  
50Ω  
50Ω  
2.00  
0.079  
0.60  
0.024  
Γ
Γ
opt  
s
or  
opt  
Γ
Figure 14. Input and Output Matching  
Terminology.  
1st layer: RF routing layer  
2nd layer: Ground layer  
0.9  
0.035  
3rd layer: Power (DC) routing layer  
4th layer: Other RF routing layer  
The input matching network  
determines the noise figure and  
1.15  
0.045  
return loss (S11) of our amplifier.  
The output-matching network  
determines the IP3 and output  
return loss (S22). Furthermore,  
both input and output matching  
networks influence the gain. The  
best gain (Maximum Available  
Gain-MAG) and lowest input  
return loss is obtained when both  
the input and output are conju-  
mm  
The spacing between the layers is  
as follows:  
Dimensions in  
inches  
Between the 1st and 2nd: 0.005"  
Between the 2nd and 3rd: 0.020"  
Between the 3rd and 4th: 0.005"  
Figure 12. Recommended PCB Pad Layout for  
Avago’s SC70 4L/SOT-343 Products.  
The layout is shown with a  
footprint of the MGA-71543  
superimposed on the PCB pads for  
reference.  
17  
gately matched to 50. For  
satisfied. However, this might  
affect our return loss at the input  
because it creates more mismatch  
(at the input) and there is less  
power transfer to the LNA.  
Design for Stability  
instance at the input, when Γs =  
Γin* the highest gain with the best  
power transfer is obtained where  
Γs is the source reflection coeffi-  
cient presented to the input pin.  
The main potential for oscillation  
with the MGA-71543 is improper  
grounding and/or improper RF  
bypass capacitors. Any device  
Therefore the best solution should with gain can be made to oscillate  
be the one that gives a reasonable  
input return loss with the best  
noise figure associated to it.  
if feedback is added. Proper  
For best noise, Γs = ΓOPT, where  
grounding may be achieved by  
minimizing inductance paths to  
the ground plane. Passive compo-  
nents should be chosen for high  
frequency operation. Bias circuit  
self resonance due to inadequate  
bypass capacitors or inadequate  
grounding may cause high fre-  
quency, out of band, instability.  
Smaller 0402 size bypass capaci-  
tors are recommended to mini-  
mize parasitic inductance and  
resonance of the bias circuit.  
ΓOPT is the source reflection  
coefficient for optimum NF match  
and is determined empirically  
(experimentally). However, an  
input match where Γs = ΓOPT does  
not necessarily yield the best  
return loss nor the best gain.  
The noise figure F of an amplifier  
is determined by the input match-  
ing circuit. The output matching  
does not affect the noise (has a  
significantly minimal effect on  
noise figure).  
Input Match  
To obtain the best noise match a  
simple two elements match is  
used at the input of the device.  
Using the ΓOPT magnitude and  
phase at the frequency of interest,  
the noise match is done. The  
topology that has a capacitor to  
ground is ignored because it does  
not allow the input to be DC  
grounded as is required by the  
source bias method. Therefore the  
series-L-shunt-L topology is used.  
The final values of the noise  
matching circuit (input match)  
was a result of some more empiri-  
cal tuning in the lab that was a  
compromise between the various  
important parameters. Typical  
Gain, noise and stability circles  
are shown in Figures 17 – 20. Most  
simulations were done using  
Avago-EEsof’s Advanced Design  
System (ADS).  
To allow flexibility for the de-  
signer, the LNA is intended to be  
used with external matching  
network at the input.  
Statistical Parameters  
The noise performance of a two  
port can be determined if the  
values of the noise parameters  
Fmin, rn = Rn/50 and ΓOPT are  
known (shown in the datasheet),  
where these parameters are given  
by:  
Several categories of parameters  
appear within the electrical  
specification portion of the  
MGA-71543 datasheet. Parameters  
may be described with values that  
are either “minimum or maxi-  
mum”, “typical” or “standard  
deviations”.  
2
4r |Γ ΓOPT  
|
n
s
F
= F  
+
min  
50  
(1 – |Γ |2) |1 + ΓOPT  
|
2
The values for parameters are  
based on comprehensive product  
characterization data, in which  
automated measurements are  
made on a statistically significant  
number of parts taken from  
nonconsecutive process lots of  
semiconductor wafers. The data  
derived from product character-  
ization tends to be normally  
distributed, e.g. fits the standard  
bell curve.  
s
2
|1 + ΓOPT  
|
r = (F – F  
n
50  
min)  
2
4|ΓOPT  
|
ZOPT – ZO  
ZOPT + ZO  
ΓOPT  
=
Where  
min is the minimum noise figure  
F
that is obtained when Γs = ΓOPT  
.
Stability  
Rn is the noise resistance that  
indicates the sensitivity of the  
noise performance.  
A stable circuit is a circuit that  
does not oscillate. Oscillation can  
take the form of spurious signal  
and noise generation. This usually  
results in changes in DC operating  
point (bias level fluctuates). The  
oscillations can be triggered by  
changes in the source (input  
match), load (output match), bias  
level and last but not least:  
improper grounding.  
68%  
Γs is the source reflection coeffi-  
cient presented to the input pin.  
95%  
99%  
ΓOPT is the source reflection  
coefficient for optimum NF match.  
-3σ -2σ -1σ Mean (µ) +1σ +2σ +3σ  
Any change in Γs affects the noise  
figure of our amplifier. To obtain  
the best noise figure, the following  
relation: Γs = ΓOPT must be  
(typical)  
Parameter Value  
Figure 15. Normal Distribution Curve.  
18  
Parameters considered to be the  
most important to system perfor-  
mance are bounded by minimum  
or maximum values. For the  
To assist designers in optimizing  
not only the immediate amplifier  
circuit using the MGA-71543, but  
to also evaluate and optimize  
Phase Reference Planes  
The positions of the reference  
plane used to specify S-parameters  
and Noise Parameters for the  
MGA-71543 are shown in  
MGA-71543, these parameters are: tradeoffs that affect a complete  
Vref test, NFtest,Gatest,IIP3 test,and  
ILtest. Each of the guaranteed  
parameters is 100% tested as part  
of the normal manufacturing and  
test process.  
wireless system, the standard  
deviation (σ) is provided for  
many of the Electrical Specifica-  
tion parameters (at 25°C). The  
standard deviation is a measure of circuit.  
the variability about the mean. It  
will be recalled that a normal  
Figure 16. As seen in the illustra-  
tion, the reference planes are  
located at the point where the  
package leads contact the test  
Values for most of the parameters  
in the table of Electrical Specifica- distribution is completely de-  
Reference Planes  
tions that are described by typical scribed by the mean and standard  
data are the mathematical mean  
(µ), of the normal distribution  
taken from the characterization  
data. For parameters where  
measurements or mathematical  
averaging may not be practical,  
such as S-parameters or Noise  
parameters and the performance  
curves, the data represents a  
nominal part taken from the  
center of the characterization  
distribution. Typical values are  
intended to be used as a basis for  
electrical design.  
deviation.  
Standard statistics tables or  
calculations provide the probabil-  
ity of a parameter falling between  
any two values, usually symmetri-  
cally located about the mean.  
Referring to Figure 15 for  
example, the probability of a  
parameter being between 1σ is  
68.3%; between 2σ is 95.4%; and  
between 3σ is 99.7%.  
Test Circuit  
Figure 16. Phase Reference Planes.  
19  
Demonstration Board  
Source unstable  
Source stability circle  
Source stable  
G = 18.8 dB  
Load stability circle  
NF = 0.75 dB  
Load unstable  
region  
G = 17.8 dB  
G = 16.8 dB  
Gain Circles  
Noise Circles  
Load stable  
region  
G = 15.8 dB  
G = 14.8 dB  
NF = 0.95 dB  
NF = 1.15 dB  
NF = 1.35 dB  
NF = 1.55 dB  
Figure 18. Gain, Noise and Stability Circles.  
Figure 19. Noise Circles F = 1900 MHz,  
Step Size: 0.2 dB.  
Figure 20. Gain Circle F = 1900 MHz,  
Step Size: 1.0 dB.  
Figure 21. Load and Source Stability Circles.  
V
d
+3.0V  
C11  
C10  
L3  
RF  
Output  
C9  
R4  
C4  
C5  
1
2
4
71  
RF  
3
L1  
Input  
C1  
C8  
C6  
C7  
L2  
C2  
SW1  
SW2  
R3  
R1  
R2  
Figure 22. Schematic Diagram of Evaluation Board Amplifier.  
20  
Agilent  
MGA-71543  
Eval Circuit  
V
d
GND  
C11  
C10  
L3  
C4  
C5  
R4  
C8  
OUT  
C9  
C6  
IN  
L1  
L2  
C1  
C7  
C2  
R1  
R3  
R2  
Vc  
EB 7/00  
REV 2  
Figure 23. Amplifier Evaluation Circuit with Component Designators. Actual board size is 1.1 x 1.3 inches, 0.031 inches thick.  
Board Designation  
Description  
Part Number  
Package  
PCS-1900  
800 MHz  
71  
DUT[1]  
100 pF  
100 pF  
47 pF  
DUT[1]  
8.2 pF  
100 pF  
2.7 pF  
0.01 µF  
18 nH  
33 nH  
33 nH  
51Ω  
MGA-71543  
SOT-343 (4 lead SC-70 package)  
Size 0402  
C1  
C2, C5, C6, C7, C10  
Size 0402  
C9  
Size 0402  
C4, C8, C11  
0.01 µF  
1.5 nH  
2.7 nH  
3.9 nH  
51Ω  
Size 0603 or 0402  
Size 0402  
L1  
TOKO LL1005  
TOKO LL1005  
TOKO LL1005  
L2  
Size 0402  
L3  
Size 0402  
R1  
Size 0402  
R2  
115Ω  
115Ω  
18 nH  
60Ω  
Size 0805 (for 6mA Bias)  
Size 0805 (Jumper)/ Size 0603 (inductor)  
Size 0805 (for 10mA Bias)  
R4/L4  
0(1900)  
60Ω  
/LL1608-FH or 1005-FH  
R3  
Note 1: Device under Test  
Table 1. Component Values for 1900 MHz and 800 MHz.  
21  
Digital  
Base-band  
Processor  
Analog  
Front-end  
MGA-71543  
Demodulator  
ADC  
ADC  
Dual  
Synthesizer  
Dual VCO  
DAC  
DAC  
RF Control Signal  
(PDM  
)
Figure 24. System Level Overview of MGA-71543 for Handset Designers.  
These are the actual necessary components.  
The other connectors and board space are only for production.  
blue2_lna  
rev2.1  
L25  
R37  
L25  
C12  
C36  
C12  
C36  
R37  
C44  
R25  
C38  
C9  
U2  
C47  
L7  
R38  
C8  
C37  
R24  
U2  
33.1 mm  
1.303 in  
C38  
L7  
R21  
R20  
U4  
C44  
C37  
C47  
C9  
R38  
R25  
R21  
C8  
R20  
U4  
J10  
J9  
J8  
J7  
AGILENT TECHNOLOGIES  
20.1 mm  
0.791 in  
Software controlling the switch  
Manual switch control  
Figure 25. Small Size Amplifier Board with Components for Handset Focussed Designers.  
22  
4 layer Board  
Designation  
Description  
PCS-1900  
Part Number  
Package  
U2 or 71  
DUT[1]  
MGA-71543  
FDG6303N  
SOT-343 (SC-70)  
Dual N-channel, Digital FET  
Size 0402  
U4 or O3  
Switch b/n Gnd resistors  
C12  
2.2 pF  
0.033 µF  
100 pF  
Not used  
27 pF  
C8, C47  
Size 0402  
C9, C44  
Size 0402  
C38  
C36, C37  
Size 0402  
L5  
3.9 nH  
4.7 nH  
1.5 nH  
Not used  
51Ω  
TOKO LL1005  
TOKO LL1005  
TOKO LL1005  
Size 0402  
L6  
Size 0402  
L7  
Size 0402  
L25  
For tuning/Not used here  
Size 0402  
R38  
R20  
36Ω  
Size 0402 (for 16 mA Bias)  
Size 0402 (for 11 mA Bias)  
Size 0402  
R21  
56Ω  
R24, R25  
6Ω  
R16, R17  
0Ω  
Size 0402 (Jumper)  
Size 0402 (Jumper)  
Used with other FET switches  
R37  
0Ω  
R18, R28  
Not used  
Note 1: Device under Test  
Table 2. Component Values for 1900 MHz Amplifier on Smaller Board.  
References  
1. Application note RLM020199, “Designing with the  
MGA-72543 RFIC Amplifier/Bypass Switch”.  
2. G.D.Vendelin, A.M.Pavio and U.L.Rhode,  
“Microwave Circuit Design Using Linear and  
Nonlinear Techniques”.  
23  
MGA-71543  
blue2_lna  
rev2.1  
RF IN  
RF OUT  
L25  
C12  
C36  
R37  
U2  
C38  
C9  
C47  
L7  
C44  
R38  
Switch & Bias Control  
R25  
C37  
R24  
R21  
C8  
R20  
U4  
1 or 4*  
2 or 5  
3 or 6  
6 or 3  
5 or 2  
J10  
J9  
J8  
J7  
4 or 1*  
S2  
G2  
AGILENT TECHNOLOGIES  
03  
D1  
D2  
G1  
S1  
SC70-6  
U4 = FDG6303N  
Dual N-channel, Digital FET  
MGA-71543  
C36  
C37  
IN  
C9  
L7  
R38  
C12  
OUT  
L6  
L5  
R38  
C47  
Not used in this case.  
C44  
These could be used with  
other digital FET to select  
more discrete current values.  
C8  
R25  
R20  
R24  
R21  
1 or 4*  
2 or 5  
3 or 6  
6 or 3  
5 or 2  
R28  
R18  
4 or 1*  
(0Jumper) (0Jumper)  
R16 (0Jumper)  
FDG6303N  
R17 (0Jumper)  
Selects current  
set by R21  
Selects current  
set by R20  
Vd = 3 Volt  
Figure 26. LNA Bypass Circuit Control on Small Test Board.  
For product information and a complete list of distributors, please go to our web site: www.avagotech.com  
Avago, Avago Technologies, and the A logo are trademarks of Avago Technologies in the United States and other countries.  
Data subject to change. Copyright © 2005-2015 Avago Technologies. All rights reserved. Obsoletes 5989-4193EN  
AV02-3597EN - September 28, 2015  

相关型号:

DEMO-VMMK3413-35

25 - 45 GHz Directional Detector in SMT Package
BOARDCOM

DEMO-VMMK3413-42

25 - 45 GHz Directional Detector in SMT Package
BOARDCOM

DEMO09P032CTXLF

D Subminiature Connector, 9 Contact(s), Male, Solder Terminal, LEAD FREE
AMPHENOL

DEMO09P032GXLF

D Subminiature Connector, 9 Contact(s), Male, Solder Terminal, LEAD FREE
AMPHENOL

DEMO09P032HTXLF

D Subminiature Connector, 9 Contact(s), Male, Solder Terminal, LEAD FREE
AMPHENOL

DEMO09P032HXLF

D Subminiature Connector, 9 Contact(s), Male, Solder Terminal, LEAD FREE
AMPHENOL

DEMO09P032MXLF

D Subminiature Connector, 9 Contact(s), Male, Solder Terminal, LEAD FREE
AMPHENOL

DEMO09P032NTXLF

D Subminiature Connector, 9 Contact(s), Male, Solder Terminal, LEAD FREE
AMPHENOL

DEMO09P032NXLF

D Subminiature Connector, 9 Contact(s), Male, Solder Terminal, LEAD FREE
AMPHENOL

DEMO09P032TXLF

D Subminiature Connector, 9 Contact(s), Male, Solder Terminal, LEAD FREE
AMPHENOL

DEMO09P032XLF

D Subminiature Connector, 9 Contact(s), Male, Solder Terminal, LEAD FREE
AMPHENOL

DEMO09P043

D Subminiature Connector, 9 Contact(s), Male, Solder Terminal,
AMPHENOL