CLC2600ISO8 [CADEKA]

Dual, Triple, and Quad 300MHz Amplifiers; 双,三和四通道300MHz的放大器
CLC2600ISO8
型号: CLC2600ISO8
厂家: CADEKA MICROCIRCUITS LLC.    CADEKA MICROCIRCUITS LLC.
描述:

Dual, Triple, and Quad 300MHz Amplifiers
双,三和四通道300MHz的放大器

放大器
文件: 总15页 (文件大小:2092K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Data Sheet  
Amplify the Human Experience  
®
Comlinear CLC2600, CLC3600, CLC4600  
Dual, Triple, and Quad 300MHz Amplifiers  
f e a t u r e s  
General Description  
nꢀ  
0.1dB gain flatness to 95MHz  
The Comlinear CLC2600 (dual), CLC3600 (triple), and CLC4600 (quad) are  
high-performance, current feedback amplifiers. These amplifiers provide  
300MHz unity gain bandwidth, ±0.1dB gain flatness to 95MHz, and provide  
1,300V/μs slew rate exceeding the requirements of high-definition television  
(HDTV)andothermultimediaapplications. TheseComlinear high-performance  
amplifiers also provide ample output current to drive multiple video loads.  
nꢀ  
0.03%/0.04˚ differential gain/  
phase error  
nꢀ  
nꢀ  
nꢀ  
nꢀ  
nꢀ  
nꢀ  
nꢀ  
nꢀ  
230MHz -3dB bandwidth at G = 2  
300MHz -3dB bandwidth at G = 1  
1,300V/μs slew rate  
50mA output current  
3.3mA supply current  
The Comlinear CLC2600, CLC3600, and CLC4600 are designed to operate  
from ±5V supplies. They consume only 3.3mA of supply current per channel.  
The combination of high-speed, low-power, and excellent video performance  
make these amplifiers well suited for use in many general purpose, high-  
speed applications including standard definition and high definition video.  
Fully specified at ±5V supplies  
CLC2600: Pb-free SOIC-8  
CLC4600: Pb-free SOIC-14  
a p p l i c a t i o n s  
nꢀ  
Video line drivers  
nꢀ  
S-Video driver  
Typical Application - Driving Dual Video Loads  
nꢀ  
Video switchers and routers  
nꢀ  
ADC buffer  
+Vs  
nꢀ  
Active filters  
nꢀ  
Cable drivers  
nꢀ  
Twisted pair driver/receiver  
75Ω  
Cable  
75Ω  
Input  
Cable  
75Ω  
75Ω  
Output A  
Output B  
75Ω  
75Ω  
75Ω  
R
f
R
g
75Ω  
Cable  
-Vs  
Ordering Information  
Part Number  
Package  
Pb-Free  
Yes  
Operating Temperature Range Packaging Method  
CLC2600ISO8X  
CLC2600ISO8  
CLC3600ISO14X  
CLC3600ISO14  
CLC4600ISO14X  
CLC4600ISO14  
SOIC-8  
-40°C to +85°C  
-40°C to +85°C  
-40°C to +85°C  
-40°C to +85°C  
-40°C to +85°C  
-40°C to +85°C  
Reel  
Rail  
Reel  
Rail  
Reel  
Rail  
SOIC-8  
Yes  
SOIC-14  
SOIC-14  
SOIC-14  
SOIC-14  
Yes  
Yes  
Yes  
Yes  
Moisture sensitivity level for all parts is MSL-1.  
©2008 CADEKA Microcircuits LLC  
www.cadeka.com  
Data Sheet  
CLC2600 Pin Configuration  
CLC2600 Pin Assignments  
Pin No.  
Pin Name  
OUT1  
-IN1  
Description  
1
2
3
4
8
7
+V  
S
OUT1  
-IN1  
1
2
3
4
5
6
7
8
Output, channel 1  
Negative input, channel 1  
Positive input, channel 1  
Negative supply  
OUT2  
-IN2  
6
+IN1  
+IN1  
-V  
S
5
+IN2  
-V  
S
+IN2  
-IN2  
Positive input, channel 2  
Negative input, channel 2  
Output, channel 2  
Positive supply  
OUT2  
+V  
S
CLC3600 Pin Configuration  
CLC3600 Pin Configuration  
Pin No.  
Pin Name  
NC  
Description  
1
2
3
4
14  
13  
12  
11  
10  
9
NC  
NC  
OUT2  
-IN2  
1
2
No Connect  
NC  
No Connect  
3
NC  
No Connect  
NC  
+IN2  
-VS  
4
+V  
Positive supply  
S
+VS  
5
+IN1  
-IN1  
Positive input, channel 1  
Negative input, channel 1  
Output, channel 1  
Output, channel 3  
Negative input, channel 3  
Positive input, channel 3  
Negative supply  
5
6
7
+IN1  
+IN3  
-IN3  
6
7
OUT1  
OUT3  
-IN3  
-IN1  
8
8
OUT1  
OUT3  
9
10  
11  
12  
13  
14  
+IN3  
-V  
S
+IN2  
-IN2  
Positive input, channel 2  
Negative input, channel 2  
Output, channel 2  
OUT2  
CLC4600 Pin Configuration  
CLC4600 Pin Configuration  
Pin No.  
Pin Name  
OUT1  
-IN1  
Description  
1
2
3
4
14  
13  
12  
11  
10  
9
OUT1  
-IN1  
OUT4  
-IN4  
1
2
Output, channel 1  
Negative input, channel 1  
Positive input, channel 1  
Positive supply  
3
+IN1  
+IN1  
+VS  
+IN4  
-VS  
4
+V  
S
5
+IN2  
-IN2  
Positive input, channel 2  
Negative input, channel 2  
Output, channel 2  
5
6
7
+IN2  
+IN3  
-IN3  
6
7
OUT2  
OUT3  
-IN3  
-IN2  
8
Output, channel 3  
8
OUT2  
OUT3  
9
Negative input, channel 3  
Positive input, channel 3  
Negative supply  
10  
11  
12  
13  
14  
+IN3  
-V  
S
+IN4  
-IN4  
Positive input, channel 4  
Negative input, channel 4  
Output, channel 4  
OUT4  
©2004-2008 CADEKA Microcircuits LLC  
www.cadeka.com  
2
Data Sheet  
Absolute Maximum Ratings  
The safety of the device is not guaranteed when it is operated above the “Absolute Maximum Ratings. The device  
should not be operated at these “absolute” limits. Adhere to the “Recommended Operating Conditions” for proper de-  
vice function. The information contained in the Electrical Characteristics tables and Typical Performance plots reflect the  
operating conditions noted on the tables and plots.  
Parameter  
Min  
0
Max  
Unit  
Supply Voltage  
±7 or 14  
V
V
Input Voltage Range  
-V -0.5V  
s
+V +0.5V  
s
Reliability Information  
Parameter  
Min  
Typ  
Max  
Unit  
Junction Temperature  
Storage Temperature Range  
Lead Temperature (Soldering, 10s)  
Package Thermal Resistance  
8-Lead SOIC  
150  
150  
260  
°C  
°C  
°C  
-65  
100  
88  
°C/W  
°C/W  
14-Lead SOIC  
Notes:  
Package thermal resistance (q ), JDEC standard, multi-layer test boards, still air.  
JA  
ESD Protection  
Product  
SOIC-8  
SOIC-14  
2.5kV  
2kV  
Human Body Model (HBM)  
2.5kV  
Charged Device Model (CDM)  
2kV  
Recommended Operating Conditions  
Parameter  
Min  
Typ  
Max  
Unit  
Operating Temperature Range  
-40  
+85  
±6  
°C  
V
Supply Voltage Range  
±4  
©2004-2008 CADEKA Microcircuits LLC  
www.cadeka.com  
3
Data Sheet  
Electrical Characteristics  
T = 25°C, V = ±5V, R = 510Ω, R = 100Ω, G = 2; unless otherwise noted.  
A
s
f
L
symbꢀꢁ  
pꢂꢃꢂmꢄꢅꢄꢃ  
cꢀꢆdꢇꢅꢇꢀꢆꢈ  
Mꢇꢆ  
tyꢉ  
Mꢂx  
uꢆꢇꢅꢈ  
Frequency Domain Response  
UGBW  
-3dB Bandwidth  
G = +1, VOUT = 0.2Vpp, Rf = 1.24kΩ  
G = +2, VOUT = 0.2Vpp  
G = +2, VOUT = 4Vpp  
300  
230  
155  
95  
MHz  
MHz  
MHz  
MHz  
MHz  
BWSS  
-3dB Bandwidth  
BWLS  
Large Signal Bandwidth  
0.1dB Gain Flatness  
0.1dB Gain Flatness  
BW0.1dBSS  
BW0.1dBLS  
G = +2, VOUT = 0.2Vpp  
G = +2, VOUT = 4Vpp  
55  
Time Domain Response  
tR, tF  
tS  
Rise and Fall Time  
VOUT = 2V step; (10% to 90%)  
VOUT = 2V step  
1.8  
20  
ns  
ns  
Settling Time to 0.1%  
Overshoot  
OS  
SR  
VOUT = 0.2V step  
4V step  
2.5  
%
Slew Rate  
1300  
V/µs  
Distortion/Noise Response  
HD2  
HD3  
THD  
DG  
2nd Harmonic Distortion  
2Vpp, 1MHz  
-80  
-86  
dBc  
dBc  
3rd Harmonic Distortion  
Total Harmonic Distortion  
Differential Gain  
2Vpp, 1MHz  
2Vpp, 1MHz  
-79.5  
0.03  
0.04  
6.4  
dB  
%
NTSC (3.58MHz), DC-coupled, RL = 150Ω  
DP  
Differential Phase  
°
NTSC (3.58MHz), DC-coupled, RL = 150Ω  
en  
Input Voltage Noise  
Input Current Noise (+)  
Input Current Noise (-)  
Crosstalk  
> 1MHz  
nV/√Hz  
pA/√Hz  
pA/√Hz  
dB  
in+  
> 1MHz  
1.0  
in-  
> 1MHz  
9.3  
Channel-to-channel 5MHz  
XTALK  
-56  
DC Performance  
VIO  
Input Offset Voltage(1)  
-8  
-3  
1.4  
15  
+8  
3
mV  
µV/°C  
µA  
dVIO  
Ibn  
Average Drift  
Input Bias Current Non-inverting(1)  
Average Drift  
1.3  
2.6  
4.4  
16  
dIbn  
Ibi  
nA/°C  
µA  
Input Bias Current Inverting(1)  
Average Drift  
-18  
60  
18  
dIbi  
PSRR  
AOL  
nA/°C  
dB  
Power Supply Rejection Ratio(1)  
Open-Loop Transresistance  
DC  
65  
VOUT = VS / 2  
CLC2600 Total  
CLC3600 Total  
CLC4600 Total  
580  
6.6  
13.2  
13.2  
kΩ  
10  
20  
20  
mA  
Supply Current(1)  
mA  
IS  
mA  
Input Characteristics  
RIN  
Input Resistance  
Non-inverting  
DC  
19  
1
MΩ  
pF  
V
CIN  
Input Capacitance  
CMIR  
CMRR  
Common Mode Input Range  
Common Mode Rejection Ratio(1)  
±2.3  
57  
52  
dB  
Output Characteristics  
Closed Loop, DC  
RL = 100Ω (1)  
RL = 1kΩ  
110  
mΩ  
RO  
Output Resistance  
-2.6  
±3  
2.6  
V
VOUT  
Output Voltage Swing  
±3.3  
50  
V
IOUT  
ISC  
Output Current  
mA  
mA  
Short-Circuit Output Current  
VOUT = VS / 2  
67  
nꢀꢅꢄꢈ:  
1. 100% tested at 25°C  
©2004-2008 CADEKA Microcircuits LLC  
www.cadeka.com  
4
Data Sheet  
Typical Performance Characteristics  
T = 25°C, V = ±5V, R = 510Ω, R = 100Ω, G = 2; unless otherwise noted.  
A
s
f
L
Non-Inverting Frequency Response  
Inverting Frequency Response  
1
1
0
0
-1  
-1  
G = -10  
G = 1 0  
-2  
-2  
G = -5  
G = 5  
-3  
-3  
-4  
-4  
G = -2  
G = 2  
-5  
-5  
-6  
-7  
-6  
G = 1  
Rf = 1.24kΩ  
VOUT = 0.2Vpp  
VOUT = 0.2Vpp  
G = -1  
-7  
0.1  
1
10  
100  
1000  
0.1  
1
10  
100  
1000  
Frequency (MHz)  
Frequency (MHz)  
Frequency Response vs. C  
Frequency Response vs. R  
L
L
1
0
2
1
RL = 5KΩ  
RL = 1KΩ  
CL = 1000pF  
-1  
-2  
-3  
-4  
-5  
-6  
-7  
Rs = 5 Ω  
0
CL = 500pF  
Rs = 9 Ω  
-1  
-2  
-3  
-4  
RL = 150Ω  
RL = 50Ω  
CL = 100pF  
Rs = 2 0 Ω  
CL = 50pF  
Rs = 3 0 Ω  
CL = 10pF  
Rs = 4 0 Ω  
-5  
VOUT = 0.2Vpp  
VOUT = 0.2Vpp  
-6  
0.1  
1
10  
100  
1000  
0.1  
1
10  
100  
1000  
Frequency (MHz)  
Frequency (MHz)  
Frequency Response vs. V  
Frequency Response vs. Temperature  
OUT  
1
0
1
0
-1  
-2  
-3  
-4  
-5  
-6  
-7  
-1  
-2  
VOUT = 4Vpp  
-3  
-4  
-5  
-6  
-7  
+ 25degC  
VOUT = 2Vpp  
- 40degC  
+ 85degC  
VOUT = 1Vpp  
VOUT = 2Vpp  
0.1  
1
10  
100  
1000  
0.1  
1
10  
Frequency (MHz)  
100  
1000  
Frequency (MHz)  
©2004-2008 CADEKA Microcircuits LLC  
www.cadeka.com  
5
Data Sheet  
Typical Performance Characteristics - Continued  
T = 25°C, V = ±5V, R = 510Ω, R = 100Ω, G = 2; unless otherwise noted.  
A
s
f
L
Frequency Response vs. R at G=1  
Frequency Response vs. R at G=2  
f
f
1
3
Rf = 250Ω  
Rf = 510Ω  
Rf = 750Ω  
0
2
1
-1  
Rf = 510Ω  
Rf = 1kΩ  
-2  
-3  
-4  
-5  
-6  
-7  
0
Rf = 1kΩ  
-1  
-2  
-3  
-4  
Rf = 1.24kΩ  
Rf = 1.5kΩ  
Rf = 1.5kΩ  
G = 1  
G = 2  
0.1  
1
10  
100  
1000  
0.1  
1
10  
Frequency (MHz)  
100  
1000  
Frequency (MHz)  
Frequency Response vs. R at G=5  
Gain Flatness  
f
1
0
0.1  
0
-0.1  
-0.2  
-0.3  
-0.4  
-1  
Rf = 510Ω  
-2  
Rf = 100Ω  
-3  
Rf = 200Ω  
-4  
-5  
-6  
-7  
G = 5  
VOUT = 2Vpp  
-0.5  
0.1  
1
10  
100  
1000  
0.1  
1
10  
100  
1000  
Frequency (MHz)  
Frequency (MHz)  
Open Loop Transimpendance Gain/Phase vs. Frequency  
Input Voltage Noise  
13  
12  
11  
10  
9
1M  
100k  
10k  
1k  
0
-20  
-40  
-60  
Phase  
-80  
-100  
-120  
-140  
-160  
-180  
-200  
8
7
6
100  
10  
Gain  
5
4
10k  
100k  
1M  
10M  
100M  
1G  
0.0001 0.001 0.01  
0.1  
1
10  
100  
Frequency (Hz)  
Frequency (MHz)  
©2004-2008 CADEKA Microcircuits LLC  
www.cadeka.com  
6
Data Sheet  
Typical Performance Characteristics - Continued  
T = 25°C, V = ±5V, R = 510Ω, R = 100Ω, G = 2; unless otherwise noted.  
A
s
f
L
2nd Harmonic Distortion vs. R  
3rd Harmonic Distortion vs. R  
L
L
-55  
-50  
-55  
-60  
-60  
RL = 100Ω  
-65  
RL = 100Ω  
-70  
-75  
-80  
-85  
-65  
-70  
-75  
-80  
-85  
-90  
RL = 1kΩ  
RL = 1kΩ  
-90  
VOUT = 2Vpp  
VOUT = 2Vpp  
-95  
0
5
10  
15  
20  
0
5
10  
Frequency (MHz)  
15  
20  
Frequency (MHz)  
2nd Harmonic Distortion vs. V  
3rd Harmonic Distortion vs. V  
OUT  
OUT  
-55  
-45  
-50  
-60  
20MHz  
20MHz  
-55  
-65  
-60  
-65  
-70  
-75  
-70  
5MHz  
-75  
5MHz  
-80  
-85  
-90  
-80  
1MHz  
-85  
1MHz  
-90  
0.5  
0.75  
1
1.25  
1.5  
1.75  
2
2.25  
2.5  
0.5  
0.75  
1
1.25  
1.5  
1.75  
2
2.25  
2.5  
Output Amplitude (Vpp  
)
Output Amplitude (Vpp  
)
CMRR vs. Frequency  
PSRR vs. Frequency  
0
-20  
-10  
-20  
-30  
-40  
-50  
-60  
-30  
-40  
-50  
-60  
-70  
-80  
10  
100  
1k  
10k 100k 1M 10M 100M  
10  
100  
1k  
10k 100k 1M 10M 100M  
Frequency (Hz)  
Frequency (Hz)  
©2004-2008 CADEKA Microcircuits LLC  
www.cadeka.com  
7
Data Sheet  
Typical Performance Characteristics - Continued  
T = 25°C, V = ±5V, R = 510Ω, R = 100Ω, G = 2; unless otherwise noted.  
A
s
f
L
Small Signal Pulse Response  
Large Signal Pulse Response  
0.125  
0.1  
2.5  
2.0  
0.075  
0.05  
1.5  
1.0  
0.025  
0
0.5  
0.0  
-0.025  
-0.05  
-0.075  
-0.1  
-0.5  
-1.0  
-1.5  
-2.0  
-2.5  
-0.125  
0
20  
40  
60  
80  
100 120 140 160 180 200  
0
20  
40  
60  
80  
100  
120  
140  
160  
180  
200  
T im e ( n s )  
T im e ( n s )  
Crosstalk vs. Frequency  
Closed Loop Output Impedance vs. Frequency  
-30  
-35  
-40  
-45  
-50  
-55  
-60  
-65  
-70  
-75  
-80  
-85  
-90  
-95  
0.1  
10  
1
VOUT = 2Vpp  
0.1  
1
10  
100  
10k  
100k  
1M  
10M  
100M  
Frequency (MHz)  
Frequency (Hz)  
Differential Gain & Phase AC Coupled  
Differential Gain & Phase DC Coupled  
0.04  
0.04  
RL = 150Ω  
DC coupled  
RL = 150Ω  
AC coupled into 220µF  
0.03  
0.02  
0.01  
0
0.03  
0.02  
0.01  
0
DG  
DG  
-0.01  
-0.02  
-0.03  
-0.04  
-0.01  
-0.02  
-0.03  
-0.04  
DP  
DP  
-0 .7  
-0.5  
-0.3  
-0.1  
0.1  
0.3  
0.5  
0 .7  
-0 .7  
-0.5  
-0.3  
-0.1  
0.1  
0.3  
0.5  
0 .7  
Input Voltage (V)  
I n p u t Vo l t a g e ( V )  
©2004-2008 CADEKA Microcircuits LLC  
www.cadeka.com  
8
Data Sheet  
General Information - Current Feedback  
Technology  
Advantages of CFB Technology  
V
OUT  
x1  
Z *I  
err  
o
I
err  
The CLCx600 Family of amplifiers utilize current feedback  
(CFB) technology to achieve superior performance. The  
primary advantage of CFB technology is higher slew rate  
performance when compared to voltage feedback (VFB)  
architecture. High slew rate contributes directly to better  
large signal pulse response, full power bandwidth, and  
distortion.  
R
R
g
f
R
L
V
IN  
VOUT  
Rf  
1
=
+
Eq. 2  
V
Rg  
Rf  
Zo(jω)  
IN  
1 +  
CFB also alleviates the traditional trade-off between  
closed loop gain and usable bandwidth that is seen with  
a VFB amplifier. With CFB, the bandwidth is primarily de-  
Figure 2. Inverting Gain Configuration with First Order  
Transfer Function  
termined by the value of the feedback resistor, R . By us-  
f
ing optimum feedback resistor values, the bandwidth of a  
CFB amplifier remains nearly constant with different gain  
configurations.  
CFB Technology - Theory of Operation  
Figure 1 shows a simple representation of a current feed-  
back amplifier that is configured in the traditional non-  
inverting gain configuration.  
When designing with CFB amplifiers always abide by these  
basic rules:  
• Use the recommended feedback resistor value  
Instead of having two high-impedance inputs similar to a  
VFB amplifier, the inputs of a CFB amplifier are connected  
across a unity gain buffer. This buffer has a high imped-  
ance input and a low impedance output. It can source or  
• Do not use reactive (capacitors, diodes, inductors, etc.)  
elements in the direct feedback path  
• Avoid stray or parasitic capacitance across feedback re-  
sistors  
sink current (I ) as needed to force the non-inverting  
err  
input to track the value of Vin. The CFB architecture em-  
ploys a high gain trans-impedance stage that senses Ierr  
• Follow general high-speed amplifier layout guidelines  
and drives the output to a value of (Z (jω) * I ) volts.  
o
err  
• Ensure proper precautions have been made for driving  
capacitive loads  
With the application of negative feedback, the amplifier  
will drive the output to a voltage in a manner which tries  
to drive Ierr to zero. In practice, primarily due to limita-  
tions on the value of Z (jω), Ierr remains a small but  
o
finite value.  
V
IN  
V
OUT  
x1  
Z *I  
o err  
I
err  
A closer look at the closed loop transfer function (Eq.1)  
shows the effect of the trans-impedance, Z (jω) on the  
o
R
f
gain of the circuit. At low frequencies where Z (jω) is very  
R
L
o
large with respect to R , the second term of the equation  
f
R
g
approaches unity, allowing R and R to set the gain. At  
f
g
higher frequencies, the value of Z (jω) will roll off, and  
o
the effect of the secondary term will begin to dominate.  
The -3dB small signal parameter specifies the frequency  
VOUT  
Rf  
1
=
1 +  
+
Eq. 1  
where the value Z (jω) equals the value of R causing the  
o
f
V
Rg  
Rf  
Zo(jω)  
IN  
1 +  
gain to drop by 0.707 of the value at DC.  
For more information regarding current feedback ampli-  
fiers, visit www.cadeka.com for detailed application notes,  
such as AN-3: The Ins and Outs of Current Feedback Am-  
plifiers.  
Figure 1. Non-Inverting Gain Configuration with First  
Order Transfer Function  
©2004-2008 CADEKA Microcircuits LLC  
www.cadeka.com  
9
Data Sheet  
CFB amplifiers can be used in unity gain configurations.  
Do not use the traditional voltage follower circuit, where  
the output is tied directly to the inverting input. With a  
CFB amplifier, a feedback resistor of appropriate value  
must be used to prevent unstable behavior. Refer to fig-  
ure 5 and Table 1. Although this seems cumbersome, it  
does allow a degree of freedom to adjust the passband  
characteristics.  
Application Information  
Basic Operation  
Figures 3, 4, and 5 illustrate typical circuit configurations for  
non-inverting, inverting, and unity gain topologies for dual  
supply applications. They show the recommended bypass  
capacitor values and overall closed loop gain equations.  
+Vs  
6.8μF  
Feedback Resistor Selection  
One of the key design considerations when using a CFB  
amplifier is the selection of the feedback resistor, R . R is  
f
f
0.1μF  
Input  
+
-
used in conjunction with R to set the gain in the tradi-  
g
Output  
tional non-inverting and inverting circuit configurations.  
Refer to figures 3 and 4. As discussed in the Current Feed-  
back Technology section, the value of the feedback resis-  
tor has a pronounced effect on the frequency response of  
the circuit.  
RL  
0.1μF  
6.8μF  
Rf  
Rg  
G = 1 + (Rf/Rg)  
-Vs  
Table 1, provides recommended R and associated R val-  
f
g
ues for various gain settings. These values produce the  
optimum frequency response, maximum bandwidth with  
minimum peaking. Adjust these values to optimize perfor-  
mance for a specific application. The typical performance  
characteristics section includes plots that illustrate how  
Figure 3. Typical Non-Inverting Gain Circuit  
+Vs  
6.8μF  
the bandwidth is directly affected by the value of R at  
various gain settings.  
f
R1  
0.1μF  
+
Output  
Rg  
Input  
-
RL  
±0.1dB BW  
(MHz)  
-3dB BW  
(MHz)  
0.1μF  
Gain  
(V/V  
Rf  
R (Ω)  
f
R (Ω)  
g
6.8μF  
G = - (Rf/Rg)  
-Vs  
1
2
5
1240  
510  
-
129  
140  
18  
300  
230  
111  
For optimum input offset  
voltage set R1 = Rf || Rg  
510  
50  
200  
Figure 4. Typical Inverting Gain Circuit  
Table 1: Recommended R vs. Gain  
f
+Vs  
In general, lowering the value of R from the recom-  
6.8μF  
f
mended value will extend the bandwidth at the expense  
of additional high frequency gain peaking. This will cause  
increased overshoot and ringing in the pulse response  
0.1μF  
Input  
+
Output  
characteristics. Reducing R too much will eventually  
f
-
RL  
cause oscillatory behavior.  
0.1μF  
Rf  
Increasing the value of Rf will lower the bandwidth. Low-  
ering the bandwidth creates a flatter frequency response  
and improves 0.1dB bandwidth performance. This is im-  
portant in applications such as video. Further increase in  
Rf will cause premature gain rolloff and adversely affect  
gain flatness.  
6.8μF  
G = 1  
-Vs  
Rf is required for CFB amplifiers  
Figure 5. Typical Unity Gain (G=1) Circuit  
©2004-2008 CADEKA Microcircuits LLC  
www.cadeka.com  
10  
Data Sheet  
Driving Capacitive Loads  
ringing. Refer to the lꢂyꢀꢊꢅ cꢀꢆꢈꢇdꢄꢃꢂꢅꢇꢀꢆꢈ section for  
additional information regarding high speed layout tech-  
niques.  
Increased phase delay at the output due to capacitive load-  
ing can cause ringing, peaking in the frequency response,  
and possible unstable behavior. Use a series resistance,  
Overdrive Recovery  
R , between the amplifier and the load to help improve  
stability and settling performance. Refer to Figure 6.  
S
An overdrive condition is defined as the point when either  
one of the inputs or the output exceed their specified volt-  
age range. Overdrive recovery is the time needed for the  
amplifier to return to its normal or linear operating point.  
The recovery time varies, based on whether the input or  
output is overdriven and by how much the range is ex-  
ceeded. The CLCx600 Family will typically recover in less  
than 10ns from an overdrive condition. Figure 7 shows the  
CLC2600 in an overdriven condition.  
Input  
+
-
Rs  
Output  
CL  
RL  
Rf  
Rg  
Figure 6. Addition of R for Driving  
S
1.00  
0.75  
4
Capacitive Loads  
VIN = 1.5Vpp  
G = 5  
3
Table 2 provides the recommended R for various capaci-  
S
0.50  
2
tive loads. The recommended R values result in <=0.5dB  
S
Input  
0.25  
1
peaking in the frequency response. The Frequency Re-  
Output  
sponse vs. C plot, on page 5, illustrates the response of  
L
0.00  
0
the CLCx600 Family.  
-0.25  
-0.50  
-0.75  
-1.00  
-1  
-2  
-3  
-4  
C (pF)  
L
R (Ω)  
-3dB BW (MHz)  
S
10  
50  
40  
30  
20  
265  
140  
105  
0
20  
40  
60  
80 100 120 140 160 180 200  
T im e ( n s )  
100  
Figure 7. Overdrive Recovery  
Power Dissipation  
Table 1: Recommended R vs. C  
S
L
For a given load capacitance, adjust R to optimize the  
tradeoff between settling time and bandwidth. In general,  
S
For most applications, the power dissipation due to driv-  
ing external loads should be low enough to ensure a safe  
operating condition. However, applications with low im-  
pedance, DC coupled loads should be analyzed to en-  
sure that maximum allowed junction temperature is not  
exceeded. Guidelines listed below can be used to verify  
that the particular application will not cause the device to  
operate beyond it’s intended operating range.  
reducing R will increase bandwidth at the expense of ad-  
S
ditional overshoot and ringing.  
Parasitic Capacitance on the Inverting Input  
Physical connections between components create unin-  
tentional or parasitic resistive, capacitive, and inductive  
elements.  
Maximum power levels are set by the absolute maximum  
junction rating of 150°C. To calculate the junction tem-  
Parasitic capacitance at the inverting input can be espe-  
cially troublesome with high frequency amplifiers. A para-  
sitic capacitance on this node will be in parallel with the  
perature, the package thermal resistance value Theta  
JA  
) is used along with the total die power dissipation.  
JA  
gain setting resistor R . At high frequencies, its imped-  
g
ance can begin to raise the system gain by making R  
appear smaller.  
g
T
= T + (Ө × P )  
Ambient JA D  
Junction  
In general, avoid adding any additional parasitic capaci-  
tance at this node. In addition, stray capacitance across  
Where T  
is the temperature of the working environment.  
the R resistor can induce peaking and high frequency  
Ambient  
f
©2004-2008 CADEKA Microcircuits LLC  
www.cadeka.com  
11  
Data Sheet  
In order to determine P , the power dissipated in the load  
needs to be subtracted from the total power delivered by  
the supplies.  
D
2.5  
2
SOIC-14  
P = P  
- P  
load  
D
supply  
1.5  
1
Supply power is calculated by the standard power equa-  
tion.  
SOIC-8  
P
= V  
× I  
supply  
supply RMS supply  
0.5  
0
V
= V - V  
S+ S-  
supply  
Power delivered to a purely resistive load is:  
-40  
-20  
0
20  
40  
60  
80  
2
P
= ((V  
)
)/Rload  
eff  
load  
LOAD RMS  
Ambient Temperature (°C)  
The effective load resistor (Rload ) will need to include  
eff  
the effect of the feedback network. For instance,  
Figure 8. Maximum Power Derating  
Rload in figure 3 would be calculated as:  
eff  
R || (R + R )  
Better thermal ratings can be achieved by maximizing PC  
board metallization at the package pins. However, be care-  
ful of stray capacitance on the input pins.  
L
f
g
These measurements are basic and are relatively easy to  
perform with standard lab equipment. For design purposes  
however, prior knowledge of actual signal levels and load In addition, increased airflow across the package can also  
impedance is needed to determine the dissipated power. help to reduce the effective Ө of the package.  
JA  
Here, P can be found from  
D
In the event the outputs are momentarily shorted to a low  
impedance path, internal circuitry and output metallization  
are set to limit and handle up to 65mA of output current.  
However, extended duration under these conditions may  
not guarantee that the maximum junction temperature  
(+150°C) is not exceeded.  
P = P  
+ P  
- P  
D
Quiescent  
Dynamic Load  
Quiescent power can be derived from the specified I val-  
ues along with known supply voltage, V  
can be calculated as above with the desired signal ampli-  
tudes using:  
S
. Load power  
Supply  
Layout Considerations  
(V  
)
= V  
/ √2  
LOAD RMS  
PEAK  
General layout and supply bypassing play major roles in  
high frequency performance. CADEKA has evaluation  
boards to use as a guide for high frequency layout and as  
aid in device testing and characterization. Follow the steps  
below as a basis for high frequency layout:  
( I  
)
= ( V  
)
/ Rload  
LOAD RMS  
LOAD RMS eff  
The dynamic power is focused primarily within the output  
stage driving the load. This value can be calculated as:  
P
= (V - V  
)
× ( I )  
LOAD RMS  
DYNAMIC  
S+  
LOAD RMS  
• Include 6.8µF and 0.1µF ceramic capacitors for power  
supply decoupling  
Assuming the load is referenced in the middle of the power  
rails or V /2.  
supply  
• Place the 6.8µF capacitor within 0.75 inches of the power pin  
• Place the 0.1µF capacitor within 0.1 inches of the power pin  
Figure 8 shows the maximum safe power dissipation in the  
package vs. the ambient temperature for the 8 and 14 lead  
SOIC packages.  
• Remove the ground plane under and around the part,  
especially near the input and output pins to reduce para-  
sitic capacitance  
• Minimize all trace lengths to reduce series inductances  
Refer to the evaluation board layouts below for more in-  
formation.  
©2004-2008 CADEKA Microcircuits LLC  
www.cadeka.com  
12  
Data Sheet  
Evaluation Board Information  
The following evaluation boards are available to aid in the  
testing and layout of these devices:  
Evaluation Board #  
CEB006  
CEB018  
Products  
CLC2600  
CLC3600, CLC4600  
Evaluation Board Schematics  
Evaluation board schematics and layouts are shown in Fig-  
ures 9-14. These evaluation boards are built for dual- sup-  
ply operation. Follow these steps to use the board in a  
single-supply application:  
Figure 10. CEB006 Top View  
1. Short -Vs to ground.  
2. Use C3 and C4, if the -V pin of the amplifier is not  
S
directly connected to the ground plane.  
Figure 11. CEB006 Bottom View  
Figure 9. CEB006 Schematic  
©2004-2008 CADEKA Microcircuits LLC  
www.cadeka.com  
13  
Data Sheet  
Figure 14. CEB018 Bottom View  
Figure 12. CEB018 Schematic  
Figure 13. CEB018 Top View  
©2004-2008 CADEKA Microcircuits LLC  
www.cadeka.com  
14  
Data Sheet  
Mechanical Dimensions  
SOIC-8 Package  
SOIC-14 Package  
For additional information regarding our products, please visit CADEKA at: cadeka.com  
caDeKa Hꢄꢂdqꢊꢂꢃꢅꢄꢃꢈ Loveland, Colorado  
T: 970.663.5452  
T: 877.663.5415 (toll free)  
CADEKA, the CADEKA logo design, and Comlinear and the Comlinear logo design, are trademarks or registered trademarks of CADEKA  
Microcircuits LLC. All other brand and product names may be trademarks of their respective companies.  
CADEKA reserves the right to make changes to any products and services herein at any time without notice. CADEKA does not assume any  
responsibility or liability arising out of the application or use of any product or service described herein, except as expressly agreed to in  
writing by CADEKA; nor does the purchase, lease, or use of a product or service from CADEKA convey a license under any patent rights,  
copyrights, trademark rights, or any other of the intellectual property rights of CADEKA or of third parties.  
Amplify the Human Experience  
Copyright ©2008 by CADEKA Microcircuits LLC. All rights reserved.  

相关型号:

CLC2600ISO8X

Dual, Triple, and Quad 300MHz Amplifiers
CADEKA

CLC2601

Dual, Triple, and Quad 550MHz Amplifiers
CADEKA

CLC2601ISO8

Dual, Triple, and Quad 550MHz Amplifiers
CADEKA

CLC2601ISO8X

Dual, Triple, and Quad 550MHz Amplifiers
CADEKA

CLC2605

1.5GHz Amplifiers
EXAR

CLC2605ISO8X

1.5GHz Amplifiers
EXAR

CLC261

AC Series does not require AC/DC converters associated with other standard COB types
CITIZEN

CLC261-25280273M1-B009Z

AC Series does not require AC/DC converters associated with other standard COB types
CITIZEN

CLC261-25280303M1-B010Z

AC Series does not require AC/DC converters associated with other standard COB types
CITIZEN

CLC261-25280403M1-B011Z

AC Series does not require AC/DC converters associated with other standard COB types
CITIZEN

CLC261-25280503M1-B012Z

AC Series does not require AC/DC converters associated with other standard COB types
CITIZEN

CLC3004

Single and Triple, 750MHz Amplifiers with Disable
CADEKA