CDK2000 [CIRRUS]

Fractional-N Clock Synthesizer & Clock Multiplier; 小数N分频时钟合成器与时钟乘法器
CDK2000
型号: CDK2000
厂家: CIRRUS LOGIC    CIRRUS LOGIC
描述:

Fractional-N Clock Synthesizer & Clock Multiplier
小数N分频时钟合成器与时钟乘法器

时钟
文件: 总30页 (文件大小:251K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
CS2000-OTP  
Fractional-N Clock Synthesizer & Clock Multiplier  
Features  
General Description  
Delta-Sigma Fractional-N Frequency Synthesis  
The CS2000-OTP is an extremely versatile system  
clocking device that utilizes a programmable phase lock  
loop. The CS2000-OTP is based on a hybrid analog-  
digital PLL architecture comprised of a unique combina-  
Generates a Low Jitter 6 - 75 MHz Clock  
from an 8 - 75 MHz Reference Clock  
Clock Multiplier / Jitter Reduction  
tion of  
a
Delta-Sigma Fractional-N Frequency  
Generates a Low Jitter 6 - 75 MHz Clock  
from a Jittery 50 Hz to 30 MHz Clock  
Source  
Synthesizer and a Digital PLL. This architecture allows  
for both frequency synthesis/clock generation from a  
stable reference clock as well as generation of a low-jit-  
ter clock relative to an external noisy synchronization  
clock with frequencies as low as 50 Hz. The CS2000-  
OTP has many configuration options which are set once  
prior to runtime. At runtime there are three hardware  
configuration pins available for mode and feature  
selection.  
Highly Accurate PLL Multiplication Factor  
Maximum Error Less Than 1 PPM in High-  
Resolution Mode  
One-Time Programmability  
Configurable Hardware Control Pins  
Configurable Auxiliary Output  
The CS2000-OTP is available in a 10-pin MSOP pack-  
age in Commercial (-10°C to +70°C) grade. Customer  
development kits are also available for custom device  
prototyping, small production programming, and device  
evaluation. Please see “Ordering Information” on  
page 29 for complete details.  
Flexible Sourcing of Reference Clock  
External Oscillator or Clock Source  
Supports Inexpensive Local Crystal  
Minimal Board Space Required  
No External Analog Loop-filter  
Components  
3.3 V  
Timing Reference  
Frequency Reference  
Hardware Control  
Hardware Configuration  
Auxiliary  
Output  
PLL Output  
Lock Indicator  
Fractional-N  
Frequency Synthesizer  
8 MHz to 75 MHz  
Low-Jitter Timing Reference  
6 to 75 MHz  
PLL Output  
N
Output to Input  
Clock Ratio  
50 Hz to 30 MHz  
Frequency Reference  
Digital PLL & Fractional  
N Logic  
Output to Input  
Clock Ratio  
Copyright Cirrus Logic, Inc. 2009  
AUG '09  
DS758F1  
(All Rights Reserved)  
http://www.cirrus.com  
CS2000-OTP  
TABLE OF CONTENTS  
1. PIN DESCRIPTION ................................................................................................................................. 4  
2. TYPICAL CONNECTION DIAGRAM ..................................................................................................... 5  
3. CHARACTERISTICS AND SPECIFICATIONS ...................................................................................... 6  
RECOMMENDED OPERATING CONDITIONS .................................................................................... 6  
ABSOLUTE MAXIMUM RATINGS ........................................................................................................ 6  
DC ELECTRICAL CHARACTERISTICS ................................................................................................ 6  
AC ELECTRICAL CHARACTERISTICS ................................................................................................ 7  
PLL PERFORMANCE PLOTS ............................................................................................................... 8  
4. ARCHITECTURE OVERVIEW ............................................................................................................... 9  
4.1 Delta-Sigma Fractional-N Frequency Synthesizer ........................................................................... 9  
4.2 Hybrid Analog-Digital Phase Locked Loop ...................................................................................... 9  
4.2.1 Fractional-N Source Selection for the Frequency Synthesizer .............................................. 10  
5. APPLICATIONS ................................................................................................................................... 11  
5.1 One Time Programmability ............................................................................................................ 11  
5.2 Timing Reference Clock Input ........................................................................................................ 11  
5.2.1 Internal Timing Reference Clock Divider ............................................................................... 11  
5.2.2 Crystal Connections (XTI and XTO) ...................................................................................... 12  
5.2.3 External Reference Clock (REF_CLK) .................................................................................. 12  
5.3 Frequency Reference Clock Input, CLK_IN ................................................................................... 12  
5.3.1 Adjusting the Minimum Loop Bandwidth for CLK_IN ............................................................ 13  
5.4 Output to Input Frequency Ratio Configuration ............................................................................. 14  
5.4.1 User Defined Ratio (RUD), Frequency Synthesizer Mode .................................................... 14  
5.4.2 User Defined Ratio (RUD), Hybrid PLL Mode ....................................................................... 14  
5.4.3 Ratio Modifier (R-Mod) .......................................................................................................... 15  
5.4.4 Effective Ratio (REFF) .......................................................................................................... 15  
5.4.5 Fractional-N Source Selection ............................................................................................... 15  
5.4.5.1 Manual Fractional-N Source Selection for the Frequency Synthesizer ..................... 16  
5.4.5.2 Automatic Fractional-N Source Selection for the Frequency Synthesizer ................. 16  
5.4.6 Ratio Configuration Summary ............................................................................................... 17  
5.5 PLL Clock Output ........................................................................................................................... 18  
5.6 Auxiliary Output .............................................................................................................................. 18  
5.7 Mode Pin Functionality ................................................................................................................... 19  
5.7.1 M1 and M0 Mode Pin Functionality ....................................................................................... 19  
5.7.2 M2 Mode Pin Functionality .................................................................................................... 19  
5.7.2.1 M2 Configured as Output Disable .............................................................................. 19  
5.7.2.2 M2 Configured as R-Mod Enable .............................................................................. 19  
5.7.2.3 M2 Configured as Auto Fractional-N Source Selection Disable ................................ 20  
5.7.2.4 M2 Configured as Fractional-N Source Select .......................................................... 20  
5.7.2.5 M2 Configured as AuxOutSrc Override ..................................................................... 20  
5.8 Clock Output Stability Considerations ............................................................................................ 20  
5.8.1 Output Switching ................................................................................................................... 20  
5.8.2 PLL Unlock Conditions .......................................................................................................... 21  
5.9 Required Power Up Sequencing for Programmed Devices ........................................................... 21  
6. PARAMETER DESCRIPTIONS ........................................................................................................... 22  
6.1 Modal Configuration Sets ............................................................................................................... 22  
6.1.1 R-Mod Selection (RModSel[1:0]) ........................................................................................... 22  
6.1.2 Auxiliary Output Source Selection (AuxOutSrc[1:0]) ............................................................. 23  
6.1.3 Lock Clock Ratio (LockClk[1:0]) ............................................................................................ 23  
6.1.4 Fractional-N Source for Frequency Synthesizer (FracNSrc) ................................................. 23  
6.2 Ratio 0 - 3 ...................................................................................................................................... 23  
6.3 Global Configuration Parameters ................................................................................................... 24  
6.3.1 AUX PLL Lock Output Configuration (AuxLockCfg) .............................................................. 24  
DS758F1  
2
CS2000-OTP  
6.3.2 Reference Clock Input Divider (RefClkDiv[1:0]) .................................................................... 24  
6.3.3 Enable PLL Clock Output on Unlock (ClkOutUnl) ................................................................. 24  
6.3.4 Low-Frequency Ratio Configuration (LFRatioCfg) ................................................................ 24  
6.3.5 M2 Pin Configuration (M2Config[2:0]) ................................................................................... 25  
6.3.6 Clock Input Bandwidth (ClkIn_BW[2:0]) ................................................................................ 25  
7. CALCULATING THE USER DEFINED RATIO .................................................................................... 26  
7.1 High Resolution 12.20 Format ....................................................................................................... 26  
7.2 High Multiplication 20.12 Format ................................................................................................... 26  
8. PROGRAMMING INFORMATION ........................................................................................................ 27  
9. PACKAGE DIMENSIONS .................................................................................................................... 28  
THERMAL CHARACTERISTICS ......................................................................................................... 28  
10. ORDERING INFORMATION .............................................................................................................. 29  
11. REVISION HISTORY .......................................................................................................................... 30  
LIST OF FIGURES  
Figure 1. Typical Connection Diagram ........................................................................................................ 5  
Figure 2. CLK_IN Sinusoidal Jitter Tolerance ............................................................................................. 8  
Figure 3. CLK_IN Sinusoidal Jitter Transfer ................................................................................................ 8  
Figure 4. CLK_IN Random Jitter Rejection and Tolerance ......................................................................... 8  
Figure 5. Delta-Sigma Fractional-N Frequency Synthesizer ....................................................................... 9  
Figure 6. Hybrid Analog-Digital PLL .......................................................................................................... 10  
Figure 7. Fractional-N Source Selection Overview ................................................................................... 10  
Figure 8. Internal Timing Reference Clock Divider ................................................................................... 11  
Figure 9. REF_CLK Frequency vs a Fixed CLK_OUT .............................................................................. 12  
Figure 10. External Component Requirements for Crystal Circuit ............................................................ 12  
Figure 11. Low bandwidth and new clock domain .................................................................................... 13  
Figure 12. High bandwidth with CLK_IN domain re-use ........................................................................... 13  
Figure 13. Ratio Feature Summary ........................................................................................................... 17  
Figure 14. PLL Clock Output Options ....................................................................................................... 18  
Figure 15. Auxiliary Output Selection ........................................................................................................ 18  
Figure 16. M2 Mapping Options ................................................................................................................ 19  
Figure 17. Parameter Configuration Sets .................................................................................................. 22  
LIST OF TABLES  
Table 1. Modal and Global Configuration .................................................................................................. 11  
Table 2. Ratio Modifier .............................................................................................................................. 15  
Table 3. Example 12.20 R-Values ............................................................................................................ 26  
Table 4. Example 20.12 R-Values ............................................................................................................ 26  
DS758F1  
3
CS2000-OTP  
1. PIN DESCRIPTION  
M0  
M1  
M2  
VD  
10  
9
1
2
3
4
5
GND  
8
CLK_OUT  
AUX_OUT  
CLK_IN  
XTI/REF_CLK  
XTO  
7
6
Pin Name  
VD  
#
1
2
3
Pin Description  
Digital Power (Input) - Positive power supply for the digital and analog sections.  
Ground (Input) - Ground reference.  
GND  
CLK_OUT  
PLL Clock Output (Output) - PLL clock output.  
Auxiliary Output (Output) - This pin outputs a buffered version of one of the input or output clocks,  
or a status signal, depending on configuration.  
AUX_OUT  
CLK_IN  
4
5
Frequency Reference Clock Input (Input) - Clock input for the Digital PLL frequency reference.  
Crystal Connections (XTI/XTO) / Timing Reference Clock Input (REF_CLK) (Input/Output) -  
XTI/XTO are I/O pins for an external crystal which may be used to generate the low-jitter PLL input  
clock. REF_CLK is an input for an externally generated low-jitter reference clock.  
XTO  
XTI/REF_CLK  
6
7
M2  
M1  
M0  
8
9
Mode Select (Input) - M2 is a configurable mode selection pin.  
Mode Select (Input) - M1 is a configurable mode selection pin.  
10 Mode Select (Input) - M0 is a configurable mode selection pin.  
4
DS758F1  
CS2000-OTP  
2. TYPICAL CONNECTION DIAGRAM  
+3.3 V  
0.1 µF  
1 µF  
VD  
M2  
System Microcontroller  
Frequency Reference  
M1  
M0 CS2000-OTP  
To circuitry which requires  
a low-jitter clock  
CLK_OUT  
CLK_IN  
To other circuitry or  
Microcontroller  
XTI/REF_CLK  
XTO  
1
or  
2
AUX_OUT  
GND  
Low-Jitter  
Timing Reference  
REF_CLK  
XTO  
1
x
N.C.  
or  
Crystal  
XTI  
2
XTO  
40 pF  
40 pF  
Figure 1. Typical Connection Diagram  
DS758F1  
5
CS2000-OTP  
3. CHARACTERISTICS AND SPECIFICATIONS  
RECOMMENDED OPERATING CONDITIONS  
GND = 0 V; all voltages with respect to ground. (Note 1)  
Parameters  
Symbol  
Min  
Typ  
Max  
Units  
DC Power Supply  
Ambient Operating Temperature (Power Applied)  
(Note 2)  
VD  
3.1  
3.3  
3.5  
V
Commercial Grade  
TAC  
-10  
-
+70  
°C  
Notes: 1. Device functionality is not guaranteed or implied outside of these limits. Operation outside of these limits  
may adversely affect device reliability.  
2. CLK_IN must not be applied when these conditions are not met, including during power up. See **fix**  
for required power up procedure.  
ABSOLUTE MAXIMUM RATINGS  
GND = 0 V; all voltages with respect to ground.  
Parameters  
Symbol  
VD  
Min  
-0.3  
-
Max  
6.0  
Units  
V
DC Power Supply  
Input Current  
IIN  
±10  
mA  
V
Digital Input Voltage (Note 3)  
VIN  
-0.3  
-55  
-65  
VD + 0.4  
125  
Ambient Operating Temperature (Power Applied)  
Storage Temperature  
TA  
°C  
Tstg  
150  
°C  
WARNING: Operation at or beyond these limits may result in permanent damage to the device.  
Notes: 3. The maximum over/under voltage is limited by the input current except on the power supply pin.  
DC ELECTRICAL CHARACTERISTICS  
Test Conditions (unless otherwise specified): VD = 3.1 V to 3.5 V; T = -10°C to +70°C (Commercial Grade).  
A
Parameters  
Power Supply Current - Unloaded  
Symbol  
ID  
Min  
Typ  
Max  
18  
60  
±10  
-
Units  
mA  
mW  
µA  
(Note 4)  
(Note 4)  
-
12  
40  
-
Power Dissipation - Unloaded  
Input Leakage Current  
PD  
-
IIN  
-
-
Input Capacitance  
IC  
8
-
pF  
High-Level Input Voltage  
Low-Level Input Voltage  
VIH  
VIL  
70%  
-
-
VD  
-
30%  
-
VD  
High-Level Output Voltage (IOH = -1.2 mA)  
VOH  
80%  
-
VD  
Low-Level Output Voltage (IOH = 1.2 mA)  
VOL  
-
-
20%  
VD  
Notes: 4. To calculate the additional current consumption due to loading (per output pin), multiply clock output  
frequency by load capacitance and power supply voltage.  
For example, fCLK_OUT (49.152 MHz) * C (15 pF) * VD (3.3 V) = 2.4 mA of additional current due to  
L
these loading conditions on CLK_OUT.  
6
DS758F1  
CS2000-OTP  
AC ELECTRICAL CHARACTERISTICS  
Test Conditions (unless otherwise specified): VD = 3.1 V to 3.5 V; T = -10°C to +70°C (Commercial Grade);  
A
C = 15 pF.  
L
Parameters  
Symbol  
Conditions  
Min  
Typ  
Max Units  
Crystal Frequency  
Fundamental Mode XTAL  
fXTAL  
8
16  
32  
-
-
-
14  
28  
50  
MHz  
MHz  
MHz  
RefClkDiv[1:0] = 10  
RefClkDiv[1:0] = 01  
RefClkDiv[1:0] = 00  
Reference Clock Input Frequency  
fREF_CLK  
RefClkDiv[1:0] = 10  
RefClkDiv[1:0] = 01  
RefClkDiv[1:0] = 00  
8
16  
32  
-
-
-
14  
28  
56  
MHz  
MHz  
MHz  
Reference Clock Input Duty Cycle  
Internal System Clock Frequency  
Clock Input Frequency  
DREF_CLK  
fSYS_CLK  
fCLK_IN  
45  
8
-
55  
14  
30  
%
MHz  
MHz  
50 Hz  
-
Clock Input Pulse Width (Note 5)  
pwCLK_IN  
fCLK_IN < fSYS_CLK/96  
fCLK_IN > fSYS_CLK/96  
2
10  
-
-
-
-
UI  
ns  
PLL Clock Output Frequency  
PLL Clock Output Duty Cycle  
Clock Output Rise Time  
fCLK_OUT  
tOD  
6
45  
-
-
75  
55  
3.0  
3.0  
-
MHz  
%
Measured at VD/2  
20% to 80% of VD  
80% to 20% of VD  
(Note 6)  
50  
tOR  
1.7  
1.7  
70  
ns  
Clock Output Fall Time  
tOF  
-
ns  
Period Jitter  
tJIT  
-
ps rms  
ps rms  
ps rms  
Base Band Jitter (100 Hz to 40 kHz)  
Wide Band JItter (100 Hz Corner)  
PLL Lock Time - CLK_IN (Note 9)  
(Notes 6, 7)  
-
50  
-
(Notes 6, 8)  
-
175  
-
tLC  
fCLK_IN < 200 kHz  
fCLK_IN > 200 kHz  
-
-
100  
1
200  
3
UI  
ms  
PLL Lock Time - REF_CLK  
tLR  
ferr  
fREF_CLK = 8 to 75 MHz  
-
1
3
ms  
Output Frequency Synthesis Resolution (Note 10)  
High Resolution  
High Multiplication  
0
0
-
-
±0.5  
±112  
ppm  
ppm  
Notes: 5. 1 UI (unit interval) corresponds to t  
or 1/f  
.
SYS_CLK  
SYS_CLK  
6. fCLK_OUT = 24.576 MHz; Sample size = 10,000 points; AuxOutSrc[1:0] = 11.  
7. In accordance with AES-12id-2006 section 3.4.2. Measurements are Time Interval Error taken with 3rd  
order 100 Hz to 40 kHz bandpass filter.  
8. In accordance with AES-12id-2006 section 3.4.1. Measurements are Time Interval Error taken with 3rd  
order 100 Hz Highpass filter.  
9. 1 UI (unit interval) corresponds to t  
or 1/f  
.
CLK_IN  
CLK_IN  
10. The frequency accuracy of the PLL clock output is directly proportional to the frequency accuracy of the  
reference clock.  
DS758F1  
7
CS2000-OTP  
PLL PERFORMANCE PLOTS  
Test Conditions (unless otherwise specified): VD = 3.3 V; T = 25 °C (Commercial Grade); C = 15 pF;  
A
L
f
= 12.288 MHz; f  
= 12.288 MHz; Sample size = 10,000 points; Base Band Jitter (100 Hz to 40 kHz);  
CLK_IN  
CLK_OUT  
AuxOutSrc[1:0] = 11.  
10,000  
1,000  
100  
10  
10  
1 Hz Bandwidth  
128 Hz Bandwidth  
1 Hz Bandwidth  
128 Hz Bandwidth  
0
-10  
-20  
-30  
-40  
-50  
-60  
1
0.1  
1
10  
100  
1,000  
10,000  
1
10  
100  
1000  
10000  
Input Jitter Frequency (Hz)  
Input Jitter Frequency (Hz)  
Figure 2. CLK_IN Sinusoidal Jitter Tolerance  
Figure 3. CLK_IN Sinusoidal Jitter Transfer  
Samples size = 2.5M points; Base Band Jitter (10Hz to 40kHz).  
Samples size = 2.5M points; Base Band Jitter (10Hz to 40kHz).  
1000  
1 Hz Bandwidth  
128 Hz Bandwidth  
100  
10  
Unlock  
1
Unlock  
0.1  
0.01  
0.01  
0.1  
1
10  
100  
1000  
Input Jitter Level (nsec)  
Figure 4. CLK_IN Random Jitter Rejection and Tolerance  
8
DS758F1  
CS2000-OTP  
4. ARCHITECTURE OVERVIEW  
4.1  
Delta-Sigma Fractional-N Frequency Synthesizer  
The core of the CS2000 is a Delta-Sigma Fractional-N Frequency Synthesizer which has very high-resolu-  
tion for Input/Output clock ratios, low phase noise, very wide range of output frequencies and the ability to  
quickly tune to a new frequency. In very simplistic terms, the Fractional-N Frequency Synthesizer multiplies  
the Timing Reference Clock by the value of N to generate the PLL output clock. The desired output to input  
clock ratio is the value of N that is applied to the delta-sigma modulator (see Figure 5).  
The analog PLL based frequency synthesizer uses a low-jitter timing reference clock as a time and phase  
reference for the internal voltage controlled oscillator (VCO). The phase comparator compares the fraction-  
al-N divided clock with the original timing reference and generates a control signal. The control signal is fil-  
tered by the internal loop filter to generate the VCO’s control voltage which sets its output frequency. The  
delta-sigma modulator modulates the loop integer divide ratio to get the desired fractional ratio between the  
reference clock and the VCO output (thus the duty cycle of the modulator sets the fractional value). This  
allows the design to be optimized for very fast lock times for a wide range of output frequencies without the  
need for external filter components. As with any Fractional-N Frequency Synthesizer the timing reference  
clock should be stable and jitter-free.  
Timing Reference  
Clock  
Phase  
Comparator  
Internal  
Loop Filter  
Voltage Controlled  
Oscillator  
PLL Output  
Fractional-N  
Divider  
Delta-Sigma  
Modulator  
N
Figure 5. Delta-Sigma Fractional-N Frequency Synthesizer  
4.2  
Hybrid Analog-Digital Phase Locked Loop  
The addition of the Digital PLL and Fractional-N Logic (shown in Figure 6) to the Fractional-N Frequency  
Synthesizer creates the Hybrid Analog-Digital Phase Locked Loop with many advantages over classical an-  
alog PLL techniques. These advantages include the ability to operate over extremely wide frequency ranges  
without the need to change external loop filter components while maintaining impressive jitter reduction per-  
formance. In the Hybrid architecture, the Digital PLL calculates the ratio of the PLL output clock to the fre-  
quency reference and compares that to the desired ratio. The digital logic generates a value of N which is  
then applied to the Fractional-N frequency synthesizer to generate the desired PLL output frequency. Notice  
that the frequency and phase of the timing reference signal do not affect the output of the PLL since the  
digital control loop will correct for the PLL output. A major advantage of the Digital PLL is the ease with which  
the loop filter bandwidth can be altered. The PLL bandwidth is set to a wide-bandwidth mode to quickly  
achieve lock and then reduced for optimal jitter rejection.  
DS758F1  
9
CS2000-OTP  
Delta-Sigma Fractional-N Frequency Synthesizer  
Timing Reference  
Clock  
Phase  
Comparator  
Internal  
Loop Filter  
Voltage Controlled  
Oscillator  
PLL Output  
Fractional-N  
Divider  
Delta-Sigma  
Modulator  
N
Digital PLL and Fractional-N Logic  
Digital Filter  
Frequency  
Comparator for  
Frac-N Generation  
Frequency Reference  
Clock  
Output to Input Ratio for Hybrid mode  
Figure 6. Hybrid Analog-Digital PLL  
4.2.1  
Fractional-N Source Selection for the Frequency Synthesizer  
The fractional-N value for the frequency synthesizer can be sourced from either a static ratio or a dynamic  
ratio generated from the digital PLL (see Figure 7). This allows for the selection between operating in the  
static ratio based Frequency Synthesizer Mode as a simple frequency synthesizer (for frequency gener-  
ation from the Timing Reference Clock) and in the dynamic ratio based Hybrid PLL Mode (for jitter reduc-  
tion and clock multiplication). Selection between these two modes can either be made automatically  
based on the presence of the Frequency Reference Clock or manually through the mode select pins.  
Fractional-N  
Frequency Synthesizer  
Timing Reference Clock  
PLL Output  
N
Output to Input Ratio for Synthesizer Mode  
Frequency Reference Clock  
Digital PLL & Fractional-N Logic  
Output to Input ratio for Hybrid Mode  
Figure 7. Fractional-N Source Selection Overview  
10  
DS758F1  
CS2000-OTP  
5. APPLICATIONS  
5.1  
One Time Programmability  
The one time programmable (OTP) circuitry in the CS2000-OTP allows for pre-configuration of the device  
prior to use in a system. There are two types of parameters that are used for device pre-configuration: modal  
and global. The modal parameters are features which, when grouped together, create a modal configuration  
set (see Figure 17 on page 22). Up to four modal configuration sets can be permanently stored and then  
dynamically selected using the M[1:0] mode select pins (see Table 1). The global parameters are the re-  
maining configuration settings which do not change with the mode select pins. The modal and global pa-  
rameters can be pre-set at the factory or user programmed using the customer development kit, CDK2000;  
Please see “Programming Information” on page 27 for more details.  
Parameter Type  
M[1:0] pins = 00  
M[1:0] pins = 01  
M[1:0] pins = 10  
M[1:0] pins = 11  
Modal  
Configuration Set 0  
Ratio 0  
Configuration Set 1  
Ratio 1  
Configuration Set 2  
Ratio 2  
Configuration Set 3  
Ratio 3  
Global  
Configuration settings set once for all modes.  
Table 1. Modal and Global Configuration  
5.2  
Timing Reference Clock Input  
The low jitter timing reference clock (RefClk) can be provided by either an external reference clock or an  
external crystal in conjunction with the internal oscillator. In order to maintain a stable and low-jitter PLL out-  
put the timing reference clock must also be stable and low-jitter; the quality of the timing reference clock  
directly affects the performance of the PLL and hence the quality of the PLL output.  
5.2.1  
Internal Timing Reference Clock Divider  
The Internal Timing Reference Clock (SysClk) is limited to a lower maximum frequency than that allowed  
on the XTI/REF_CLK pin. The CS2000-OTP supports the wider external frequency range by offering an  
internal divider for RefClk. The RefClkDiv[1:0] global parameter should be configured such that SysClk,  
the divided RefClk, then falls within the valid range as indicated in “AC Electrical Characteristics” on  
page 7.  
Timing Reference  
Internal Timing  
Clock Divider  
Fractional-N  
Frequency  
Synthesizer  
Reference Clock  
Timing Reference Clock  
÷1  
÷2  
÷4  
XTI/REF_CLK  
PLL Output  
50 MHz (XTI)  
8 MHz < RefClk <  
8 MHz < SysClk < 14 MHz  
58 MHz (REF_CLK)  
N
RefClkDiv[1:0]  
Figure 8. Internal Timing Reference Clock Divider  
It should be noted that the maximum allowable input frequency of the XTI/REF_CLK pin is dependent  
upon its configuration as either a crystal connection or external clock input. See the “AC Electrical Char-  
acteristics” on page 7 for more details.  
For the lowest possible output jitter, attention should be paid to the absolute frequency of the Timing Ref-  
erence Clock relative to the PLL Output frequency (CLK_OUT). To minimize output jitter, the Timing Ref-  
erence Clock frequency should be chosen such that f  
is at least +/-15 kHz from f  
*N/32  
RefClk  
CLK_OUT  
where N is an integer. Figure 9 shows the effect of varying the RefClk frequency around f  
*N/32.  
CLK_OUT  
It should be noted that there will be a jitter null at the zero point when N = 32 (not shown in Figure 9). An  
DS758F1  
11  
CS2000-OTP  
example of how to determine the range of RefClk frequencies around 12 MHz to be used in order to  
achieve the lowest jitter PLL output at a frequency of 12.288 MHz is as follows:  
fL fRefClk fH where:  
CLK__OUT Jitter  
180  
*32/N  
f
CLK__OUT  
160  
140  
120  
100  
80  
31  
32  
fL = fCLK_OUT × ----- + 15kHz  
= 12.288MHz × 0.96875 + 15kHz  
= 11.919MHz  
-15 kHz  
+15 kHz  
and  
60  
32  
32  
fH = fCLK_OUT × ----- – 15kHz  
40  
= 12.288MHz × 1 + 15kHz  
20  
-80  
-60  
-40  
-20  
0
20  
40  
60  
80  
= 12.273MHz  
Normalized REF__CLK Frequency (kHz)  
Figure 9. REF_CLK Frequency vs a Fixed CLK_OUT  
Referenced Control  
Parameter Definition  
RefClkDiv[1:0] .......................“Reference Clock Input Divider (RefClkDiv[1:0])” on page 24  
5.2.2  
Crystal Connections (XTI and XTO)  
An external crystal may be used to generate RefClk. To accomplish this, a 20 pF fundamental mode par-  
allel resonant crystal must be connected between the XTI and XTO pins as shown in Figure 10. As shown,  
nothing other than the crystal and its load capacitors should be connected to XTI and XTO. Please refer  
to the “AC Electrical Characteristics” on page 7 for the allowed crystal frequency range.  
XTI  
XTO  
40 pF  
40 pF  
Figure 10. External Component Requirements for Crystal Circuit  
5.2.3  
External Reference Clock (REF_CLK)  
For operation with an externally generated REF_CLK signal, XTI/REF_CLK should be connected to the  
reference clock source and XTO should be left unconnected or terminated through a 47 kΩ resistor to  
GND.  
5.3  
Frequency Reference Clock Input, CLK_IN  
The frequency reference clock input (CLK_IN) is used in Hybrid PLL Mode by the Digital PLL and Fractional-  
N Logic block to dynamically generate a fractional-N value for the Frequency Synthesizer (see “Hybrid An-  
alog-Digital PLL” on page 10). The Digital PLL first compares the CLK_IN frequency to the PLL output. The  
Fractional-N logic block then translates the desired ratio based off of CLK_IN to one based off of the internal  
timing reference clock (SysClk). This allows the low-jitter timing reference clock to be used as the clock  
12  
DS758F1  
CS2000-OTP  
which the Frequency Synthesizer multiplies while maintaining synchronicity with the frequency reference  
clock through the Digital PLL. The allowable frequency range for CLK_IN is found in the “AC Electrical Char-  
acteristics” on page 7.  
5.3.1  
Adjusting the Minimum Loop Bandwidth for CLK_IN  
The CS2000 allows the minimum loop bandwidth of the Digital PLL to be adjusted between 1 Hz and  
128 Hz using the ClkIn_BW[2:0] global parameter. The minimum loop bandwidth of the Digital PLL direct-  
ly affects the jitter transfer function; specifically, jitter frequencies below the loop bandwidth corner are  
passed from the PLL input directly to the PLL output without attenuation. In some applications it is desir-  
able to have a very low minimum loop bandwidth to reject very low jitter frequencies, commonly referred  
to as wander. In others it may be preferable to remove only higher frequency jitter, allowing the input wan-  
der to pass through the PLL without attenuation.  
Typically, applications in which the PLL_OUT signal creates a new clock domain from which all other sys-  
tem clocks and associated data are derived will benefit from the maximum jitter and wander rejection of  
the lowest PLL bandwidth setting. See Figure 11.  
CLK_IN  
PLL_OUT  
PLL  
Wander and Jitter > 1 Hz Rejected  
BW = 1 Hz  
MCLK  
Wander > 1 Hz  
Jitter  
MCLK  
Subclocks generated  
from new clock domain.  
or  
LRCK  
SCLK  
LRCK  
SCLK  
D0  
D1  
SDATA  
D0  
D1  
SDATA  
Figure 11. Low bandwidth and new clock domain  
Systems in which some clocks and data are derived from the PLL_OUT signal while other clocks and data  
are derived from the CLK_IN signal will often require phase alignment of all the clocks and data in the  
system. See Figure 12. If there is substantial wander on the CLK_IN signal in these applications, it may  
be necessary to increase the minimum loop bandwidth allowing this wander to pass through to the  
CLK_OUT signal in order to maintain phase alignment. For these applications, it is advised to experiment  
with the loop bandwidth settings and choose the lowest bandwidth setting that does not produce system  
timing errors due to wandering between the clocks and data synchronous to the CLK_IN domain and  
those synchronous to the PLL_OUT domain.  
Jitter > 128 Hz Rejected  
Wander < 128 Hz Passed to Output  
PLL  
CLK_IN  
PLL_OUT  
BW = 128 Hz  
MCLK  
Wander < 128 Hz  
Jitter  
MCLK  
LRCK  
SCLK  
or  
Subclocks and data re-used  
from previous clock domain.  
LRCK  
SCLK  
SDATA  
D0  
D1  
SDATA  
D0  
D1  
Figure 12. High bandwidth with CLK_IN domain re-use  
DS758F1  
13  
CS2000-OTP  
While acquiring lock, the digital loop bandwidth is automatically set to a large value. Once lock is  
achieved, the digital loop bandwidth will settle to the minimum value selected by the ClkIn_BW[2:0] pa-  
rameter.  
Referenced Control  
Parameter Definition  
ClkIn_BW[2:0] .......................“Clock Input Bandwidth (ClkIn_BW[2:0])” on page 25  
5.4  
Output to Input Frequency Ratio Configuration  
5.4.1  
User Defined Ratio (R ), Frequency Synthesizer Mode  
UD  
The User Defined Ratio, R , is a 32-bit un-signed fixed-point number which determines the basis for the  
UD  
desired input to output clock ratio. Up to four different ratios, Ratio , can be stored in the CS2000’s one  
0-3  
time programmable memory. Selection between the four ratios is achieved by the M[1:0] mode select  
pins. The 32-bit R is represented in a high-resolution 12.20 format where the 12 MSBs represent the  
UD  
integer binary portion while the remaining 20 LSBs represent the fractional binary portion. The maximum  
multiplication factor is approximately 4096 with a resolution of 0.954 PPM in this configuration. See “Cal-  
culating the User Defined Ratio” on page 26 for more information.  
The status of internal dividers, such as the internal timing reference clock divider, are automatically taken  
into account. Therefore R is simply the desired ratio of the output to input clock frequencies.  
UD  
Referenced Control  
Parameter Definition  
Ratio 0-3................................“Ratio 0 - 3” on page 23  
M[1:0] ....................................“M1 and M0 Mode Pin Functionality” on page 19  
5.4.2  
User Defined Ratio (R ), Hybrid PLL Mode  
UD  
The same four ratio locations, Ratio , are used to store the User Defined Ratios for Hybrid PLL Mode.  
0-3  
Selection of the User Defined Ratio for the dynamic ratio based Hybrid PLL Mode is made with the M[1:0]  
pins (unless auto fractional N source selection is enabled; see section 5.4.5 on page 15).  
In addition to the High-Resolution ratio format, a High-Multiplication format is also available. In the High-  
Multiplication format mode, the 32-bit fixed-point number for R is represented in a 20.12 format where  
UD  
the 20 MSBs represent the integer binary portion while the remaining 12 LSBs represent the fractional  
binary portion. In this configuration, the maximum multiplication factor is approximately 1,048,575 with a  
resolution of 244 PPM.  
The 20.12 format is enabled by the LFRatioCfg global parameter. The 20.12 ratio format is only available  
when the device is running in Hybrid PLL Mode. In Auto Fractional-N Source Selection Mode (see section  
5.4.5.2 on page 16) when CLK_IN is not present the LFRatioCfg parameter is ignored and the ratio format  
is 12.20.  
It is recommended that the 12.20 High-Resolution format be utilized whenever the desired ratio is less  
than 4096 since the output frequency accuracy of the PLL is directly proportional to the accuracy of the  
timing reference clock and the resolution of the R  
.
UD  
Referenced Control  
Parameter Definition  
LockClk[1:0] ..........................“Lock Clock Ratio (LockClk[1:0])” section on page 23  
LFRatioCfg............................“Low-Frequency Ratio Configuration (LFRatioCfg)” on page 24  
FracNSrc...............................“Fractional-N Source for Frequency Synthesizer (FracNSrc)” section on page 23  
14  
DS758F1  
CS2000-OTP  
5.4.3  
Ratio Modifier (R-Mod)  
The Ratio Modifier is used to internally multiply/divide the currently addressed R (Ratio stored in the  
UD  
0-3  
register space remain unchanged). The available options for R-Mod are summarized in Table 2 on  
page 15. R-Mod is enabled via the M2 pin in conjunction with the appropriate setting of the M2Config[2:0]  
global parameter (see Section 5.7.2 on page 19).  
RModSel[1:0]  
R Modifier  
0.5  
00  
01  
10  
11  
0.25  
0.125  
0.0625  
Table 2. Ratio Modifier  
Referenced Control  
Parameter Definition  
Ratio 0-3................................“Ratio 0 - 3” on page 23  
RModSel[1:0] ........................“R-Mod Selection (RModSel[1:0])” section on page 22  
M2Config[2:0]........................“M2 Pin Configuration (M2Config[2:0])” on page 25  
5.4.4  
Effective Ratio (R  
)
EFF  
The Effective Ratio (R  
) is an internal calculation comprised of R and the appropriate modifiers, as  
EFF  
UD  
previously described. R  
is calculated as follows:  
EFF  
R
= RUD R-Mod  
EFF  
To simplify operation the device handles some of the ratio calculation functions automatically (such as  
when the internal timing reference clock divider is set). For this reason, the Effective Ratio does not need  
to be altered to account for internal dividers.  
Ratio modifiers which would produce an overflow or truncation of R  
should not be used. In all cases,  
EFF  
the maximum and minimum allowable values for R  
are dictated by the frequency limits for both the  
EFF  
input and output clocks as shown in the “AC Electrical Characteristics” on page 7.  
Selection of the user defined ratio from the four stored ratios is made by using the M[1:0] pins unless auto  
clock switching is enabled in which case the LockClk[1:0] modal parameter also selects the ratio (see  
“Fractional-N Source Selection” on page 15).  
Referenced Control  
Parameter Definition  
M[1:0] pins.............................“M1 and M0 Mode Pin Functionality” on page 19  
LockClk[1:0] ..........................“Lock Clock Ratio (LockClk[1:0])” section on page 23  
5.4.5  
Fractional-N Source Selection  
To select between the static ratio based Frequency Synthesizer Mode and the dynamic ratio based Hybrid  
PLL Mode, the source for the fractional-N value for the Frequency Synthesizer must be changed. The  
Fractional-N value can either be sourced directly from the Effective Ratio (static ratio) or from the output  
of the Digital PLL (dynamic ratio) (see Figure 13 on page 17). The setting of this function can be made  
manual or automatically depending on the presence of CLK_IN.  
DS758F1  
15  
CS2000-OTP  
5.4.5.1  
Manual Fractional-N Source Selection for the Frequency Synthesizer  
Manual selection of the fractional-N source for the frequency synthesizer can be done in one of two  
ways. The FracNSrc modal parameter can be set to the desired setting for each available configu-  
ration mode and then the Fractional N source is selected by the M1 and M0 pins. In order for this  
manual selection to work, the LockClk[1:0] modal parameter (even if unused) must be set to the  
same value as the modal ratio (Ratio 0 for Mode 0, Ratio 1 for Mode 1, etc.), see Section 5.4.5.2  
on page 16. Alternatively, the M2 pin in conjunction with the M2Config[2:0] global parameter can  
be set to control the fractional N source directly and thus override the FracNSrc modal parameter  
(see Section 5.7.2.4 on page 20 for details).  
Referenced Control  
Parameter Definition  
M[1:0] pins ............................ “M1 and M0 Mode Pin Functionality” on page 19  
LockClk[1:0].......................... “Lock Clock Ratio (LockClk[1:0])” section on page 23  
FracNSrc............................... “Fractional-N Source for Frequency Synthesizer (FracNSrc)” section on page 23  
M2Config[2:0] ....................... “M2 Pin Configuration (M2Config[2:0])” on page 25  
5.4.5.2  
Automatic Fractional-N Source Selection for the Frequency Synthesizer  
Automatic source selection allows for the selection of the frequency synthesizer’s fractional-N value  
to be made dependent on the presence of the CLK_IN signal. When CLK_IN is present the device  
will use the dynamic ratio generated from the Digital PLL and CLK_IN for Hybrid PLL Mode. When  
CLK_IN is not present, the device will use RefClk and the static ratio for Frequency Synthesizer  
23  
Mode. After losing CLK_IN, the CS2000-OTP will wait for 2 SysClk cycles before switching to Sy-  
sClk and re-acquiring lock, during which time the PLL is unlocked  
The modal ratio location (see Table 1 on page 11) should contain the desired CLK_OUT to RefClk  
ratio to be used when CLK_IN is not present. The User Defined Ratio pointed to by LockClk[1:0]  
should contain the desired CLK_OUT to CLK_IN ratio to be used when CLK_IN is present. Auto-  
matic source selection is enabled when the LockClk[1:0] modal parameter is set to a different User  
Defined Ratio from the modal ratio location.  
When automatic source selection is enabled, the FracNSrc modal parameter (used for manual  
clock selection) will be ignored.  
The automatic source selection feature can be disabled by setting the LockClk[1:0] modal param-  
eter to the modal ratio location. The FracNSrc modal parameter must then be used to select the  
desired clock used for the PLL’s frequency reference. The automatic source selection feature can  
also be disabled by using the M2 pin in conjunction with the M2Config[2:0] global parameter.  
Referenced Control  
Parameter Definition  
M[1:0] pins ............................ “M1 and M0 Mode Pin Functionality” on page 19  
LockClk[1:0].......................... “Lock Clock Ratio (LockClk[1:0])” section on page 23  
FracNSrc............................... “Fractional-N Source for Frequency Synthesizer (FracNSrc)” section on page 23  
M2Config[2:0] ....................... “M2 Pin Configuration (M2Config[2:0])” on page 25  
16  
DS758F1  
CS2000-OTP  
5.4.6  
Ratio Configuration Summary  
The R is the user defined ratio for which up to four different values (Ratio ) can be stored in the one  
UD  
0-3  
time programmable memory. The M[1:0] pins or LockClk[1:0] modal parameter then select the user de-  
fined ratio to be used (depending on if static or dynamic ratio mode is to be used). The resolution for the  
R
is selectable for the dynamic ratio mode. R-Mod is applied accordingly. The user defined ratio, ratio  
UD  
modifier, and automatic ratio modifier make up the effective ratio R  
, the final calculation used to deter-  
EFF  
mine the output to input clock ratio. The effective ratio is then corrected for the internal dividers. The fre-  
quency synthesizer’s fractional-N source selection is made between the static ratio (in frequency  
synthesizer mode) or the dynamic ratio generated from the digital PLL (in Hybrid PLL mode) by either the  
FracNSrc modal parameter for manual mode or the presence of CLK_IN in automatic mode. The concep-  
tual diagram in Figure 13 summarizes the features involved in the calculation of the ratio values used to  
generate the fractional-N value which controls the Frequency Synthesizer. The subscript ‘4’ indicates the  
modal parameters.  
M2 pin force Manual  
or  
Timing Reference Clock  
(XTI/REF_CLK)  
M[1:0] pins =? LockClk[1:0]  
Auto Selection  
(CLK_IN sense)  
Divide  
RefClkDiv[1:0]  
Effective Ratio REFF  
M[1:0] pins  
Manual Selection  
(FracNSrc4 or M2 pin)  
M2 pin  
RModSel[1:0]4  
=
User Defined Ratio RUD  
Frequency  
Synthesizer  
PLL Output  
RefClkDiv[1:0]  
Ratio 0  
Ratio 1  
Ratio 2  
Ratio 3  
SysClk  
Ratio Format  
Static Ratio  
12.20  
only  
Ratio  
Modifier  
R Correction  
N
Dynamic Ratio  
12.20  
20.12  
Ratio  
Modifier  
Digital PLL &  
Fractional N Logic  
R Correction  
LFRatioCfg  
Frequency Reference Clock  
(CLK_IN)  
LockClk[1:0]4  
Figure 13. Ratio Feature Summary  
Referenced Control  
Parameter Definition  
Ratio 0-3................................“Ratio 0 - 3” on page 23  
M[1:0] pins.............................“M1 and M0 Mode Pin Functionality” on page 19  
LockClk[1:0] ..........................“Lock Clock Ratio (LockClk[1:0])” section on page 23  
LFRatioCfg............................“Low-Frequency Ratio Configuration (LFRatioCfg)” on page 24  
RModSel[1:0] ........................“R-Mod Selection (RModSel[1:0])” section on page 22  
RefClkDiv[1:0] .......................“Reference Clock Input Divider (RefClkDiv[1:0])” on page 24  
FracNSrc...............................“Fractional-N Source for Frequency Synthesizer (FracNSrc)” section on page 23  
DS758F1  
17  
CS2000-OTP  
5.5  
PLL Clock Output  
The PLL clock output pin (CLK_OUT) provides a buffered version of the output of the frequency synthesizer.  
The driver can be set to high-impedance with the M2 pin when the M2Config[1:0] global parameter is set to  
either 000 or 010. The output from the PLL automatically drives a static low condition while the PLL is un-  
locked (when the clock may be unreliable). This feature can be disabled by setting the ClkOutUnl global  
parameter, however the state CLK_OUT may then be unreliable during an unlock condition.  
ClkOutUnl  
PLL Locked/Unlocked  
0
0
M2 pin with  
M2Config[1:0] = 000, 010  
0
2:1 Mux  
1
PLL Clock Output  
PLLClkOut  
PLL Clock Output Pin  
(CLK_OUT)  
2:1 Mux  
PLL Output  
1
Figure 14. PLL Clock Output Options  
Referenced Control  
Parameter Definition  
ClkOutUnl..............................“Enable PLL Clock Output on Unlock (ClkOutUnl)” on page 24  
ClkOutDis..............................“M2 Configured as Output Disable” on page 19  
M2Config[2:0]........................“M2 Pin Configuration (M2Config[2:0])” on page 25  
5.6  
Auxiliary Output  
The auxiliary output pin (AUX_OUT) can be mapped, as shown in Figure 15, to one of four signals: refer-  
ence clock (RefClk), input clock (CLK_IN), additional PLL clock output (CLK_OUT), or a PLL lock indicator  
(Lock). The mux is controlled via the AuxOutSrc[1:0] modal parameter. If AUX_OUT is set to Lock, the Aux-  
LockCfg global parameter is then used to control the output driver type and polarity of the LOCK signal (see  
section 6.3.1 on page 24). If AUX_OUT is set to CLK_OUT, the phase of the PLL Clock Output signal on  
AUX_OUT may differ from the CLK_OUT pin. The driver for the pin can be set to high-impedance using the  
M2 pin when the M2Config[1:0] global parameter is set to either 001 or 010.  
AuxOutSrc[1:0]  
Timing Reference Clock  
(RefClk)  
M2 pin with  
M2Config[1:0] = 001, 010  
Frequency Reference Clock  
(CLK_IN)  
Auxiliary Output Pin  
(AUX_OUT)  
4:1 Mux  
PLL Clock Output  
(PLLClkOut)  
AuxLockCfg  
PLL Lock/Unlock Indication  
(Lock)  
Figure 15. Auxiliary Output Selection  
Referenced Control  
Parameter Definition  
AuxOutSrc[1:0]......................“Auxiliary Output Source Selection (AuxOutSrc[1:0])” on page 23  
AuxOutDis.............................“M2 Configured as Output Disable” on page 19  
AuxLockCfg...........................“AUX PLL Lock Output Configuration (AuxLockCfg)” section on page 24  
M2Config[2:0]........................“M2 Pin Configuration (M2Config[2:0])” on page 25  
18  
DS758F1  
CS2000-OTP  
5.7  
Mode Pin Functionality  
5.7.1  
M1 and M0 Mode Pin Functionality  
M[1:0] determine the functional mode of the device and select both the default User Defined Ratio and  
the set of modal parameters. The modal parameters are RModSel[1:0], AuxOutSrc[1:0], LockClk[1:0], and  
FracNSrc. By modifying one or more of the modal parameters between the 4 sets, different functional con-  
figurations can be achieved. However, global parameters are fixed and the same value will be applied to  
each functional configuration. Figure 17 on page 22 provides a summary of all parameters used by the  
device.  
5.7.2  
M2 Mode Pin Functionality  
M2 usage is mapped to one of the optional special functions via the M2Config[2:0] global parameter. De-  
pending on what M2 is mapped to, it will either act as an output enable/disable pin or override certain mod-  
al parameters. Figure 16 summarizes the available options and the following sections will describe each  
option in more detail.  
M2Config[2:0] global parameter  
000  
001  
010  
011  
100  
101  
110  
111  
Disable CLK_OUT pin  
Disable AUX_OUT pin  
Disable CLK_OUT and AUX_OUT pins  
RModSel[1:0] Modal Parameter Enable  
Force Manual Fractional N Source Selection  
Reserved  
M2 pin  
FracNSrc Modal Parameter Override  
Force AuxOutSel[1:0] = 10 (PLL Clock Out)  
Figure 16. M2 Mapping Options  
5.7.2.1  
5.7.2.2  
M2 Configured as Output Disable  
If M2Config[2:0] is set to either ‘000’, ‘001’, or ‘010’, M2 becomes an output disable pin for one or  
both output pins. If M2 is driven ‘low’, the corresponding output(s) will be enabled, if M2 is driven  
‘high’, the corresponding output(s) will be disabled.  
M2 Configured as R-Mod Enable  
If M2Config[2:0] is set to ‘011’, M2 becomes the R-Mod enable pin. It should be noted that M2 is  
the only way to enable R-Mod. Even though the RModSel[1:0] modal parameter can be set arbi-  
trarily for each configuration set, it will not take effect unless enabled via M2. If M2 is driven ‘low’,  
R-Mod will be disabled, if M2 is driven ‘high’ R-Mod will be enabled.  
DS758F1  
19  
CS2000-OTP  
5.7.2.3  
5.7.2.4  
5.7.2.5  
M2 Configured as Auto Fractional-N Source Selection Disable  
If M2Config[2:0] is set to ‘100’, M2 becomes a disable pin for the auto fractional-N source selection  
functionality. If auto fractional-N source selection is enabled (see section 5.4.5 on page 15), driving  
M2 ‘high’ will disable the auto fractional-N source selection and revert control over the fractional-N  
source to the FracNSrc modal parameter, regardless of the LockClk[1:0] modal parameter and the  
presence of a clock on CLK_IN. If auto fractional-N source selection is not enabled, toggling M2 will  
have no effect in this case.  
M2 Configured as Fractional-N Source Select  
If M2Config[2:0] is set to ‘110’, M2 becomes the Fractional-N Source Select pin and will override  
the FracNSrc modal parameter. It should be noted that overriding FracNSrc has no effect when  
auto clock switching is enabled (see section 5.4.5 on page 15). If M2 is driven ‘low’, the fractional-  
N value will be the Static Ratio sourced directly from R  
for Frequency Synthesizer Mode. If M2  
EFF  
is driven ‘high’ the fractional-N value will be the Dynamic Ratio sourced from the Digital PLL for Hy-  
brid PLL Mode.  
M2 Configured as AuxOutSrc Override  
If M2Config[2:0] is set to ‘111’, M2 when driven ‘high’ will override the AuxOutSrc[1:0] modal pa-  
rameter and force the AUX_OUT source to PLL Clock Output. When M2 is driven ‘low’, AUX_OUT  
will function according to AuxOutSrc[1:0].  
5.8  
Clock Output Stability Considerations  
5.8.1  
Output Switching  
The CS2000-OTP is designed such that re-configuration of the clock routing functions do not result in a  
partial clock period on any of the active outputs (CLK_OUT and/or AUX_OUT). In particular, enabling or  
disabling an output, changing the auxiliary output source between REF_CLK and CLK_OUT, changing  
between Frequency Synthesizer and Hybrid PLL Mode, and the automatic disabling of the output(s) dur-  
ing unlock will not cause a runt or partial clock period.  
The following exceptions/limitations exist:  
Enabling/disabling AUX_OUT when AuxOutSrc[1:0] = 11 (unlock indicator).  
Switching AuxOutSrc[1:0] to or from 01 (CLK_IN) and to or from 11 (unlock indicator)  
(Transitions between AuxOutSrc[1:0] = [00,10] will not produce a glitch).  
When any of these exceptions occur, a partial clock period on the output may result.  
20  
DS758F1  
CS2000-OTP  
5.8.2  
PLL Unlock Conditions  
Certain changes to the clock inputs and mode pins can cause the PLL to lose lock which will affect the  
presence of a clock signal on CLK_OUT. The following outlines which conditions cause the PLL to go un-  
locked:  
Any change in the state of the M1 and M0 pins will cause the PLL to temporarily lose lock as the new  
setting takes affect.  
Changes made to the state of the M2 when the M2Config[2:0] global parameter is set to 011, 100, 101,  
or 110 can cause the PLL to temporarily lose lock as the new setting takes affect.  
Any discontinuities on the Timing Reference Clock, REF_CLK.  
Discontinuities on the Frequency Reference Clock, CLK_IN.  
Gradual changes in CLK_IN frequency greater than ±30% from the starting frequency.  
Step changes in CLK_IN frequency.  
5.9  
Required Power Up Sequencing for Programmed Devices  
Apply power. All input pins, except XTI/REF_CLK, should be held in a static logic hi or lo state until the  
DC Power Supply’ specification in the “Recommended Operating Conditions” table on page 6 are met.  
Apply input clock(s) if required.  
For CDK programmed devices, toggle the state of the M0, M1, or both pins at least 3 times to initialize  
the device. This must be done after the power supply is stable and before normal operation is expected.  
Note: This operation is not required for factory programmed devices.  
After the specified PLL lock time on page 7 has passed, the device will output the desired clock as con-  
figured by the M0-M2 pins.  
DS758F1  
21  
CS2000-OTP  
6. PARAMETER DESCRIPTIONS  
As mentioned in Section 5.1 on page 11, there are two different kinds of parameter configuration sets, Modal and  
Global. These configuration sets, shown in Figure 17, can be programmed in the field using the CDK2000 or pre-  
programmed at the factory. Please see “Programming Information” on page 27 for more details.  
M[1:0] pins  
Modal Configuration Set #0  
00  
RModSel[1:0]  
AuxOutSrc[1:0]  
AuxOutSrc[1:0]  
AuxOutSrc[1:0]  
AuxOutSrc[1:0]  
LockClk[1:0]  
LockClk[1:0]  
LockClk[1:0]  
LockClk[1:0]  
FracNSrc  
FracNSrc  
FracNSrc  
FracNSrc  
Ratio 0  
Modal Configuration Set #1  
01  
10  
Ratio 1  
RModSel[1:0]  
Modal Configuration Set #2  
Ratio 2  
RModSel[1:0]  
Modal Configuration Set #3  
11  
Ratio 3  
RModSel[1:0]  
Global Configuration Set  
AuxLockCfg  
RefClkDiv[1:0]  
ClkOutUnl  
LFRatioCfg  
M2Config[2:0]  
ClkIn_BW[2:0]  
Figure 17. Parameter Configuration Sets  
6.1  
Modal Configuration Sets  
There are four instances of each of these configuration parameters. Selection between the four stored sets  
is made using the M[1:0] pins.  
6.1.1  
R-Mod Selection (RModSel[1:0])  
Selects the R-Mod value, which is used as a factor in determining the PLL’s Fractional N.  
RModSel[1:0]  
R-Mod Selection  
00  
Right-shift R-value by 1 (÷ 2).  
Right-shift R-value by 2 (÷ 4).  
Right-shift R-value by 3 (÷ 8).  
Right-shift R-value by 4 (÷ 16).  
“Ratio Modifier (R-Mod)” on page 15  
01  
10  
11  
Application:  
Note: This parameter does not take affect unless M2 pin is high and the M2Config[2:0] global param-  
eter is set to ‘011’.  
22  
DS758F1  
CS2000-OTP  
6.1.2  
Auxiliary Output Source Selection (AuxOutSrc[1:0])  
Selects the source of the AUX_OUT signal.  
AuxOutSrc[1:0]  
Auxiliary Output Source  
RefClk.  
00  
01  
CLK_IN.  
10  
CLK_OUT.  
11  
PLL Lock Status Indicator.  
“Auxiliary Output” on page 18  
Application:  
Note: When set to 11, the AuxLockCfg global parameter sets the polarity and driver type (“AUX PLL  
Lock Output Configuration (AuxLockCfg)” on page 24).  
6.1.3  
Lock Clock Ratio (LockClk[1:0])  
Selects one of the four stored User Defined Ratios for use in the dynamic ratio based Hybrid PLL Mode.  
LockClk[1:0]  
CLK_IN Ratio Selection  
Ratio 0.  
00  
01  
Ratio 1.  
10  
Ratio 2.  
11  
Ratio 3.  
Application:  
Section 5.4.2 on page 14  
Note: The User Defined Ratio for the static ratio based Frequency Synthesizer mode is the ratio that  
corresponds with the currently chosen configuration set as shown in Figure 17 on page 22.  
6.1.4  
Fractional-N Source for Frequency Synthesizer (FracNSrc)  
Selects static or dynamic ratio mode when auto clock switching is disabled.  
FracNSrc  
Fractional-N Source Selection  
Static Ratio directly from REFF for Frequency Synthesizer Mode  
0
1
Dynamic Ratio from Digital PLL for Hybrid PLL Mode  
“Fractional-N Source Selection” on page 15  
Application:  
6.2  
Ratio 0 - 3  
The four 32-bit User Defined Ratios are stored in the CS2000’s one time programmable memory. See “Out-  
put to Input Frequency Ratio Configuration” on page 14 and “Calculating the User Defined Ratio” on  
page 26 for more details.  
DS758F1  
23  
CS2000-OTP  
6.3  
Global Configuration Parameters  
6.3.1  
AUX PLL Lock Output Configuration (AuxLockCfg)  
When the AUX_OUT pin is configured as a lock indicator (AuxOutSrc[1:0] modal parameter = ‘11’), this  
global parameter configures the AUX_OUT driver to either push-pull or open drain. It also determines the  
polarity of the lock signal. If AUX_OUT is configured as a clock output, the state of this parameter is dis-  
regarded.  
AuxLockCfg  
AUX_OUT Driver Configuration  
0
Push-Pull, Active High (output ‘high’ for unlocked condition, ‘low’ for locked condition).  
Open Drain, Active Low (output ‘low’ for unlocked condition, high-Z for locked condition).  
“Auxiliary Output” on page 18  
1
Application:  
Note: AUX_OUT is an unlock indicator, signalling an error condition when the PLL is unlocked. There-  
fore, the pin polarity is defined relative to the unlock condition.  
6.3.2  
Reference Clock Input Divider (RefClkDiv[1:0])  
Selects the input divider for the timing reference clock.  
RefClkDiv[1:0]  
Reference Clock Input Divider  
REF_CLK Frequency Range  
32 MHz to 56 MHz (50 MHz with XTI)  
16 MHz to 28 MHz  
00  
÷ 4.  
01  
÷ 2.  
10  
÷ 1.  
8 MHz to 14 MHz  
11  
Reserved.  
Application:  
“Internal Timing Reference Clock Divider” on page 11  
6.3.3  
6.3.4  
Enable PLL Clock Output on Unlock (ClkOutUnl)  
Defines the state of the PLL output during the PLL unlock condition.  
ClkOutUnl  
Clock Output Enable Status  
0
Clock outputs are driven ‘low’ when PLL is unlocked.  
Clock outputs are always enabled (results in unpredictable output when PLL is unlocked).  
“PLL Clock Output” on page 18  
1
Application:  
Low-Frequency Ratio Configuration (LFRatioCfg)  
Determines how to interpret the currently indexed 32-bit User Defined Ratio when the dynamic ratio based  
Hybrid PLL Mode is selected (either manually or automatically, see section 5.4.5 on page 15).  
LFRatioCfg  
Ratio Bit Encoding Interpretation when Input Clock Source is CLK_IN  
20.12 - High Multiplier.  
0
1
12.20 - High Accuracy.  
Application:  
“User Defined Ratio (RUD), Frequency Synthesizer Mode” on page 14  
Note: When the static ratio based Frequency Synthesizer Mode is selected (either manually or auto-  
matically), the currently indexed User Defined Ratio will always be interpreted as a 12.20 fixed point value,  
regardless of how this parameter is set.  
24  
DS758F1  
CS2000-OTP  
6.3.5  
M2 Pin Configuration (M2Config[2:0])  
Controls which special function is mapped to the M2 pin.  
M2Config[2:0]  
M2 pin function  
000  
Disable CLK_OUT pin.  
001  
Disable AUX_OUT pin.  
010  
Disable CLK_OUT and AUX_OUT.  
RModSel[1:0] Modal Parameter Enable.  
Force Manual Fractional N Source Selection.  
Reserved.  
011  
100  
101  
110  
FracNSrc Modal Parameter Override  
Force AuxOutSrc[1:0] = 10 (PLL Clock Out).  
“M2 Mode Pin Functionality” on page 19  
111  
Application:  
6.3.6  
Clock Input Bandwidth (ClkIn_BW[2:0])  
Sets the minimum loop bandwidth when locked to CLK_IN.  
ClkIn_BW[2:0]  
Minimum Loop Bandwidth  
000  
1 Hz  
001  
2 Hz  
010  
4 Hz  
011  
8 Hz  
100  
16 Hz  
101  
32 Hz  
110  
64 Hz  
111  
128 Hz  
Application:  
“Adjusting the Minimum Loop Bandwidth for CLK_IN” on page 13  
DS758F1  
25  
CS2000-OTP  
7. CALCULATING THE USER DEFINED RATIO  
Note: The software for use with the evaluation kit has built in tools to aid in calculating and converting the User  
Defined Ratio. This section is for those who would like to know more about how the User Defined Ratio is  
calculated and stored.  
Most calculators do not interpret the fixed point binary representation which the CS2000-OTP uses to define the  
output to input clock ratio (see Section 5.4.1 on page 14); However, with a simple conversion we can use these tools  
to generate a binary or hex value for Ratio to be stored in one time programmable memory. Please see “Program-  
0-3  
ming Information” on page 27 for more details on programming.  
7.1  
High Resolution 12.20 Format  
To calculate the User Defined Ratio (R ) to store in the register(s), divide the desired output clock frequen-  
UD  
20  
cy by the given input clock (CLK_IN or RefClk). Then multiply the desired ratio by the scaling factor of 2  
to get the scaled decimal representation; then use the decimal to binary/hex conversion function on a cal-  
culator and write to the register. A few examples have been provided in Table 3.  
Scaled Decimal  
Representation =  
(output clock/input clock) 2  
1288490  
Hex Representation of  
Desired Output to Input Clock Ratio  
(output clock/input clock)  
20  
Binary R  
UD  
12.288 MHz/10 MHz=1.2288  
11.2896 MHz/44.1 kHz=256  
00 13 A9 2A  
10 00 00 00  
268435456  
Table 3. Example 12.20 R-Values  
7.2  
High Multiplication 20.12 Format  
To calculate the User Defined Ratio (R ) to store in the register(s), divide the desired output clock frequen-  
UD  
12  
cy by the given input clock (CLK_IN). Then multiply the desired ratio by the scaling factor of 2 to get the  
scaled decimal representation; then use the decimal to binary/hex conversion function on a calculator and  
write to the register. A few examples have been provided in Table 4.  
Scaled Decimal  
Representation =  
(output clock/input clock) 2  
838860800  
Hex Representation of  
Desired Output to Input Clock Ratio  
(output clock/input clock)  
12  
Binary R  
UD  
12.288 MHz/60 Hz=204,800  
32 00 00 00  
2D F5 E2 08  
11.2896 MHz/59.97 Hz =188254.127...  
771088904  
Table 4. Example 20.12 R-Values  
26  
DS758F1  
CS2000-OTP  
8. PROGRAMMING INFORMATION  
Field programming of the CS2000-OTP is achieved using the hardware and software tools included with the  
CDK2000. The software tools can be downloaded from www.cirrus.com for evaluation prior to ordering a CDK. The  
CDK2000 is designed with built-in features to ease the process of programming small quantities of devices for pro-  
totype and small production builds. In addition to its field programming capabilities, the CDK2000 can also be used  
for the complete evaluation of programmed CS2000-OTP devices.  
The CS2000-OTP can also be factory programmed for large quantity orders. When ordering factory programmed  
devices, the CDK should first be used to program and evaluate the desired configuration. When evaluation is com-  
plete, the CS2000 Configuration Wizard is used to generate a file containing all device configuration information;  
this file is conveyed to Cirrus Logic as a complete specification for the factory programming configuration. Please  
contact your local Cirrus Logic sales representative for more information regarding factory programmed parts.  
See the CDK2000 datasheet, available at www.cirrus.com, for detailed information on the use of the CDK2000 pro-  
gramming and evaluation tools.  
Below is a form which represents the information required for programming a device (noted in gray). The “Parameter  
Descriptions” section beginning on page 22 describes the functions of each parameter. This form may be used ei-  
ther for personal notation for device configuration or it can be filled out and given to a Cirrus representative in con-  
junction with the programming file from the CDK2000 as an additional check. The User Defined Ratio may be filled  
out in decimal or it may be entered as hex as outlined in “Calculating the User Defined Ratio” on page 26. For all  
other parameters mark a ‘0’ or ‘1’ below the parameter name.  
OTP Modal and Global Configuration Parameters Form  
Modal Configuration Set #0  
Ratio 0 (dec)  
Ratio 0 (hex) __ __ : __ __ : __ __ : __ __  
RModSel1 RModSel0 AuxOutSrc1 AuxOutSrc0 LockClk1  
Modal Configuration Set #1  
LockClk0  
LockClk0  
LockClk0  
FracNSrc  
FracNSrc  
FracNSrc  
Ratio 1 (dec)  
Ratio 1 (hex) __ __ : __ __ : __ __ : __ __  
RModSel1 RModSel0 AuxOutSrc1 AuxOutSrc0 LockClk1  
Modal Configuration Set #2  
Ratio 2 (dec)  
Ratio 2 (hex) __ __ : __ __ : __ __ : __ __  
RModSel1 RModSel0 AuxOutSrc1 AuxOutSrc0 LockClk1  
Modal Configuration Set #3  
Ratio 3 (dec)  
Ratio 3 (hex) __ __ : __ __ : __ __ : __ __  
RModSel1 RModSel0 AuxOutSrc1 AuxOutSrc0 LockClk1  
LockClk0  
M2Cfg1  
FracNSrc  
M2Cfg0  
Global Configuration Set  
AuxLockCfg RefClkDiv1 RefClkDiv0 ClkOutUnl LFRatioCfg  
M2Cfg2  
ClkIn_BW2 ClkIn_BW1 ClkIn_BW0  
DS758F1  
27  
CS2000-OTP  
9. PACKAGE DIMENSIONS  
10L MSOP (3 mm BODY) PACKAGE DRAWING (Note 1)  
N
D
E11  
c
E
A2  
A
A1  
e
b
L
END VIEW  
SEATING  
PLANE  
L1  
SIDE VIEW  
1
2 3  
TOP VIEW  
INCHES  
MILLIMETERS  
NOTE  
DIM  
A
A1  
A2  
b
c
D
E
E1  
e
MIN  
--  
0
0.0295  
0.0059  
NOM  
--  
--  
--  
--  
--  
MAX  
0.0433  
0.0059  
0.0374  
0.0118  
0.0091  
--  
MIN  
--  
0
0.75  
0.15  
0.08  
--  
--  
--  
--  
0.40  
--  
NOM  
--  
--  
--  
--  
MAX  
1.10  
0.15  
0.95  
0.30  
0.23  
--  
--  
--  
--  
0.80  
--  
4, 5  
2
0.0031  
--  
--  
--  
--  
--  
0.1181 BSC  
0.1929 BSC  
0.1181 BSC  
0.0197 BSC  
0.0236  
3.00 BSC  
4.90 BSC  
3.00 BSC  
0.50 BSC  
0.60  
--  
--  
--  
3
L
L1  
0.0157  
--  
0.0315  
--  
0.0374 REF  
0.95 REF  
Notes: 1. Reference document: JEDEC MO-187  
2. D does not include mold flash or protrusions which is 0.15 mm max. per side.  
3. E1 does not include inter-lead flash or protrusions which is 0.15 mm max per side.  
4. Dimension b does not include a total allowable dambar protrusion of 0.08 mm max.  
5. Exceptions to JEDEC dimension.  
THERMAL CHARACTERISTICS  
Parameter  
Symbol  
Min  
Typ  
Max  
Units  
Junction to Ambient Thermal Impedance  
JEDEC 2-Layer  
JEDEC 4-Layer  
θJA  
θJA  
-
-
170  
100  
-
-
°C/W  
°C/W  
28  
DS758F1  
CS2000-OTP  
10.ORDERING INFORMATION  
The CS2000-OTP is ordered as an un-programmed device. The CS2000-OTP can also be factory programmed for  
large quantity orders. Please see “Programming Information” on page 27 for more details.  
Pb-Free  
Grade  
Order#  
Product  
Description  
Package  
Temp Range Container  
CS2000-OTP  
Clocking Device  
10L-MSOP  
Yes  
-10° to +70°C  
Rail  
CS2000P-CZZ  
Commercial  
-
Tape and  
Reel  
CS2000-OTP  
CDK2000  
Clocking Device  
10L-MSOP  
-
Yes  
Yes  
-10° to +70°C  
-
CS2000P-CZZR  
CDK2000-CLK  
Evaluation Platform  
-
DS758F1  
29  
CS2000-OTP  
11.REVISION HISTORY  
Release  
Changes  
F1  
Updated Period Jitter specification in “AC Electrical Characteristics” on page 7.  
Updated Crystal and Ref Clock Frequency specifications in “AC Electrical Characteristics” on page 7.  
Added “PLL Performance Plots” section on page 8.  
Updated “Internal Timing Reference Clock Divider” on page 11 and added Figure 9 on page 12.  
Removed CLK_IN Skipping Mode.  
Removed Auto R-Mod.  
Added Mode pin toggle requirement to startup for CDK programmed devices to “Required Power Up  
Sequencing for Programmed Devices” on page 21.  
Contacting Cirrus Logic Support  
For all product questions and inquiries, contact a Cirrus Logic Sales Representative.  
To find one nearest you, go to www.cirrus.com.  
IMPORTANT NOTICE  
Cirrus Logic, Inc. and its subsidiaries (“Cirrus”) believe that the information contained in this document is accurate and reliable. However, the information is subject  
to change without notice and is provided “AS IS” without warranty of any kind (express or implied). Customers are advised to obtain the latest version of relevant  
information to verify, before placing orders, that information being relied on is current and complete. All products are sold subject to the terms and conditions of sale  
supplied at the time of order acknowledgment, including those pertaining to warranty, indemnification, and limitation of liability. No responsibility is assumed by Cirrus  
for the use of this information, including use of this information as the basis for manufacture or sale of any items, or for infringement of patents or other rights of third  
parties. This document is the property of Cirrus and by furnishing this information, Cirrus grants no license, express or implied under any patents, mask work rights,  
copyrights, trademarks, trade secrets or other intellectual property rights. Cirrus owns the copyrights associated with the information contained herein and gives con-  
sent for copies to be made of the information only for use within your organization with respect to Cirrus integrated circuits or other products of Cirrus. This consent  
does not extend to other copying such as copying for general distribution, advertising or promotional purposes, or for creating any work for resale.  
CERTAIN APPLICATIONS USING SEMICONDUCTOR PRODUCTS MAY INVOLVE POTENTIAL RISKS OF DEATH, PERSONAL INJURY, OR SEVERE PROP-  
ERTY OR ENVIRONMENTAL DAMAGE (“CRITICAL APPLICATIONS”). CIRRUS PRODUCTS ARE NOT DESIGNED, AUTHORIZED OR WARRANTED FOR USE  
IN PRODUCTS SURGICALLY IMPLANTED INTO THE BODY, AUTOMOTIVE SAFETY OR SECURITY DEVICES, LIFE SUPPORT PRODUCTS OR OTHER CRIT-  
ICAL APPLICATIONS. INCLUSION OF CIRRUS PRODUCTS IN SUCH APPLICATIONS IS UNDERSTOOD TO BE FULLY AT THE CUSTOMER’S RISK AND CIR-  
RUS DISCLAIMS AND MAKES NO WARRANTY, EXPRESS, STATUTORY OR IMPLIED, INCLUDING THE IMPLIED WARRANTIES OF MERCHANTABILITY AND  
FITNESS FOR PARTICULAR PURPOSE, WITH REGARD TO ANY CIRRUS PRODUCT THAT IS USED IN SUCH A MANNER. IF THE CUSTOMER OR CUSTOM-  
ER’S CUSTOMER USES OR PERMITS THE USE OF CIRRUS PRODUCTS IN CRITICAL APPLICATIONS, CUSTOMER AGREES, BY SUCH USE, TO FULLY  
INDEMNIFY CIRRUS, ITS OFFICERS, DIRECTORS, EMPLOYEES, DISTRIBUTORS AND OTHER AGENTS FROM ANY AND ALL LIABILITY, INCLUDING AT-  
TORNEYS’ FEES AND COSTS, THAT MAY RESULT FROM OR ARISE IN CONNECTION WITH THESE USES.  
Cirrus Logic, Cirrus, and the Cirrus Logic logo designs are trademarks of Cirrus Logic, Inc. All other brand and product names in this document may be trademarks  
or service marks of their respective owners.  
30  
DS758F1  

相关型号:

CDK2000-CLK

Fractional-N Clock Multiplier
CIRRUS

CDK2000-LCO

Fractional-N Clock Multiplier with Internal LCO
CIRRUS

CDK2307

Dual, 20/40/65/80MSPS, 12/13-bit Analog-to-Digital Converters
CADEKA

CDK2307AILP64

Dual, 20/40/65/80MSPS, 12/13-bit Analog-to-Digital Converters
CADEKA

CDK2307AILP64X

Dual, 20/40/65/80MSPS, 12/13-bit Analog-to-Digital Converters
CADEKA

CDK2307AITQ64

Dual, 20/40/65/80MSPS, 12/13-bit Analog-to-Digital Converters
CADEKA

CDK2307BILP64

Dual, 20/40/65/80MSPS, 12/13-bit Analog-to-Digital Converters
CADEKA

CDK2307BILP64X

Dual, 20/40/65/80MSPS, 12/13-bit Analog-to-Digital Converters
CADEKA

CDK2307BITQ64

Dual, 20/40/65/80MSPS, 12/13-bit Analog-to-Digital Converters
CADEKA

CDK2307CILP64

Dual, 20/40/65/80MSPS, 12/13-bit Analog-to-Digital Converters
CADEKA

CDK2307CILP64X

Dual, 20/40/65/80MSPS, 12/13-bit Analog-to-Digital Converters
CADEKA

CDK2307CITQ64

Dual, 20/40/65/80MSPS, 12/13-bit Analog-to-Digital Converters
CADEKA