CH7304A-TF [CHRONTEL]

Consumer Circuit, CMOS, PQFP64, 10 X 10 MM, LEAD FREE, LQFP-64;
CH7304A-TF
型号: CH7304A-TF
厂家: CHRONTEL, INC    CHRONTEL, INC
描述:

Consumer Circuit, CMOS, PQFP64, 10 X 10 MM, LEAD FREE, LQFP-64

文件: 总33页 (文件大小:355K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
CH7304  
Chrontel  
CH7304 Single LVDS Transmitter  
Features  
General Description  
The CH7304 is a Display Controller device, which accepts  
a graphics data stream over one 12-bit wide variable  
voltage (1.1V to 3.3V) port. The data stream outputs  
through an LVDS transmitter to an LCD panel. A  
maximum of 100M pixels per second can be output  
through a single LVDS link.  
• Single LVDS transmitter  
• Supports pixel rate up to 100M pixels/sec  
• Supports up to SXGA resolution (1280 x 1024)  
• LVDS low jitter PLL  
• LVDS 18-bit output  
• 2D dither engine  
The LVDS transmitter includes a programmable dither  
function for support of 18-bit panels. Data is encoded into  
commonly used formats, including those detailed in the  
OpenLDI and the SPWG specification. Serialized data  
output on four differential channels.  
• Panel protection and power down sequencing  
• Programmable power management  
• Fully programmable through serial port  
• Complete Windows and DOS driver support  
• Variable voltage interface to graphics device  
• Offered in a 64-pin LQFP package  
LVDS PLL  
Clock,  
Data,  
Sync  
Latch &  
XCLK,XCLK*  
2
LDC[3:0],LDC*[3:0]  
LLC,LLC*  
ENAVDD, ENABKL  
6
Color  
Space  
Conversion  
H,V, DE  
LVDS  
Transmit  
3
2
2
LVDS  
Encode /  
Serialize  
Dither  
Engine  
Demux  
D[11:0]  
VREF  
12  
Serial Port Control and Misc. Functions  
XTAL  
XI/FIN,XO  
2
Figure 1: Functional Block Diagram  
201-0000-053  
Rev. 1.31, 6/14/2006  
1
 
CHRONTEL  
CH7304  
Table of Contents  
1.0  
1.1  
1.2  
2.0  
2.1  
2.2  
2.3  
Pin Assignment__________________________________________________________________________ 3  
Pin Diagram __________________________________________________________________________ 3  
Pin Description ________________________________________________________________________ 4  
Functional Description ____________________________________________________________________ 6  
Input Data Formats _____________________________________________________________________ 6  
LVDS-Out ___________________________________________________________________________ 9  
Power Down _________________________________________________________________________ 12  
Register Control ________________________________________________________________________ 13  
Control Registers Index ________________________________________________________________ 13  
Control Registers Description____________________________________________________________ 14  
Control Registers Description____________________________________________________________ 15  
Recommended Settings_________________________________________________________________ 25  
Electrical Specifications __________________________________________________________________ 26  
Absolute Maximum Ratings _____________________________________________________________ 26  
Recommended Operating Conditions______________________________________________________ 26  
Electrical Characteristics _______________________________________________________________ 26  
Digital Inputs / Outputs_________________________________________________________________ 27  
AC Specifications_____________________________________________________________________ 27  
Timing Information ___________________________________________________________________ 29  
Package Dimensions_____________________________________________________________________ 31  
Revision History________________________________________________________________________ 32  
3.0  
3.1  
3.2  
3.3  
3.4  
4.0  
4.1  
4.2  
4.3  
4.4  
4.5  
4.6  
5.0  
6.0  
1.0  
2
201-0000-053  
Rev. 1.31, 6/14/2006  
CHRONTEL  
CH7304  
Pin Assignment  
1.1 Pin Diagram  
ENABKL  
ENAVDD  
NC  
VDDV  
1
2
3
4
5
6
7
8
48  
47  
46  
45  
44  
43  
42  
41  
40  
39  
38  
37  
36  
35  
34  
33  
RESET*  
DE  
NC  
VREF  
H
LVDD  
NC  
V
NC  
DVDD  
SPD  
Chrontel  
CH7304  
LGND  
NC  
SPC  
9
NC  
CONFIG  
LPLL_VDD  
LPLL_CAP  
LPLL_GND  
10  
11  
12  
13  
14  
15  
16  
LVDD  
NC  
NC  
LGND  
DGND  
XI  
NC  
NC  
XO  
Figure 2: 64 Pin LQFP Package (Top View)  
201-0000-053  
Rev. 1.31, 6/14/2006  
3
 
CHRONTEL  
CH7304  
1.2 Pin Description  
Table 1: Pin Description  
Pin #  
# of Pins Type  
Symbol  
Description  
1
1
Out  
ENABLK  
Back Light Enable  
Enable Back-Light of LCD Panel. Output is driven from 0 to DVDD.  
2
1
Out  
ENAVDD  
NC  
Panel Power Enable  
Enable panel VDD. Output is driven from 0 to DVDD.  
No Connect  
3,4,6,7,9,10,  
12,13,15,16  
10  
-
20, 21  
2
4
4
1
Out  
Out  
Out  
In  
LLC, LLC*  
LDC[3:0]  
LDC[3:0]*  
VSWING  
LVDS Differential Clock  
Positive LVDS differential data[3:0]  
Negative LVDS differential data [3:0]  
LVDS Voltage Swing Control  
17,23,26,29  
18,24,27,30  
32  
This pin sets the swing level of the LVDS outputs. A 2.4K Ohm resistor  
should be connected between this pin and LGND (pin 31) using short and  
wide traces.  
33  
34  
1
1
Out  
In  
XO  
XI  
Crystal Output  
A parallel resonance 14.31818MHz crystal (+ 20 ppm) should be attached  
between this pin and XI. However, if an external CMOS clock is attached  
to XI, XO should be left open.  
Crystal Input / External Reference Input  
A parallel resonance 14.31818MHz crystal (+ 20 ppm) should be attached  
between this pin and XO. However, an external CMOS compatible clock  
can drive the XI input.  
37  
39  
40  
1
1
1
Analog  
In/Out  
In  
LPLL_CAP  
CONFIG  
SPC  
LVDS PLL Capacitor  
This pin allows coupling of any signal to the on-chip loop filter capacitor.  
Configure / Output  
This pin configures the device ID.  
Serial Port Clock Input  
This pin functions as the clock input of the serial port and can operate with  
inputs from 1.1V ~ 3.3V. The serial port address of the CH7304 is 75h. For  
more details on CH7304 serial port read/write operations, please refer to  
AN61.  
41  
1
In/Out  
SPD  
Serial Port Data Input / Output  
This pin functions as the bi-directional data pin of the serial port and can  
operate with inputs from 1.1V ~ 3.3V. Outputs are driven from 0 to VDDV.  
The serial port address of the CH7304 is 75h. For more details on CH7304  
serial port read/write operations, please refer to AN61.  
Vertical Sync Input  
This pin accepts a vertical sync input for use with the input data. The  
amplitude will be 0 to VDDV. VREF signal is the threshold level.  
Horizontal Sync Input  
43  
44  
45  
1
1
1
In  
In  
In  
V
H
This pin accepts a horizontal sync input for use with the input data. The  
amplitude will be 0 to VDDV. VREF is the threshold level for this input.  
Reference Voltage Input  
VREF  
The VREF pin inputs a reference voltage of VDDV / 2. The signal is  
derived externally through a resistor divider and decoupling capacitor, and  
will be used as a reference level for data, sync and clock inputs.  
Data Enable  
This pin accepts a data enable signal which is high when active video data  
is input to the device, and remains low during all other times. The levels  
are 0 to VDDV. VREF is the threshold level.  
46  
47  
1
1
In  
In  
DE  
RESET*  
Reset * Input (Internal Pull-up)  
When this pin is low, the device is held in the power on reset condition.  
When this pin is high, reset is controlled through the serial port.  
4
201-0000-053  
Rev. 1.31, 6/14/2006  
 
CHRONTEL  
CH7304  
Table 1: Pin Description (continued)  
Pin #  
# of Pins Type  
Symbol  
Description  
50-55, 58-63 12  
In  
D[11:0]  
Data[11] through Data[0] Inputs  
These pins accept the 12 data inputs from a digital video port of a graphics  
controller. The levels are 0 to VDDV. VREF is the threshold level.  
56, 57  
2
In  
XCLK,  
XCLK*  
External Clock Inputs  
These inputs form a differential clock signal input to the device for use with  
the H, V and D[11:0] data. If differential clocks are not available, the  
XCLK* input should be connected to VREF. The clock polarity can be  
selected by the MCP control bit (Register 1Ch).  
42, 64  
35, 49  
48  
5,11,22,28  
8,14,19,25,31  
38  
2
2
1
4
5
1
1
Power  
Power  
Power  
Power  
Power  
Power  
Power  
DVDD  
DGND  
VDDV  
LVDD  
LGND  
Digital Supply Voltage (3.3V)  
Digital Ground  
I/O Supply Voltage (1.1V to 3.3V)  
LVDS Supply Voltage (3.3V)  
LVDS Ground  
LPLL_VDD LVDS PLL Supply Voltage (3.3V)  
LPLL_GND  
36  
LVDS PLL Ground  
201-0000-053  
Rev. 1.31, 6/14/2006  
5
CHRONTEL  
CH7304  
2.0 Functional Description  
2.1  
Input Data Formats  
2.1.1  
Overview  
Two distinct methods of transferring data to the CH7304 are described. They are:  
Multiplexed data, clock input at 1X the pixel rate  
Multiplexed data, clock input at 2X the pixel rate  
For the multiplexed data, clock at 1X pixel rate, the data applied to the CH7304 is latched with both edges of the clock  
(also referred to as dual edge transfer mode or DDR). For the multiplexed data, clock at 2X pixel rate the data applied to  
the CH7304 is latched with one edge of the clock (also known as single edge transfer mode or SDR). The polarity of the  
pixel clock can be reversed under serial port control. In single edge transfer modes, the clock edge used to latch data is  
programmable. In dual edge transfer modes, the clock edge used to latch the first half of each pixel is programmable.  
2.1.2  
Interface Voltage Levels  
The graphics controller interface can operate at a variable voltage level controlled by the voltage on the VDDV pin. This  
should be set to the maximum voltage of the interface (typically 3.3V or adjustable between 1.1 and 1.8V). The VREF  
pin is the voltage reference for the data, data enable, clock and sync inputs and must be tied to VDDV/2. This is typically  
done using a resistor divider.  
2.1.3  
Input Clock and Data Timing Diagram  
Figure 3 shows the timing diagram for input data and clocks. The first XCLK/XCLK* waveform represents the input  
clock for single edge transfer (SDR) methods. The second XCLK/XCLK* waveform represents the input clock for the  
dual edge transfer (DDR) method. The timing requirements are given in Section 4.5.  
XCLK/  
2X  
XCLK*  
XCLK/  
1X  
XCLK*  
D[15:0]  
H
V
64 pixels  
1 VGA Line  
Figure 3: Clock, Data and Interface Timing  
6
201-0000-053  
Rev. 1.31, 6/14/2006  
 
CHRONTEL  
CH7304  
2.1.4  
Data De-skew Feature  
The de-skew feature allows adjustment of the input setup and hold time. The input data D[11:0] can be latched slightly  
before or after the latching edge of XCLK depending on the amount of the de-skew. Note that the XCLK is not changed,  
only the time at which the data is latched relative to XCLK. The de-skew is controlled using the XCMD[3:0] bits located  
in Register 1Dh. The delay tCD between clock and data is given by the following formula:  
tCD = - XCMD[3:0] * tSTEP for 0 XCMD[3:0] 7  
tCD = (XCMD[3:0] – 8) * tSTEP for 8 XCMD[3:0] 15  
where XCMD is a number between 0 and 15 represented as a binary code  
tSTEP is the adjustment increment (see Section 4.5)  
The delay is also tabulated in Table 8.  
2.1.5  
Input Data Formats  
The CH7304 supports 5 different multiplexed data formats, each of which can be used with a 1X clock latching data on  
both clock edges, or a 2X clock latching data with a single edge (rising or falling depending on the value of the MCP bit  
– rising refers to a rising edge on the XCLK signal, a falling edge on the XCLK* signal). Received data is formatted and  
sent through an internal data bus P[23:0] to the LVDS data path. The input data formats are (IDF[2:0] = 0, 1, 2, 3 and 4):  
IDF  
0
Description  
RGB 8-8-8 (2x12-bit)  
1
2
RGB 8-8-8 (2x12-bit) or RGB 5-6-5 (2x8-bit)  
RGB 5-6-5 (2x8bit)  
3
RGB 5-5-5 (2x8-bit)  
4
YCrCb 8-8 (2x8-bit)  
(refer to Register 31h, bit 0)  
The input data format is shown in Figure 4. The Pixel Data bus represents a 12-bit or 8-bit multiplexed data stream,  
which contains either RGB or YCrCb formatted data. The input data rate is 2X the pixel rate, and each pair of Pn values  
(e.g.; P0a and P0b) will contain a complete pixel encoded as shown in Table 2 through Table 4.  
For multiplexed input data formats, data can be latched from the graphics controller by either rising only or falling only  
clock edges, or by both rising and falling clock edges. The MCP bit selects the rising or the falling clock edge, where  
rising refers to rising edge on the XCLK signals and falling edge on the XCLK*. It is assumed that the first clock cycle  
following the leading edge of the incoming horizontal sync signal contains the first word (Pxa) of a pixel, if an active  
pixel was present immediately following the horizontal sync. This does not mean that active data should immediately  
follow the horizontal sync, however. When the input is a YCrCb data stream the color-difference data will be  
transmitted at half the data rate of the luminance data, with the sequence being set as Cb, Y, Cr, Y, where Cb0,Y0,Cr0  
refers to co-sited luminance and color-difference samples and the following Y1 byte refers to the next luminance sample,  
per ITU-R BT.656 standards (the clock frequency is dependent upon the current mode, and is not 27MHz as specified in  
ITU-R BT.656). All non-active pixels should be 0 in RGB formats, and 16 for Y, 128 for Cr and Cb in YCrCb formats.  
H
XCLK  
(2X)  
XCLK  
(1X)  
DE  
P0a  
P0b  
P1a  
P1b  
P2a  
P2b  
D[11:0]  
Figure 4: 12-bit Multiplexed Input Data Formats (IDF = 0,1,2,3, 4)  
Rev. 1.31, 6/14/2006  
201-0000-053  
7
 
CHRONTEL  
CH7304  
Table 2: Multiplexed Input Data Formats (IDF = 0, 1)  
IDF =  
0
1
Format =  
RGB 8-8-8 (2x12-bit)  
RGB 8-8-8 (2x12-bit)  
or RGB 5-6-5 (2x8-bit)  
Pixel #  
P0a  
P0b  
P1a  
P1b  
P0a  
P0b  
P1a  
P1b  
Bus Data  
D[11]  
D[10]  
D[9]  
D[8]  
D[7]  
D[6]  
D[5]  
D[4]  
D[3]  
D[2]  
D[1]  
D[0]  
G0[3]  
G0[2]  
G0[1]  
G0[0]  
B0[7]  
B0[6]  
B0[5]  
B0[4]  
B0[3]  
B0[2]  
B0[1]  
B0[0]  
R0[7]  
R0[6]  
R0[5]  
R0[4]  
R0[3]  
R0[2]  
R0[1]  
R0[0]  
G0[7]  
G0[6]  
G0[5]  
G0[4]  
G1[3]  
G1[2]  
G1[1]  
G1[0]  
B1[7]  
B1[6]  
B1[5]  
B1[4]  
B1[3]  
B1[2]  
B1[1]  
B1[0]  
R1[7]  
R1[6]  
R1[5]  
R1[4]  
R1[3]  
R1[2]  
R1[1]  
R1[0]  
G1[7]  
G1[6]  
G1[5]  
G1[4]  
G0[4]  
G0[3]  
G0[2]  
B0[7]  
B0[6]  
B0[5]  
B0[4]  
B0[3]  
G0[0]  
B0[2]  
B0[1]  
B0[0]  
R0[7]  
R0[6]  
R0[5]  
R0[4]  
R0[3]  
G0[7]  
G0[6]  
G0[5]  
R0[2]  
R0[1]  
R0[0]  
G0[1]  
G1[4]  
G1[3]  
G1[2]  
B1[7]  
B1[6]  
B1[5]  
B1[4]  
B1[3]  
G1[0]  
B1[2]  
B1[1]  
B1[0]  
R1[7]  
R1[6]  
R1[5]  
R1[4]  
R1[3]  
G1[7]  
G1[6]  
G1[5]  
R1[2]  
R1[1]  
R1[0]  
G1[1]  
Table 3: Multiplexed Input Data Formats (IDF = 2, 3)  
IDF =  
2
3
Format =  
RGB 5-6-5 (2x8bit)  
RGB 5-5-5 (2x8-bit)  
Pixel #  
P0a  
P0b  
P1a  
P1b  
P0a  
P0b  
P1a  
P1b  
Bus Data  
D[11]  
D[10]  
D[9]  
D[8]  
D[7]  
D[6]  
D[5]  
D[4]  
G0[4]  
G0[3]  
G0[2]  
B0[7]  
B0[6]  
B0[5]  
B0[4]  
B0[3]  
R0[7]  
R0[6]  
R0[5]  
R0[4]  
R0[3]  
G0[7]  
G0[6]  
G0[5]  
G1[4]  
G1[3]  
G1[2]  
B1[7]  
B1[6]  
B1[5]  
B1[4]  
B1[3]  
R1[7]  
R1[6]  
R1[5]  
R1[4]  
R1[3]  
G1[7]  
G1[6]  
G1[5]  
G0[5]  
G0[4]  
G0[3]  
B0[7]  
B0[6]  
B0[5]  
B0[4]  
B0[3]  
X
G1[5]  
G1[4]  
G1[3]  
B1[7]  
B1[6]  
B1[5]  
B1[4]  
B1[3]  
X
R0[7]  
R0[6]  
R0[5]  
R0[4]  
R0[3]  
G0[7]  
G0[6]  
R1[7]  
R1[6]  
R1[5]  
R1[4]  
R1[3]  
G1[7]  
G1[6]  
Table 4: Multiplexed Input Data Formats (IDF = 4)  
IDF =  
4
Format =  
YCrCb 8-bit  
Pixel #  
P0a  
P0b  
P1a  
P1b  
P2a  
P2b  
P3a  
P3b  
Bus Data  
D[7]  
D[6]  
D[5]  
D[4]  
D[3]  
D[2]  
D[1]  
D[0]  
Cb0[7]  
Cb0[6]  
Cb0[5]  
Cb0[4]  
Cb0[3]  
Cb0[2]  
Cb0[1]  
Cb0[0]  
Y0[7]  
Y0[6]  
Y0[5]  
Y0[4]  
Y0[3]  
Y0[2]  
Y0[1]  
Y0[0]  
Cr0[7]  
Cr0[6]  
Cr0[5]  
Cr0[4]  
Cr0[3]  
Cr0[2]  
Cr0[1]  
Cr0[0]  
Y1[7]  
Y1[6]  
Y1[5]  
Y1[4]  
Y1[3]  
Y1[2]  
Y1[1]  
Y1[0]  
Cb2[7]  
Cb2[6]  
Cb2[5]  
Cb2[4]  
Cb2[3]  
Cb2[2]  
Cb2[1]  
Cb2[0]  
Y2[7]  
Y2[6]  
Y2[5]  
Y2[4]  
Y2[3]  
Y2[2]  
Y2[1]  
Y2[0]  
Cr2[7]  
Cr2[6]  
Cr2[5]  
Cr2[4]  
Cr2[3]  
Cr2[2]  
Cr2[1]  
Cr2[0]  
Y3[7]  
Y3[6]  
Y3[5]  
Y3[4]  
Y3[3]  
Y3[2]  
Y3[1]  
Y3[0]  
8
201-0000-053  
Rev. 1.31, 6/14/2006  
 
CHRONTEL  
CH7304  
2.2 LVDS-Out  
2.2.1  
Single LVDS Channel Signal Mapping  
Table 5: Signal Mapping for Single LVDS Channel  
24-bit LDI  
R2  
24-bit SPWG  
R0  
18-bit  
R0  
R1  
R2  
R3  
R4  
R5  
G0  
G1  
G2  
G3  
G4  
G5  
B0  
B1  
B2  
B3  
B4  
B5  
HSYNC  
VSYNC  
DE  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
LDC[0](1)  
LDC[0](2)  
LDC[0](3)  
LDC[0](4)  
LDC[0](5)  
LDC[0](6)  
LDC[0](7)  
LDC[1](1)  
LDC[1](2)  
LDC[1](3)  
LDC[1](4)  
LDC[1](5)  
LDC[1](6)  
LDC[1](7)  
LDC[2](1)  
LDC[2](2)  
LDC[2](3)  
LDC[2](4)  
LDC[2](5)  
LDC[2](6)  
LDC[2](7)  
LDC[3](1)  
LDC[3](2)  
LDC[3](3)  
LDC[3](4)  
LDC[3](5)  
LDC[3](6)  
LDC[3](7)  
R3  
R4  
R5  
R6  
R7  
G2  
G3  
G4  
G5  
G6  
G7  
B2  
B3  
B4  
B5  
B6  
R1  
R2  
R3  
R4  
R5  
G0  
G1  
G2  
G3  
G4  
G5  
B0  
B1  
B2  
B3  
B4  
B7  
B5  
HSYNC  
VSYNC  
DE  
R0  
R1  
G0  
G1  
B0  
B1  
N/A  
HSYNC  
VSYNC  
DE  
R6  
R7  
G6  
G7  
B6  
B7  
N/A  
N/A  
201-0000-053  
Rev. 1.31, 6/14/2006  
9
 
CHRONTEL  
CH7304  
2.2.2  
Dithering  
The CH7304 has a dither engine that can convert the 24-bit pixel data to 18-bit pixel data for better image quality on 18-  
bit panels. Maximum pixel rate supported is 100M Pixels / sec.  
2.2.3  
Power Sequencing  
The CH7304 conforms to SPWG’s requirements on power sequencing. The timing specification shown in Figure 5 is a  
superset of the requirements dictated by the SPWG specification. The power sequencing block consists of a state  
machine and 5 hardware timers, which are programmable through the serial port to suit requirements by different panels.  
It provides 2 signals ENAVDD and ENABKL to the LCD panel.  
T1 T2  
T3 T4  
T5  
LVDS_RDY  
(Internal)  
ENAVDD  
ENEXBUF  
ENABKL  
LVDS Clocks  
LVDS Data  
Valid Clock  
Valid Data  
Tristate or GND  
Tristate or GND  
Figure 5: Power Sequencing  
Table 6: Power Sequencing  
Range  
2-512 ms  
2-256 ms  
2-256 ms  
2-512 ms  
2-1600 ms  
Increment  
1 ms  
T1  
T2  
T3  
T4  
T5  
2ms  
2ms  
1 ms  
50ms  
Power-on sequence begins when the LVDS software registers are set properly via the serial port and the internal PLL  
lock detection circuit and the internal Sync detection circuits (see Section 2.2.4) indicate that HSYNC, VSYNC and  
XCLK are stable. Note that the BKLEN bit (Register 66h) must be set in order for the ENABKL signal to be asserted.  
Power-off sequence begins when any detection circuits indicate an instability in the timing signals (see Section 2.2.4), or  
through software programming. Once the power-off sequence starts, the internal state machine will complete the  
sequence and the power-on sequence is allowed only after T5 is passed.  
When the LVDS output clock and data signals become invalid, these outputs are tri-stated or grounded depending on the  
value of the LODP bit.  
2.2.4  
Panel Protection  
The LCD panel can be damaged if HSYNC is absent from the LVDS link. This situation can happen when there is a  
catastrophic failure in the PC or the graphics system. The CH7304 is designed to prevent damage to the panel under such  
a failure. If the system fails, the CH7304 does not expect any software instruction from the graphics controller to power  
down the panel. Detection circuits are used to monitor the three timing signals – HSYNC, VSYNC and XCLK. If any  
one, combination of, or all of these signals becomes unstable, the CH7304 will commence Power Down Sequencing  
according to Section 2.2.3. A description of these detection circuits is shown in Figure 6.  
10  
201-0000-053  
Rev. 1.31, 6/14/2006  
 
CHRONTEL  
CH7304  
XCLK  
LVDS  
PLL  
XCLK  
LOCKST  
0
LOCK  
FIFO  
MUX  
DETECT  
LOCK  
1
LPFORC  
LPLEN  
Register 66h  
Note:  
1) LOCKST will be logic  
low if either XCLK or the  
LVDS PLL output is  
unstable.  
2) SYNCST will be logic  
low if either Hsync or  
Vsync is unstable or  
missing.  
PANEN  
LSYNCEN  
LPLOCK  
LPFORC  
LPLEN  
HSYNC  
VSYNC  
BKLEN  
SYNC  
DETECT  
SYNCST  
LSYNCEN  
XCLK  
Detect  
XCLK  
CLKDETD  
Reg. 14h [2]  
FOSC (from oscillator)  
ENAVDD  
ENABKL  
Power Sequencing  
Figure 6: Detection Circuits for Panel Protection  
The power up sequence can occur only if (a) XCLK is not missing, (b) there are no missing HSYNC and VSYNC, (c)  
the PLL CLOCK is stable, and (d) PANEN is set to 1. The power down sequence happens if any of those conditions fails.  
The power up sequence can also occur if the panel protection circuitry is bypassed.  
The panel protection circuitry is comprised of a LOCKDET block, which detects an unstable clock from the LVDS PLL,  
a SYNCDET block, which detects missing inputs HSYNC and VSYNC and an XCLK Detect block which detects  
missing XCLK. XCLK stability (assuming it is not missing) is determined by the number of PLL unlock signals  
generated within one frame. This number is programmable via serial port using the BGLMT register (Register 7Fh).  
The SYNCDET block consists of counters to count HSYNC and VSYNC pulses. One counter is used to count the  
number of HSYNC pulses per frame over 3 frames. The end counts for all 3 frames must be equal to enable the power up  
sequence. In addition, the SYNCDET block checks for the presence of VSYNC and HSYNC. If VSYNC is missing for 2  
frames or if HSYNC is missing for 32us the power up sequence is disabled.  
The XCLK Detect block detects if XCLK is missing for more than approximately 1.2us.  
201-0000-053  
Rev. 1.31, 6/14/2006  
11  
 
CHRONTEL  
CH7304  
The LOCKDET block and SYNCDET block can be defeated or bypassed independently through the LPMC register  
(Register 66h) controls. To defeat the LOCKDET block set LPFORC to ‘1’ and LPLEN to ‘1’; to defeat the SYNCDET  
block set LSYNCEN to 1. The XCLK Detect block can be defeated or bypassed independently through the CLKDETD  
bit in Register 14h, bit 2. To defeat the XCLK Detect block set CLKDETD to ‘1’.  
2.2.5  
Emission Reduction Clock  
LVDS data path can support a +- 2.5% emission reduction clock to reduce EMI emission. The frequency and amplitude  
of the emission reduction triangle waveform can be programmed via the serial port.  
For further details, please contact Chrontel Applications Group.  
2.3 Power Down  
The CH7304 can be powered down via software control to achieve very low standby current. For a complete description  
of each individual bit please refer to the appropriate register description in Registers 63h and 76h.  
12  
201-0000-053  
Rev. 1.31, 6/14/2006  
 
CHRONTEL  
CH7304  
3.0 Register Control  
The CH7304 is controlled via a serial port. The serial bus uses only the SC clock to latch data into registers, and does  
not use any internally generated clocks so that the device can be written to in all power down modes. The device should  
retain all register values during power down modes. For registers read/write operation, please refer to applications note  
AN-61 for details.  
3.1 Control Registers Index  
The register controls are listed below, divided into three sections: General & Power Down controls, Input/Output  
controls, and LVDS controls.  
GENERAL & POWER DOWN CONTROLS  
Address  
14h  
4Bh  
CLKDETD  
DID[7:0]  
XCLK Detection Defeat  
Device ID register  
LODPDB[1:0]  
LVDSPD  
LVDS Output Driver Power Down control  
LVDS Power Down  
76h  
63h  
PANEN  
RESETIB  
Panel Enable (0 – begin Power off sequence, 1 Power-on)  
Software SPP (serial port) reset  
Software datapath reset  
Timer – Black Light Disable (T3)  
Timer – Black Light Enable (T2)  
Timer – Power Off (T4)  
Timer - Power On (T1)  
Timer – Power Cycle (T5)  
Enable/select test pattern generation (color bar, ramp)  
Version ID register  
66h  
48h  
48h  
69h  
RESETDB  
TPBLD [6:0]  
TPBLE [6:0]  
TPOFF [8:0]  
TPON [8:0]  
TPPWD [5:0]  
TSTP[1:0]  
VID[7:0]  
68h  
69h-6Ah  
67h-68h  
6Bh  
48h  
4Ah  
INPUT/OUTPUT CONTROLS  
Address  
1Fh  
IBS  
Input buffer type select  
IDF[2:0]  
MCP  
RGB  
Input Data Format  
XCLK Polarity Control  
YCrCb to RGB  
1Fh  
1Ch  
31h  
XCM  
XCLK 1X / 2X select  
1Ch  
XCMD[3:0]  
Delay adjust between XCLK and D[11:0]  
1Dh  
LVDS CONTROLS  
BGLMT[7:0]  
BKLEN  
FRSTB  
LDD  
Address  
7Fh  
66h  
76h  
64h  
64h  
73h  
64h  
74h  
74h  
74h  
75h  
73h  
71h  
71h  
66h  
66h  
Bang Limit control of internal LVDS FIFO over/under run  
Backlight enable  
FIFO Reset Enable  
LVDS Dithering Defeat  
Open LDI mode  
LDI  
LDEN[1:0]  
LEOSWP  
LODA[2:0]  
LODP  
LODPE  
LODST  
LPCP[2:0]  
LPFBD[3:0]  
LPFFD[1:0]  
LPFORC  
LPLEN  
LVDS Output Driver enable  
Odd/even sample output swap on LVDS link  
LVDS Output Driver Amplitude control for bank 1  
LVDS Output Driver Pull-down  
LVDS Output Driver Pre-emphasis  
LVDS Output Driver Source Termination control  
LVDS PLL Charge pump control  
LVDS PLL feed back divider controls  
LVDS PLL feed forward divider controls  
Bypass LVDS PLL Lock Detect Sentry  
Enable Bypass of LVDS PLL Lock Detect  
201-0000-053  
Rev. 1.31, 6/14/2006  
13  
 
CHRONTEL  
CH7304  
LPLF[2:0]  
LPLF[4:3]  
LPLOCK  
LPPD[4:0]  
LPPDN  
LVDS PLL Loop Filter Resistor Value  
LVDS PLL Loop Filter Capacitor Value  
LVDS PLL Lock – read only register  
LVDS PLL phase detector trim  
LVDS PLL Power Down  
76h  
78h  
66h  
78h  
76h  
76h  
72h  
72h  
66h  
64h  
66h  
LPPRB  
LVDS PLL Reset  
LPPSD[1:0]  
LPVCO[3:0]  
LSYNCEN  
LVDS24  
LVDS PLL post scale divider controls  
LVDS PLL VCO frequency range controls  
Bypass Sync Detection  
Select 24 bit format  
HSYNC and VSYNC stability status  
SYNCST  
3.2 Control Registers Description  
Table 7: Serial Port Register Map  
Register Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
14h  
1Ch  
1Dh  
1Fh  
31h  
48h  
4Ah  
4Bh  
63h  
64h  
66h  
67h  
68h  
69h  
6Ah  
6Bh  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
VID6  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
VID5  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
ResetIB  
VID4  
Reserved  
Reserved  
XCMD3  
Reserved  
Reserved  
ResetDB  
VID3  
DID3  
Reserved  
LDD  
LPFORC  
TPON3  
TPBLE3  
TPBLD3  
TPOFF3  
TPPWD3  
CLKDETD Reserved  
Reserved  
XCM  
XCMD0  
IDF0  
RGB  
TSTP0  
VID0  
DID0  
Reserved  
LDI  
Reserved  
Reserved  
IBS  
Reserved  
Reserved  
VID7  
MCP  
XCMD2  
IDF2  
Reserved  
XCMD1  
IDF1  
Reserved  
Reserved  
VID2  
Reserved  
TSTP1  
VID1  
DID7  
DID6  
DID5  
DID4  
DID2  
DID1  
Reserved  
Reserved  
Reserved  
TPON7  
TPON8  
TPOFF8  
TPOFF7  
Reserved  
LVDSPD  
Reserved  
SYNCST  
TPON6  
TPBLE6  
TPBLD6  
TPOFF6  
Reserved  
Reserved  
LVDS24  
BKLEN  
TPON5  
TPBLE5  
TPBLD5  
TPOFF5  
TPPWD5  
Reserved  
Reserved  
LPLEN  
TPON4  
TPBLE4  
TPBLD4  
TPOFF4  
TPPWD4  
Reserved  
Reserved  
LPLOCK  
TPON2  
TPBLE2  
TPBLD2  
TPOFF2  
TPPWD2  
Reserved  
LEOSWP  
LSYNCEN PANEN  
TPON1  
TPON0  
TPBLE1  
TPBLD1  
TPOFF1  
TPPWD1  
TPBLE0  
TPBLD0  
TPOFF0  
TPPWD0  
71h  
72h  
73h  
74h  
75h  
76h  
78h  
7Fh  
Reserved  
Reserved  
Reserved  
LODP  
LODST  
FRSTB  
Reserved  
Reserved  
Reserved  
LODPE  
Reserved  
LPLF2  
LPFFD1  
LPPSD1  
Reserved  
Reserved  
Reserved  
LPLF1  
LPFFD0  
LPPSD0  
LDEN1  
Reserved  
Reserved  
LPLF0  
LPFBD3  
LPVCO3  
LDEN0  
Reserved  
Reserved  
LPPDN  
LPFBD2  
LPVCO2  
LPCP2  
LODA2  
Reserved  
LPPRB  
LPFBD1  
LPVCO1  
LPCP1  
LODA1  
Reserved  
LODPDB1  
LPPD1  
LPFBD0  
LPVCO0  
LPCP0  
LODA0  
Reserved  
LODPDB0  
LPPD0  
LPCP3  
BGLMT7  
LPLF4  
BGLMT6  
LPLF3  
BGLMT5  
LPPD4  
BGLMT4  
LPPD3  
BGLMT3  
LPPD2  
BGLMT2  
BGLMT1  
BGLMT0  
14  
201-0000-053  
Rev. 1.31, 6/14/2006  
 
CHRONTEL  
CH7304  
3.3 Control Registers Description  
Clock Detect Defeat  
Symbol:  
Address:  
CDD  
14h  
BIT:  
7
6
5
4
3
2
1
0
SYMBOL:  
Reserved Reserved Reserved Reserved Reserved CLKDETD Reserved Reserved  
TYPE:  
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
1
R/W  
0
DEFAULT:  
CLKDETD (bit 2) of Register CDD controls the XCLK detection circuit. When CLKDETD is ‘1’ the XCLK detection  
circuit is turned off, when CLKDETD is 0 the XCLK detection is on.  
Clock Mode Register  
Symbol:  
Address:  
CM  
1Ch  
7
6
5
4
3
2
1
0
SYMBOL:  
Reserved Reserved Reserved Reserved Reserved  
MCP  
Reserved  
XCM  
TYPE:  
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
DEFAULT:  
XCM (bit 0) of Register CM signifies the XCLK frequency for the D[11:0] input. A value of ‘0’ is used when XCLK is  
at the pixel frequency (dual edge clocking mode) and a value of ‘1’ is used when XCLK is twice the pixel frequency  
(single edge clocking mode).  
MCP (bit 2) of Register CM controls the phase of the XCLK clock input for the D[11:0] input. A value of ‘1’ inverts  
the XCLK signal at the input of the device. This control is used to select which edge of the XCLK signal to use for  
latching input data.  
Input Clock Register  
Symbol:  
Address:  
IC  
1Dh  
BIT:  
7
6
5
4
3
2
1
0
SYMBOL:  
Reserved Reserved Reserved Reserved XCMD3 XCMD2 XCMD1 XCMD0  
TYPE:  
R/W  
0
R/W  
1
R/W  
0
R/W  
0
R/W  
1
R/W  
0
R/W  
0
R/W  
0
DEFAULT:  
XCMD[3:0] (bits 3-0) of Register IC control the delay applied to the XCLK signal before latching input data D[11:0]  
per the following table. tSTEP is given in Section 4.5.  
201-0000-053  
Rev. 1.31, 6/14/2006  
15  
 
CHRONTEL  
CH7304  
Table 8: Delay applied to XCLK before latching input data  
XCMD3  
XCMD2  
XCMD1  
XCMD0  
Adjust phase of Clock relative to Data  
0 * tSTEP, XCLK ahead of Data  
1 * tSTEP, XCLK ahead of Data  
2 * tSTEP, XCLK ahead of Data  
3 * tSTEP, XCLK ahead of Data  
4 * tSTEP, XCLK ahead of Data  
5 * tSTEP, XCLK ahead of Data  
6 * tSTEP, XCLK ahead of Data  
7 * tSTEP, XCLK ahead of Data  
0 * tSTEP, XCLK behind Data  
1 * tSTEP, XCLK behind Data  
2 * tSTEP, XCLK behind Data  
3 * tSTEP, XCLK behind Data  
4 * tSTEP, XCLK behind Data  
5 * tSTEP, XCLK behind Data  
6 * tSTEP, XCLK behind Data  
7 * tSTEP, XCLK behind Data  
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
Input Data Format Register  
Symbol:  
Address:  
IDF  
1Fh  
BIT:  
7
6
5
4
3
2
1
0
SYMBOL:  
IBS  
Reserved Reserved Reserved Reserved  
IDF2  
IDF1  
IDF0  
TYPE:  
R/W  
1
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
DEFAULT:  
IDF[2:0] (bits 2-0) of Register IDF select the input data format for the input. See Section 2.1.5 for a listing of available  
formats.  
IBS (bit 7) of Register IDF selects the data and clock input buffer type for the D[11:0] data according to the following  
table:  
Table 9: D[11:0] Input Buffer Type Selection  
IBS  
0
1
D[11:0] Input Buffer Type  
CMOS, single ended type for clock and data  
Differential (clock) and comparator (data) type  
16  
201-0000-053  
Rev. 1.31, 6/14/2006  
 
CHRONTEL  
CH7304  
Color Space Control  
Symbol:  
Address:  
CSC  
31h  
BIT:  
7
6
5
4
3
2
1
0
SYMBOL:  
Reserved Reserved Reserved Reserved Reserved Reserved Reserved  
RGB  
TYPE:  
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
DEFAULT:  
RGB (bit 0) of Register CSC enables the YCrCb to RGB color space conversion for IDF4. This bit must be set to 1 to  
enable YCrCb to RGB conversion.  
RGB  
=
=
0 => Disable YCrCb to RGB conversion  
1 => Enable YCrCb to RGB conversion  
Test Pattern Register  
Symbol:  
Address:  
STP  
48h  
BIT:  
7
6
5
4
3
2
1
0
SYMBOL:  
Reserved Reserved Reserved  
Reserved  
R/W  
0
ResetIB ResetDB  
TSTP1  
R/W  
0
TSTP0  
R/W  
0
TYPE:  
R/W  
0
R/W  
0
R/W  
0
R/W  
1
R/W  
1
DEFAULT:  
TSTP[1:0] (bits 1:0) of Register STP enable and select test pattern generation (color bar, ramp). This test pattern can be  
used for both the LVDS output and the TV Output. The pattern generated is determined by the table below:  
Table 10: Test Pattern Selection  
TSTP1  
TSTP0  
Test Pattern  
0
0
1
1
0
1
0
1
No test pattern – Input data is used  
Color Bars  
Horizontal Luminance Ramp  
Black screen  
ResetDB (bit 3) of Register STP resets the datapath. When ResetDB is ‘0’ the datapath is reset. When ResetDB is ‘1’  
the datapath is enabled. The datapath is also reset at power on by an internally generated power-on-reset signal.  
ResetIB (bit 4) of Register STP resets all control registers. When ResetIB is ‘0’ the control registers are reset to the  
default values. When ResetIB is ‘1’ the control registers operate normally. The control registers are also reset at power  
on by an internally generated power on reset signal.  
201-0000-053  
Rev. 1.31, 6/14/2006  
17  
 
CHRONTEL  
CH7304  
Version ID Register  
Symbol:  
Address:  
VID  
4Ah  
BIT:  
7
6
5
4
3
2
1
0
SYMBOL:  
VID7  
VID6  
VID5  
VID4  
VID3  
VID2  
VID1  
VID0  
TYPE:  
R
R
0
R
0
R
0
R
0
R
0
R
0
R
1
DEFAULT:  
1
Register VID is a read only register containing the version ID number of the CH7304 family.  
Product Number  
Version ID  
CH7304  
81h  
Device ID Register  
Symbol:  
Address:  
DID  
4Bh  
BIT:  
7
6
5
4
3
2
1
0
SYMBOL:  
DID7  
DID6  
DID5  
DID4  
DID3  
DID2  
DID1  
DID0  
TYPE:  
R
0
R
0
R
X
R
1
R
1
R
0
R
1
R
X
DEFAULT:  
Register DID is a read only register containing the device ID number of the CH7304 family. The Device ID depends on  
the state of the CONFIG pin, pin39 (bit 5 and bit 0 of register 4Bh will update accordingly).  
Product Number  
CH7304  
CONFIG  
Device ID  
3Ah  
0
1
CH7304  
1Bh  
LVDS Power Down  
Symbol:  
Address:  
LPD  
63h  
BIT:  
7
6
5
4
3
2
1
0
SYMBOL:  
Reserved  
R/W  
0
Reserved Reserved Reserved Reserved Reserved Reserved  
LVDSPD  
TYPE:  
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
DEFAULT:  
LVDSPD (bit 6) of Register LPD controls the LVDS power down. When LVDSPD is ‘0’ the LVDS path is ON, when  
LVDSPD is ‘1’ the LVDS path is powered down.  
18  
201-0000-053  
Rev. 1.31, 6/14/2006  
 
CHRONTEL  
CH7304  
LVDS Encoding Register  
Symbol:  
Address:  
LVDSE  
64h  
BIT:  
7
6
5
4
3
2
1
0
SYMBOL:  
Reserved Reserved  
Reserved  
Reserved  
LDI  
LVDS24  
LDD  
LEOSWP  
TYPE:  
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
1
R/W  
1
R/W  
0
R/W  
1
DEFAULT:  
LDI (bit 0) of register LVDSE controls OpenLDI specification selection. A ‘1’ corresponds to OpenLDI, and a ‘0’  
corresponds to SPWG.  
LEOSWP (bit 1) of Register LVDSE provides the added flexibility to swap odd/even samples output on the LVDS link.  
LDD (bit 3) of Register LVDSE bypasses the dither function. A ‘1’ bypasses the dither function. A ‘0’ does not bypass  
the dither function.  
LVDS24 (bit 5) of Register LVDSE selects LVDS 24 bit or 18 bit output format. A ‘1’ provides 24-bit output mode  
and a ‘ 0’ provides 18- bit output mode.  
LVDS PLL Miscellaneous Control Register  
Symbol:  
Address:  
LPMC  
66h  
BIT:  
7
6
3
4
3
2
1
0
SYMBOL:  
Reserved SYNCST BKLEN LPLEN LPFORC LPLOCK LSYNCEN PANEN  
TYPE:  
R/W  
0
R
0
R/W  
0
R/W  
0
R/W  
0
R
0
R/W  
0
R/W  
1
DEFAULT:  
The LPMC register controls panel protection circuits which control the LVDS panel power up and down sequence.  
Refer to Section 2.2.4 Panel Protection and to Figure 6 for more details.  
PANEN (bit 0) of the LPMC register controls the LVDS panel enable.  
PANEN  
= 0 => Begin Power off sequence  
= 1 => Power-on  
LSYNCEN (bit 1) of the LPMC register controls the Sync Detection Bypass  
LSYNCEN = 0 => Normal Operation. HSYNC and VSYNC detection enabled.  
= 1 => HSYNC and VSYNC detection circuit is bypassed enabling forced power up sequence.  
LPLOCK (bit 2) of the LPMC register indicates the status of the PLL Lock  
LPLOCK = 0 => PLL is not stable.  
= 1 => PLL is stable and properly locked.  
LPFORC (bit 3) of the LPMC register: Bypass LVDS Lock Detect Sentry  
Bit 3  
= 0 => Lock detect sentry is active.  
= 1 => Lock detect sentry is overridden if LPLEN is set to ‘1’.  
LPLEN (bit 4) of the LPMC register controls LVDS PLL Lock Enable between LPLOCK and LPFORC.  
LPLEN  
= 0 => Select LPLOCK (normal operation)  
= 1 => Select LPFORC (Lock detect sentry is overridden if LPFORC is set to ‘1’)  
201-0000-053  
Rev. 1.31, 6/14/2006  
19  
 
CHRONTEL  
CH7304  
BKLEN (bit 5) of the LPMC register enables the panel backlight.  
BKLEN  
= 0 => Disable Backlight  
= 1 => Enable Backlight  
SYNCST(bit 6) of the LPMC register is the Hsync and Vsync stability status bit. Refer to Section 2.2.4.  
SYNCST = 0 => Hsync or Vsync are not stable  
= 1 => Hsync and Vsync are stable  
Power Sequencing T1  
Symbol:  
Address:  
PST1  
67h  
BIT:  
7
6
5
4
3
2
1
0
SYMBOL:  
TPON7 TPON6 TPON5 TPON4 TPON3 TPON2 TPON1 TPON0  
TYPE:  
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
DEFAULT:  
This register defines Power On time (T1), the time duration between LVDS_RDY (internal signal) to valid LVDS Clock  
and Data. The entire bit field, TPON[8:0], is comprised of these bits TPON[7:0] plus TPON8 contained in the PST2  
Power Sequencing T2 register (Register 68h, bit 7). Refer to Figure 5 and Table 6 in Section 2.2.3. The range of T1 is  
2ms to 512ms in increments of 1ms.  
Power Sequencing T2  
Symbol:  
Address:  
PST2  
68h  
BIT:  
7
6
5
4
3
2
1
0
SYMBOL:  
TPON8 TPBLE6 TPBLE5 TPBLE4 TPBLE3 TPBLE2 TPBLE1 TPBLE0  
TYPE:  
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
DEFAULT:  
TPBLE[6:0] (bits 6:0) of Register PST2 define the Back Light Enable time (T2), the waiting time after valid LVDS  
Clock and Data before enabling the LVDS panel back light. Refer to Figure 5 and Table 6 in Section 2.2.3. The range  
of T2 is 2ms to 256ms in increments of 2ms.  
TPON8 (bit 7) of Register PST2 defines the MSB of the Power On time (T1). The entire bit field, TPON[8:0], is  
comprised of this bit, TPON8, plus TPON[7:0] contained in the Power Sequencing T1 register (Register 67h). Refer to  
the description of the PST1 register (Register 67h) for more information.  
Power Sequencing T3  
Symbol:  
Address:  
PST3  
69h  
BIT:  
7
6
5
4
3
2
1
0
SYMBOL:  
TP0FF8 TPBLD6 TPBLD5 TPBLD4 TPBLD3 TPBLD2 TPBLD1 TPBLD0  
TYPE:  
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
DEFAULT:  
20  
201-0000-053  
Rev. 1.31, 6/14/2006  
 
CHRONTEL  
CH7304  
TPBLD[6:0] (bits 6-0) of Register PST3 define the Back Light Disable time (T3), the required time after disabling the  
back light before the valid LVDS Clock and Data become tri-stated or disabled. Refer to Figure 5 and Table 6 in  
Section 2.2.3. The range of T3 is 2ms to 256ms in increments of 2ms.  
TPOFF8 (bit 7) of Register PST3 defines the MSB of the Power Off time (T4). The entire bit field, TPOFF[8:0], is  
comprised of this bit, TPOFF8, plus TPOFF[7:0] contained in the Power Sequencing T4 register (Register 6Ah). Refer  
to the description of the PST4 register (Register 6Ah) for more information.  
Power Sequencing T4  
Symbol:  
Address:  
PST4  
6Ah  
BIT:  
7
6
5
4
3
2
1
0
SYMBOL:  
TPOFF7 TPOFF6 TPOFF5 TPOFF4 TPOFF3 TPOFF2 TPOFF1 TPOFF0  
TYPE:  
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
DEFAULT:  
Register PST4 defines the Power Off time (T4), the required time prior to power off after the valid LVDS Clock and  
Data become tri-stated or disabled. The entire bit field, TPOFF[8:0], is comprised of these bits, TPOFF[7:0], plus  
TPOFF8 contained in the Power Sequencing T3 register (Register 69h, bit 7). Refer to Figure 5 and Table 6 in  
Section 2.2.3.  
The range is 2ms to 512ms in increments of 1ms.  
Power Sequencing T5  
Symbol:  
Address:  
PST5  
6Bh  
BIT:  
7
6
5
4
3
2
1
0
SYMBOL:  
Reserved Reserved TPPWD5 TPPWD4 TPPWD3 TPPWD2 TPPWD1 TPPWD0  
TYPE:  
R/W  
1
R/W  
1
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
1
DEFAULT:  
TPPWD[5:0] (bits 5-0) of Register PST5 define the Power Cycle time (T5), the waiting time required prior to enabling  
power on after power has been off. Refer to Figure 5 and Table 6 in Section 2.2.3. The range is 2ms to 1600ms in  
increments of 50ms.  
LVDS PLL Feed Back Divider Control  
Symbol:  
Address:  
LPFBDC  
71h  
BIT:  
7
6
5
4
3
2
1
0
SYMBOL:  
Reserved Reserved LPFFD1 LPFFD0 LPFBD3 LPFBD2 LPFBD1 LPFBD0  
TYPE:  
R/W  
1
R/W  
0
R/W  
1
R/W  
0
R/W  
0
R/W  
0
R/W  
1
R/W  
1
DEFAULT:  
201-0000-053  
Rev. 1.31, 6/14/2006  
21  
 
CHRONTEL  
CH7304  
LPFBD[3:0] (bits 3-0) of Register LPFBDC define the LVDS PLL Feed-Back Divider Control. The recommended  
settings are shown in Table 15 in Section 0.  
LPFFD[1:0] (bits 5:4) of Register LPFBDC define the LVDS PLL Feed-Forward Divider Control. The recommended  
settings are shown in Table 15 in Section 0.  
LVDS PLL VCO Control Register  
Symbol:  
Address:  
LPVC  
72h  
BIT:  
7
6
5
4
3
2
1
0
SYMBOL:  
Reserved Reserved LPPSD1 LPPSD0 LPVCO3 LPVCO2 LPVCO1 LPVCO0  
TYPE:  
R/W  
1
R/W  
0
R/W  
0
R/W  
1
R/W  
0
R/W  
1
R/W  
1
R/W  
0
DEFAULT:  
LPVCO[3:0] (bits 3-0) of Register LPVC determine the LVDS PLL VCO open-loop frequency range. The  
recommended settings are shown in Table 15 in Section 0.  
LPPSD[1:0] (bits 5:4) of Register LPVC define the LVDS PLL post scale divider controls. The recommended settings  
are shown in Table 15 in Section 0.  
Outputs Enable Control Register  
Symbol:  
Address:  
OUTEN  
73h  
BIT:  
7
6
5
4
3
2
1
0
SYMBOL:  
Reserved Reserved Reserved Reserved  
LDENO LPCP2  
LPCP1  
LPCP0  
TYPE:  
R/W  
1
R/W  
1
R/W  
0
R/W  
0
R/W  
1
R/W  
0
R/W  
0
R/W  
0
DEFAULT:  
LPCP[2:0] (bits 2-0) of Register OUTEN control the LVDS PLL Charge Pump current value. The recommended  
settings are shown in Table 15 in Section 0.  
LDEN[1:0] (bits 4-3) of Register OUTEN control the output drivers of the LVDS output (LDC[3:0], LDC*[3:0], LLC  
and LLC*) per the following table:  
Table 11: LVDS Output Drivers Enable  
LDEN0  
Description  
0
1
LVDS Output Drivers disabled  
LVDS Output Drivers enabled  
22  
201-0000-053  
Rev. 1.31, 6/14/2006  
 
CHRONTEL  
CH7304  
LVDS Output Driver Amplitude control  
Symbol:  
Address:  
LODA  
74h  
BIT:  
7
6
5
4
3
2
1
0
SYMBOL:  
Reserved Reserved Reserved  
LODP  
LODPE  
LODA2 LODA1 LODA0  
TYPE:  
R/W  
1
R/W  
1
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
DEFAULT:  
LODA[2:0] (bits 2-0) of Register LODA controls the Output Driver Amplitude. See Table 12.  
Table 12: LVDS Output Driver Amplitude  
LODA2  
LODA1  
LODA0  
Output Driver Amplitude (mV)  
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
305  
285  
265  
245  
225  
410  
370  
330  
LODPE (bit 6) of Register LODA controls LVDS Output Driver Pre-Emphasis for both LDC[7:4] and LDC[3:0] by  
simultaneous Pull-up and Pull-down diode currents.  
LODPE = 0 =>  
= 1 =>  
Pull up reduced by 33% and pull down reduced by 66%.  
Default value  
LODP (bit 7) of Register LODA activates the LVDS Outputs Driver Pull-Down during power-down.  
LODP  
= 0 =>  
= 1 =>  
Pull-down devices not active  
Pull-down devices active  
LVDS Source Termination  
Symbol:  
Address:  
LST  
75h  
BIT:  
7
6
5
4
3
2
1
0
SYMBOL:  
LODST Reserved Reserved Reserved Reserved Reserved Reserved Reserved  
TYPE:  
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
DEFAULT:  
LODST (bit 7) of Register LST controls the LVDS Output Drive Source Termination.  
LODST = 0 =>  
= 1 =>  
100Ω shunt disabled between LVDS outputs LDCx and LDCx*, also LLC and LLC*  
100Ω shunt enabled between LVDS outputs LDCx and LDCx*, also LLC and LLC*  
201-0000-053  
Rev. 1.31, 6/14/2006  
23  
 
CHRONTEL  
CH7304  
LVDS Power Down  
Symbol:  
Address:  
LPD  
76h  
BIT:  
7
6
5
4
3
2
1
0
SYMBOL:  
FRSTB  
R/W  
1
LPLF2  
R/W  
0
LPLF1  
LPLF0  
LPPDN LPPRB Reserved LODPDB0  
TYPE:  
R/W  
1
R/W  
0
R/W  
1
R/W  
1
R/W  
0
R/W  
1
DEFAULT:  
LODPDB[1:0] (bits 1-0) of Register LPD control the LVDS Output Power Down per the following table:  
Table 13: LVDS Output Power Down  
LODPDB0 LDC[3:0] , LLC & LLC* path  
0
1
Power Down  
Power On  
Note: Outputs are tri-stated in power down mode unless LODP (Register 74h, bit 7) is ‘1’, in which case outputs are  
pulled to ground.  
LPPRB (bit 2) of Register LPD controls the LVDS PLL Reset.  
LPPRB = 0 =>  
= 1 =>  
LVDS PLL is reset  
Normal operation  
LPPDN (bit 3) of Register LPD controls the LVDS PLL Power Down.  
LPPDN = 0 =>  
= 1 =>  
LVDS PLL is powered down  
Normal operation  
LPLF[2:0] (bits 6-4) of Register LPD control the LVDS PLL Loop Filter Resistor per the following table:  
Table 14: LVDS PLL Loop Filter Resistor  
LPLF2  
LPLF1  
LPLF0  
PLL Loop Filter Resistor Value (Ohm)  
1800  
2600  
1000  
3200  
21,800  
42,600  
11,000  
73,200  
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
The recommended setting is shown in Table 15 in Section 0.  
FRSTB (bit 7) of Register LPD controls the FIFO reset.  
FRSTB = 0 =>  
= 1 =>  
Enable FIFO Reset  
Normal Operation  
24  
201-0000-053  
Rev. 1.31, 6/14/2006  
 
CHRONTEL  
CH7304  
LVDS Control  
Symbol:  
Address:  
LVCTL  
78h  
BIT:  
7
6
5
4
3
2
1
0
SYMBOL:  
LPCP3  
LPLF4  
LPLF3  
LPPD4  
LPPD3  
LPPD2  
LPPD1  
LPPD0  
TYPE:  
R/W  
0
R/W  
0
R/W  
1
R/W  
1
R/W  
1
R/W  
0
R/W  
0
R/W  
0
DEFAULT:  
LPPD[4:0] (bits 4-0) of Register LVCTL define the LVDS PLL Phase Detector Control. The recommended settings are  
shown in Table 15 in Section 0.  
LPLF[4:3] (bits 6-5) of Register LVCTL control the LVDS PLL Loop Filter Capacitor. The recommended settings are  
shown in Table 15 in Section 0.  
LPCP3 (bit 7) of Register LVCTL enables the LVDS PLL Static Phase Error Reduction. The default value is  
recommended.  
LPCP3  
= 0 =>  
= 1 =>  
Static Phase Error Reduction Disabled  
Static Phase Error Reduction Enabled  
Bang Limit Control  
Symbol:  
Address:  
BGLMT  
7Fh  
BIT:  
7
6
5
4
3
2
1
0
SYMBOL:  
BGLMT7 BGLMT6 BGLMT5 BGLMT4 BGLMT3 BGLMT2 BGLMT1 BGLMT0  
TYPE:  
R/W  
0
R/W  
0
R/W  
0
R/W  
1
R/W  
0
R/W  
0
R/W  
0
R/W  
0
DEFAULT:  
This register limits the allowable occurrences of internal LVDS FIFO over and under-runs within one VGA frame.  
The recommended setting is shown in Table 15 in Section 0.  
Recommended Settings  
The recommended values for the LVDS PLL are shown in Table 15 below.  
Table 15: LVDS Control Settings  
Address/Bit  
800 x 600  
1024 x 768  
1280 x 1024  
71h  
72h  
73h  
74h  
76h  
78h  
7Fh  
ADh  
ADh  
C8h  
F6h  
ADh  
80h  
ADh  
ADh  
C8h  
F6h  
ADh  
80h  
A3h  
ADh  
DBh  
F6h  
AFh  
80h  
10h  
10h  
10h  
201-0000-053  
Rev. 1.31, 6/14/2006  
25  
 
CHRONTEL  
CH7304  
4.0 Electrical Specifications  
4.1 Absolute Maximum Ratings  
Symbol  
Description  
Min  
-0.5  
Typ  
Max  
5.0  
Units  
V
All power supplies relative to GND  
Input voltage of all digital pins  
Analog output short circuit duration  
Ambient operating temperature  
Storage temperature  
GND – 0.5  
VDD + 0.5  
V
T
SC  
Indefinite  
Sec  
°C  
T
AMB  
0
85  
T
STOR  
-65  
150  
150  
260  
245  
225  
°C  
T
J
Junction temperature  
°C  
T
VPS  
Vapor phase soldering (5 second )  
Vapor phase soldering (11 second )  
Vapor phase soldering (60 second )  
°C  
°C  
°C  
Note:  
1) Stresses greater than those listed under absolute maximum ratings may cause permanent damage to the device.  
These are stress ratings only. Functional operation of the device at these or any other conditions above those  
indicated under the normal operating condition of this specification is not recommended. Exposure to absolute  
maximum rating conditions for extended periods may affect reliability. The temperature requirements of vapor  
phase soldering apply to all standard and lead free parts.  
2) The device is fabricated using high-performance CMOS technology. It should be handled as an ESD sensitive  
device. Voltage on any signal pin that exceeds the power supply voltages by more than ± 0.5V can induce  
destructive latchup.  
4.2 Recommended Operating Conditions  
Symbol  
LPLL_VDD  
DVDD  
Description  
Min  
3.1  
3.1  
3.1  
3.1  
1.1  
Typ  
3.3  
3.3  
3.3  
3.3  
1.8  
Max  
3.6  
Units  
LVDS PLL Power Supply Voltage  
Digital Power Supply Voltage  
LVDS Power Supply Voltage  
Generic for all of the above supplies  
I/O Power Supply Voltage  
V
V
V
V
V
3.6  
LVDD  
3.6  
VDD  
3.6  
VDDV  
3.6  
4.3 Electrical Characteristics  
(Operating Conditions: TA = 0°C – 70°C, VDD =3.3V ± 5%)  
Symbol  
Description  
Min  
Typ  
Max  
Units  
Total supply current  
I
VDD  
VDD  
1 DVO input for LVDS @ 162 MHz  
LVDS output @ 162 MHz  
Total supply current  
210  
280  
mA  
I
1 DVO input for LVDS@65 MHz  
LVDS output @ 65 MHz  
130  
175  
0.1  
mA  
I
I
VDDV (1.8V) current (15pF load)  
Total Power Down Current  
4
mA  
mA  
VDDV  
PD  
0.01  
26  
201-0000-053  
Rev. 1.31, 6/14/2006  
 
CHRONTEL  
CH7304  
4.4 Digital Inputs / Outputs  
Symbol  
Description  
Test Condition  
Min  
Typ  
Max  
Unit  
VSDOL  
SPD (serial port data) Output  
Low Voltage  
I
= 2.0 mA  
0.4  
V
OL  
VSPIH  
VSPIL  
Serial Port (SPC, SPD) Input  
High Voltage  
1.0  
VDD + 0.5  
0.4  
V
V
Serial Port (SPC, SPD) Input  
Low Voltage  
GND-0.5  
VHYS  
Hysteresis of Inputs  
0.25  
Vref+0.25  
GND-0.5  
2.7  
V
V
V
V
VDATAIH  
VDATAIL  
VMISCAIH  
D[11:0] Input High Voltage  
D[11:0] Input Low Voltage  
DVDD+0.5  
Vref-0.25  
VDD + 0.5  
CONFIG, RESET*  
Input High Voltage  
DVDD=3.3V  
DVDD=3.3V  
VIN = 0V  
VMISCAIL  
IMISCAPU  
CONFIG, RESET*  
Input Low Voltage  
GND-0.5  
0.5  
0.6  
5
V
Pull Up Current  
uA  
(CONFIG, RESET*)  
CONFIG, ENAVDD, ENABKL,  
Output High Voltage  
VMISCAOH  
VMISCAOL  
I
I
= -0.4mA  
= 3.2mA  
VDD-0.2  
V
V
OH  
OL  
CONFIG, ENAVDD, ENABKL,  
Output Low Voltage  
0.2  
4.5 AC Specifications  
Symbol  
fXCLK  
Description  
Test Condition  
Min  
25  
Typ  
Max  
165  
40  
Unit  
MHz  
ns  
Input (XCLK) frequency  
Pixel time period  
tPIXEL  
DCXCLK  
tXJIT  
6.06  
30  
Input (XCLK) Duty Cycle  
XCLK clock jitter tolerance  
TS + TH < 1.2ns  
70  
%
2
ns  
Setup Time: D[11:0], H, V and  
DE to XCLK, XCLK*  
tS  
XCLK = XCLK* to  
D[11:0], H, V, DE =  
Vref  
0.5  
0.5  
50  
ns  
Hold Time: D[11:0], H, V and  
DE to XCLK, XCLK*  
tH  
D[11:0], H, V, DE =  
Vref to XCLK =  
XCLK*  
ns  
ps  
tSTEP  
De-skew time increment  
80  
201-0000-053  
Rev. 1.31, 6/14/2006  
27  
 
CHRONTEL  
CH7304  
4.6 LVDS Output Specifications  
The LVDS specifications meet the requirements of ANSI/EIA/TIA-644. Refer to Figure 7 for definitions of parameters.  
Symbol  
Description  
Test Condition  
100Ω differential load  
100Ω differential load  
100Ω differential load  
Min  
247  
247  
Typ  
Max  
453  
453  
50  
Unit  
mV  
mV  
mV  
Steady State Differential  
Output Magnitude for logic 1  
Steady State Differential  
Output Magnitude for logic 0  
Steady State Magnitude of  
Difference between Logic 1  
and 0 Outputs  
| Vt |  
| Vt *|  
| Vt | - | Vt *|  
|VOS  
|
Steady State Magnitude of  
Offset Voltage for Logic 1  
Measured at center-  
tap of two 50Ω  
1.125  
1.125  
1.375  
1.375  
50  
V
resistors connected  
between outputs  
|VOS* |  
Steady State Magnitude of  
Offset Voltage for Logic 0  
Measured at center-  
tap of two 50Ω  
V
resistors connected  
between outputs  
|VOS | - |VOS* |  
Steady State Magnitude of  
Offset Difference between  
Logic States  
Measured at center-  
tap of two 50Ω  
mV  
resistors connected  
between outputs  
fLLC  
LVDS Output Clock  
Frequency  
25  
108 1  
5.7  
MHz  
ns  
tUI  
LVDS data unit time interval  
25MHz < fLLC  
108MHz  
<
1.3  
tR  
LVDS data rise time  
100Ω and 5pF  
differential load  
t
UI > 5ns  
0.3* tUI  
1.5  
ns  
ns  
20% -> 80% VSWING  
1.3ns < tUI < 5ns  
tF  
LVDS data fall time  
100Ω and 5pF  
differential load  
t
UI > 5ns  
0.3* tUI  
1.5  
ns  
ns  
80% -> 20% VSWING  
1.3ns < tUI < 5ns  
VRING  
Voltage ringing after transition 100Ω and 5pF  
20%  
differential load  
VSWING  
Note 1: Corresponds to maximum pixel rate fXCLK for single channel operation. Dual channel operation is required for  
pixel rates greater than 108MHz.  
28  
201-0000-053  
Rev. 1.31, 6/14/2006  
 
CHRONTEL  
CH7304  
4.7 Timing Information  
4.7.1  
LVDS Output Timing  
Vring  
+/-20% Vswing  
0.8 Vswing  
+Vt  
Vswing  
tj  
0V Differential  
-Vt  
0.2 Vswing  
tr  
tf  
tui  
Figure 7: AC Timing for LVDS Outputs  
Table 16: AC Timing for LVDS Outputs  
Symbol  
Parameter  
Min  
Typ  
Max  
Steady State Differential Output Magnitude  
| Vt |  
see section 4.6  
Voltage Difference between the two Steady State Values of Output  
VSWING  
Unit time interval  
Rise time  
tUi  
tr  
see section 4.6  
see section 4.6  
see section 4.6  
tf  
Fall time  
tj  
Jitter peak to peak1  
350ps  
Note 1: Maximum jitter with EMI reduction turned off.  
201-0000-053  
Rev. 1.31, 6/14/2006  
29  
 
CHRONTEL  
CH7304  
4.7.2  
LVDS Input Timing: Clock - Slave, Sync - Slave Mode  
t1  
V IH  
V IL  
V IH  
V IL  
V IH  
V IL  
V IH  
V IL  
V IH  
XCLK  
XCLK*  
D[11:0]  
DE  
tH  
tS  
P0a P0b P1a  
P1b P2a  
P2b  
t2  
tS  
tH  
tH  
tS  
H
64 PIXELS  
V IL  
V IH  
t2  
V
1 VGA  
Line  
V IL  
t2  
t2  
Figure 8: Timing for Clock - Slave, Sync - Slave Mode  
Table 17: Timing for Clock  
Symbol  
Parameter  
Min  
Typ  
Max  
Unit  
Setup Time: D[11:0], H, V and DE to XCLK, XCLK*  
Hold Time: D[11:0], H, V and DE to XCLK, XCLK*  
tS  
see Section 4.5  
tH  
t1  
t2  
see Section 4.5  
XCLK & XCLK* rise/fall time w/15pF load  
D[11:0], H, V & DE rise/fall time w/ 15pF load  
1
1
ns  
ns  
30  
201-0000-053  
Rev. 1.31, 6/14/2006  
CHRONTEL  
CH7304  
5.0 Package Dimensions  
A
B
I
1
A B  
H
D
C
J
LEA  
D
CO-  
PLANARITY  
H
.004 “  
F
G
Table of Dimensions  
No. of Leads  
SYMBOL  
64 (10 X 10 mm)  
A
B
C
D
E
F
G
H
I
J
Milli-  
meters  
MIN  
MAX  
0.17  
0.27  
1.35  
1.45  
0.05  
0.15  
0.45  
0.75  
0.09  
0.20  
0°  
7°  
12  
10  
0.50  
1.00  
Figure 9: 64 Pin LQFP Package  
201-0000-053  
Rev. 1.31, 6/14/2006  
31  
 
CHRONTEL  
CH7304  
6.0 Revision History  
Rev. #  
1.0  
1.1  
Date  
4/8/03  
5/15/03  
Section  
All  
Figure 1  
4.3  
Description  
First official release, Revision 1.0  
Deleted AS pin from Figure 1  
Added supply current limits  
Added Table of Contents  
Added section 4.6 and 4.7.1.  
Corrected description of DID.  
6/23/03  
2/3/04  
1.2  
4.6, 4.7.1  
Register  
4Bh  
All  
All  
Removed all references to the GOENB and GPIOL bits.  
Changed pin name of GPIO to CONFIG  
Figure 1  
1. Renamed GPIO pin to CONFIG  
2. Renamed LL1C and LL1C* to LLC and LLC*  
3. Removed LDC[7:4], LDC*[7:4], LL2C, and LL2C*  
Back Page Added Ordering Information  
1.3  
1.31  
11/09/04  
6/14/06  
Back Page Added lead free and tape & reel order information  
Back Page Corrected part number of lead free and tape & reel.  
32  
201-0000-053  
Rev. 1.31, 6/14/2006  
 
CHRONTEL  
CH7304  
Disclaimer  
This document provides technical information for the user. Chrontel reserves the right to make changes at any time  
without notice to improve and supply the best possible product and is not responsible and does not assume any liability  
for misapplication or use outside the limits specified in this document. We provide no warranty for the use of our  
products and assume no liability for errors contained in this document. The customer should make sure that they have  
the most recent data sheet version. Customers should take appropriate action to ensure their use of the products does not  
infringe upon any patents. Chrontel, Inc. respects valid patent rights of third parties and does not infringe upon or assist  
others to infringe upon such rights.  
Chrontel PRODUCTS ARE NOT AUTHORIZED FOR AND SHOULD NOT BE USED WITHIN LIFE SUPPORT  
SYSTEMS OR NUCLEAR FACILITY APPLICATIONS WITHOUT THE SPECIFIC WRITTEN CONSENT OF  
Chrontel. Life support systems are those intended to support or sustain life and whose failure to perform when used as  
directed can reasonably expect to result in personal injury or death.  
ORDERING INFORMATION  
Part Number  
CH7304A-T  
Package Type  
LQFP  
Number of Pins  
64  
Voltage Supply  
3.3V  
LQFP,  
Tape&Reel  
CH7304A-T-TR  
CH7304A-TF  
64  
64  
64  
3.3V  
3.3V  
3.3V  
LQFP, Lead free  
LQFP, Lead free,  
Tape&Reel  
CH7304A-TF-TR  
Chrontel  
2210 O’Toole Avenue, Suite 100,  
San Jose, CA 95131-1326  
Tel: (408) 383-9328  
Fax: (408) 383-9338  
www.chrontel.com  
E-mail: sales@chrontel.com  
©2006 Chrontel, Inc. All Rights Reserved.  
Printed in the U.S.A.  
201-0000-053  
Rev. 1.31, 6/14/2006  
33  

相关型号:

CH7304A-TF-TR

Consumer Circuit, CMOS, PQFP64, 10 X 10 MM, LEAD FREE, LQFP-64
CHRONTEL

CH7305

Consumer IC,
CHRONTEL

CH7305A-TF

Consumer Circuit, CMOS, PQFP64, 10 X 10 MM, LEAD FREE, LQFP-64
CHRONTEL

CH7305A-TF-TR

Consumer Circuit, CMOS, PQFP64, 10 X 10 MM, LEAD FREE, LQFP-64
CHRONTEL

CH7305AA-TF

Consumer Circuit, CMOS, PQFP64, 10 X 10 MM, LEAD FREE, LQFP-64
CHRONTEL

CH7305AA-TF-TR

Consumer Circuit, CMOS, PQFP64, 10 X 10 MM, LEAD FREE, LQFP-64
CHRONTEL

CH7307C-DEF

Consumer Circuit, CMOS, PQFP48, 7 X 7 MM, LEAD FREE, MS-026D, LQFP-48
CHRONTEL

CH7307C-DEF-I

Consumer Circuit, CMOS, PQFP48, 7 X 7 MM, LEAD FREE, MS-026D, LQFP-48
CHRONTEL

CH7307C-DEF-I-TR

Consumer Circuit, CMOS, PQFP48, 7 X 7 MM, LEAD FREE, MS-026D, LQFP-48
CHRONTEL

CH7307C-DEF-TR

Consumer Circuit, CMOS, PQFP48, 7 X 7 MM, LEAD FREE, MS-026D, LQFP-48
CHRONTEL

CH7307C-DEW

Micro Peripheral IC,
CHRONTEL

CH7307C-DEW-TR

Micro Peripheral IC,
CHRONTEL