SPT9693 [CADEKA]

WIDE INPUT VOLTAGE, JFET COMPARATOR; 宽广的输入电压,比较器JFET
SPT9693
型号: SPT9693
厂家: CADEKA MICROCIRCUITS LLC.    CADEKA MICROCIRCUITS LLC.
描述:

WIDE INPUT VOLTAGE, JFET COMPARATOR
宽广的输入电压,比较器JFET

比较器 输入元件
文件: 总10页 (文件大小:171K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
SPT9693  
WIDE INPUT VOLTAGE, JFET COMPARATOR  
TECHNICAL DATA  
MARCH 1, 2001  
FEATURES  
APPLICATIONS  
• Common mode range –3.0 to +8.0 V  
• Low input bias current <100 pA  
• Propagation delay 1.5 ns (max)  
• Low offset ±25 mV  
• Automated test equipment  
• High-speed instrumentation  
• Window comparators  
• High-speed timing  
• Low feedthrough and crosstalk  
• Differential latch control  
• Line receivers  
• High-speed triggers  
• Threshold detection  
• Peak detection  
GENERAL DESCRIPTION  
The SPT9693 is a high-speed, wide common mode volt-  
age, JFET input, dual comparator. It is designed for appli-  
cations that measure critical timing parameters in which  
wide common mode input voltages of –3.0 to +8.0 V are  
required. Propagation delays are constant for overdrives  
greater than 50 mV.  
buffers in most applications. The device has differential  
analog inputs and complementary logic outputs com-  
patible with ECL systems. Each comparator has a  
complementary latch enable control that can be driven by  
standard ECL logic.  
The SPT9693 is available in 20-contact LCC and 20-lead  
PLCC packages over the commercial temperature range.  
It is also available in die form.  
JFET inputs reduce the input bias currents to the  
nanoamp level, eliminating the need for input drivers and  
BLOCK DIAGRAM  
Q
Q
Q
Q
GND  
B
A
A
B
B
GND  
LE  
LE  
A
B
B
LE  
LE  
A
A
N/C  
AV (B)  
N/C  
EE  
AV (B)  
AV (A)  
CC  
EE  
AV (A) –IN  
+IN  
+IN  
–IN  
B
CC  
A
A
B
ABSOLUTE MAXIMUM RATINGS (Beyond which damage may occur)1 25 °C  
Supply Voltages (Measured to GND)  
Positive Supply Voltage (AVCC) ............ –0.5 to +11.0 V  
Negative Supply Voltage (AVEE) ........... –11.0 to +0.5 V  
Output  
Output Current ................................................... 30 mA  
Temperature  
Input Voltages  
Operating Temperature, ambient................ 0 to +70 °C  
junction......................+150 °C  
Lead Temperature, (soldering 60 seconds) ..... +300 °C  
Storage Temperature............................ –65 to +150 °C  
Input Common Mode Voltage ................6 to +AVCC+1  
Differential Input Voltage .................... –12.0 to +12.0 V  
Input Voltage, Latch Controls ...................... –6 to 0.5 V  
V
IN to AVCC Differential Voltage ............... –16 to +1.0 V  
Note: 1. Operation at any Absolute Maximum Rating is not implied.See  
Electrical Specifications for proper nominal applied conditions  
in typical applications.Application of multiple maximum rating  
conditions at the same time may damage the device.  
VIN to AVEE Differential Voltage ...............+4 to +21.0 V  
ELECTRICAL SPECIFICATIONS  
TA = +25 °C, AVCC = +10 V, AVEE = –10.0 V, RL = 50 Ohm to –2 V, unless otherwise specified.  
TEST  
CONDITIONS  
TEST  
LEVEL  
PARAMETERS  
MIN  
TYP  
MAX  
UNITS  
DC CHARACTERISTICS  
Input Offset Voltage  
V
IN (Common Mode) = 0  
I
IV  
–25  
–25  
0.0  
0.0  
+25  
+25  
mV  
mV  
TMIN<TA<TMAX  
Offset Voltage Tempco  
Input Bias Current  
V
I
50  
±10  
µV/°C  
nA  
T
MIN<TA<TMAX  
VIN (Common Mode) = –3 to +7 V  
MIN<TA<TMAX  
±100  
±150  
Input Bias Current  
Input Offset Current  
T
I
±50  
nA  
VIN (Common Mode) = +7 to +8 V  
V
V
±1.0  
±10  
nA  
nA  
TMIN<TA<TMAX  
Positive Supply Current (Dual)  
Negative Supply Current (Dual)  
AVCC=10 V  
AVEE=–10.0 V  
I
I
3
40  
6
55  
mA  
mA  
Positive Supply Voltage, AVCC  
Negative Supply Voltage, AVEE  
IV  
IV  
9.75  
–9.75  
10.0  
–10.0  
10.25  
–10.25  
V
V
Input Common Mode Range  
Latch Enable  
Common Mode Range  
Differential Voltage Range  
Open Loop Gain  
Differential Input Resistance  
Input Capacitance  
Power Supply Sensitivity  
Common Mode Rejection Ratio  
I
–3.0  
–2.0  
+8.0  
V
IV  
I
V
V
V
V
I
IV  
I
0
±10  
V
V
52  
2
1.0  
60  
60  
55  
430  
dB  
G  
pF  
dB  
dB  
dB  
50  
45  
TMIN<TA<TMAX  
Dual  
Power Dissipation  
610  
mW  
Output High Level  
Output Low Level  
ECL 50 Ohms to –2 V  
ECL 50 Ohms to –2 V  
I
I
–.98  
–1.95  
–.70  
–1.65  
V
V
SPT9693  
2
3/1/01  
ELECTRICAL SPECIFICATIONS  
TA = +25 °C, AVCC = +10 V, AVEE = –10.0 V, RL = 50 Ohm to –2 V, unless otherwise specified.  
TEST  
TEST  
PARAMETERS  
CONDITIONS  
LEVEL  
MIN  
TYP  
MAX  
UNITS  
AC ELECTRICAL PARAMETERS  
Propagation Delay1  
Propagation Delay Tempco  
Propagation Delay Skew (A vs B)  
Delay Dispersion from  
Input Direction  
50 mV O.D., Slew 10 V/ns  
IV  
V
V
.75  
1.25  
2
100  
50  
1.50  
ns  
ps/ °C  
ps  
V
ps  
Delay Dispersion from  
Input Common Mode  
V
60  
ps  
Latch Set-up Time  
Latch to Output Delay  
Latch Pulse Width  
Latch Hold Time  
Rise Time  
V
V
V
V
V
V
V
500  
500  
500  
0
0.45  
0.45  
5
ps  
ps  
ps  
ps  
ns  
ns  
V/ns  
50 mV O.D.  
20% to 80%  
20% to 80%  
Fall Time  
Slew Rate  
1Valid for both high-to-low and low-to-high transitions  
LEVEL TEST PROCEDURE  
TEST LEVEL CODES  
All electrical characteristics are subject to the  
following conditions:  
I
100% production tested at the specified temperature.  
II  
100% production tested at TA = +25 °C, and sample tested at the  
specified temperatures.  
All parameters having min/max specifications  
are guaranteed. The Test Level column indi-  
cates the specific device testing actually per-  
formed during production and Quality Assur-  
ance inspection. Any blank section in the data  
column indicates that the specification is not  
tested at the specified condition.  
III  
IV  
QA sample tested only at the specified temperatures.  
Parameter is guaranteed (but not tested) by design and characteri-  
zation data.  
V
Parameter is a typical value for information purposes only.  
VI  
100% production tested at TA = +25 °C. Parameter is guaranteed  
over specified temperature range.  
SPT9693  
3
3/1/01  
TYPICAL PERFORMANCE CHARACTERISTICS  
INPUT BIAS CURRENT vs COMMON MODE VOLTAGE  
(+25 °C)  
INPUT OFFSET VOLTAGE vs COMMON MODE VOLTAGE  
(T=+25 °C)  
100  
+10.0  
+6.0  
10  
+2.0  
–2.0  
1.0  
0.1  
–6.0  
0.01  
–10.0  
0.001  
–3.0  
–1.6  
+0.8  
+3.2  
+5.6  
+8.0  
–3.0  
–1.6  
+0.8  
+3.2  
+5.6  
+8.0  
COMMON MODE VOLTAGE (V)  
COMMON MODE VOLTAGE (V)  
PROPAGATION DELAY TIME vs TEMPERATURE  
DELAY DISPERSION vs INPUT PULSE WIDTH  
50  
40  
30  
20  
10  
1600  
1500  
1400  
1300  
1200  
Slope 2 ps/ °C  
˜
0
+25  
+50  
+75  
+100  
+125  
+150  
0
500  
1000  
1500  
2000  
2500  
3000  
TEMPERATURE (°C)  
INPUT PULSE WIDTH (ps)  
SPT9693  
4
3/1/01  
TYPICAL PERFORMANCE CHARACTERISTICS  
RISE AND FALL OF OUTPUTS vs TIME CROSSOVER  
HYSTERESIS vs DLATCH VOLTAGE  
V Hysteresis (mV)  
–.90  
50  
40  
30  
20  
10  
–1.10  
–1.30  
–1.50  
–1.70  
–1.90  
VLE–VLE  
(mV)  
–30  
–20  
–10  
0
10  
20  
30  
1.1  
1.5  
1.9  
TIME (ns)  
2.3  
2.7  
3.5  
PROPAGATION DELAY vs INPUT  
OVERDRIVE VOLTAGE  
PROPAGATION DELAY vs  
COMMON MODE INPUT VOLTAGE  
1500  
1400  
1300  
1200  
1100  
1600  
1500  
1400  
1300  
1200  
Input Slew Rates  
= 1 V/ns  
= 2 V/ns  
= 5 V/ns  
50  
100  
150  
200  
(mV)  
250  
300  
350  
400  
–4  
–2  
0
+2  
+4  
+6  
+8  
V
OD  
V
, cm (V)  
IN  
SPT9693  
5
3/1/01  
GENERAL INFORMATION  
Single-channel operation can be accomplished by floating  
all pins (including the ground and supply pins) of the un-  
used comparator. Power dissipation during single-channel  
operation is 50% of the dissipation during dual-channel  
operation.  
The SPT9693 is an ultrahigh-speed dual voltage com-  
parator. It offers tight absolute characteristics. The device  
has differential analog inputs and complementary logic  
outputs compatible with ECL systems.The output stage is  
adequate for driving terminated 50 ohm transmission This comparator offers the following improvements over  
lines. existing devices:  
The SPT9693 has a complementary latch enable control Ultra low input bias current and input current offset  
for each comparator. Both should be driven by standard Common mode voltage of 3 to +8 V  
ECL logic levels.  
Short propagation delays  
Excellent input and output rejection between  
comparator channels  
Improved input protection reliability due to JFET input  
stage design  
A common mode voltage range of –3 V to +8 V is achieved  
by a proprietary JFET input design, which requires a  
separate negative power supply (AVEE).  
The dual comparators have separate AVCC, AVEE, and  
grounds for each comparator to achieve high crosstalk  
rejection.  
All of these combined features produce high-performance  
products with timing stability and repeatability for large  
system precision.  
Figure 1 – Internal Function Diagram  
Q
+IN  
–IN  
+
–
PRE  
AMP  
ECL  
OUT  
LATCH  
Q
REF  
1
REF  
2
CLK  
BUF  
V
AV  
GND  
LE  
LE  
CC  
EE  
SPT9693  
6
3/1/01  
TYPICAL INTERFACE CIRCUIT  
techniques must be employed to prevent ringing on the  
output waveform. Also, the microstriplines must be termi-  
nated at the far end with the characteristic impedance of  
the line to prevent reflections. All supply voltages should  
be decoupled with high-frequency capacitors as close to  
the device as possible. If using the SPT9693 as a single  
comparator, the outputs of the inactive comparator can be  
grounded, left open or terminated with 50 ohms to 2 V. All  
outputs on the active comparator, whether used or un-  
The typical interface circuit using the comparator is shown  
in figure 2. Although it needs few external components  
and is easy to apply, there are several conditions that  
should be noted to achieve optimal performance.The very  
high operating speeds of the comparator require careful  
layout, decoupling of supplies, and proper design of trans-  
mission lines.  
Since the SPT9693 comparator is a very high-frequency used, should have identical terminations to minimize  
and high-gain device, certain layout rules must be followed ground current switching transients.  
to avoid oscillations. The comparator should be soldered  
All ground pins should be connected to the same ground  
to the board with component lead lengths kept as short as  
plane to further improve noise immunity and shielding.  
possible. A ground plane should be used, while the input  
Unused outputs must be terminated with 50 ohms to  
impedance to the part is kept as low as possible, to de-  
ground.  
crease parasitic feedback. If the output board traces are  
longer than approximately half an inch, microstripline  
Figure 2 – SPT9693 Typical Interface Circuit  
Figure 3 – SPT9693 Typical Interface Circuit  
with Hysteresis  
Q Output  
Q Output  
Q Output  
Q Output  
VIN  
+
–
VIN  
+
–
VRef  
LE  
VRef  
LE  
LE  
LE  
RL  
50 W  
R
L
RL  
50 W  
RL  
50 W  
50 W  
–1.3 V  
0.1 µF  
VC  
» –5 V  
VC  
» –5 V  
0.1 µF  
.1 µF  
550 W  
550 W  
–2 V  
–2 V  
–2 V  
Notes:  
100 W 0 to 200 W  
1) D1 = 1N5231B or 1N751 or equivalent.  
2) D2 = 1N914 or equivalent.  
Notes:  
3) At no time should both inputs be allowed to float with power applied  
to the device. At least one of the inputs should be tied to a voltage  
within the common mode range (–3.0 to +8.0 V) to prevent possible  
damage to the device. Additional protection diodes D2 should be used  
on the inputs if there is the possibility of exceeding the absolute  
maximum ratings.  
1) D1 = 1N5231B or 1N751 or equivalent.  
2) D2 = 1N914 or equivalent.  
3) At no time should both inputs be allowed to float with power applied  
to the device. At least one of the inputs should be tied to a voltage  
within the common mode range (–3.0 to +8.0 V) to prevent possible  
damage to the device. Additional protection diodes D2 should be  
used on the inputs if there is the possibility of exceeding the absolute  
maximum ratings.  
SPT9693  
7
3/1/01  
TIMING INFORMATION  
after the falling edge for the comparator to accept data.  
After tH, the output ignores the input status until the latch  
is strobed again. A minimum latch pulse width of tpL is  
needed for strobe operation, and the output transitions  
The timing diagram for the comparator is shown in figure  
4. If LE is high and LE low in the SPT9693, the comparator  
tracks the input difference voltage. When LE is driven low  
and LE high, the comparator outputs are latched into their  
existing logic states.  
occur after a time of tpLOH or tpLOL  
.
The set-up and hold times are a measure of the time  
required for an input signal to propagate through the first  
stage of the comparator to reach the latching circuitry.  
Input signals occurring before tS will be detected and held;  
those occurring after tH will not be detected. Changes  
between tS and tH may not be detected.  
The leading edge of the input signal (which consists of a  
150 mV overdrive voltage) changes the comparator out-  
put after a time of tpdL or tpdH (Q or Q). The input signal  
must be maintained for a time tS (set-up time) before the  
LE falling edge and LE rising edge and held for time tH  
Figure 4 – Timing Diagram  
Latch Enable  
50%  
Latch Enable  
tH  
tpL  
tS  
Differential  
Input Voltage  
V
Ref ±VOS  
VOD  
V
IN  
tpLOH  
tpdL  
Output Q  
50%  
50%  
Output Q  
tpdH  
tpLOL  
VIN+ = 300 mV, VOD = 150 mV  
SWITCHING TERMS (Refer to figure 4)  
tpdH INPUT TO OUTPUT HIGH DELAY The propaga-  
tion delay measured from the time the input signal  
reaches the reference voltage (± the input offset  
voltage) to the 50% point of an output LOW to HIGH  
transition.  
tH  
MINIMUM HOLD TIME The minimum time after  
the negative transition of the Latch Enable signal  
that the input signal must remain unchanged in order  
to be acquired and held at the outputs.  
tpL MINIMUM LATCH ENABLE PULSE WIDTH The  
minimum time that the Latch Enable signal must be  
HIGH in order to acquire an input signal change.  
tpdL INPUT TO OUTPUT LOW DELAY The propaga-  
tion delay measured from the time the input signal  
reaches the reference voltage (± the input offset  
voltage) to the 50% point of an output HIGH to LOW  
transition.  
tS  
MINIMUM SET-UP TIME The minimum time  
before the negative transition of the Latch Enable  
signal that an input signal change must be present in  
order to be acquired and held at the outputs.  
tpLOH LATCH ENABLE TO OUTPUT HIGH DELAY The  
propagation delay measured from the 50% point of  
the Latch Enable signal LOW to HIGH transition to  
50% point of an output LOW to HIGH transition.  
VOD VOLTAGE OVERDRIVE The difference between  
the differential input and reference input voltages.  
tpLOL LATCH ENABLE TO OUTPUT LOW DELAY The  
propagation delay measured from the 50% point of  
the Latch Enable signal LOW to HIGH transition to  
the 50% point of an output HIGH to LOW transition.  
SPT9693  
8
3/1/01  
PACKAGE OUTLINES  
20-Contact Leadless Chip Carrier (LCC)  
A
H
INCHES  
MILLIMETERS  
MIN MAX  
SYMBOL  
MIN  
MAX  
A
B
C
D
E
F
.040 typ  
.050 typ  
1.02 typ  
1.27 typ  
G
0.045  
0.345  
0.054  
0.055  
0.360  
0.066  
1.14  
8.76  
1.37  
1.40  
9.14  
1.68  
Bottom  
View  
Pin 1  
B
C
.020 typ  
0.51 typ  
G
H
0.022  
0.028  
0.075  
0.56  
0.71  
1.91  
F
D
E
20-Lead Plastic Leadless Chip Carrier (PLCC)  
A
G
INCHES  
MILLIMETERS  
MIN MAX  
SYMBOL  
MIN  
MAX  
B
A
B
C
D
E
F
G
H
I
J
K
L
M
N
O
.045 typ  
.045 typ  
1.14 typ  
1.14 typ  
Pin 1  
N
0.350  
0.385  
0.350  
0.385  
0.042  
0.165  
0.085  
0.025  
0.015  
0.026  
0.013  
0.356  
0.395  
0.356  
0.395  
0.056  
0.180  
0.110  
0.040  
0.025  
0.032  
0.021  
0.050  
0.330  
8.89  
9.78  
8.89  
9.78  
1.07  
4.19  
2.16  
0.64  
0.38  
0.66  
0.33  
9.04  
10.03  
9.04  
10.03  
1.42  
4.57  
2.79  
1.02  
0.64  
0.81  
0.53  
1.27  
8.38  
TOP  
VIEW  
M
O
E
F
L
K
C
D
J
I
H
Pin 1  
0.290  
7.37  
BOTTOM  
VIEW  
SPT9693  
9
3/1/01  
PIN ASSIGNMENTS  
PIN FUNCTIONS  
NAME  
QA  
FUNCTION  
QA QA QB QB GNDB  
3 20 19  
Output A  
2
1
QA  
Inverted Output A  
Ground A  
GNDA  
LEA  
18 LEB  
4
5
6
GNDA  
LEA  
Inverted Latch Enable A  
Latch Enable A  
LEB  
17  
LEA  
AVCC(A)  
AVEE(A)  
AVCC(B)  
AVEE(B)  
INA  
+INA  
+INB  
INB  
LEB  
Positive Supply Voltage (+10 V)  
Negative Supply Voltage (10 V)  
Positive Supply Voltage (+10 V)  
Negative Supply Voltage (10 V)  
Inverting Input A  
16  
LEA  
TOP VIEW  
LCC/PLCC  
N/C  
15 AVEE(B)  
N/C  
7
8
AVCC(B)  
14  
AVEE(A)  
Noninverting Input A  
Noninverting Input B  
Inverting Input B  
9
10  
11  
13  
12  
AVCC(A) –INA +INA +INB –INB  
Inverted Latch Enabled B  
Latch Enable B  
LEB  
GNDB  
QB  
Ground B  
Inverted Output B  
Output B  
QB  
N/C  
Not Connected  
ORDERING INFORMATION  
PART NUMBER  
SPT9693SCC  
SPT9693SCP  
SPT9693SCU  
TEMPERATURE RANGE  
0 to +70 °C  
PACKAGE TYPE  
LCC  
PLCC  
Die*  
0 to +70 °C  
+25 °C  
*Please see the die specification for guaranteed electrical performance.  
SPT9693  
10  
3/1/01  

相关型号:

SPT9693SCC

WIDE INPUT VOLTAGE, JFET COMPARATOR
CADEKA

SPT9693SCJ

Comparator, 2 Func, 25000uV Offset-Max, 0.45ns Response Time, CDIP20, SIDE BRAZED, CERAMIC, DIP-20
FAIRCHILD

SPT9693SCP

WIDE INPUT VOLTAGE, JFET COMPARATOR
CADEKA

SPT9693SCU

WIDE INPUT VOLTAGE, JFET COMPARATOR
CADEKA

SPT9712

12-BIT, 100 MWPS ECL D/A CONVERTER
FAIRCHILD

SPT9712

12-BIT, 100 MWPS ECL D/A CONVERTER
CADEKA

SPT9712AIP

12-BIT, 100 MWPS ECL D/A CONVERTER
FAIRCHILD

SPT9712AIP

12-BIT, 100 MWPS ECL D/A CONVERTER
CADEKA

SPT9712BIP

12-BIT, 100 MWPS ECL D/A CONVERTER
FAIRCHILD

SPT9712BIP

12-BIT, 100 MWPS ECL D/A CONVERTER
CADEKA

SPT9713

12-BIT, 100 MWPS TTL D/A CONVERTER
FAIRCHILD

SPT9713

12-BIT, 100 MWPS TTL D/A CONVERTER
CADEKA