CAT28LV65N-35T 概述
64K-Bit CMOS PARALLEL E2PROM 64K位CMOS并行E2PROM EEPROM
CAT28LV65N-35T 规格参数
是否Rohs认证: | 不符合 | 生命周期: | Transferred |
零件包装代码: | QFJ | 包装说明: | QCCJ, |
针数: | 32 | Reach Compliance Code: | unknown |
ECCN代码: | EAR99 | HTS代码: | 8542.32.00.51 |
风险等级: | 5.07 | 最长访问时间: | 350 ns |
其他特性: | 100000 PROGRAM/ERASE CYCLES; 100 YEAR DATA RETENTION | 数据保留时间-最小值: | 100 |
JESD-30 代码: | R-PQCC-J32 | JESD-609代码: | e0 |
长度: | 13.97 mm | 内存密度: | 65536 bit |
内存集成电路类型: | EEPROM | 内存宽度: | 8 |
湿度敏感等级: | 3 | 功能数量: | 1 |
端子数量: | 32 | 字数: | 8192 words |
字数代码: | 8000 | 工作模式: | ASYNCHRONOUS |
最高工作温度: | 70 °C | 最低工作温度: | |
组织: | 8KX8 | 封装主体材料: | PLASTIC/EPOXY |
封装代码: | QCCJ | 封装形状: | RECTANGULAR |
封装形式: | CHIP CARRIER | 并行/串行: | PARALLEL |
峰值回流温度(摄氏度): | 240 | 编程电压: | 3 V |
认证状态: | Not Qualified | 座面最大高度: | 3.55 mm |
最大供电电压 (Vsup): | 3.6 V | 最小供电电压 (Vsup): | 3 V |
标称供电电压 (Vsup): | 3.3 V | 表面贴装: | YES |
技术: | CMOS | 温度等级: | COMMERCIAL |
端子面层: | Tin/Lead (Sn/Pb) | 端子形式: | J BEND |
端子节距: | 1.27 mm | 端子位置: | QUAD |
处于峰值回流温度下的最长时间: | 30 | 宽度: | 11.43 mm |
Base Number Matches: | 1 |
CAT28LV65N-35T 数据手册
通过下载CAT28LV65N-35T数据手册来全面了解它。这个PDF文档包含了所有必要的细节,如产品概述、功能特性、引脚定义、引脚排列图等信息。
PDF下载Preliminary
CAT28LV65
64K-Bit CMOS PARALLEL E2PROM
FEATURES
■ CMOS and TTL Compatible I/O
■ 3.0V to 3.6V Supply
■ Automatic Page Write Operation:
– 1 to 32 Bytes in 5ms
■ Read Access Times:
– 250/300/350ns
– Page Load Timer
■ Low Power CMOS Dissipation:
– Active: 8 mA Max.
■ End of Write Detection:
– Toggle Bit
– Standby: 100 µA Max.
– DATA Polling
– RDY/BUSY
■ Simple Write Operation:
– On-Chip Address and Data Latches
– Self-Timed Write Cycle with Auto-Clear
■ Hardware and Software Write Protection
■ 100,000 Program/Erase Cycles
■ 100 Year Data Retention
■ Fast Write Cycle Time:
– 5ms Max.
■ Commercial, Industrial and Automotive
Temperature Ranges
DESCRIPTION
The CAT28LV65 is manufactured using Catalyst’s ad-
vancedCMOSfloatinggatetechnology. Itisdesignedto
endure 100,000 program/erase cycles and has a data
retention of 100 years. The device is available in JEDEC
approved 28-pin DIP, 28-pin TSOP, 28-pin SOIC or 32-
pin PLCC packages.
The CAT28LV65 is a low voltage, low power, CMOS
parallel E2PROM organized as 8K x 8-bits. It requires a
simple interface for in-system programming. On-chip
address and data latches, self-timed write cycle with
auto-clear and VCC power up/down write protection
eliminate additional timing and protection hardware.
DATA Polling, RDY/BUSY and Toggle status bit signal
the start and end of the self-timed write cycle. Addition-
ally, the CAT28LV65 features hardware and software
write protection.
BLOCK DIAGRAM
8,192 x 8
E2PROM
ARRAY
ROW
DECODER
ADDR. BUFFER
A –A
5
12
& LATCHES
INADVERTENT
WRITE
PROTECTION
HIGH VOLTAGE
GENERATOR
32 BYTE PAGE
REGISTER
V
CC
CE
OE
WE
CONTROL
LOGIC
I/O BUFFERS
DATA POLLING,
RDY/BUSY &
TOGGLE BIT
TIMER
I/O –I/O
0
7
ADDR. BUFFER
& LATCHES
A –A
COLUMN
DECODER
0
4
28LV65 F01
RDY/BUSY
© 1998 by Catalyst Semiconductor, Inc.
Doc. No. 25041-00 2/98
Characteristics subject to change without notice
1
CAT28LV65
Preliminary
PIN CONFIGURATION
DIP Package (P)
SOIC Package (J, K)
RDY/BUSY
1
28
27
26
25
24
23
22
21
20
19
18
17
16
15
V
CC
WE
RDY/BUSY
1
28
27
26
25
24
23
22
21
20
19
18
17
16
15
V
CC
WE
A
2
A
2
12
12
A
7
A
6
A
5
A
4
A
3
A
2
A
1
A
0
3
NC
A
7
A
6
A
5
A
4
A
3
A
2
A
1
A
0
3
NC
4
A
8
A
9
4
A
8
A
9
5
5
6
A
6
A
11
11
7
OE
7
OE
8
A
8
A
10
10
9
CE
9
CE
10
11
12
13
14
I/O
7
I/O
6
I/O
5
I/O
4
10
11
12
13
14
I/O
7
I/O
6
I/O
5
I/O
4
I/O
0
I/O
1
I/O
2
I/O
0
I/O
1
I/O
2
V
I/O
3
V
SS
I/O
3
SS
PLCC Package (N)
TSOP Top View (8mm x 13.4mm) (T13)
A
28
27
26
25
24
23
22
21
20
19
18
17
16
15
1
2
3
4
5
6
7
8
OE
10
A
CE
I/0
I/0
I/0
I/0
I/0
11
A
A
NC
9
8
7
6
5
4
3
4
3 2 1 32 31 30
WE
5
6
7
8
9
29
28
27
26
25
24
23
22
21
A
A
A
A
A
A
A
A
A
A
6
5
4
3
2
1
0
8
9
V
cc
GND
I/O
RDY/BUSY
A
9
11
12
2
10
11
12
13
14
A
7
I/O
1
NC
A
I/O
0
6
TOP VIEW
OE
A
5
A
A
1
A
0
10
11
12
13
A
10
CE
A
4
A
3
2
NC
I/O
I/O
I/O
7
6
0
14 15 16 17 18 19 20
28LV65 F04
PIN FUNCTIONS
Pin Name
Function
Address Inputs
Pin Name
WE
Function
Write Enable
3.0 to 3.6 V Supply
Ground
A0–A12
I/O0–I/O7
CE
Data Inputs/Outputs
Chip Enable
VCC
VSS
OE
Output Enable
NC
No Connect
RDY/BSY
Ready/Busy Status
Doc. No. 25041-00 2/98
2
Preliminary
CAT28LV65
ABSOLUTE MAXIMUM RATINGS*
*COMMENT
Temperature Under Bias ................. –55°C to +125°C
Storage Temperature....................... –65°C to +150°C
Stresses above those listed under “Absolute Maximum
Ratings” may cause permanent damage to the device.
These are stress ratings only, and functional operation
of the device at these or any other conditions outside of
those listed in the operational sections of this specifica-
tion is not implied. Exposure to any absolute maximum
rating for extended periods may affect device perfor-
mance and reliability.
Voltage on Any Pin with
Respect to Ground(2) ........... –2.0V to +VCC + 2.0V
VCC with Respect to Ground ............... –2.0V to +7.0V
Package Power Dissipation
Capability (Ta = 25°C)................................... 1.0W
Lead Soldering Temperature (10 secs) ............ 300°C
Output Short Circuit Current(3) ........................ 100 mA
RELIABILITY CHARACTERISTICS
Symbol
Parameter
Endurance
Min.
105
Max.
Units
Cycles/Byte
Years
Test Method
(1)
NEND
MIL-STD-883, Test Method 1033
MIL-STD-883, Test Method 1008
MIL-STD-883, Test Method 3015
JEDEC Standard 17
(1)
TDR
Data Retention
ESD Susceptibility
Latch-Up
100
(1)
VZAP
2000
100
Volts
(1)(4)
ILTH
mA
MODE SELECTION
Mode
CE
WE
OE
L
I/O
DOUT
DIN
Power
ACTIVE
ACTIVE
ACTIVE
STANDBY
ACTIVE
Read
L
L
H
Byte Write (WE Controlled)
Byte Write (CE Controlled)
Standby, and Write Inhibit
Read and Write Inhibit
H
L
X
H
H
DIN
H
X
X
High-Z
High-Z
H
CAPACITANCE T = 25°C, f = 1.0 MHz
A
Symbol
Test
Max.
10
Units
pF
Conditions
(1)
CI/O
Input/Output Capacitance
Input Capacitance
VI/O = 0V
VIN = 0V
(1)
CIN
6
pF
Note:
(1) This parameter is tested initially and after a design or process change that affects the parameter.
(2) The minimum DC input voltage is –0.5V. During transitions, inputs may undershoot to –2.0V for periods of less than 20 ns. Maximum DC
voltage on output pins is V +0.5V, which may overshoot to V +2.0V for periods of less than 20 ns.
CC
CC
(3) Output shorted for no more than one second. No more than one output shorted at a time.
(4) Latch-up protection is provided for stresses up to 100mA on address and data pins from –1V to V +1V.
CC
Doc. No. 25041-00 2/98
3
CAT28LV65
Preliminary
D.C. OPERATING CHARACTERISTICS
V
= 3.0V to 3.6V, unless otherwise specified.
cc
Limits
Symbol
Parameter
Min. Typ.
Max.
Units
Test Conditions
CE = OE = VIL,
f = 1/tRC min, All I/O’s Open
CE = VIHC
ICC
VCC Current (Operating, TTL)
8
mA
(3)
ISBC
VCC Current (Standby, CMOS)
100
µA
,
All I/O’s Open
ILI
Input Leakage Current
Output Leakage Current
–1
–5
1
5
µA
µA
VIN = GND to VCC
ILO
VOUT = GND to VCC
,
CE = VIH
(3)
VIH
High Level Input Voltage
Low Level Input Voltage
High Level Output Voltage
Low Level Output Voltage
Write Inhibit Voltage
2
–0.3
2
VCC +0.3
0.6
V
V
V
V
V
VIL
VOH
VOL
VWI
IOH = –100µA
0.3
IOL = 1.0mA
2
A.C. CHARACTERISTICS, Read Cycle
= 3.0V to 3.6V, unless otherwise specified.
V
cc
28LV65-25
28LV65-30
28LV65-35
Symbol
Parameter
Read Cycle Time
Min. Max. Min. Max. Min. Max.
Units
ns
tRC
tCE
tAA
tOE
250
300
350
CE Access Time
250
250
100
300
300
150
350
350
150
ns
Address Access Time
OE Access Time
ns
ns
(1)
tLZ
CE Low to Active Output
OE Low to Active Output
CE High to High-Z Output
OE High to High-Z Output
Output Hold from Address Change
0
0
0
0
0
0
ns
(1)
tOLZ
ns
(1)(2)
tHZ
55
55
60
60
60
60
ns
(1)(2)
tOHZ
ns
(1)
tOH
0
0
0
ns
Note:
(1) This parameter is tested initially and after a design or process change that affects the parameter.
(2) Output floating (High-Z) is defined as the state when the external data line is no longer driven by the output buffer.
(3) V = V –0.3V to V +0.3V.
IHC
CC
CC
Doc. No. 25041-00 2/98
4
Preliminary
CAT28LV65
(4)
Figure 1. A.C. Testing Input/Output Waveform
V
- 0.3 V
CC
2.0 V
0.6 V
INPUT PULSE LEVELS
REFERENCE POINTS
0.0 V
28LV65 F05
Figure 2. A.C. Testing Load Circuit (example)
Vcc
1.8 K
DEVICE
UNDER
TEST
OUTPUT
1. 3K
C
= 100 pF
L
C INCLUDES JIG CAPACITANCE
L
28LV65 F07
A.C. CHARACTERISTICS, Write Cycle
= 3.0V to 3.6V, unless otherwise specified.
V
cc
28LV65-25
28LV65-30
28LV65-35
Symbol
Parameter
Write Cycle Time
Min. Max.
Min. Max.
Min. Max.
Units
ms
ns
tWC
tAS
tAH
tCS
tCH
tCW
5
5
5
Address Setup Time
Address Hold Time
CE Setup Time
0
100
0
0
100
0
0
100
0
ns
ns
CE Hold Time
0
0
0
ns
(2)
CE Pulse Time
150
10
10
150
100
0
150
10
10
150
100
0
150
10
10
150
100
0
ns
tOES
tOEH
OE Setup Time
ns
OE Hold Time
ns
(2)
tWP
tDS
WE Pulse Width
ns
Data Setup Time
ns
tDH
tINIT
tBLC
tRB
Data Hold Time
ns
(1)
Write Inhibit Period After Power-up
Byte Load Cycle Time
WE Low to RDY/BSY Low
5
10
5
10
5
10
ms
µs
(1)(3)
0.1
100
220
0.1
100
220
0.1
100
220
ns
Note:
(1) This parameter is tested initially and after a design or process change that affects the parameter.
(2) A write pulse of less than 20ns duration will not initiate a write cycle.
(3) A timer of duration t
max. begins with every LOW to HIGH transition of WE. If allowed to time out, a page or byte write will begin;
BLC
however a transition from HIGH to LOW within t
max. stops the timer.
BLC
(4) Input rise and fall times (10% and 90%) < 10 ns.
Doc. No. 25041-00 2/98
5
CAT28LV65
Preliminary
Byte Write
DEVICE OPERATION
A write cycle is executed when both CE and WE are low,
and OE is high. Write cycles can be initiated using either
WE or CE, with the address input being latched on the
falling edge of WE or CE, whichever occurs last. Data,
conversely, is latched on the rising edge of WE or CE,
whichever occurs first. Once initiated, a byte write cycle
automatically erases the addressed byte and the new
data is written within 5 ms.
Read
Data stored in the CAT28LV65 is transferred to the data
bus when WE is held high, and both OE and CE are held
low. The data bus is set to a high impedance state when
either CE or OE goes high. This 2-line control architec-
ture can be used to eliminate bus contention in a system
environment.
Figure 3. Read Cycle
t
RC
ADDRESS
t
CE
CE
t
OE
OE
V
IH
t
WE
LZ
t
OHZ
t
t
HZ
DATA VALID
t
OH
OLZ
HIGH-Z
DATA OUT
DATA VALID
t
AA
28LV65 F06
Figure 4. Byte Write Cycle [WE Controlled]
t
WC
ADDRESS
t
t
AH
AS
t
t
CH
CS
CE
OE
t
t
t
OEH
OES
WP
WE
t
t
BLC
RB
HIGH-Z
HIGH-Z
RDY/BUSY
HIGH-Z
DATA OUT
DATA IN
DATA VALID
DS
28LV65 F08
t
t
DH
Doc. No. 25041-00 2/98
6
Preliminary
Page Write
CAT28LV65
(which can be loaded in any order) during the first and
subsequent write cycles. Each successive byte load
cycle must begin within tBLC MAX of the rising edge of the
preceding WE pulse. There is no page write window
The page write mode of the CAT28LV65 (essentially an
extended BYTE WRITE mode) allows from 1 to 32 bytes
of data to be programmed within a single E2PROM write
cycle. This effectively reduces the byte-write time by a
factor of 32.
limitation as long as WE is pulsed low within tBLC MAX
.
Upon completion of the page write sequence, WE must
stay high a minimum of tBLC MAX for the internal auto-
matic program cycle to commence. This programming
cycle consists of an erase cycle, which erases any data
that existed in each addressed cell, and a write cycle,
whichwritesnewdatabackintothecell. Apagewritewill
only write data to the locations that were addressed and
will not rewrite the entire page.
FollowinganinitialWRITEoperation(WEpulsedlow,for
tWP, and then high) the page write mode can begin by
issuing sequential WE pulses, which load the address
anddatabytesintoa32bytetemporarybuffer. Thepage
address where data is to be written, specified by bits A5
to A12, is latched on the last falling edge of WE. Each
byte within the page is defined by address bits A0 to A4
Figure 5. Byte Write Cycle [CE Controlled]
t
WC
ADDRESS
t
t
t
BLC
AS
AH
t
CW
CE
OE
WE
t
OEH
t
OES
t
t
CH
CS
t
RB
HIGH-Z
HIGH-Z
RDY/BUSY
DATA OUT
DATA IN
HIGH-Z
DATA VALID
DS
28LV65 F09
t
t
DH
Figure 6. Page Mode Write Cycle
OE
CE
WE
t
t
BLC
WP
ADDRESS
I/O
t
WC
LAST BYTE
BYTE n+2
BYTE 0 BYTE 1
BYTE 2
7
BYTE n
BYTE n+1
5096 FHD F10
Doc. No. 25041-00 2/98
CAT28LV65
Preliminary
DATA Polling
data from the device will result in I/O6 toggling between
one and zero. However, once the write is complete, I/O6
stops toggling and valid data can be read from the
device.
DATA polling is provided to indicate the completion of
write cycle. Once a byte write or page write cycle is
initiated, attempting to read the last byte written will
output the complement of that data on I/O7 (I/O0–I/O6
are indeterminate) until the programming cycle is com-
plete. Upon completion of the self-timed write cycle, all
I/O’s will output true data during a read cycle.
Ready/BUSY (RDY/BUSY)
The RDY/BUSY pin is an open drain output which
indicates device status during programming. It is pulled
low during the write cycle and released at the end of
programming. Several devices may be OR-tied to the
same RDY/BUSY line.
Toggle Bit
In addition to the DATA Polling feature, the device offers
an additional method for determining the completion of
a write cycle. While a write cycle is in progress, reading
Figure 7. DATA Polling
ADDRESS
CE
WE
t
OEH
t
OES
t
OE
OE
t
WC
= X
I/O
D
= X
D
D
= X
OUT
7
IN
OUT
28LV65 F11
Figure 8. Toggle Bit
WE
CE
OE
t
OEH
t
OES
t
OE
(1)
(1)
I/O
6
t
WC
28LV65 F12
Note:
(1) Beginning and ending state of I/O is indeterminate.
6
Doc. No. 25041-00 2/98
8
Preliminary
CAT28LV65
HARDWARE DATA PROTECTION
(4) Noise pulses of less than 20 ns on the WE or CE
inputs will not result in a write cycle.
The following is a list of hardware data protection fea-
tures that are incorporated into the CAT28LV65.
SOFTWARE DATA PROTECTION
(1) VCC sense provides for write protection when VCC
falls below 2.0V min.
The CAT28LV65 features a software controlled data
protectionschemewhich, onceenabled, requiresadata
algorithmtobeissuedtothedevicebeforeawritecanbe
performed. The device is shipped from Catalyst with the
software protection NOT ENABLED (the CAT28LV65 is
in the standard operating mode).
(2) A power on delay mechanism, tINIT (see AC charac-
teristics), provides a 5 to 10 ms delay before a write
sequence, after VCC has reached 2.40V min.
(3) Write inhibit is activated by holding any one of OE
low, CE high or WE high.
Figure 9. Write Sequence for Activating Software
Data Protection
Figure 10. Write Sequence for Deactivating
Software Data Protection
WRITE DATA:
ADDRESS:
AA
WRITE DATA:
ADDRESS:
AA
1555
1555
WRITE DATA:
ADDRESS:
55
WRITE DATA:
ADDRESS:
55
0AAA
0AAA
WRITE DATA:
ADDRESS:
80
WRITE DATA:
ADDRESS:
A0
1555
1555
WRITE DATA:
ADDRESS:
AA
(1)
SOFTWARE DATA
PROTECTION ACTIVATED
1555
WRITE DATA:
ADDRESS:
55
WRITE DATA:
XX
0AAA
TO ANY ADDRESS
WRITE LAST BYTE
TO
LAST ADDRESS
WRITE DATA:
ADDRESS:
20
1555
5094 FHD F08
5094 FHD F09
Note:
(1) Write protection is activated at this point whether or not any more writes are completed. Writing to addresses must occur within t
Max., after SDP activation.
BLC
Doc. No. 25041-00 2/98
9
CAT28LV65
Preliminary
Toactivatethesoftwaredataprotection,thedevicemust
besentthreewritecommandstospecificaddresseswith
specific data (Figure 9). This sequence of commands
(along with subsequent writes) must adhere to the page
writetimingspecifications(Figure11).Oncethisisdone,
all subsequent byte or page writes to the device must be
preceded by this same set of write commands. The data
protection mechanism is activated until a deactivate
sequence is issued regardless of power on/off transi-
tions. This gives the user added inadvertent write pro-
tection on power-up in addition to the hardware protec-
tion provided.
To allow the user the ability to program the device with
an E2PROM programmer (or for testing purposes) there
is a software command sequence for deactivating the
data protection. The six step algorithm (Figure 10) will
reset the internal protection circuitry, and the device will
return to standard operating mode (Figure 12 provides
reset timing). After the sixth byte of this reset sequence
has been issued, standard byte or page writing can
commence.
Figure 11. Software Data Protection Timing
t
WC
DATA
ADDRESS
AA
1555
55
0AAA
A0
1555
BYTE OR
PAGE
CE
WRITES
ENABLED
t
t
BLC
WP
WE
5094 FHD F13
Figure 12. Resetting Software Data Protection Timing
t
DATA
ADDRESS
AA
1555
55
0AAA
80
1555
AA
1555
55
0AAA
20
1555
WC
SDP
RESET
CE
DEVICE
UNPROTECTED
WE
5094 FHD F14
ORDERING INFORMATION
Prefix
Device #
Suffix
CAT
28LV65
N
-25
T
I
Optional
Company
ID
Tape & Reel
T: 500/Reel
Temperature Range
Blank = Commercial (0˚C to +70˚C)
I = Industrial (-40˚C to +85˚C)
A = Automotive (-40˚ to +105˚C)*
Package
Speed
Product
Number
P: PDIP
25: 250ns
30: 300ns
35: 350ns
J: SOIC (JEDEC)
K: SOIC (EIAJ)
N: PLCC
T13: TSOP (8mmx13.4mm)
* -40˚C to +125˚C is available upon request
Notes:
28LV65 F17
(1) The device used in the above example is a CAT28LV65NI-25T (PLCC, Industrial temperature, 250 ns Access Time, Tape & Reel).
Doc. No. 25041-00 2/98
10
CAT28LV65N-35T 相关器件
型号 | 制造商 | 描述 | 价格 | 文档 |
CAT28LV65N-35TE7 | CATALYST | EEPROM, 8KX8, 350ns, Parallel, CMOS, PQCC32, PLASTIC, LCC-32 | 获取价格 | |
CAT28LV65NA-15T | CATALYST | 64K-Bit CMOS PARALLEL EEPROM | 获取价格 | |
CAT28LV65NA-20 | CATALYST | EEPROM, 8KX8, 200ns, Parallel, CMOS, PQCC32, PLASTIC, LCC-32 | 获取价格 | |
CAT28LV65NA-20T | CATALYST | 64K-Bit CMOS PARALLEL EEPROM | 获取价格 | |
CAT28LV65NA-20T | ONSEMI | 8KX8 EEPROM 3V, 200ns, PQCC32, PLASTIC, LCC-32 | 获取价格 | |
CAT28LV65NA-25T | CATALYST | 64K-Bit CMOS PARALLEL EEPROM | 获取价格 | |
CAT28LV65NA-25T | ONSEMI | 8KX8 EEPROM 3V, 250ns, PQCC32, PLASTIC, LCC-32 | 获取价格 | |
CAT28LV65NA-30T | CATALYST | 64K-Bit CMOS PARALLEL E2PROM | 获取价格 | |
CAT28LV65NA-30T | ONSEMI | IC 8K X 8 EEPROM 3V, 300 ns, PQCC32, PLASTIC, LCC-32, Programmable ROM | 获取价格 | |
CAT28LV65NA-35T | CATALYST | 64K-Bit CMOS PARALLEL E2PROM | 获取价格 |
CAT28LV65N-35T 相关文章
- 2024-10-31
- 6
- 2024-10-31
- 6
- 2024-10-31
- 7
- 2024-10-31
- 8