CLC1003IST5X [CADEKA]

Low Distortion, Low Offset, RRIO Amplifier; 低失真,低失调, RRIO放大器
CLC1003IST5X
型号: CLC1003IST5X
厂家: CADEKA MICROCIRCUITS LLC.    CADEKA MICROCIRCUITS LLC.
描述:

Low Distortion, Low Offset, RRIO Amplifier
低失真,低失调, RRIO放大器

放大器
文件: 总16页 (文件大小:1953K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Data Sheet  
Amplify the Human Experience  
®
Comlinear CLC1003  
Low Distortion, Low Offset, RRIO Amplifier  
f e a t u r e s  
General Description  
nꢀ  
1mV max input offset voltage  
The COMLINEAR CLC1003 is a single channel, high-performance, voltage  
feedback amplifier with near precision performance, low input voltage noise,  
and ultra low distortion. The CLC1003 family of amplifiers offers 1mV maxi-  
mum input offset voltage, 3.5nV/√Hz broadband input voltage noise, and  
0.00005% THD at 1kHz. These amplifiers also provide 55MHz gain bandwidth  
product and 12V/μs slew rate making them well suited for applications requir-  
ing precision DC performance and high AC performance. These COMLINEAR  
high-performance amplifiers also offer a rail-to-rail input and output, simplify-  
ing single supply designs and offering larger dynamic range possibilities. The  
inputs extend beyond the rails by 500mV.  
nꢀ  
nꢀ  
nꢀ  
nꢀ  
nꢀ  
nꢀ  
nꢀ  
nꢀ  
nꢀ  
0.00005% THD at 1kHz  
5.3nV/√Hz input voltage noise >10kHz  
-90dB/-85dB HD2/HD3 at 100kHz, RL=100Ω  
<-100dB HD2 and HD3 at 10kHz, RL=1kΩ  
Rail-to-Rail input and output  
55MHz unity gain bandwidth  
12V/μs slew rate  
+80mA, -55mA output current  
-40°C to +125°C operating temperature  
range  
nꢀ  
nꢀ  
nꢀ  
nꢀ  
Fully specified at 3V and ±5V supplies  
CLC1003: Pb-free SOT23-5, SOIC-8  
Future option CLC2003: Dual  
The COMLINEAR CLC1003 family of amplifiers are designed to operate from  
2.5V to 12V supplies and operate over the extended temperature range of  
-40°C to +125°.  
Future option CLC4003: Quad  
a p p l i c a t i o n s  
Typical Application - Current Sensing in 3-Phase Motor  
nꢀ  
Active filters  
nꢀ  
Sensor interface  
nꢀ  
High-speed transducer amp  
VCC  
nꢀ  
Medical instrumentation  
nꢀ  
Probe equipment  
nꢀ  
+
Test equipment  
nꢀ  
lph_1  
lph_2  
lph_3  
CLC1003  
Smoke detecters  
nꢀ  
Hand-held analytic instruments  
SPM  
(Smart  
Power  
M
Module)  
Ordering Information  
Part Number  
Package  
Pb-Free  
Yes  
RoHS Compliant  
Operating Temperature Range Packaging Method  
CLC1003IST5X  
CLC1003ISO8X*  
CLC1003ISO8*  
CLC1003AST5X  
CLC1003ASO8X*  
SOT23-5  
SOIC-8  
SOIC-8  
SOT23-5  
SOIC-8  
SOIC-8  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
-40°C to +85°C  
-40°C to +85°C  
-40°C to +85°C  
-40°C to +125°C  
-40°C to +125°C  
-40°C to +125°C  
Reel  
Reel  
Rail  
Yes  
Yes  
Yes  
Reel  
Reel  
Rail  
Yes  
CLC1003ASO8*  
Yes  
*Preliminary Product Information  
Moisture sensitivity level for all parts is MSL-1.  
©2008 CADEKA Microcircuits LLC  
www.cadeka.com  
Data Sheet  
CLC1003 SOT23-5 Pin Assignments  
CLC1003 SOT Pin Configuration  
Pin No.  
Pin Name  
OUT  
Description  
1
2
3
4
5
Output  
OUT  
1
2
3
5
4
+V  
S
-V  
Negative supply  
Positive input  
Negative input  
Positive supply  
S
-V  
S
+
-
+IN  
-IN  
-IN  
+IN  
+V  
S
CLC1003 SOIC Pin Assignments  
CLC1003 SOIC Pin Configuration  
Pin No.  
Pin Name  
NC  
Description  
No connect  
Negative input  
Positive input  
Negative supply  
No connect  
Output  
1
2
3
4
5
6
7
1
2
3
4
8
7
NC  
+V  
NC  
-IN1  
-IN1  
+IN1  
S
-V  
S
6
5
OUT  
NC  
+IN1  
NC  
-V  
S
OUT  
+V  
Positive supply  
No connect  
S
NC  
8
CLC2003 Pin Configuration  
CLC2003 (Future Option) Pin Configuration  
Pin No.  
Pin Name  
OUT1  
-IN1  
Description  
1
2
3
4
5
6
7
8
Output, channel 1  
Negative input, channel 1  
Positive input, channel 1  
Negative supply  
1
2
3
4
8
7
+V  
S
OUT1  
-IN1  
+IN1  
OUT2  
-IN2  
-V  
S
6
5
+IN1  
+IN2  
-IN2  
Positive input, channel 2  
Negative input, channel 2  
Output, channel 2  
Positive supply  
+IN2  
-V  
S
OUT2  
+V  
S
CLC4003 Pin Configuration  
CLC4003 (Future Option) Pin Configuration  
Pin No.  
Pin Name  
OUT1  
-IN1  
Description  
1
2
Output, channel 1  
1
2
3
4
14  
13  
12  
11  
10  
9
OUT1  
-IN1  
OUT4  
-IN4  
Negative input, channel 1  
Positive input, channel 1  
Positive supply  
3
+IN1  
4
+V  
S
+IN1  
+VS  
+IN4  
-VS  
5
+IN2  
-IN2  
Positive input, channel 2  
Negative input, channel 2  
Output, channel 2  
6
5
6
7
+IN2  
+IN3  
-IN3  
7
OUT2  
OUT3  
-IN3  
8
Output, channel 3  
-IN2  
9
Negative input, channel 3  
Positive input, channel 3  
Negative supply  
8
OUT2  
OUT3  
10  
11  
12  
13  
14  
+IN3  
-V  
S
+IN4  
-IN4  
Positive input, channel 4  
Negative input, channel 4  
Output, channel 4  
OUT4  
©2004-2008 CADEKA Microcircuits LLC  
www.cadeka.com  
2
Data Sheet  
Absolute Maximum Ratings  
The safety of the device is not guaranteed when it is operated above the “Absolute Maximum Ratings. The device  
should not be operated at these “absolute” limits. Adhere to the “Recommended Operating Conditions” for proper de-  
vice function. The information contained in the Electrical Characteristics tables and Typical Performance plots reflect the  
operating conditions noted on the tables and plots.  
Parameter  
Min  
0
Max  
14  
Unit  
Supply Voltage  
V
V
Input Voltage Range  
-V -0.5V  
s
+V +0.5V  
s
Reliability Information  
Parameter  
Min  
-65  
Typ  
Max  
Unit  
Junction Temperature  
Storage Temperature Range  
Lead Temperature (Soldering, 10s)  
Package Thermal Resistance  
5-Lead SOT23  
150  
150  
260  
°C  
°C  
°C  
221  
100  
88  
°C/W  
°C/W  
°C/W  
8-Lead SOIC  
14-Lead SOIC  
Notes:  
Package thermal resistance (q ), JDEC standard, multi-layer test boards, still air.  
JA  
Recommended Operating Conditions  
Parameter  
Min  
Typ  
Max  
Unit  
Operating Temperature Range (CLC1003I)  
Operating Temperature Range (CLC1003A)  
Supply Voltage Range  
-40  
-40  
2.5  
+85  
+125  
12  
°C  
°C  
V
©2004-2008 CADEKA Microcircuits LLC  
www.cadeka.com  
3
Data Sheet  
Electrical Characteristics at +3V  
T = 25°C, V = +3V, R = 1kΩ, R = 1kΩ to V /2, G = 2; unless otherwise noted.  
A
s
f
L
S
symbꢀꢁ  
pꢂꢃꢂmꢄꢅꢄꢃ  
cꢀꢆdꢇꢅꢇꢀꢆꢈ  
Mꢇꢆ  
tyꢉ  
Mꢂx  
uꢆꢇꢅꢈ  
Frequency Domain Response  
GBWP  
UGBW  
BWSS  
BWLS  
-3dB Gain Bandwidth Product  
Unity Gain Bandwidth  
-3dB Bandwidth  
G = 10, VOUT = 0.05Vpp  
VOUT = 0.05Vpp , Rf = 0  
VOUT = 0.05Vpp  
31  
50  
MHz  
MHz  
MHz  
MHz  
24  
Large Signal Bandwidth  
VOUT = 2Vpp  
3.3  
Time Domain Response  
tR, tF  
Rise and Fall Time  
VOUT = 2V step; (10% to 90%)  
VOUT = 2V step  
150  
78  
ns  
ns  
Settling Time to 0.1%  
Overshoot  
tS  
OS  
SR  
VOUT = 2V step  
0.3  
11  
%
Slew Rate  
2V step  
V/µs  
Distortion/Noise Response  
2Vpp, 10kHz, RL = 1kΩ  
2Vpp, 100kHz, RL = 100Ω  
2Vpp, 10kHz, RL = 1kΩ  
2Vpp, 100kHz, RL = 100Ω  
1Vpp, 1kHz, G=1, RL = 2kΩ  
> 10kHz  
-98  
-85  
dBc  
dBc  
HD2  
2nd Harmonic Distortion  
-95  
dBc  
HD3  
THD  
3rd Harmonic Distortion  
Total Harmonic Distortion  
-81  
dBc  
0.0005  
5.5  
%
nV/√Hz  
nV/√Hz  
en  
Input Voltage Noise  
> 100kHz  
3.9  
DC Performance  
VIO  
dVIO  
Ib  
Input Offset Voltage  
Average Drift  
0.088  
1.3  
mV  
µV/°C  
μA  
Input Bias Current  
Average Drift  
-0.340  
0.8  
dIb  
Ios  
nA/°C  
nA  
Input Offset Current  
Power Supply Rejection Ratio  
Open-Loop Gain  
0.2  
PSRR  
AOL  
IS  
DC  
100  
dB  
VOUT = VS / 2  
per channel  
104  
dB  
Supply Current  
1.85  
mA  
Input Characteristics  
RIN  
CIN  
Input Resistance  
Non-inverting, G = 1  
DC , Vcm=0.5V to 2.5V  
30  
MΩ  
Input Capacitance  
1.1  
pF  
-0.5 to  
3.5  
CMIR  
Common Mode Input Range  
Common Mode Rejection Ratio  
V
CMRR  
94  
dB  
Output Characteristics  
0.085 to  
2.80  
RL = 150Ω  
RL = 1kΩ  
V
V
VOUT  
Output Voltage Swing  
0.04 to  
2.91  
IOUT  
ISC  
Output Current  
+75, -40  
+95, -50  
mA  
mA  
Short-Circuit Output Current  
VOUT = VS / 2  
nꢀꢅꢄꢈ:  
1. 100% tested at 25°C  
©2004-2008 CADEKA Microcircuits LLC  
www.cadeka.com  
4
Data Sheet  
Electrical Characteristics at ±5V  
T = 25°C, V = ±5V, R = 1kΩ, R = 1kΩ to GND, G = 2; unless otherwise noted.  
A
s
f
L
symbꢀꢁ  
pꢂꢃꢂmꢄꢅꢄꢃ  
cꢀꢆdꢇꢅꢇꢀꢆꢈ  
Mꢇꢆ  
tyꢉ  
Mꢂx  
uꢆꢇꢅꢈ  
Frequency Domain Response  
GBWP  
UGBW  
BWSS  
BWLS  
-3dB Gain Bandwidth Product  
Unity Gain Bandwidth  
-3dB Bandwidth  
G = 10, VOUT = 0.05Vpp  
VOUT = 0.05Vpp , Rf = 0  
VOUT = 0.05Vpp  
35  
55  
MHz  
MHz  
MHz  
MHz  
25  
Large Signal Bandwidth  
VOUT = 2Vpp  
3.6  
Time Domain Response  
tR, tF  
Rise and Fall Time  
VOUT = 2V step; (10% to 90%)  
VOUT = 2V step  
125  
80  
ns  
ns  
Settling Time to 0.1%  
Overshoot  
tS  
OS  
SR  
VOUT = 2V step  
0.3  
12  
%
Slew Rate  
4V step  
V/µs  
Distortion/Noise Response  
2Vpp, 10kHz, RL = 1kΩ  
2Vpp, 100kHz, RL = 100Ω  
2Vpp, 10kHz, RL = 1kΩ  
2Vpp, 100kHz, RL = 100Ω  
1Vpp, 1kHz, G=1, RL = 2kΩ  
> 10kHz  
-125  
-90  
dBc  
dBc  
HD2  
2nd Harmonic Distortion  
-127  
-85  
dBc  
HD3  
THD  
3rd Harmonic Distortion  
Total Harmonic Distortion  
dBc  
0.00005  
5.3  
%
nV/√Hz  
nV/√Hz  
en  
Input Voltage Noise  
> 100kHz  
3.5  
DC Performance  
VIO  
dVIO  
Ib  
Input Offset Voltage(1)  
-1  
0.050  
1.3  
1
mV  
µV/°C  
μA  
Average Drift  
Input Bias Current (1)  
Average Drift  
-2.6  
-0.30  
0.85  
0.2  
2.6  
0.7  
dIb  
Ios  
nA/°C  
μA  
Input Offset Current (1)  
Power Supply Rejection Ratio (1)  
Open-Loop Gain (1)  
Supply Current (1)  
PSRR  
AOL  
IS  
DC  
82  
95  
100  
115  
2.2  
dB  
VOUT = VS / 2  
per channel  
dB  
2.75  
mA  
Input Characteristics  
RIN  
CIN  
Input Resistance  
Non-inverting, G = 1  
DC , Vcm= -3V to 3V  
30  
1
MΩ  
Input Capacitance  
pF  
CMIR  
Common Mode Input Range  
Common Mode Rejection Ratio (1)  
±5.5  
V
CMRR  
70  
95  
dB  
Output Characteristics  
-4.826  
to 4.534  
RL = 150Ω  
V
V
VOUT  
Output Voltage Swing  
RL = 1kΩ (1)  
-4.7  
-4.93 to  
4.85  
4.7  
IOUT  
ISC  
Output Current  
+80, -55  
+115, -90  
mA  
mA  
Short-Circuit Output Current  
VOUT = VS / 2  
nꢀꢅꢄꢈ:  
1. 100% tested at 25°C  
©2004-2008 CADEKA Microcircuits LLC  
www.cadeka.com  
5
Data Sheet  
Typical Performance Characteristics  
T = 25°C, V = ±5V, R = 1kΩ, R = 1kΩ to GND, G = 2; unless otherwise noted.  
A
s
f
L
Non-Inverting Frequency Response  
Inverting Frequency Response  
3
1
0
G = 1  
Rf = 0  
0
-1  
G = -1  
-2  
-3  
-4  
-5  
-6  
-7  
G = -2  
G = 2  
G = -5  
-3  
G = 5  
G = -10  
G = 10  
-6  
VOUT = 0.05Vpp  
VOUT = 0.05Vpp  
-9  
0.1  
1
10  
100  
0.1  
1
10  
100  
Frequency (MHz)  
Frequency (MHz)  
Frequency Response vs. C  
Frequency Response vs. C without R  
L
L
S
1
0
4
2
-1  
-2  
-3  
-4  
-5  
-6  
-7  
CL = 500pF  
s = 10Ω  
R
CL = 500pF  
0
CL = 1000pF  
R
s = 7.5Ω  
CL = 300pF  
-2  
CL = 3000pF  
CL = 100pF  
R
s = 4Ω  
-4  
CL = 50pF  
-6  
-8  
CL = 10pF  
VOUT = 0.05Vpp  
R s = 0 Ω  
VOUT = 0.05Vpp  
0.1  
1
10  
100  
0.1  
1
10  
100  
Frequency (MHz)  
Frequency (MHz)  
Frequency Response vs. V  
Frequency Response vs. R  
OUT  
L
3
2
1
RL = 50Ω  
RL = 150Ω  
0
0
RL = 2.5KΩ  
VOUT = 1Vpp  
-1  
-2  
-3  
-4  
RL = 1KΩ  
VOUT = 2Vpp  
VOUT = 4Vpp  
-3  
-6  
-5  
-6  
VOUT = 0.05Vpp  
-9  
0.1  
1
10  
100  
0.1  
1
10  
100  
Frequency (MHz)  
Frequency (MHz)  
©2004-2008 CADEKA Microcircuits LLC  
www.cadeka.com  
6
Data Sheet  
Typical Performance Characteristics  
T = 25°C, V = ±5V, R = 1kΩ, R = 1kΩ to GND, G = 2; unless otherwise noted.  
A
s
f
L
Non-Inverting Frequency Response at V = 3V  
Inverting Frequency Response at V = 3V  
S
S
3
1
0
G = 1  
Rf = 0  
0
-1  
G = -1  
-2  
-3  
-4  
-5  
-6  
-7  
G = -2  
G = 2  
G = -5  
-3  
G = 5  
G = -10  
G = 10  
-6  
VOUT = 0.05Vpp  
VOUT = 0.05Vpp  
-9  
0.1  
1
10  
100  
0.1  
1
10  
100  
Frequency (MHz)  
Frequency (MHz)  
Frequency Response vs. V  
at V = 3V  
Frequency Response vs. R at V = 3V  
OUT  
S
L
S
3
2
1
RL = 50Ω  
RL = 150Ω  
0
0
RL = 2.5KΩ  
VOUT = 1Vpp  
-1  
-2  
-3  
-4  
-5  
-6  
RL = 1KΩ  
VOUT = 2Vpp  
VOUT = 2.5Vpp  
-3  
-6  
VOUT = 0.05Vpp  
-9  
0.1  
1
10  
100  
0.1  
1
10  
100  
Frequency (MHz)  
Frequency (MHz)  
-3dB Bandwidth vs. Output Voltage at V = 3V  
-3dB Bandwidth vs. Output Voltage  
S
24  
21  
18  
15  
12  
9
24  
21  
18  
15  
12  
9
6
6
3
3
0
0
0.0  
0.5  
1.0  
1.5  
2.0  
2.5  
0.0  
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
3.5  
4.0  
VOUT (VPP)  
VOUT (VPP)  
©2004-2008 CADEKA Microcircuits LLC  
www.cadeka.com  
7
Data Sheet  
Typical Performance Characteristics - Continued  
T = 25°C, V = ±5V, R = 1kΩ, R = 1kΩ to GND, G = 2; unless otherwise noted.  
A
s
f
L
Open Loop Gain and Phase vs. Frequency  
CMIR  
80  
60  
40  
0
0.5  
0.4  
0.3  
0.2  
0.1  
0
-75  
PHASE  
-150  
-225  
-300  
-375  
-450  
-525  
20  
GAIN  
0
-20  
-40  
-60  
-0.1  
10  
100  
1,000  
10,000  
100,000  
1,000,000  
-6  
-4  
-2  
0
2
4
6
F R E Q ( K H z )  
Vni(V)  
Input Voltage Noise  
CMIR at V = 3V  
S
14  
13  
12  
11  
10  
9
0.5  
0.4  
0.3  
0.2  
0.1  
0
8
7
6
5
4
3
2
-0.1  
0.0001  
0.001  
0.01  
0.1  
1
-1  
-0.5  
0
0.5  
1
1.5  
2
2.5  
3
3.5  
4
Frequency (MHz)  
Vni(V)  
CMRR vs. Frequency  
PSRR vs. Frequency  
110  
100  
90  
110  
100  
90  
80  
80  
70  
70  
60  
60  
50  
50  
40  
40  
0.001  
0.01  
0.1  
1
10  
100  
0.001  
0.01  
0.1  
1
10  
100  
1000  
1000  
Frequency (MHz)  
Frequency (MHz)  
©2004-2008 CADEKA Microcircuits LLC  
www.cadeka.com  
8
Data Sheet  
Typical Performance Characteristics - Continued  
T = 25°C, V = ±5V, R = 1kΩ, R = 1kΩ to GND, G = 2; unless otherwise noted.  
A
s
f
L
2nd Harmonic Distortion vs. R  
3rd Harmonic Distortion vs. R  
L
L
-50  
-50  
-60  
-60  
RL = 100Ω  
RL = 10KΩ  
-70  
-70  
-80  
-90  
RL = 100Ω  
-80  
-90  
RL = 10KΩ  
RL = 1KΩ  
RL = 1KΩ  
RL = 500Ω  
RL = 500Ω  
-100  
-100  
-110  
VOUT = 2Vpp  
VOUT = 2Vpp  
-110  
100  
200  
300  
400  
500  
600  
700  
800  
900  
1000  
100  
200  
300  
400  
500  
600  
700  
800  
900  
1000  
Frequency (KHz)  
Frequency (KHz)  
2nd Harmonic Distortion vs. V  
3rd Harmonic Distortion vs. V  
OUT  
OUT  
-40  
-30  
-40  
-50  
-50  
-60  
RF=RL=1K  
-60  
RF=RL=1K  
-70  
-70  
-80  
-80  
RF=RL=10K  
RF=RL=10K  
-90  
-90  
FREQ = 500KHz  
FREQ = 500KHz  
-100  
-100  
0.5  
1.5  
2.5  
3.5  
4.5  
5.5  
6.5  
7 .5  
8.5  
9.5  
0.5  
1.5  
2.5  
3.5  
4.5  
5.5  
6.5  
7 .5  
8.5  
9.5  
Output Amplitude (Vpp  
)
Output Amplitude (Vpp)  
THD vs. Frequency  
-65  
-70  
-75  
-80  
-85  
-90  
-95  
-100  
VOUT = 1Vpp  
RL = 1K  
AV+1  
100  
200  
300  
400  
500  
600  
700  
800  
900  
1000  
Frequency (kHz)  
©2004-2008 CADEKA Microcircuits LLC  
www.cadeka.com  
9
Data Sheet  
Typical Performance Characteristics - Continued  
T = 25°C, V = ±5V, R = 1kΩ, R = 1kΩ to GND, G = 2; unless otherwise noted.  
A
s
f
L
2nd Harmonic Distortion vs. R at V = 3V  
3rd Harmonic Distortion vs. R at V = 3V  
L
S
L
S
-40  
-40  
-50  
-50  
RL = 100Ω  
-60  
-60  
RL = 100Ω  
-70  
-70  
RL = 10KΩ  
RL = 1KΩ  
RL = 500Ω  
-80  
-80  
RL = 10KΩ  
RL = 1KΩ  
RL = 500Ω  
-90  
-90  
VOUT = 2Vpp  
VOUT = 2Vpp  
-100  
-100  
100  
200  
300  
400  
500  
600  
700  
800  
900  
1000  
100  
200  
300  
400  
500  
600  
700  
800  
900  
1000  
Frequency (KHz)  
Frequency (KHz)  
2nd Harmonic Distortion vs. V  
at V = 3V  
3rd Harmonic Distortion vs. V  
at V = 3V  
OUT  
S
OUT  
S
-40  
-50  
-60  
-40  
-50  
-60  
RF=RL=10K  
RF=RL=1K  
RF=RL=10K  
-70  
-80  
-70  
-80  
RF=RL=1K  
-90  
-90  
FREQ = 500KHz  
FREQ = 500KHz  
-100  
-100  
0.5  
0.75  
1
1.25  
1.5  
1.75  
2
2.25  
2.5  
0.5  
0.75  
1
1.25  
1.5  
1.75  
2
2.25  
2.5  
Output Amplitude (Vpp)  
Output Amplitude (Vpp)  
THD vs. Frequency at V = 3V  
S
-65  
-70  
-75  
-80  
-85  
-90  
-95  
-100  
VOUT = 1Vpp  
RL = 1K  
AV+1  
100  
200  
300  
400  
500  
600  
700  
800  
900  
1000  
Frequency (kHz)  
©2004-2008 CADEKA Microcircuits LLC  
www.cadeka.com  
10  
Data Sheet  
Typical Performance Characteristics - Continued  
T = 25°C, V = ±5V, R = 1kΩ, R = 1kΩ to GND, G = 2; unless otherwise noted.  
A
s
f
L
Small Signal Pulse Response  
Small Signal Pulse Response at V = 3V  
S
0.75  
1.65  
0.5  
0.25  
0
1.6  
1.55  
1.5  
-0.25  
-0.5  
-0.75  
1.45  
1.4  
1.35  
0
0.5  
1
1.5  
2
0
0.5  
1
1.5  
2
T im e ( n s )  
T im e ( n s )  
Large Signal Pulse Response  
Large Signal Pulse Response at V = 3V  
S
6
3
2.5  
2
4
2
0
1.5  
1
-2  
-4  
-6  
0.5  
0
0
1
2
3
4
5
6
7
8
9
10  
0
0.5  
1
1.5  
2
T im e ( n s )  
T im e ( n s )  
Input Offset Voltage vs. Temperature  
Input Offset Voltage Distribution  
0.1  
0.05  
0
-0.05  
-0.1  
-0.15  
-0.2  
-40  
-20  
0
20  
40  
60  
80  
100  
120  
Temperature (°C)  
©2004-2008 CADEKA Microcircuits LLC  
www.cadeka.com  
11  
Data Sheet  
perature, the package thermal resistance value Theta  
Application Information  
JA  
) is used along with the total die power dissipation.  
JA  
Basic Operation  
T
= T  
+ (Ө × P )  
Junction  
Ambient JA D  
Figures 1 and 2 illustrate typical circuit configurations for  
non-inverting, inverting, and unity gain topologies for dual  
supply applications. They show the recommended bypass  
capacitor values and overall closed loop gain equations.  
Where T  
is the temperature of the working environment.  
Ambient  
In order to determine P , the power dissipated in the load  
needs to be subtracted from the total power delivered by  
the supplies.  
D
+Vs  
6.8μF  
P = P  
- P  
load  
D
supply  
Supply power is calculated by the standard power equa-  
tion.  
0.1μF  
Input  
+
-
Output  
P
= V  
× I  
supply  
supply RMS supply  
RL  
V
= V - V  
S+ S-  
supply  
0.1μF  
6.8μF  
Rf  
Power delivered to a purely resistive load is:  
Rg  
2
P
= ((V  
)
)/Rload  
eff  
load  
LOAD RMS  
G = 1 + (Rf/Rg)  
-Vs  
The effective load resistor (Rload ) will need to include  
eff  
the effect of the feedback network. For instance,  
Figure 1. Typical Non-Inverting Gain Circuit  
Rload in figure 3 would be calculated as:  
eff  
+Vs  
6.8μF  
R || (R + R )  
L
f
g
These measurements are basic and are relatively easy to  
perform with standard lab equipment. For design purposes  
however, prior knowledge of actual signal levels and load  
impedance is needed to determine the dissipated power.  
R1  
0.1μF  
+
Output  
Rg  
Input  
-
RL  
Here, P can be found from  
0.1μF  
D
Rf  
P = P  
+ P  
- P  
D
Quiescent  
Dynamic Load  
6.8μF  
G = - (Rf/Rg)  
-Vs  
Quiescent power can be derived from the specified I val-  
ues along with known supply voltage, V  
S
For optimum input offset  
voltage set R1 = Rf || Rg  
. Load power  
Supply  
can be calculated as above with the desired signal ampli-  
tudes using:  
Figure 2. Typical Inverting Gain Circuit  
(V  
)
= V  
/ √2  
LOAD RMS  
PEAK  
Power Dissipation  
( I  
)
= ( V  
)
/ Rload  
LOAD RMS  
LOAD RMS eff  
Power dissipation should not be a factor when operating  
under the stated 300 ohm load condition. However, ap-  
plications with low impedance, DC coupled loads should  
be analyzed to ensure that maximum allowed junction  
temperature is not exceeded. Guidelines listed below can  
be used to verify that the particular application will not  
cause the device to operate beyond it’s intended operat-  
ing range.  
The dynamic power is focused primarily within the output  
stage driving the load. This value can be calculated as:  
P
= (V - V  
)
× ( I )  
LOAD RMS  
DYNAMIC  
S+  
LOAD RMS  
Assuming the load is referenced in the middle of the pow-  
er rails or V /2.  
supply  
Figure 3 shows the maximum safe power dissipation in  
the package vs. the ambient temperature for the pack-  
ages available.  
Maximum power levels are set by the absolute maximum  
junction rating of 150°C. To calculate the junction tem-  
©2004-2008 CADEKA Microcircuits LLC  
www.cadeka.com  
12  
Data Sheet  
For a given load capacitance, adjust R to optimize the  
tradeoff between settling time and bandwidth. In general,  
2.5  
2
S
reducing R will increase bandwidth at the expense of ad-  
S
SOIC-8  
ditional overshoot and ringing.  
1.5  
1
SOT23-6  
Overdrive Recovery  
An overdrive condition is defined as the point when ei-  
ther one of the inputs or the output exceed their specified  
voltage range. Overdrive recovery is the time needed for  
the amplifier to return to its normal or linear operating  
point. The recovery time varies, based on whether the  
input or output is overdriven and by how much the range  
is exceeded. The CLCx003 will typically recover in less  
than 20ns from an overdrive condition. Figure 5 shows the  
CLC1003 in an overdriven condition.  
0.5  
0
-40  
-20  
0
20  
40  
60  
80  
Ambient Temperature (°C)  
Figure 3. Maximum Power Derating  
3
2
Driving Capacitive Loads  
VIN = .8Vpp  
G = 5  
2
2
Increased phase delay at the output due to capacitive load-  
ing can cause ringing, peaking in the frequency response,  
and possible unstable behavior. Use a series resistance,  
1
1
Input  
1
0
0
R , between the amplifier and the load to help improve  
S
Output  
stability and settling performance. Refer to Figure 4.  
-1  
-1  
-2  
-2  
-1  
-2  
-3  
Input  
+
-
Rs  
Output  
CL  
RL  
Rf  
0
0.25  
0.5  
0.75  
1
1.25  
1.5  
1.75  
2
T im e ( u s )  
Rg  
Figure 5. Overdrive Recovery  
Figure 4. Addition of R for Driving  
S
Capacitive Loads  
Considerations for Offset and Noise Performance  
Offset Analysis  
The CLC1003 family of amplifiers is capable of driving up to  
300pF directly, with no series resistance. Directly driving  
500pF causes over 4dB of frequency peaking, as shown in  
the plot on page 6. Table 1 provides the recommended R  
for various capacitive loads. The recommended R values  
There are three sources of offset contribution to consider;  
input bias current, input bias current mismatch, and input  
offset voltage. The input bias currents are assumed to  
be equal with and additional offset current in one of the  
inputs to account for mismatch. The bias currents will not  
S
S
result in <=1dB peaking in the frequency response. The  
affect the offset as long as the parallel combination of R  
f
Frequency Response vs. C plots, on page 6, illustrates  
L
and R matches R . Refer to Figure 6.  
g
t
the response of the CLCx003.  
+V  
s
R
g
R
f
C (pF)  
L
R (Ω)  
S
-3dB BW (MHz)  
500  
1000  
3000  
10  
7.5  
4
27  
20  
15  
R
CLC1003  
+
t
IN  
R
L
-V  
s
Table 1: Recommended R vs. C  
S
L
Figure 6: Circuit for Evaluating Offset  
©2004-2008 CADEKA Microcircuits LLC  
www.cadeka.com  
13  
Data Sheet  
The first place to start is to determine the source resis- Where V  
is the noise due to the external resistors and  
orext  
tance. If it is very small an additional resistance may need is given by:  
to be added to keep the values of R and R to practical  
f
g
2
2
2
F
2
RF  
RF  
levels. For this analysis we assume that R is the total re-  
= e 1 +  
+ e ∗  
+ e  
v
t
n
G
o
RG  
RG  
sistance present on the non-inverting input. This gives us  
one equation that we must solve:  
R = Rg||Rf  
t
The complete equation can be simplified to:  
This equation can be rearranged to solve for R :  
g
2
2
)
2
v
= 3 4kT G RT + e G + 2 i RT  
(
)
(
)
(
R = (R * R ) / (R - R )  
g
t
f
f
t
n n  
o
The other consideration is desired gain (G) which is:  
G = (1 + R /R )  
f
g
It’s easy to see that the effect of amplifier voltage noise  
is proportionate to gain and will tend to dominate at large  
gains. The other terms will have their greatest impact at  
By plugging in the value for R we get  
g
R = G * R  
f
t
large R values at lower gains.  
t
And R can be written in terms of R and G as follows:  
g
t
R = (G * R ) / (G - 1)  
g
t
Layout Considerations  
The complete input offset equation is now only dependent  
on the voltage offset and input offset terms given by:  
General layout and supply bypassing play major roles in  
high frequency performance. CADEKA has evaluation  
boards to use as a guide for high frequency layout and as  
aid in device testing and characterization. Follow the steps  
below as a basis for high frequency layout:  
2
)
2
)
VI  
=
V
+ I RT  
(
(
OS  
IO  
OS  
And the output offset is:  
• Include 6.8µF and 0.1µF ceramic capacitors for power  
supply decoupling  
2
)
2
)
VO  
= G ∗  
V
+ I RT  
(
(
OS  
IO  
OS  
• Place the 6.8µF capacitor within 0.75 inches of the power pin  
• Place the 0.1µF capacitor within 0.1 inches of the power pin  
Noise analysis  
The complete equivalent noise circuit is shown in Figure 7.  
• Remove the ground plane under and around the part,  
especially near the input and output pins to reduce para-  
sitic capacitance  
R
R
f
g
+ –  
+ –  
• Minimize all trace lengths to reduce series inductances  
Refer to the evaluation board layouts below for more in-  
formation.  
R
g
CLC1003  
+
+ –  
+ –  
+
R
L
Evaluation Board Information  
The following evaluation boards are available to aid in the  
testing and layout of these devices:  
Figure 7: Complete Equivalent Noise Circuit  
The complete noise equation is given by:  
Evaluation Board #  
CEB002  
CEB003  
Products  
CLC1003 in SOT23-5  
CLC1003 in SOIC-8  
2
)
2
2
2
2
RF  
RF  
v
=
v
+
e
1 +  
+ i RT 1 +  
+ i RF  
(
o
orext  
n
bp  
bn  
RG  
RG  
©2004-2008 CADEKA Microcircuits LLC  
www.cadeka.com  
14  
Data Sheet  
Evaluation Board Schematics  
Evaluation board schematics and layouts are shown in Fig-  
ures 8-13. These evaluation boards are built for dual- sup-  
ply operation. Follow these steps to use the board in a  
single-supply application:  
1. Short -Vs to ground.  
2. Use C3 and C4, if the -V pin of the amplifier is not  
S
directly connected to the ground plane.  
Figure 10. CEB002 Bottom View  
Figure 11. CEB003 Top View  
Figure 12. CEB003 Bottom View  
Figure 8. CEB002 Schematic  
Figure 9. CEB002 Top View  
©2004-2008 CADEKA Microcircuits LLC  
www.cadeka.com  
15  
Data Sheet  
Mechanical Dimensions  
SOT23-5 Package  
SOIC-8  
For additional information regarding our products, please visit CADEKA at: cadeka.com  
caDeKa Hꢄꢂdqꢊꢂꢃꢅꢄꢃꢈ Loveland, Colorado  
T: 970.663.5452  
T: 877.663.5415 (toll free)  
CADEKA, the CADEKA logo design, and Comlinear and the Comlinear logo design, are trademarks or registered trademarks of CADEKA  
Microcircuits LLC. All other brand and product names may be trademarks of their respective companies.  
CADEKA reserves the right to make changes to any products and services herein at any time without notice. CADEKA does not assume any  
responsibility or liability arising out of the application or use of any product or service described herein, except as expressly agreed to in  
writing by CADEKA; nor does the purchase, lease, or use of a product or service from CADEKA convey a license under any patent rights,  
copyrights, trademark rights, or any other of the intellectual property rights of CADEKA or of third parties.  
Amplify the Human Experience  
Copyright ©2008 by CADEKA Microcircuits LLC. All rights reserved.  

相关型号:

CLC1003IST6X

Operational Amplifier, 1 Func, BIPolar, PDSO5,
EXAR

CLC1004

Single and Triple, 750MHz Amplifiers with Disable
CADEKA

CLC1004IST6

Single and Triple, 750MHz Amplifiers with Disable
CADEKA

CLC1004IST6X

Single and Triple, 750MHz Amplifiers with Disable
CADEKA

CLC1005

Low Cost, 2.7V to 5.5V, 260MHz Rail-to-Rail Amplifiers
EXAR

CLC1005ISO8EVB

Low Cost, 2.7V to 5.5V, 260MHz Rail-to-Rail Amplifiers
EXAR

CLC1005ISO8MTR

Low Cost, 2.7V to 5.5V, 260MHz Rail-to-Rail Amplifiers
EXAR

CLC1005ISO8X

Low Cost, 2.7V to 5.5V, 260MHz Rail-to-Rail Amplifiers
EXAR

CLC1005IST5EVB

Low Cost, 2.7V to 5.5V, 260MHz Rail-to-Rail Amplifiers
EXAR

CLC1005IST5MTR

Low Cost, 2.7V to 5.5V, 260MHz Rail-to-Rail Amplifiers
EXAR

CLC1005IST5X

Low Cost, 2.7V to 5.5V, 260MHz Rail-to-Rail Amplifiers
EXAR

CLC1006

Single, 500MHz Voltage Feedback Amplifier
CADEKA