CAT523PTE13 [CATALYST]

Configured Digitally Programmable Potentiometer (DPP): Programmable Voltage Applications; 配置的数字可编程电位计( DPP ) :可编程电压应用
CAT523PTE13
型号: CAT523PTE13
厂家: CATALYST SEMICONDUCTOR    CATALYST SEMICONDUCTOR
描述:

Configured Digitally Programmable Potentiometer (DPP): Programmable Voltage Applications
配置的数字可编程电位计( DPP ) :可编程电压应用

文件: 总10页 (文件大小:72K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Advance Information  
CAT523  
Configured Digitally Programmable Potentiometer (DPP): Programmable Voltage Applications  
APPLICATIONS  
FEATURES  
Two 8-bit DPPS Configured as Programmable  
Automated product calibration.  
Remote control adjustment of equipment  
Voltages in DAC-like Applications  
Buffered Wiper Outputs  
Offset, gain and zero adjustments in Self-  
Nonvolatile Wiper Storage  
Calibrating and Adaptive Control systems.  
Output voltage range includes both supply rails  
2 independently addressable output wipers  
1 LSB Accuracy, High Resolution  
Serial µP interface  
Tamper-proof calibrations.  
DAC (with memory) substitute  
Single supply operation: 2.7V-5.5V  
Setting read-back without effecting outputs  
DESCRIPTION  
The CAT523 is a dual, 8-bit digitally-programmable  
potentiometerconfiguredforprogrammablevoltageand  
DAC-like applications. Intended for final calibration of  
productssuchascamcorders,faxmachinesandcellular  
telephones on automated high volume production lines,  
it is also well suited for systems capable of self  
calibration, and applications where equipment which is  
either difficult to access or in a hazardous environment,  
requires periodic adjustment.  
effecting the stored settings and stored settings can be  
read back without disturbing the DAC’s output.  
Control of the CAT523 is accomplished with a simple 3  
wire serial interface. A Chip Select pin allows several  
CAT523's to share a common serial interface and  
communication back to the host controller is via a single  
serial data line thanks to the CAT523’s Tri-Stated Data  
Output pin. A RDY/BSY output working in concert with  
aninternallowvoltagedetectorsignalsproperoperation  
of non-volatile Erase/Write cycle.  
The 2 independently programmable DPPs have a  
common output voltage range which includes both  
supply rails. The wipers are buffered by rail to rail OP  
AMPS. Wiper settings, stored in non-volatile memory,  
are not lost when the device is powered down and are  
automatically reinstated when power is returned. Each  
wiper can be dithered to test new output values without  
The CAT523 is available in the 0 to 70° C Commercial  
and –40° C to + 85° C Industrial operating temperature  
ranges and offered in 14-pin plastic DIP and SOIC  
mount packages.  
PIN CONFIGURATION  
FUNCTIONAL DIAGRAM  
RDY/BSY  
V
V
H
DD  
REF  
SOIC Package (J)  
DIP Package (P)  
14  
3
1
H
1
H
1
V
DD  
V
V
V
V
V
1
2
3
4
5
6
14  
13  
12  
11  
10  
9
1
2
3
4
5
6
14  
13  
12  
11  
10  
9
DD  
REF  
REF  
7
PROGRAM  
CONTROL  
PROG  
CLK  
RDY/BSY  
CS  
CLK  
OUT  
OUT  
2
2
V
V
RDY/BSY  
CS  
OUT  
OUT  
CAT  
523  
CAT  
523  
NC  
NC  
5
2
DI  
DI  
DI  
NC  
V
NC  
V
DATA  
REGISTER  
AND  
13  
12  
+
+
V
1
2
L
L
OUT  
DO  
7K  
DO  
REF  
REF  
SERIAL  
CONTROL  
CLK  
NONVOLATILE  
MEMORY  
PROG  
GND  
PROG  
GND  
8
7
8
7
4
CS  
V
7KΩ  
OU  
SERIAL  
DATA  
OUTPUT  
6
DO  
REGISTER  
CAT523  
8
9
L
GND  
V
REF  
© 2001 by Catalyst Semiconductor, Inc.  
Doc. No. 25076-00 2/98 M-1  
1
Characteristics subject to change without notice  
CAT523  
Advance Information  
ABSOLUTE MAXIMUM RATINGS*  
Junction Temperature ..................................... +150°C  
Storage Temperature ....................... –65°C to +150°C  
Lead Soldering (10 sec max) .......................... +300°C  
Supply Voltage  
VDD to GND ......................................0.5V to +7V  
Inputs  
CLK to GND............................0.5V to VDD +0.5V  
CS to GND..............................0.5V to VDD +0.5V  
DI to GND ...............................0.5V to VDD +0.5V  
PROG to GND ........................0.5V to VDD +0.5V  
VREFH to GND ........................0.5V to VDD +0.5V  
VREFL to GND .........................0.5V to VDD +0.5V  
Outputs  
*StressesabovethoselistedunderAbsoluteMaximumRatings  
may cause permanent damage to the device. Absolute  
Maximum Ratings are limited values applied individually while  
other parameters are within specified operating conditions,  
and functional operation at any of these conditions is NOT  
implied.Deviceperformanceandreliabilitymaybeimpairedby  
exposure to absolute rating conditions for extended periods of  
time.  
D0 to GND...............................0.5V to VDD +0.5V  
VOUT 1– 4 to GND...................0.5V to VDD +0.5V  
Operating Ambient Temperature  
Commercial (‘C’ suffix) .................... 0°C to +70°C  
Industrial (‘I’ suffix)...................... – 40°C to +85°C  
RELIABILITY CHARACTERISTICS  
Symbol  
Parameter  
Min  
Max  
Units  
Test Method  
(1)  
VZAP  
ESD Susceptibility  
Latch-Up  
2000  
100  
Volts  
mA  
MIL-STD-883, Test Method 3015  
JEDEC Standard 17  
(1)(2)  
ILTH  
NOTES: 1. This parameter is tested initially and after a design or process change that affects the parameter.  
2. Latch-up protection is provided for stresses up to 100mA on address and data pins from –1V to VCC + 1V.  
DC ELECTRICAL CHARACTERISTICS:  
VDD = +2.7 to +5.5V, VREFH = VDD, VREFL = 0V, unless otherwise specified  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Units  
Resolution  
8
Bits  
Accuracy  
INL  
Integral Linearity Error  
ILOAD = 10 µA, TR = C  
± 1  
± 1  
LSB  
LSB  
LSB  
LSB  
LSB  
LSB  
LSB  
LSB  
TR = I  
ILOAD = 40 µA,  
TR = C  
TR = I  
± 2  
± 2  
DNL  
Differential Linearity Error  
ILOAD = 10 µA, TR = C  
TR = I  
± 0.5  
± 0.5  
± 1.5  
± 1.5  
ILOAD = 40 µA,  
TR = C  
TR = I  
Logic Inputs  
IIH  
Input Leakage Current  
Input Leakage Current  
High Level Input Voltage  
Low Level Input Voltage  
VIN = VDD  
VIN = 0V  
2
10  
–10  
VDD  
0.8  
µA  
µA  
V
IIL  
VIH  
VIL  
0
V
VRH  
VRL  
ZIN  
VREFH Input Voltage Range  
VREFL Input Voltage Range  
VREFH–VREFL Resistance  
2.7  
GND  
7k  
VDD  
VDD -2.7  
V
V
VOH  
VOL  
High Level Output Voltage  
Low Level Output Voltage  
IOH = – 40 µA  
VDD –0.3  
V
V
V
IOL = 1 mA, VDD = +5V  
IOL = 0.4 mA, VDD = +3V  
0.4  
0.4  
2
CAT523  
Units  
Advance Information  
DC ELECTRICAL CHARACTERISTICS (Cont.):  
VDD = +2.7V to +5.5V , VREFH = +VDD, VREFL = 0V, unless otherwise specified  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Analog Output  
FSO  
ZSO  
IL  
Full-Scale Output Voltage  
VR = VREFH–VREF  
L
L
0.99 VR  
0.995 VR  
0.01 VR  
1
V
Zero-Scale Output Voltage  
DAC Output Load Current  
DAC Output Impedance  
VR = VREFH–VREF  
0.005 VR  
V
µA  
ROUT  
VDD = +5V  
100k  
150k  
1
VDD = +3V  
PSSR  
Power Supply Rejection  
ILOAD = 250 nA  
LSB / V  
Temperature  
TCO  
VOUT Temperature Coefficient  
VREFH = +5V, VREFL = 0V  
VDD = +5V, ILOAD = 250nA  
200  
µV/ °C  
TCREF  
Temperature Coefficient of  
VREF Resistance  
VREFH to VREF  
L
700  
ppm / °C  
Power Supply  
IDD1  
IDD2  
Supply Current (Read)  
Supply Current (Write)  
Normal Operating  
VDD=5V  
VDD=3V  
400  
1600  
1000  
600  
2500  
1600  
µA  
µA  
µA  
VDD  
Operating Voltage Range  
2.7  
5.5  
V
AC ELECTRICAL CHARACTERISTICS:  
VDD = +2.7V to +5.5V, VREFH = +VDD, VREFL = 0V, unless otherwise specified  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Units  
Digital  
tCSMIN  
tCSS  
tCSH  
tDIS  
Minimum CS Low Time  
CS Setup Time  
150  
100  
0
400  
4
150  
150  
5
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ms  
ns  
ns  
ns  
ns  
ns  
MHz  
CS Hold Time  
DI Setup Time  
CL = 100 pF,  
50  
see note 1  
tDIH  
DI Hold Time  
50  
tDO1  
tDO0  
tHZ  
Output Delay to 1  
Output Delay to 0  
Output Delay to High-Z  
Erase/Write Cycle Time  
Output Delay to Low-Z  
Erase/Write Pulse Width  
PROG Setup Time  
Minimum CLK High Time  
Minimum CLK Low Time  
Clock Frequency  
tBusy  
tLZ  
tPROG  
tPS  
400  
1
700  
150  
500  
300  
DC  
tCLK  
tCLK  
fC  
H
L
Analog  
tDS  
DAC Settling Time to 1/2 LSB  
CLOAD = 10 pF, VDD = +5V  
CLOAD = 10 pF, VDD = +3V  
3
6
10  
10  
µs  
µs  
Pin Capacitance  
CIN  
Input Capacitance  
Output Capacitance  
VIN = 0V, f = 1 MHz(2)  
VOUT = 0V, f = 1 MHz(2)  
8
6
pF  
pF  
COUT  
NOTES: 1. All timing measurements are defined at the point of signal crossing VDD / 2.  
2. These parameters are periodically sampled and are not 100% tested.  
3
CAT523  
Advance Information  
A. C. TIMING DIAGRAM  
t
1
2
3
4
5
o
t
H
CLK  
CLK  
t
t
L
t
CSH  
CSS  
CLK  
CS  
t
CSMIN  
t
DIS  
DI  
t
DIH  
t
DO0  
t
LZ  
DO  
t
HZ  
t
DO1  
PROG  
t
PS  
t
PROG  
RDY/BSY  
t
BUSY  
t
1
2
3
4
5
o
4
CAT523  
Advance Information  
PIN DESCRIPTION  
DAC addressing is as follows:  
Pin  
Name  
Function  
DAC OUTPUT  
A0  
0
A1  
0
1
2
3
4
5
6
7
VDD  
CLK  
Power supply positive.  
Clock input pin.Clock input pin.  
Ready/Busy Output  
Chip Select  
V
V
1
OUT  
OUT  
2
1
0
RDY/BSY  
CS  
DI  
Serial data input pin.  
Serial data output pin.  
DO  
PROG  
EEPROM Programming Enable  
Input  
8
GND  
Power supply ground.  
Minimum DAC output voltage.  
No Connect.  
9
VREF  
NC  
L
10  
11  
12  
13  
14  
NC  
No Connect.  
VOUT  
VOUT  
2
1
DAC output channel 2.  
DAC output channel 1.  
Maximum DAC output voltage.  
VREF  
H
DEVICE OPERATION  
read to or from the chip, and the Data Output (DO) pin is  
active. Data loaded into the DAC control registers will  
remain in effect until CS goes low. Bringing CS to a logic  
low returns all DAC outputs to the settings stored in  
EEPROM memory and switches DO to its high imped-  
ance Tri-State mode.  
The CAT523 is a quad 8-bit Digital to Analog Converter  
(DAC) whose outputs can be programmed to any one of  
256 individual voltage steps. Once programmed, these  
output settings are retained in non-volatile EEPROM  
memoryandwillnotbelostwhenpowerisremovedfrom  
the chip. Upon power up the DACs return to the settings  
stored in EEPROM memory. Each DAC can be written  
to and read from independently without effecting the  
output voltage during the read or write cycle. Each  
output can also be temporarily adjusted without chang-  
ing the stored output setting, which is useful for testing  
new output settings before storing them in memory.  
Because CS functions like a reset the CS pin has been  
equipped with a 30 ns to 90 ns filter circuit to prevent  
noise spikes from causing unwanted resets and the loss  
of volatile data.  
CLOCK  
The CAT523’s clock controls both data flow in and out of  
the IC and EEPROM memory cell programming. Serial  
data is shifted into the DI pin and out of the DO pin on the  
clock’srisingedge. Whileitisnotnecessaryfortheclock  
to be running between data transfers, the clock must be  
operating in order to write to EEPROM memory, even  
though the data being saved may already be resident in  
the DAC control register.  
DIGITAL INTERFACE  
The CAT523 employs a standard 3 wire serial control  
interface consisting of Clock (CLK), Chip Select (CS)  
and Data In (DI) inputs. For all operations, address and  
data are shifted in LSB first. In addition, all digital data  
must be preceded by a logic “1” as a start bit. The DAC  
address and data are clocked into the DI pin on the  
clock’s rising edge. When sending multiple blocks of  
information a minimum of two clock cycles is required  
between the last block sent and the next start bit.  
No clock is necessary upon system power-up. The  
CAT523’s internal power-on reset circuitry loads data  
from EEPROM to the DACs without using the external  
clock.  
Multiple devices may share a common input data line by  
selectively activating the CS control of the desired IC.  
Data Outputs (DO) can also share a common line  
because the DO pin is Tri-Stated and returns to a high  
impedance when not in use.  
As data transfers are edge triggered clean clock transi-  
tionsarenecessarytoavoidfalselyclockingdataintothe  
control registers. Standard CMOS and TTL logic fami-  
lies work well in this regard and it is recommended that  
any mechanical switches used for breadboarding or  
device evaluation purposes be debounced by a flip-flop  
or other suitable debouncing circuit.  
CHIP SELECT  
Chip Select (CS) enables and disables the CAT523’s  
readandwriteoperations. WhenCSishighdatamaybe  
5
CAT523  
Advance Information  
V
complished through the control signals: Chip Select  
(CS) and Program (PROG). With CS high, a start bit  
followedbyatwobitDACaddressandeightdatabitsare  
clockedintotheDACcontrolregisterviatheDIpin. Data  
enters on the clock’s rising edge. The DAC output  
changes to its new setting on the clock cycle following  
D7, the last data bit.  
REF  
VREF,thevoltageappliedbetweenpinsVREFHandVREFL,  
sets the DAC’s Zero to Full Scale output range where  
VREFL=ZeroandVREFH=FullScale. VREF canspanthe  
full power supply range or just a fraction of it. In typical  
applications VREFHandVREFL are connected across the  
power supply rails. When using less than the full supply  
voltageVREFHisrestrictedtovoltagesbetweenVDD and  
VDD/2 and VREFL to voltages between GND and VDD/2.  
Programming is achieved by bringing PROG high for a  
minimum of 3 ms. PROG must be brought high some-  
time after the start bit and at least 150 ns prior to the  
rising edge of the clock cycle immediately following the  
D7 bit. Two clock cycles after the D7 bit the DAC control  
register will be ready to receive the next set of address  
and data bits. The clock must be kept running through-  
out the programming cycle. Internal control circuitry  
takes care of ramping the programming voltage for data  
transfertotheEEPROMcells. TheCAT523’sEEPROM  
memory cells will endure over 100,000 write cycles and  
will retain data for a minimum of 100 years without being  
refreshed.  
READY/BUSY  
Whensavingdatatonon-volatileEEPROMmemory,the  
Ready/Busy ouput (RDY/BSY) signals the start and  
durationoftheEEPROMerase/writecycle.Uponreceiv-  
ing a command to store data (PROG goes high) RDY/  
BSY goes low and remains low until the programming  
cycle is complete. During this time the CAT523 will  
ignore any data appearing at DI and no data will be  
output on DO.  
RDY/BSY is internally ANDed with a low voltage detec-  
tor circuit monitoring VDD. If VDD is below the minimum  
value required for EEPROM programming, RDY/BSY  
willremainhighfollowingtheprogramcommandindicat-  
ing a failure to record the desired data in non-volatile  
memory.  
READING DATA  
Each time data is transferred into a DAC control register  
currently held data is shifted out via the D0 pin, thus in  
every data transaction a read cycle occurs. Note,  
however, that the reading process is destructive. Data  
must be removed from the register in order to be read.  
Figure 2 depicts a Read Only cycle in which no change  
occurs in the DAC’s output. This feature allows µPs to  
poll DACs for their current setting without disturbing the  
output voltage but it assumes that the setting being read  
isalsostoredinEEPROMsothatitcanberestoredatthe  
end of the read cycle. In Figure 2 CS returns low before  
the13th clockcyclecompletes. IndoingsotheEEPROM’s  
setting is reloaded into the DAC control register. Since  
DATA OUTPUT  
Data is output serially by the CAT523, LSB first, via the  
Data Out (DO) pin following the reception of a start bit  
and two address bits by the Data Input (DI). DO  
becomes active whenever CS goes high and resumes  
itshighimpedanceTri-StatemodewhenCSreturnslow.  
Tri-Stating the DO pin allows several 523s to share a  
single serial data line and simplifies interfacing multiple  
523s to a microprocessor.  
WRITING TO MEMORY  
Programming the CAT523’s EEPROM memory is ac-  
Figure 1. Writing to Memory  
Figure 2. Reading from Memory  
t
1
2
3
4
5
6
7
8
9
10 11 12  
N
N+1 N+2  
o
t
1
2
3
4
5
6
7
8
9
10 11 12  
o
CS  
DI  
CS  
DI  
NEW DAC DATA  
1
A0 A1 D0 D1 D2 D3 D4 D5 D6 D7  
CURRENT DAC DATA  
1
A0 A1  
DO  
PROG  
CURRENT DAC DATA  
D0 D1 D2 D3 D4 D5 D6 D7  
DO  
D0 D1 D2 D3 D4 D5 D6 D7  
PROG  
RDY/BSY  
CURRENT  
DAC VALUE  
DAC  
OUTPUT  
DAC  
OUTPUT  
CURRENT  
DAC VALUE  
NEW  
DAC VALUE  
NEW  
DAC VALUE  
NON-VOLATILE  
NON-VOLATILE  
VOLATILE  
NON-VOLATILE  
6
CAT523  
Advance Information  
this value is the same as that which had been there  
previously no change in the DACs output is noticed.  
Had the value held in the control register been different  
from that stored in EEPROM then a change would occur  
at the read cycles conclusion.  
this feature, the new value must be reloaded into the  
DAC control register prior to programming. This is be-  
cause the CAT523s internal control circuitry discards  
the new data from the programming register two clock  
cycles after receiving it (after reception is complete) if no  
PROG signal is received.  
TEMPORARILY CHANGE OUTPUT  
Figure 3. Temporary Change in Output  
TheCAT523 allowstemporarychangesinDACsoutput  
to be made without disturbing the settings retained in  
EEPROM memory. This feature is particularly useful  
when testing for a new output setting and allows for user  
adjustment of preset or default values without losing the  
original factory settings.  
t
1
2
3
4
5
6
7
8
9
10 11 12  
N
N+1 N+2  
o
CS  
DI  
NEW DAC DATA  
1
A0 A1 D0 D1 D2 D3 D4 D5 D6 D7  
CURRENT DAC DATA  
Figure 3 shows the control and data signals needed to  
effect a temporary output change. DAC settings may be  
changed as many times as required and can be made to  
any of the four DACs in any order or sequence. The  
temporarysetting(s)remainineffectlongasCSremains  
high. WhenCSreturnslowallfourDACswillreturntothe  
output values stored in EEPROM memory.  
D0 D1 D2 D3 D4 D5 D6 D7  
DO  
PROG  
CURRENT  
DAC VALUE  
NEW  
DAC VALUE  
CURRENT  
DAC VALUE  
NON-VOLATILE  
VOLATILE  
NON-VOLATILE  
DAC  
OUTPUT  
When it is desired to save a new setting acquired using  
APPLICATION CIRCUITS  
DAC INPUT  
DAC OUTPUT  
ANALOG  
OUTPUT  
+5V  
CODE  
= ——— (V - V  
FS  
V
V
) + V  
DAC  
ZERO  
ZERO  
255  
V
R
R
i
i
F
= 0.99 V  
FS  
REF  
= 0.01 V  
V
= 5V  
F
REF  
R = R  
V
MSB LSB  
1111 1111  
+15V  
I
ZERO  
REF  
V
V
H
L
DD  
REF  
V
255  
255  
OUT  
—— (.98 V  
) + .01 V  
= .990 V  
V
= +4.90V  
REF  
REF  
REF  
OUT  
CONTROL  
& DATA  
+
CAT523  
OP 07  
128  
1000 0000  
0111 1111  
0000 0001  
—— (.98 V  
255  
) + .01 V  
) + .01 V  
) + .01 V  
= .502 V  
= .498 V  
= .014 V  
V
V
V
= +0.02V  
= -0.02V  
= -4.86V  
REF  
REF  
REF  
REF  
REF  
REF  
REF  
REF  
REF  
OUT  
OUT  
OUT  
-15V  
GND  
V
REF  
127  
—— (.98 V  
255  
V
R
F
V
=
(
R ) -V  
R +  
F i  
i
OUT  
DAC  
1
—— (.98 V  
255  
R
i
For R =R  
0
i
F
0000 0000 —— (.98 V  
) + .01 V  
= .010 V  
V
= -4.90V  
REF  
REF  
REF  
OUT  
255  
V
= 2V -V  
OUT  
DAC i  
Bipolar DAC Output  
+5V  
R
i
R
F
+15V  
V
V
H
L
DD  
REF  
V
OUT  
CONTROL  
& DATA  
CAT523  
+
OP 07  
-15V  
GND  
V
REF  
R
F
V
= (1 + –––) V  
OUT  
DAC  
R
I
Amplified DAC Output  
7
CAT523  
Advance Information  
APPLICATION CIRCUITS (Cont.)  
+5V  
V
+V  
REF  
V
REF  
R
= —————  
C
256 1 µA  
*
V
H
DD  
REF  
+5V  
V
REF  
Fine adjust gives ± 1 LSB change in V  
OFFSET  
V
REF  
2
when V  
= ———  
127R  
OFFSET  
C
V
H
V
DD  
REF  
FINE ADJUST  
DAC  
+
)
OFFSET  
1 µA  
(+V  
) - (V  
REF  
127R  
R
= ———————————  
C
C
FINE ADJUST  
DAC  
+
(-V  
) + (V  
)
REF  
OFFSET  
R
= ———————————  
o
1 µA  
R
C
COARSE ADJUST  
DAC  
+V  
R
C
V
OFFSET  
COARSE ADJUST  
DAC  
+
GND  
V
L
REF  
+V  
-V  
R
o
V
OFFSET  
+
-V  
REF  
GND  
V
L
REF  
Coarse-Fine Offset Control by Averaging DAC Outputs  
for Single Power Supply Systems  
Coarse-Fine Offset Control by Averaging DAC Outputs  
for Dual Power Supply Systems  
28 - 32V  
V+  
I > 2 mA  
15K  
10 µF  
1N5231B  
5.1V  
V
= 5.000V  
REF  
V
V
H
L
DD  
REF  
V
V
H
DD  
REF  
10K  
CONTROL  
& DATA  
CONTROL  
& DATA  
LT 1029  
+
MPT3055EL  
CAT523  
CAT523  
LM 324  
4.02 K  
GND  
V
REF  
L
GND  
V
REF  
OUTPUT  
10 µF  
35V  
0 - 25V  
@ 1A  
1.00K  
Digitally Trimmed Voltage Reference  
Digitally Controlled Voltage Reference  
8
CAT523  
Advance Information  
APPLICATION CIRCUITS (Cont.)  
+5V  
2.2K  
V
V
REF  
4.7 µA  
DD  
LM385-2.5  
+15V  
I
= 2 - 255 mA  
1 mA steps  
SINK  
DAC  
+
2N7000  
+5V  
10K  
10K  
391W  
391W  
CONTROL  
& DATA  
CAT523  
DAC  
+
5 µA steps  
2N7000  
3.9K  
GND  
V
L
5 meg  
10K  
5 meg  
REF  
10K  
TIP 30  
+
-15V  
Current Sink with 4 Decades of Resolution  
+15V  
51K  
+
TIP 29  
10K  
10K  
+5V  
V
V
H
DD  
REF  
5 meg  
5 meg  
391W  
391W  
DAC  
CONTROL  
& DATA  
CAT523  
BS170P  
3.9K  
1 mA steps  
+
5 meg  
5 meg  
DAC  
GND  
V
L
REF  
BS170P  
5 µA steps  
+
LM385-2.5  
-15V  
I
= 2 - 255 mA  
SOURCE  
Current Source with 4 Decades of Resolution  
9
CAT523  
Advance Information  
ORDERING INFORMATION  
Prefix  
Device #  
Suffix  
-TE13  
CAT  
523  
J
I
Optional  
Company ID  
Product  
Number  
Package  
P: PDIP  
J: SOIC  
Tape & Reel  
TE13: 2000/Reel  
Temperature Range  
Blank = Commercial (0˚C to +70˚C)  
I = Industrial (-40˚C to +85˚C)  
Notes:  
(1) The device used in the above example is a CAT523JI-TE13 (SOIC, Industrial Temperature, Tape & Reel)  
10  

相关型号:

CAT523W-TE10

Configured Digitally Programmable Potentiometer
CATALYST

CAT523WI

Dual Digitally Programmable Potentiometer (DPP⑩) with 256 Taps and Microwire Interface
CATALYST

CAT523WI

Dual Digitally Programmable Potentiometer (DPP?) with 256 Taps and Microwire Interface
ONSEMI

CAT523WI-T2

Dual Digitally Programmable Potentiometer (DPP?) with 256 Taps and Microwire Interface
ONSEMI

CAT523WI-TE10

Configured Digitally Programmable Potentiometer
CATALYST

CAT523WI-TE13

Analog Circuit, 1 Func, PDSO14, LEAD-FREE, SOIC-14
CATALYST

CAT523WIT2

SPECIALTY ANALOG CIRCUIT, PDSO14, ROHS COMPLIANT, SOIC-14
ONSEMI

CAT523_04

Configured Digitally Programmable Potentiometer
CATALYST

CAT523_07

Dual Digitally Programmable Potentiometer (DPP⑩) with 256 Taps and Microwire Interface
CATALYST

CAT524

Configured Digitally Programmable Potentiometer (DPP⑩): Programmable Voltage Applications
CATALYST

CAT524

Quad Digitally Programmable Potentiometer (DPPtm) with 256 Taps and Microwire Interface
ONSEMI

CAT5241

Quad Digitally Programmable Potentiometers (DPP⑩) with 64 Taps and 2-wire Interface
CATALYST