HLMP-AM65-140XX [BOARDCOM]

Precision Optical Performance Red Green and Blue New 5mm Mini Oval LEDs;
HLMP-AM65-140XX
型号: HLMP-AM65-140XX
厂家: Broadcom Corporation.    Broadcom Corporation.
描述:

Precision Optical Performance Red Green and Blue New 5mm Mini Oval LEDs

文件: 总12页 (文件大小:231K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
HLMP-AG64/65, HLMP-AM64/65, HLMP-AB64/65  
Precision Optical Performance Red Green and Blue  
New 5mm Mini Oval LEDs  
Data Sheet  
Description  
Features  
Well defined spatial radiation pattern  
High brightness material  
Available in red, green and blue color  
Red AlInGaP 626 nm  
Green InGaN 525nm  
Blue InGaN 470nm  
Superior resistance to moisture  
Standoff Package  
These Precision Optical Performance Oval LEDs are spe-  
cifically designed for full color/video and passenger infor-  
mation signs. The oval shaped radiation pattern and high  
luminous intensity ensure that these devices are excellent  
for wide field of view outdoor applications where a wide  
viewing angle and readability in sunlight are essential.  
The package epoxy contains both UV-A and UV-B inhibi-  
tors to reduce the effects of long term exposure to direct  
sunlight.  
Tinted and diffused  
Typical viewing angle 30° x 70°  
Applications  
Full color signs  
Package Dimensions  
Package drawing A  
0.ꢀ  
0.032  
max.  
3.ꢀ0 0.200  
0.150 0.00ꢀ  
0.50 0.10  
sq. typ.  
ꢀ.70 0.20  
0.342 0.00ꢀ  
0.020 0.004  
0.70  
0.02ꢀ  
max.  
5.20 0.200  
0.205 0.00ꢀ  
2.54 0.3  
0.100 0.012  
cathode lead  
min.  
1.00  
min.  
24.00  
0.945  
0.03ꢀ  
Package drawing B  
1.50 0.15  
0.0591 0.006  
0.50 0.10  
sq. typ.  
11.70 0.50  
0.4606 0.020  
3.ꢀ0 0.200  
0.150 0.00ꢀ  
0.020 0.004  
0.70  
0.02ꢀ  
max.  
5.20 0.20  
0.205 0.00ꢀ  
2.54 0.3  
0.100 0.012  
cathode lead  
min.  
24.00  
0.945  
ꢀ.70 0.20  
0.342 0.00ꢀ  
1.00  
min.  
0.ꢀ  
0.032  
max.  
0.03ꢀ  
Notes:  
All dimensions in millimeters (inches).  
Caution: INGaN devices are Class 1C HBM ESD sensitive per JEDEC Standard. Please observe appropriate  
precautions during handling and processing. Refer to Application Note AN – 1142 for additional details.  
Device Selection Guide  
Color and Dominant  
Wavelength d (nm) Typ (mcd) at 20 mA-Min  
Red 626  
Luminous Intensity Iv  
Luminous Intensity Iv  
(mcd) at 20 mA-Max  
Package  
Drawing  
Part Number  
Standoff  
No  
HLMP-AG64-X10xx  
HLMP-AG65-X10xx  
HLMP-AM64-140xx  
HLMP-AM65-140xx  
HLMP-AB64-TW0xx  
HLMP-AB65-TW0xx  
1660  
1660  
2900  
2900  
800  
3500  
3500  
6050  
6050  
1660  
1660  
A
B
A
B
A
B
Red 626  
Yes  
Green 525  
Green 525  
Blue 470  
Blue 470  
No  
Yes  
No  
800  
Yes  
Tolerance for each intensity limit is 15ꢀ.  
Notes:  
1. The luminous intensity is measured on the mechanical axis of the lamp package.  
Part Numbering System  
H L M P - A x 6 x – x x x x x  
Packaging Option  
DD: Ammopack  
ZZ: Flexi Ammopack  
Color Bin Selection  
0: Open distribution  
Maximum Intensity Bin  
0: No maximum intensity limit  
Minimum Intensity Bin  
Refer to Device Selection Guide.  
Standoff/ Non Standoff  
4: Non Standoff  
5: Standoff  
Color  
G: Red 626  
M: Green 525  
B: Blue 470  
Package  
A: 5mm Mini Oval 30° x 70°  
Note:  
Please refer to AB 5337 for complete information about part numbering system.  
2
Absolute Maximum Ratings  
T = 25°C  
A
Parameter  
Red  
Green and Blue  
30  
100 [3]  
Unit  
mA  
mA  
mW  
V
DC Forward Current [1]  
Peak Forward Current  
Power Dissipation  
50  
100 [2]  
120  
116  
Reverse Voltage  
5 (IR = 100 μA)  
130  
5 (IR = 10 μA)  
110  
LED Junction Temperature  
Operating Temperature Range  
Storage Temperature Range  
°C  
-40 to +100  
-40 to +100  
-40 to +85  
-40 to +100  
°C  
°C  
Notes:  
1. Derate linearly as shown in Figure 4 and Figure 8  
2. Duty Factor 30ꢀ, frequency 1KHz.  
3. Duty Factor 10ꢀ, frequency 1KHz.  
Electrical / Optical Characteristics  
T = 25°C  
A
Parameter  
Symbol  
Min.  
Typ.  
Max.  
Units  
Test Conditions  
Forward Voltage  
VF  
V
IF = 20 mA  
Red  
Green  
Blue  
1.8  
2.8  
2.8  
2.1  
3.2  
3.2  
2.4  
3.8  
3.8  
Reverse Voltage  
Red  
VR  
V
5
5
IF = 100 μA  
IF = 10 μA  
Green & blue  
Dominant Wavelength [1]  
Red  
Green  
Blue  
d  
618  
520  
460  
626  
525  
470  
630  
540  
480  
nm  
IF = 20 mA  
Peak Wavelength  
Red  
Green  
Blue  
PEAK  
RJ-PIN  
V  
634  
516  
464  
nm  
Peak of Wavelength of  
Spectral Distribution  
at IF = 20 mA  
Thermal Resistance  
240  
°C/W  
lm/W  
LED Junction-to-Pin  
Luminous Efficacy [2]  
Red  
Green  
Blue  
150  
530  
65  
Emitted Luminous Power/  
Emitted Radiant Power  
Notes:  
1. The dominant wavelength is derived from the chromaticity Diagram and represents the color of the lamp  
2. The radiant intensity, Ie in watts per steradian, may be found from the equation Ie = I /where I is the luminous intensity in candelas and is  
V
V
V
V
the luminous efficacy in lumens/watt.  
3
AlInGaP Red  
1
50  
40  
30  
20  
10  
0.8  
0.6  
0.4  
0.2  
0
550  
0
0
0.5  
1
1.5  
2
2.5  
600  
650  
700  
FORWARD VOLTAGE - V  
WAVELENGTH - nm  
Figure 1. Relative Intensity vs Wavelength  
Figure 2. Forward Current vs Forward Voltage  
2.5  
2
60  
50  
40  
30  
20  
10  
0
1.5  
1
0.5  
0
0
20  
40  
60  
80  
100  
0
10  
20  
30  
40  
50  
TA- AMBIENT TEMPERATURE - -C  
DC FORWARD CURRENT - mA  
Figure 3. Relative Intensity vs Forward Current  
Figure 4. Maximum Forward Current vs Ambient Temperature  
4
InGaN Blue and Green  
30  
25  
20  
15  
10  
5
1.0  
0.9  
0.8  
0.7  
BLUE  
0.6  
GREEN  
0.5  
0.4  
0.3  
0.2  
0.1  
0.0  
0
380  
430  
480  
530  
580  
630  
0
1
2
3
4
FORWARD VOLTAGE -V  
WAVELENGTH - nm  
Figure 5. Relative Intensity vs Wavelength  
Figure 6. Forward Current vs Forward Voltage  
35  
30  
25  
20  
15  
10  
5
1.6  
1.4  
1.2  
1
GREEN  
0.8  
0.6  
0.4  
BLUE  
0.2  
0
0
0
5
10  
15  
20  
25  
30  
35  
0
20  
40  
60  
80  
100  
DC FORWARD CURRENT - mA  
T A - AMBIENTTEMPERATURE - °C  
Figure 7. Relative Intensity vs Forward Current  
Figure ꢀ. Maximum Forward Current vs Ambient Temperature  
16  
14  
12  
10  
8
GREEN  
6
4
2
BLUE  
0
-2  
-4  
0
5
10  
15  
20  
25  
30  
35  
FORWARD CURRENT - mA  
Figure 9. Relative dominant wavelength vs Forward Current  
5
1.0  
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0.0  
1.0  
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0.0  
Green  
Blue  
Red  
Green  
Blue  
Red  
-90  
-60  
-30  
0
30  
60  
90  
-90  
-60  
-30  
0
30  
60  
90  
ANGULAR DISPLACEMENT - DEGREE  
ANGULAR DISPLACEMENT-DEGREE  
Figure 11. Radiation Pattern-Minor Axis  
Figure 10. Radiation Pattern-Major Axis  
6
Intensity Bin Limit Table (1.2: 1 Iv Bin Ratio)  
Intensity (mcd) at 20 mA  
Green Color Bin Table  
Min  
Dom  
Max  
Dom  
Bin  
Xmin  
Ymin  
Xmax Ymax  
Bin  
T
Min  
Max  
1
520.0  
524.0  
528.0  
532.0  
536.0  
524.0  
0.0743 0.8338 0.1856 0.6556  
0.1650 0.6586 0.1060 0.8292  
0.1060 0.8292 0.2068 0.6463  
0.1856 0.6556 0.1387 0.8148  
0.1387 0.8148 0.2273 0.6344  
0.2068 0.6463 0.1702 0.7965  
0.1702 0.7965 0.2469 0.6213  
0.2273 0.6344 0.2003 0.7764  
0.2003 0.7764 0.2659 0.6070  
0.2469 0.6213 0.2296 0.7543  
800  
960  
U
V
960  
1150  
1380  
1660  
1990  
2400  
2900  
3500  
4200  
5040  
6050  
2
3
4
5
528.0  
532.0  
536.0  
540.0  
1150  
1380  
1660  
1990  
2400  
2900  
3500  
4200  
5040  
W
X
Y
Z
1
2
3
4
Tolerance for each bin limit is 0.5nm.  
Tolerance for each bin limit is 15ꢀ  
Blue Color Bin Table  
Min  
Dom  
Max  
Dom  
VF Bin Table (V at 20mA)  
Bin  
Xmin  
Ymin  
Xmax Ymax  
Bin ID  
VD  
Min  
1.8  
2.0  
2.2  
Max  
2.0  
2.2  
2.4  
1
460.0  
464.0  
468.0  
472.0  
476.0  
464.0  
468.0  
472.0  
476.0  
480.0  
0.1440 0.0297 0.1766 0.0966  
0.1818 0.0904 0.1374 0.0374  
0.1374 0.0374 0.1699 0.1062  
0.1766 0.0966 0.1291 0.0495  
0.1291 0.0495 0.1616 0.1209  
0.1699 0.1062 0.1187 0.0671  
0.1187 0.0671 0.1517 0.1423  
0.1616 0.1209 0.1063 0.0945  
0.1063 0.0945 0.1397 0.1728  
0.1517 0.1423 0.0913 0.1327  
VA  
2
3
4
5
VB  
Notes:  
1. Tolerance for each bin limit is 0.05V  
2. VF binning only applicable to Red color.  
Red Color Range  
Max  
Min Dom Dom  
Xmin  
Ymin  
Xmax  
Ymax  
618  
630  
0.6872  
0.6690  
0.3126  
0.3149  
0.6890  
0.7080  
0.2943  
0.2920  
Tolerance for each bin limit is 0.5nm  
Note:  
1. All bin categories are established for classification of products.  
Products may not be available in all bin categories. Please contact  
your Avago representative for further information.  
Tolerance for each bin limit is 0.5nm  
7
Relative Light Output vs Junction Temperature  
10  
1
Red  
Blue  
Green  
0.1  
-40  
-20  
0
20  
40  
60  
80  
100  
120  
140  
TJ - JUNCTION TEMPERATURE - °C  
Avago Color Bin on CIE 1931 Chromaticity Diagram  
1.000  
0.800  
Green  
1
2
3
4
5
0.600  
0.400  
0.200  
0.000  
Red  
Blue  
1
5
4
3
2
0.000  
0.100  
0.200  
0.300  
0.400  
X
0.500  
0.600  
0.700  
0.800  
8
Note:  
Precautions:  
1. PCB with different size and design (component density) will have  
different heat mass (heat capacity). This might cause a change in  
temperature experienced by the board if same wave soldering  
setting is used. So, it is recommended to re-calibrate the soldering  
profile again before loading a new type of PCB.  
Lead Forming:  
The leads of an LED lamp may be preformed or cut to  
length prior to insertion and soldering on PC board.  
2. Avago Technologies’ AllnGaP high brightness LED are using high  
efficiency LED die with single wire bond as shown below. Customer  
is advised to take extra precaution during wave soldering to ensure  
that the maximum wave temperature does not exceed 260°C and the  
solder contact time does not exceeding 5sec. Over-stressing the LED  
during soldering process might cause premature failure to the LED  
due to delamination.  
For better control, it is recommended to use proper  
tool to precisely form and cut the leads to applicable  
length rather than doing it manually.  
If manual lead cutting is necessary, cut the leads after  
the soldering process. The solder connection forms a  
mechanical ground which prevents mechanical stress  
due to lead cutting from traveling into LED package.  
This is highly recommended for hand solder operation,  
as the excess lead length also acts as small heat sink.  
Avago Technologies LED configuration  
Soldering and Handling:  
Care must be taken during PCB assembly and soldering  
process to prevent damage to the LED component.  
LED component may be effectively hand soldered  
to PCB. However, it is only recommended under  
unavoidable circumstances such as rework. The closest  
manual soldering distance of the soldering heat source  
(soldering iron’s tip) to the body is 1.59mm. Soldering  
the LED using soldering iron tip closer than 1.59mm  
might damage the LED.  
CATHODE  
ANDOE  
AlInGaP Device  
InGaN Device  
Note: Electrical connection between bottom surface of LED die and  
the lead frame is achieved through conductive paste.  
Any alignment fixture that is being applied during  
wave soldering should be loosely fitted and should  
not apply weight or force on LED. Non metal material  
is recommended as it will absorb less heat during wave  
soldering process.  
1.59mm  
At elevated temperature, LED is more susceptible to  
mechanical stress. Therefore, PCB must allowed to cool  
down to room temperature prior to handling, which  
includes removal of alignment fixture or pallet.  
ESD precaution must be properly applied on the  
soldering station and personnel to prevent ESD  
damage to the LED component that is ESD sensitive.  
Do refer to Avago application note AN 1142 for details.  
The soldering iron used should have grounded tip to  
ensure electrostatic charge is properly grounded.  
If PCB board contains both through hole (TH) LED and  
other surface mount components, it is recommended  
that surface mount components be soldered on the  
top side of the PCB. If surface mount need to be on the  
bottom side, these components should be soldered  
using reflow soldering prior to insertion the TH LED.  
Recommended soldering condition:  
Wave  
Soldering  
Manual Solder  
Dipping  
[1, 2]  
Pre-heat temperature 105 °C Max.  
-
Recommended PC board plated through holes (PTH)  
size for LED component leads.  
Preheat time  
Peak temperature  
Dwell time  
60 sec Max  
260 °C Max.  
5 sec Max.  
-
260 °C Max.  
5 sec Max  
LED component  
lead size  
Plated through  
hole diameter  
Diagonal  
0.45 x 0.45 mm  
(0.018x 0.018 inch) (0.025 inch) (0.039 to 0.043 inch)  
0.636 mm  
0.98 to 1.08 mm  
Note:  
1. Above conditions refers to measurement with thermocouple  
mounted at the bottom of PCB.  
0.50 x 0.50 mm 0.707 mm 1.05 to 1.15 mm  
2. It is recommended to use only bottom preheaters in order to  
reduce thermal stress experienced by LED.  
(0.020x 0.020 inch) (0.028 inch) (0.041 to 0.045 inch)  
Wave soldering parameters must be set and maintained  
according to the recommended temperature and dwell  
time. Customer is advised to perform daily check on the  
soldering profile to ensure that it is always conforming  
to recommended soldering conditions.  
Over-sizing the PTH can lead to twisted LED after  
clinching. On the other hand under sizing the PTH can  
cause difficulty inserting the TH LED.  
Refer to Application Note 5334 for more information about soldering  
and handling of high brightness TH LED lamps.  
9
Example of Wave Soldering Temperature Profile for TH LED  
260°C Max  
Recommended solder:  
Sn63 (Leaded solder alloy)  
SAC305 (Lead free solder alloy)  
Flux: Rosin flux  
Solder bath temperature: 255°C 5°C  
(maximum peak temperature = 260°C)  
105°C Max  
Dwell time: 3.0 sec - 5.0 sec  
(maximum = 5sec)  
60 sec Max  
Note: Allow for board to be sufficiently  
cooled to room temperature before  
exerting mechanical force.  
TIME (sec)  
Ammo Packs Drawing  
12.70 1.00  
0.500 0.039  
6.35 1.30  
0.250 0.051  
CATHODE  
20.5 1.00  
0.8070 0.039ꢀ  
9.125 0.625  
0.3595 0.02ꢀ5  
18.00 0.50  
0.7085 0.0195  
ꢀ.00 0.20  
0.1575 0.0075  
TYP.  
0.70 0.20  
0.276 0.0075  
12.70 0.30  
0.500 0.012  
VIEW A - A  
Note: All dimensions in millimeters (inches)  
10  
Packaging Box for Ammo Packs  
FROM LEFT SIDE OF BOX  
ADHESIVE TAPE MUST BE  
FACING UPWARDS.  
LABEL ON THIS  
SIDE OF BOX  
ANODE LEAD LEAVES  
THE BOX FIRST.  
Note: For InGaN device, the ammo pack packaging box contain ESD logo  
Packaging Label  
(i) Avago Mother Label: (Available on packaging box of ammo pack and shipping box)  
STANDARD LABEL LS0002  
RoHS Compliant  
(1P) Item: Part Number  
e3  
max temp 260C  
(Q) QTY: Quantity  
(1T) Lot: Lot Number  
LPN:  
CAT: Intensity Bin  
BIN: Refer to below information  
(9D)MFG Date: Manufacturing Date  
(P) Customer Item:  
(V) Vendor ID:  
(9D) Date Code: Date Code  
Made In: Country of Origin  
DeptID:  
11  
(ii) Avago Baby Label (Only available on bulk packaging)  
RoHS Compliant  
e3 max temp 260C  
Lamps Baby Label  
(1P) PART #: Part Number  
(1T) LOT #: Lot Number  
(9D)MFG DATE: Manufacturing Date  
QUANTITY: Packing Quantity  
C/O: Country of Origin  
Customer P/N:  
CAT: Intensity Bin  
Supplier Code:  
BIN: Refer to below information  
DATECODE: Date Code  
Acronyms and Definition:  
BIN:  
Example:  
(i) Color bin only or VF bin only  
BIN: 2 (represent color bin 2 only)  
BIN: VB (represent VF bin “VBonly)  
(i) Color bin only or VF bin only (Applicable for part  
number with color bins but without VF bin OR part  
number with VF bins and no color bin)  
(ii) Color bin incorporate with VF Bin  
OR  
(ii) Color bin incorporated with VF Bin (Applicable for part  
number that have both color bin and VF bin)  
BIN: 2VB  
VB: VF bin “VB”  
2: Color bin 2 only  
DISCLAIMER: AVAGO’S PRODUCTS AND SOFTWARE ARE NOT SPECIFICALLY DESIGNED, MANUFACTURED  
OR AUTHORIZED FOR SALE AS PARTS, COMPONENTS OR ASSEMBLIES FOR THE PLANNING, CONSTRUCTION,  
MAINTENANCE OR DIRECT OPERATION OF A NUCLEAR FACILITY OR FOR USE IN MEDICAL DEVICES OR APPLI-  
CATIONS. CUSTOMER IS SOLELY RESPONSIBLE, AND WAIVES ALL RIGHTS TO MAKE CLAIMS AGAINST AVAGO  
OR ITS SUPPLIERS, FOR ALL LOSS, DAMAGE, EXPENSE OR LIABILITY IN CONNECTION WITH SUCH USE.  
For product information and a complete list of distributors, please go to our web site: www.avagotech.com  
Avago, Avago Technologies, and the A logo are trademarks of Avago Technologies in the United States and other countries.  
Data subject to change. Copyright © 2005-2011 Avago Technologies. All rights reserved.  
AV02-1510EN - April 18, 2011  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY