CS4335-DSZ [CIRRUS]

8-Pin, 24-Bit, 96 kHz Stereo D/A Converter; 8引脚,24位, 96千赫立体声D / A转换器
CS4335-DSZ
型号: CS4335-DSZ
厂家: CIRRUS LOGIC    CIRRUS LOGIC
描述:

8-Pin, 24-Bit, 96 kHz Stereo D/A Converter
8引脚,24位, 96千赫立体声D / A转换器

转换器 数模转换器 光电二极管
文件: 总24页 (文件大小:787K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Confidential Draft  
3/11/08  
CS4334/5/8/9  
8-Pin, 24-Bit, 96 kHz Stereo D/A Converter  
Features  
Description  
 Complete Stereo DAC System: Interpolation,  
The CS4334 family members are complete, stereo dig-  
ital-to-analog output systems including interpolation,  
1-bit D/A conversion and output analog filtering in an  
8-pin package. The CS4334/5/8/9 support all major au-  
dio data interface formats, and the individual devices  
differ only in the supported interface format.  
D/A, Output Analog Filtering  
 24-Bit Conversion  
 96 dB Dynamic Range  
The CS4334 family is based on Delta-Sigma modula-  
tion, where the modulator output controls the reference  
voltage input to an ultra-linear analog low-pass filter.  
This architecture allows for infinite adjustment of sam-  
ple rate between 2 kHz and 100 kHz simply by  
changing the master clock frequency.  
 -88 dB THD+N  
 Low Clock-Jitter Sensitivity  
 Single +5 V Power Supply  
 Filtered Line-Level Outputs  
 On-Chip Digital De-emphasis  
 Popguard® Technology  
 Functionally Compatible with CS4330/31/33  
The CS4334 family contains on-chip digital de-empha-  
sis, operates from a single +5V power supply, and  
requires minimal support circuitry. These features are  
ideal for set-top boxes, DVD players, SVCD players,  
and A/V receivers.  
ORDERING INFORMATION  
See “Ordering Information” on page 24  
DEM/SCLK  
2
AGND  
6
VA  
7
3
LRCK  
Serial Input  
De-emphasis  
Interface  
Voltage Reference  
1
SDATA  
Analog  
Low-Pass  
Filter  
∆Σ  
Interpolator  
AOUTL  
AOUTR  
DAC  
DAC  
Modulator  
8
5
Analog  
Low-Pass  
Filter  
∆Σ  
Interpolator  
Modulator  
4
MCLK  
March '08  
DS248F5  
Copyright © Cirrus Logic, Inc. 2008  
(All Rights Reserved)  
http://www.cirrus.com  
Confidential Draft  
3/11/08  
CS4334/5/8/9  
TABLE OF CONTENTS  
1. TYPICAL CONNECTION DIAGRAM .................................................................................................... 4  
2. CHARACTERISTICS AND SPECIFICATIONS ..................................................................................... 5  
SPECIFIED OPERATING CONDITIONS.............................................................................................. 5  
ABSOLUTE MAXIMUM RATINGS ........................................................................................................ 5  
ANALOG CHARACTERISTICS............................................................................................................. 6  
POWER AND THERMAL CHARACTERISTICS ................................................................................... 8  
DIGITAL INPUT CHARACTERISTICS.................................................................................................. 9  
SWITCHING CHARACTERISTICS ..................................................................................................... 10  
3. GENERAL DESCRIPTION ................................................................................................................. 12  
3.1 Digital Interpolation Filter .............................................................................................................. 12  
3.2 Delta-Sigma Modulator ................................................................................................................. 12  
3.3 Switched-Capacitor DAC .............................................................................................................. 12  
3.4 Analog Low-Pass Filter ................................................................................................................. 12  
4. SYSTEM DESIGN ............................................................................................................................... 13  
4.1 Master Clock ................................................................................................................................. 13  
4.2 Serial Clock .................................................................................................................................. 13  
4.2.1 External Serial Clock Mode ................................................................................................. 13  
4.2.2 Internal Serial Clock Mode .................................................................................................. 13  
4.3 De-Emphasis ................................................................................................................................ 14  
4.4 Initialization and Power-Down ...................................................................................................... 14  
4.5 Output Transient Control .............................................................................................................. 14  
4.6 Grounding and Power Supply Decoupling .................................................................................... 15  
4.7 Analog Output and Filtering .......................................................................................................... 15  
4.8 Overall Base-Rate Frequency Response ..................................................................................... 18  
4.9 Overall High-Rate Frequency Response ...................................................................................... 19  
4.10 Base Rate Mode Performance Plots .......................................................................................... 20  
4.11 High Rate Mode Performance Plots ........................................................................................... 21  
5. PARAMETER DEFINITIONS ............................................................................................................... 22  
6. REFERENCES ..................................................................................................................................... 22  
7. PACKAGE DIMENSIONS ................................................................................................................... 23  
8. ORDERING INFORMATION ............................................................................................................... 24  
9. FUNCTIONAL COMPATIBILITY ......................................................................................................... 24  
10. REVISION HISTORY ......................................................................................................................... 24  
LIST OF FIGURES  
Figure 1. Recommended Connection Diagram......................................................................................... 4  
Figure 2. Output Test Load ....................................................................................................................... 8  
Figure 3. Maximum Loading...................................................................................................................... 9  
Figure 4. Power vs. Sample Rate ............................................................................................................. 9  
Figure 5. External Serial Mode Input Timing........................................................................................... 11  
Figure 6. Internal Serial Mode Input Timing............................................................................................ 11  
Figure 7. Internal Serial Clock Generation............................................................................................. 11  
Figure 8. System Block Diagram............................................................................................................. 12  
Figure 9. De-Emphasis Curve (Fs = 44.1kHz) ........................................................................................ 14  
Figure 10. CS4334 Data Format (I²S)....................................................................................................... 15  
Figure 11. CS4335 Data Format............................................................................................................... 15  
Figure 12. CS4338 Data Format............................................................................................................... 16  
Figure 13. CS4339 Data Format............................................................................................................... 16  
Figure 14. CS4334/5/8/9 Initialization and Power-Down Sequence ......................................................... 17  
Figure 15. Stopband Rejection.................................................................................................................. 18  
Figure 16. Transition Band........................................................................................................................ 18  
Figure 17. Transition Band........................................................................................................................ 18  
2
DS248F5  
Confidential Draft  
3/11/08  
CS4334/5/8/9  
Figure 18. Passband Ripple...................................................................................................................... 18  
Figure 19. Stopband Rejection.................................................................................................................. 19  
Figure 20. Transition Band........................................................................................................................ 19  
Figure 21. Transition Band........................................................................................................................ 19  
Figure 22. Passband Ripple...................................................................................................................... 19  
Figure 23. 0 dBFS FFT (BRM).................................................................................................................. 20  
Figure 24. -60 dBFS FFT (BRM).............................................................................................................. 20  
Figure 25. Idle Channel Noise FFT (BRM)................................................................................................ 20  
Figure 26. Twin Tone IMD FFT (BRM)...................................................................................................... 20  
Figure 27. THD+N vs. Amplitude (BRM)................................................................................................... 20  
Figure 28. THD+N vs. Frequency (BRM).................................................................................................. 20  
Figure 29. 0 dBFS FFT (HRM).................................................................................................................. 21  
Figure 30. -60 dBFS FFT (HRM).............................................................................................................. 21  
Figure 31. Idle Channel Noise FFT (HRM) ............................................................................................... 21  
Figure 32. Twin Tone IMD FFT (HRM) ..................................................................................................... 21  
Figure 33. THD+N vs. Amplitude (HRM)................................................................................................... 21  
Figure 34. THD+N vs. Frequency (HRM)................................................................................................. 21  
LIST OF TABLES  
Table 1. Common Clock Frequencies ...................................................................................................... 13  
PIN DESCRIPTIONS  
1
2
3
4
8
7
6
5
SERIAL DATA INPUT  
DE-EMPHASIS / SCLK  
LEFT / RIGHT CLOCK  
MASTER CLOCK  
SDATA  
DEM/SCLK  
LRCK  
AOUTL  
VA  
ANALOG LEFT CHANNEL OUTPUT  
ANALOG POWER  
AGND  
AOUTR  
ANALOG GROUND  
MCLK  
ANALOG RIGHT CHANNEL OUTPUT  
No. Pin Name I/O  
Pin Function and Description  
Serial Audio Data Input - Two’s complement MSB-first serial data is input on this pin. The data is  
clocked into the CS4334/5/8/9 via internal or external SCLK, and the channel is determined by  
LRCK.  
1
SDATA  
I
De-Emphasis/External Serial Clock Input - Used for de-emphasis filter control or external serial  
clock input.  
Left/Right Clock - Determines which channel is currently being input on the Audio Serial Data  
Input pin, SDATA.  
Master Clock - Frequency must be 256x, 384x, or 512x the input sample rate in BRM and either  
128x or 192x the input sample rate in HRM.  
2
3
4
DEM/SCLK  
LRCK  
I
I
I
MCLK  
5
6
7
8
AOUTR  
AGND  
VA  
O
I
I
Analog Right Channel Output - Typically 3.5 Vp-p for a full-scale input signal.  
Analog Ground - Analog ground reference is 0V.  
Analog Power - Analog power supply is nominally +5 V.  
AOUTL  
O
Analog Left Channel Output - Typically 3.5 Vp-p for a full-scale input signal.  
DS248F5  
3
Confidential Draft  
3/11/08  
CS4334/5/8/9  
1. TYPICAL CONNECTION DIAGRAM  
+5V  
+
0.1 µF  
1 µF  
7
VA  
1
2
3
SDATA  
DEM/SCLK  
LRCK  
3.3 µF  
560  
Audio  
Data  
Processor  
8
Left Audio  
Output  
AOUTL  
+
267 k  
C
R
L
10 kΩ  
CS4334  
CS4335  
CS4338  
CS4339  
3.3 µF  
+
560  
5
AOUTR  
Right Audio  
Output  
4
External Clock  
MCLK  
C
R
L
267 k  
10 k  
R
+ 560  
L
C =  
AGND  
6
π
4 Fs(R 560)  
L
Figure 1. Recommended Connection Diagram  
4
DS248F5  
Confidential Draft  
3/11/08  
CS4334/5/8/9  
2. CHARACTERISTICS AND SPECIFICATIONS  
(All Min/Max characteristics and specifications are guaranteed over the Specified Operating Conditions. Typical  
performance characteristics and specifications are derived from measurements taken at nominal supply voltages  
and T = 25°C.)  
A
SPECIFIED OPERATING CONDITIONS  
(AGND = 0V; all voltages with respect to ground.)  
Parameters  
Symbol  
VA  
Min  
4.75  
Nom  
5.0  
Max  
5.5  
Units  
V
DC Power Supply  
Ambient Operating Temperature (Power Applied)  
-KSZ  
-DSZ  
TA  
-10  
-40  
-
-
+70  
+85  
°C  
°C  
ABSOLUTE MAXIMUM RATINGS  
(AGND = 0V; all voltages with respect to ground.)  
Parameters  
DC Power Supply  
Symbol  
VA  
Min  
-0.3  
-
Max  
6.0  
Units  
V
Input Current, Any Pin Except Supplies  
Digital Input Voltage  
Iin  
±10  
mA  
V
VIND  
TA  
-0.3  
-55  
-65  
VA+0.4  
125  
Ambient Operating Temperature (power applied)  
Storage Temperature  
°C  
Tstg  
150  
°C  
WARNING: Operation at or beyond these limits may result in permanent damage to the device. Normal operation  
is not guaranteed at these extremes.  
DS248F5  
5
Confidential Draft  
3/11/08  
CS4334/5/8/9  
ANALOG CHARACTERISTICS  
(Full-Scale Output Sine Wave, 997 Hz; Test load R = 10 k, C = 10 pF (see Figure 2). Fs for Base-Rate Mode =  
L
L
48 kHz, Measurement Bandwidth 10 Hz to 20 kHz, unless otherwise specified; Fs for High-Rate Mode = 96 kHz,  
Measurement Bandwidth 10 Hz to 40 kHz, unless otherwise specified.)  
Base-Rate Mode  
High-Rate Mode  
Parameter  
Symbol Min  
Typ  
Max Min  
Typ  
Max Unit  
Dynamic Performance for CS4334/5/8/9-KSZ  
Dynamic Range  
(Note 1)  
18 to 24-Bit  
88  
91  
86  
89  
93  
96  
91  
94  
-
-
-
-
-
91  
-
90  
96  
88  
94  
-
-
-
-
dB  
dB  
dB  
dB  
unweighted  
A-Weighted  
unweighted  
A-Weighted  
16-Bit  
89  
Total Harmonic Distortion + Noise  
18 to 24-Bit  
(Note 1) THD+N  
0 dB  
-20 dB  
-60 dB  
0 dB  
-20 dB  
-60 dB  
-
-
-
-
-
-
-88  
-73  
-33  
-86  
-71  
-31  
-83  
-68  
-28  
-81  
-66  
-26  
-
-
-
-
-
-
-88  
-70  
-30  
-86  
-68  
-28  
-83  
-65  
-25  
-81  
-63  
-23  
dB  
dB  
dB  
dB  
dB  
dB  
16-Bit  
Interchannel Isolation  
(1 kHz)  
-
94  
-
-
95  
-
dB  
Dynamic Performance for CS4334/5/8/9-DSZ  
Dynamic Range (Note 1)  
18 to 24-Bit  
85  
88  
83  
86  
93  
96  
91  
94  
-
-
-
-
-
88  
-
90  
96  
88  
94  
-
-
-
-
dB  
dB  
dB  
dB  
unweighted  
A-Weighted  
unweighted  
A-Weighted  
16-Bit  
86  
Total Harmonic Distortion + Noise  
18 to 24-Bit  
(Note 1) THD+N  
0 dB  
-20 dB  
-60 dB  
0 dB  
-20 dB  
-60 dB  
-
-
-
-
-
-
-88  
-73  
-33  
-86  
-71  
-31  
-82  
-65  
-25  
-70  
-63  
-23  
-
-
-
-
-
-
-88  
-70  
-30  
-86  
-68  
-28  
-82  
-62  
-22  
-80  
-60  
-20  
dB  
dB  
dB  
dB  
dB  
dB  
16-Bit  
Interchannel Isolation  
(1 kHz)  
-
94  
-
-
95  
-
dB  
Notes:  
1. One-half LSB of triangular PDF dither added to data.  
6
DS248F5  
Confidential Draft  
3/11/08  
CS4334/5/8/9  
ANALOG CHARACTERISTICS (Continued)  
Base-Rate Mode  
High-Rate Mode  
Min Typ Max Unit  
Parameter  
Symbol Min  
Typ  
Max  
Combined Digital and On-chip Analog Filter Response (Note 2)  
Passband  
(Note 3)  
to -0.05 dB corner  
to -0.1 dB corner  
to -3 dB corner  
0
-
0
-
-
-
.4780  
-
.4996  
-
0
0
-
-
-
-
Fs  
.4650 Fs  
.4982 Fs  
Frequency Response 10 Hz to 20 kHz  
Passband Ripple  
-.01  
-
+.08  
-.05  
-
+.2  
dB  
dB  
Fs  
dB  
s
-
-
±.08  
-
.5770  
55  
-
±.2  
StopBand  
.5465  
-
-
-
-
-
-
-
-
-
-
-
StopBand Attenuation  
Group Delay  
(Note 4)  
50  
-
tgd  
9/Fs  
±0.36/Fs  
-
4/Fs  
Passband Group Delay Deviation  
0 - 40 kHz  
0 - 20 kHz  
-
-
-
±1.39/Fs  
±0.23/Fs  
-
-
s
s
De-emphasis Error  
Fs = 32 kHz  
Fs = 44.1 kHz  
Fs = 48 kHz  
-
-
-
-
-
-
+1.5/+0  
+.05/-.25  
-.2/-.4  
dB  
dB  
dB  
(Note 5)  
Parameters  
Symbol  
Min  
Typ  
Max  
Units  
DC Accuracy  
Interchannel Gain Mismatch  
Gain Error  
-
-
-
0.1  
±5  
0.4  
dB  
%
-
-
Gain Drift  
100  
ppm/°C  
Analog Output  
Full Scale Output Voltage  
Quiescent Voltage  
Max AC-Load Resistance  
Max Load Capacitance  
3.25  
3.5  
2.2  
3
3.75  
Vpp  
VDC  
kΩ  
VQ  
RL  
CL  
-
-
-
-
-
-
(Note 6)  
(Note 6)  
100  
pF  
Notes:  
2. Filter response is not tested but is guaranteed by design.  
3. Response is clock dependent and will scale with Fs. Note that the response plots (Figures 15-22) have  
been normalized to Fs and can be de-normalized by multiplying the X-axis scale by Fs.  
4. For Base-Rate Mode, the Measurement Bandwidth is 0.5465 Fs to 3 Fs.  
For High-Rate Mode, the Measurement Bandwidth is 0.577 Fs to 1.4 Fs.  
5. De-emphasis is not available in High-Rate Mode.  
6. Refer to Figure 3.  
DS248F5  
7
Confidential Draft  
3/11/08  
CS4334/5/8/9  
POWER AND THERMAL CHARACTERISTICS  
Parameters  
Symbol  
Min  
Typ  
Max  
Units  
Power Supplies  
Power Supply Current  
normal operation  
power-down state  
IA  
IA  
-
-
15  
40  
19  
-
mA  
µA  
Power Dissipation  
(Note 7)  
normal operation  
power-down  
-
-
75  
0.2  
104  
-
mW  
mW  
Package Thermal Resistance  
Power Supply Rejection Ratio  
θJA  
PSRR  
-
-
110  
79  
-
-
°C/Watt  
dB  
(1 kHz)  
Notes:  
7. Refer to Figure 4. Max Power Dissipation is measured at VA=5.5V.  
10 µF  
V
AOUTx  
out  
R
C
L
L
AGND  
Figure 2. Output Test Load  
8
DS248F5  
Confidential Draft  
3/11/08  
CS4334/5/8/9  
125  
100  
75  
70  
65  
60  
55  
75  
50  
M
R
H
Safe Operating  
Region  
25  
50  
20  
2.5  
5
10  
15  
30  
40  
50  
60  
70  
80  
90  
100  
3
Resistive Load -- R (k )  
L
Sample Rate (kHz)  
Figure 3. Maximum Loading  
Figure 4. Power vs. Sample Rate  
DIGITAL INPUT CHARACTERISTICS  
Parameters  
High-Level Input Voltage  
Low-Level Input Voltage  
Input Leakage Current  
Symbol  
VIH  
Min  
2.0  
Typ  
-
-
Max  
-
Units  
V
V
VIL  
-
-
-
0.8  
±10  
-
(Note 8)  
Iin  
-
µA  
pF  
Input Capacitance  
8
Notes:  
8. I for CS433X LRCK is ±20µA max.  
in  
DS248F5  
9
Confidential Draft  
3/11/08  
CS4334/5/8/9  
SWITCHING CHARACTERISTICS  
Parameters  
Symbol  
Min  
2
Typ  
Max  
100  
Units  
kHz  
ns  
Input Sample Rate  
Fs  
-
-
-
-
-
-
-
MCLK Pulse Width High  
MCLK Pulse Width Low  
MCLK Pulse Width High  
MCLK Pulse Width Low  
MCLK Pulse Width High  
MCLK Pulse Width Low  
External SCLK Mode  
MCLK/LRCK = 512  
MCLK/LRCK = 512  
10  
10  
21  
21  
31  
31  
1000  
1000  
1000  
1000  
1000  
1000  
ns  
MCLK / LRCK = 384 or 192  
MCLK / LRCK = 384 or 192  
MCLK / LRCK = 256 or 128  
MCLK / LRCK = 256 or 128  
ns  
ns  
ns  
ns  
LRCK Duty Cycle (External SCLK only)  
SCLK Pulse Width Low  
40  
20  
20  
50  
-
60  
-
%
ns  
ns  
ns  
tsclkl  
tsclkh  
tsclkw  
SCLK Pulse Width High  
-
-
1
SCLK Period  
MCLK / LRCK = 512, 256 or 384  
Base-Rate Mode  
High-Rate Mode  
-
-
---------------------  
(128)Fs  
1
SCLK Period  
MCLK / LRCK = 128 or 192  
tsclkw  
-
-
ns  
------------------  
(64)Fs  
SCLK rising to LRCK edge delay  
SCLK rising to LRCK edge setup time  
SDATA valid to SCLK rising setup time  
SCLK rising to SDATA hold time  
Internal SCLK Mode  
tslrd  
tslrs  
tsdlrs  
tsdh  
20  
20  
20  
20  
-
-
-
-
-
-
-
-
ns  
ns  
ns  
ns  
LRCK Duty Cycle (Internal SCLK only)  
(Note 9)  
-
50  
-
-
-
%
tsclkw  
tsclkr  
ns  
1
SCLK Period  
(Note 10)  
----------------  
SCLK  
-
-
µs  
SCLK rising to LRCK edge  
tsclkw  
------------------  
2
tsdlrs  
-
-
-
ns  
ns  
1
SDATA valid to SCLK rising setup time  
SCLK rising to SDATA hold time  
--------------------- + 10  
(512)Fs  
tsdh  
-
-
1
--------------------- + 15  
MCLK / LRCK = 512, 256 or 128  
(512)Fs  
tsdh  
-
ns  
SCLK rising to SDATA hold time  
1
--------------------- + 15  
MCLK / LRCK = 384 or 192  
(384)Fs  
Notes:  
9. In Internal SCLK Mode, the Duty Cycle must be 50% +/− 1/2 MCLK Period.  
10. The SCLK / LRCK ratio may be either 32, 48, or 64. This ratio depends on part type and MCLK/LRCK  
ratio. (See figures Figures 10-13)  
10  
DS248F5  
Confidential Draft  
3/11/08  
CS4334/5/8/9  
LRCK  
t
t
sclkh  
slrs  
t
slrd  
t
sclkl  
SCLK  
t
t
sdh  
sdlrs  
SDATA  
Figure 5. External Serial Mode Input Timing  
LRCK  
t
sclkr  
SDATA  
t
sclkw  
t
t
sdh  
sdlrs  
*INTERNAL SCLK  
Figure 6. Internal Serial Mode Input Timing  
The SCLK pulses shown are internal to the CS4334/5/8/9.  
LRCK  
MCLK  
N
2
N
1
*INTERNAL SCLK  
SDATA  
Figure 7. Internal Serial Clock Generation  
* The SCLK pulses shown are internal to the CS4334/5/8/9.  
N equals MCLK divided by SCLK  
DS248F5  
11  
Confidential Draft  
3/11/08  
CS4334/5/8/9  
3. GENERAL DESCRIPTION  
The CS4334 family of devices offers a complete stereo digital-to-analog system including digital interpolation,  
fourth-order delta-sigma digital-to-analog conversion, digital de-emphasis and analog filtering, as shown in  
Figure 8. This architecture provides a high tolerance to clock jitter.  
The primary purpose of using delta-sigma modulation techniques is to avoid the limitations of resistive laser trimmed  
digital-to-analog converter architectures by using an inherently linear 1-bit digital-to-analog converter. The advan-  
tages of a 1-bit digital-to-analog converter include: ideal differential linearity, no distortion mechanisms due to resis-  
tor matching errors and no linearity drift over time and temperature due to variations in resistor values.  
The CS4334 family of devices supports two modes of operation. The devices operate in Base Rate Mode (BRM)  
when MCLK/LRCK is 256, 384 or 512 and in High Rate Mode (HRM) when MCLK/LRCK is 128 or 192. High Rate  
Mode allows input sample rates up to 100 kHz.  
3.1  
Digital Interpolation Filter  
The digital interpolation filter increases the sample rate, Fs, by a factor of 4 and is followed by a 32× digital  
sample-and-hold (16× in HRM). This filter eliminates images of the baseband audio signal which exist at  
multiples of the input sample rate. The resulting frequency spectrum has images of the input signal at mul-  
tiples of 4 Fs. These images are easily removed by the on-chip analog low-pass filter and a simple external  
analog filter (see Figure 1).  
3.2  
3.3  
Delta-Sigma Modulator  
The interpolation filter is followed by a fourth order delta-sigma modulator which converts the interpolation  
filter output into 1-bit data at a rate of 128 Fs in BRM (or 64 Fs in HRM).  
Switched-Capacitor DAC  
The delta-sigma modulator is followed by a digital-to-analog converter which translates the 1-bit data into a  
series of charge packets. The magnitude of the charge in each packet is determined by sampling of a volt-  
age reference onto a switched capacitor, where the polarity of each packet is controlled by the 1-bit data.  
This technique greatly reduces the sensitivity to clock jitter and provides low-pass filtering of the output.  
3.4  
Analog Low-Pass Filter  
The final signal stage consists of a continuous-time low-pass filter which serves to smooth the output and  
attenuate out-of-band noise.  
Analog  
Low-Pass  
Filter  
Digital  
Input  
Analog  
Output  
Delta-Sigma  
Modulator  
Interpolator  
DAC  
Figure 8. System Block Diagram  
12  
DS248F5  
Confidential Draft  
3/11/08  
CS4334/5/8/9  
4. SYSTEM DESIGN  
The CS4334 family accepts data at standard audio sample rates including 48, 44.1 and 32 kHz in BRM and 96, 88.2  
and 64 kHz in HRM. Audio data is input via the serial data input pin (SDATA). The Left/Right Clock (LRCK) defines  
the channel and delineation of data, and the Serial Clock (SCLK) clocks audio data into the input data buffer. The  
CS4334/5/8/9 differ in serial data formats as shown in Figures 10-13.  
4.1  
Master Clock  
MCLK must be either 256x, 384x or 512x the desired input sample rate in BRM and either 128x or 192x the  
desired input sample rate in HRM. The LRCK frequency is equal to Fs, the frequency at which words for  
each channel are input to the device. The MCLK-to-LRCK frequency ratio is detected automatically during  
the initialization sequence by counting the number of MCLK transitions during a single LRCK period. Internal  
dividers are set to generate the proper clocks. Table 1 illustrates several standard audio sample rates and  
the required MCLK and LRCK frequencies. Please note there is no required phase relationship, but MCLK,  
LRCK and SCLK must be synchronous.  
MCLK (MHz)  
LRCK  
(kHz)  
HRM  
128x 192x  
BRM  
384x  
256x  
512x  
32  
4.0960 6.1440 8.1920 12.2880 16.3840  
44.1 5.6448 8.4672 11.2896 16.9344 22.5792  
48  
64  
6.1440 9.2160 12.2880 18.4320 24.5760  
8.1920 12.2880  
-
-
-
-
-
-
-
-
-
88.2 11.2896 16.9344  
96 12.2880 18.4320  
Table 1. Common Clock Frequencies  
4.2  
Serial Clock  
The serial clock controls the shifting of data into the input data buffers. The CS4334 family supports both  
external and internal serial clock generation modes. Refer to Figures 10-13 for data formats.  
4.2.1  
External Serial Clock Mode  
The CS4334 family will enter the External Serial Clock Mode when 16 low to high transitions are detected  
on the DEM/SCLK pin during any phase of the LRCK period. When this mode is enabled, the Internal Se-  
rial Clock Mode and de-emphasis filter cannot be accessed. The CS4334 family will switch to Internal Se-  
rial Clock Mode if no low to high transitions are detected on the DEM/SCLK pin for 2 consecutive frames  
of LRCK. Refer to Figure 14.  
4.2.2  
Internal Serial Clock Mode  
In the Internal Serial Clock Mode, the serial clock is internally derived and synchronous with MCLK and  
LRCK. The SCLK/LRCK frequency ratio is either 32, 48, or 64 depending upon data format. Operation in  
this mode is identical to operation with an external serial clock synchronized with LRCK. This mode allows  
access to the digital de-emphasis function. Refer to Figures 10 - 14 for details.  
DS248F5  
13  
Confidential Draft  
3/11/08  
CS4334/5/8/9  
4.3  
De-Emphasis  
The CS4334 family includes on-chip digital de-emphasis. Figure 9 shows the de-emphasis curve for Fs  
equal to 44.1 kHz. The frequency response of the de-emphasis curve will scale proportionally with changes  
in sample rate, Fs.  
The de-emphasis filter is active (inactive) if the DEM/SCLK pin is low (high) for 5 consecutive falling edges  
of LRCK. This function is available only in the internal serial clock mode.  
Gain  
dB  
T1=50 µs  
0dB  
T2 = 15 µs  
-10dB  
F1  
F2  
Frequency  
3.183 kHz  
10.61 kHz  
Figure 9. De-Emphasis Curve (Fs = 44.1kHz)  
4.4  
Initialization and Power-Down  
The Initialization and Power-Down sequence flow chart is shown in Figure 14. The CS4334 family enters  
the Power-Down State upon initial power-up. The interpolation filters and delta-sigma modulators are reset,  
and the internal voltage reference, one-bit digital-to-analog converters and switched-capacitor low-pass fil-  
ters are powered down. The device will remain in the Power-Down mode until MCLK and LRCK are present.  
Once MCLK and LRCK are detected, MCLK occurrences are counted over one LRCK period to determine  
the MCLK/LRCK frequency ratio. Power is then applied to the internal voltage reference. Finally, power is  
applied to the D/A converters and switched-capacitor filters, and the analog outputs will ramp to the quiescent  
voltage, V .  
Q
4.5  
Output Transient Control  
The CS4334 family uses Popguard® technology to minimize the effects of output transients during power-  
up and power-down. This technique eliminates the audio transients commonly produced by single-ended  
single-supply converters when it is implemented with external DC-blocking capacitors connected in series  
with the audio outputs. To make best use of this feature, it is necessary to understand its operation.  
When the device is initially powered-up, the audio outputs, AOUTL and AOUTR, are clamped to AGND. Af-  
ter a short delay of approximately 1000 sample periods, each output begins to ramp towards its quiescent  
voltage, V . Approximately 10,000 sample cycles later, the outputs reach V and audio output begins. This  
Q
Q
gradual voltage ramping allows time for the external DC-blocking capacitor to charge to V , effectively  
Q
blocking the quiescent DC voltage.  
To prevent transients at power-down, the device must first enter its power-down state. This is accomplished  
by removing MCLK or LRCK. When this occurs, audio output ceases and the internal output buffers are dis-  
connected from AOUTL and AOUTR. A soft-start current sink is substituted in place of AOUTL and AOUTR  
which allows the DC-blocking capacitors to slowly discharge. Once this charge is dissipated, the power to  
the device may be turned off, and the system is ready for the next power-on.  
To prevent an audio transient at the next power-on, the DC-blocking capacitors must fully discharge before  
turning off the power or exiting the power-down state. If full discharge does not occur, a transient will occur  
when the audio outputs are initially clamped to AGND. The time that the device must remain in the power-  
14  
DS248F5  
Confidential Draft  
3/11/08  
CS4334/5/8/9  
down state is related to the value of the DC-blocking capacitance. For example, with a 3.3 µF capacitor, the  
time that the device must remain in the power-down state will be approximately 0.4 seconds.  
4.6  
4.7  
Grounding and Power Supply Decoupling  
As with any high resolution converter, the CS4334 family requires careful attention to power supply and  
grounding arrangements to optimize performance. Figure 1 shows the recommended power arrangement  
with VA connected to a clean +5V supply. For best performance, decoupling capacitors should be located  
as close to the device package as possible with the smallest capacitor closest.  
Analog Output and Filtering  
The analog filter present in the CS4334 family is a switched-capacitor filter followed by a continuous time  
lowpassfilter.Itsresponse, combinedwiththatofthedigitalinterpolator, isgiveninFigures 15-22.  
Left Channel  
Right Channel  
LRCK  
SCLK  
SDATA  
+5 +4 +3 +2 +1 LSB  
+5 +4 +3 +2 +1 LSB  
MSB -1 -2 -3 -4 -5  
M SB -1 -2 -3 -4  
Internal SCLK Mode  
External SCLK Mode  
I²S, up to 24-Bit Data  
Data Valid on Rising Edge of SCLK  
I²S, 16-Bit data and INT SCLK = 32 Fs if  
MCLK/LRCK = 512, 256 or 128  
I²S, Up to 24-Bit data and INT SCLK = 48 Fs if  
MCLK/LRCK = 384 or 192  
Figure 10. CS4334 Data Format (I²S)  
Left Channel  
Right Channel  
LRCK  
SCLK  
SDATA  
M SB -1 -2 -3 -4 -5  
+5 +4 +3 +2 +1 LS B  
M SB -1 -2 -3 -4  
+5 +4 +3 +2 +1 LS B  
Internal SCLK Mode  
External SCLK Mode  
Left Justified, up to 24-Bit Data  
Data Valid on Rising Edge of SCLK  
Left Justified, up to 24-Bit Data  
INT SCLK = 64 Fs if MCLK/LRCK = 512, 256 or 128  
INT SCLK = 48 Fs if MCLK/LRCK = 384 or 192  
Figure 11. CS4335 Data Format  
DS248F5  
15  
Confidential Draft  
3/11/08  
CS4334/5/8/9  
Right Channel  
LRCK  
SCLK  
Left Channel  
SDATA  
9
8
7
6
5
4
3
2
1
0
9
8
7
6
5
4
3
2
1
0
15 14 13 12 11 10  
32 clocks  
15 14 13 12 11 10  
Internal SCLK Mode  
Right Justified, 16-Bit Data  
External SCLK Mode  
Right Justified, 16-Bit Data  
INT SCLK = 32 Fs if MCLK/LRCK = 512, 256 or 128  
INT SCLK = 48 Fs if MCLK/LRCK = 384 or 192  
Data Valid on Rising Edge of SCLK  
SCLK Must Have at Least 32 Cycles per LRCK Period  
Figure 12. CS4338 Data Format  
Right Channel  
LRCK  
SCLK  
Left Channel  
SDATA  
1
0
17 16  
9
8
7
6
5
4
3
2
1
0
17 16  
9
8
7
6
5
4
3
2
1
0
15 14 13 12 11 10  
32 clocks  
15 14 13 12 11 10  
Internal SCLK Mode  
Right Justified, 18-Bit Data  
External SCLK Mode  
Right Justified, 18-Bit Data  
INT SCLK = 64 Fs if MCLK/LRCK = 512, 256 or 128  
INT SCLK = 48 Fs if MCLK/LRCK = 384 or 192  
Data Valid on Rising Edge of SCLK  
SCLK Must Have at Least 36 Cycles per LRCK Period  
Figure 13. CS4339 Data Format  
16  
DS248F5  
Confidential Draft  
3/11/08  
CS4334/5/8/9  
Figure 14. CS4334/5/8/9 Initialization and Power-Down Sequence  
DS248F5  
17  
Confidential Draft  
3/11/08  
CS4334/5/8/9  
4.8  
Overall Base-Rate Frequency Response  
Figure 15. Stopband Rejection  
Figure 16. Transition Band  
Figure 17. Transition Band  
Figure 18. Passband Ripple  
18  
DS248F5  
Confidential Draft  
3/11/08  
CS4334/5/8/9  
4.9  
Overall High-Rate Frequency Response  
Figure 19. Stopband Rejection  
Figure 20. Transition Band  
Figure 21. Transition Band  
Figure 22. Passband Ripple  
DS248F5  
19  
Confidential Draft  
3/11/08  
CS4334/5/8/9  
4.10 Base Rate Mode Performance Plots  
+
+0  
+0  
-10  
-10  
-20  
-20  
-30  
-30  
-40  
-40  
-50  
-50  
-60  
-60  
-70  
-70  
-80  
-80  
-90  
-90  
-100  
-100  
-110  
-110  
-120  
-120  
-130  
-130  
-140  
-140  
4k  
2k  
6k  
8k  
10k  
12k  
14k  
16k  
18k 20k  
18k  
2k  
4k  
6k  
8k  
10k  
12k  
14k  
16k  
20k  
Hz  
Hz  
(16k FFT of a 1 kHz input signal)  
(16k FFT of a 1 kHz input signal)  
Figure 23. 0 dBFS FFT (BRM)  
Figure 24. -60 dBFS FFT (BRM)  
0  
0  
+0
+
+0  
-10  
-10  
-20  
-20  
-30  
-30  
-40  
-40  
-50  
-50  
-60  
-60  
-70  
-70  
-80  
-80  
-90  
-90  
-100  
-100  
-110  
-110  
-120  
-120  
-130  
-130  
-140  
2
k
4k  
6k  
8k  
10k  
12k  
14k  
16k  
18k  
-140
20k  
k  
k  
k  
k  
0k  
k  
k  
6k  
16k  
k  
18k  
k  
20k  
20k  
k  
k  
1k  
4
2k  
4k  
6k  
8k  
10k  
12k  
14k  
Hz  
Hz  
(16k FFT with no input signal)  
(16k FFT of intermodulation distortion using 13 kHz and 14 kHz input signals)  
Figure 25. Idle Channel Noise FFT (BRM)  
Figure 26. Twin Tone IMD FFT (BRM)  
-60  
+0  
-10  
-70  
-20  
-30  
-40  
-80  
-50  
-60  
-90  
-70  
-80  
-100  
-90  
-100  
-110  
-
6
0
-
5
0
-
4
0
-
3
0
-
2
0
-
1
0
+0  
-110  
50  
200  
1k  
2k  
5k  
20  
500  
10k 20k  
100  
dBFS  
Hz  
(THD+N plots measured using a 1kHz 24-bit dithered input signal)  
(THD+N plots measured using a 1kHz 24-bit dithered input signal)  
Figure 27. THD+N vs. Amplitude (BRM)  
Figure 28. THD+N vs. Frequency (BRM)  
All measurements were taken from the CDB4334 evaluation board using the Audio Precision Dual Domain  
System Two Cascade.  
20  
DS248F5  
Confidential Draft  
3/11/08  
CS4334/5/8/9  
4.11 High Rate Mode Performance Plots  
+0  
+0  
+0  
-10  
-10  
-20  
-2
0
-30  
-3
0
-40  
-40  
-50  
-5  
0
-60  
-60  
-70  
-70  
-80  
-80  
-90  
-9
0
-100  
-100  
-110  
-110  
-120  
-120  
-130  
-130  
-140  
-140
4k  
6k  
8k  
10k  
12k  
14k  
16k  
2k  
18k 20k  
4k  
2
k
6k  
8k  
10k  
12k  
14k  
16k  
18k  
20k  
Hz  
Hz  
(16k FFT of a 1 kHz input signal)  
(16k FFT of a 1 kHz input signal)  
Figure 29. 0 dBFS FFT (HRM)  
Figure 30. -60 dBFS FFT (HRM)  
Audio Precision  
D-A CCIF IMD vs AMPLITUDE  
08/05/99 11:11:36  
+0  
+0  
+0  
+0  
-10  
-10  
-20  
-20  
-30  
-30  
-40  
-40  
-50
-50  
-6
0
-60  
-7
0
-70  
-8
-9
-80  
0
-90  
0
-100  
-100  
-110  
-1
1
0
-120  
-120  
-130  
-1
3
0
-140  
2
k
4k  
6k  
8k  
10k  
12k  
14k  
16k  
-14  
0
18k 20k  
2k  
4k  
6k  
8k  
10k  
12k  
14k  
16k  
18k  
20k  
Hz  
Hz  
(16k FFT with no input signal)  
(16k FFT of intermodulation distortion using 13 kHz and 14 kHz input signals)  
Figure 31. Idle Channel Noise FFT (HRM)  
Figure 32. Twin Tone IMD FFT (HRM)  
-60  
+0  
-10  
-20  
-70  
-30  
-40  
-80  
-50  
-60  
-90  
-70
-80  
-100  
-90  
-100  
-60  
-110  
-110  
-50  
-40  
-20  
-10  
+0  
-30  
0  
50  
100  
200  
500  
1k  
2k  
5k  
10k 20k  
10k 20k  
20  
50  
200  
5001k  
2k  
5k  
100  
dBFS  
Hz  
(THD+N plots measured using a 1kHz 24-bit dithered input signal)  
(THD+N plots measured using a 1kHz 24-bit dithered input signal)  
Figure 33. THD+N vs. Amplitude (HRM)  
Figure 34. THD+N vs. Frequency (HRM)  
All measurements were taken from the CDB4334 evaluation board using the Audio Precision Dual Domain  
System Two Cascade.  
DS248F5  
21  
Confidential Draft  
3/11/08  
CS4334/5/8/9  
5. PARAMETER DEFINITIONS  
Total Harmonic Distortion + Noise (THD+N)  
The ratio of the rms value of the signal to the rms sum of all other spectral components over the specified  
bandwidth (typically 10Hz to 20kHz), including distortion components. Expressed in decibels.  
Dynamic Range  
The ratio of the full scale rms value of the signal to the rms sum of all other spectral components over the  
specified bandwidth. Dynamic range is a signal-to-noise measurement over the specified bandwidth made  
with a -60 dBFS signal. 60 dB is then added to the resulting measurement to refer the measurement to full  
scale. This technique ensures that the distortion components are below the noise level and do not effect the  
measurement. This measurement technique has been accepted by the Audio Engineering Society, AES17-  
1991, and the Electronic Industries Association of Japan, EIAJ CP-307.  
Interchannel Isolation  
A measure of crosstalk between the left and right channels. Measured for each channel at the converter's  
output with all zeros to the input under test and a full-scale signal applied to the other channel. Units in deci-  
bels.  
Interchannel Gain Mismatch  
The gain difference between left and right channels. Units in decibels.  
Gain Error  
The deviation from the nominal full-scale analog output for a full-scale digital input.  
Gain Drift  
The change in gain value with temperature. Units in ppm/°C.  
6. REFERENCES  
1. "How to Achieve Optimum Performance from Delta-Sigma A/D & D/A Converters" by Steven Harris. Paper  
presented at the 93rd Convention of the Audio Engineering Society, October 1992.  
2. CDB4334/5/8/9 Evaluation Board Datasheet  
22  
DS248F5  
Confidential Draft  
3/11/08  
CS4334/5/8/9  
7. PACKAGE DIMENSIONS  
8L SOIC (150 MIL BODY) PACKAGE DRAWING  
E
H
1
b
c
D
SEATING  
PLANE  
A
L
e
A1  
INCHES  
MILLIMETERS  
DIM  
MIN  
MAX  
MIN  
MAX  
A
A1  
b
0.053  
0.004  
0.013  
0.007  
0.189  
0.150  
0.040  
0.228  
0.016  
0°  
0.069  
0.010  
0.020  
0.010  
0.197  
0.157  
0.060  
0.244  
0.050  
8°  
1.35  
0.10  
0.33  
0.19  
4.80  
3.80  
1.02  
5.80  
0.40  
0°  
1.75  
0.25  
0.51  
0.25  
5.00  
4.00  
1.52  
6.20  
1.27  
8°  
c
D
E
e
H
L
JEDEC # : MS-012  
DS248F5  
23  
Confidential Draft  
3/11/08  
CS4334/5/8/9  
8. ORDERING INFORMATION  
Model  
CS4334-KSZ  
CS4335-KSZ  
CS4338-KSZ  
CS4339-KSZ  
Temperature  
-10 to +70 °C  
-10 to +70 °C  
-10 to +70 °C  
-10 to +70 °C  
Package  
8-pin Plastic SOIC, lead free  
8-pin Plastic SOIC, lead free  
8-pin Plastic SOIC, lead free  
8-pin Plastic SOIC, lead free  
Serial Interface  
16 to 24-bit, I²S  
16 to 24-bit, left justified  
16-bit, right justified  
18-bit, right justified, 32 Fs Internal SCLK mode  
CS4334-DSZ  
CS4335-DSZ  
CS4338-DSZ  
CS4339-DSZ  
-40 to +85 °C  
-40 to +85 °C  
-40 to +85 °C  
-40 to +85 °C  
8-pin Plastic SOIC, lead free  
8-pin Plastic SOIC, lead free  
8-pin Plastic SOIC, lead free  
8-pin Plastic SOIC, lead free  
16 to 24-bit, I²S  
16 to 24-bit, left justified  
16-bit, right justified  
18-bit, right justified, 32 Fs Internal SCLK mode  
9. FUNCTIONAL COMPATIBILITY  
CS4330-KS CS4339-KSZ  
CS4331-KS CS4334-KSZ  
CS4333-KS CS4338-KSZ  
CS4330-BS CS4339-DSZ  
CS4331-BS CS4334-DSZ  
CS4333-BS CS4338-DSZ  
10.REVISION HISTORY  
Revision  
Changes  
F3  
Removed CS4335-BS and CS4339-BS from the Ordering Information section.  
Removed CS4334-BS & CS4349-BS and updated all other packages to lead-free. Functional compatibility  
was updated to reflect that of the new lead-free packages.  
F4  
Corrected “B” to “b” and “C” to “c” to match drawing in “Package Dimensions” on page 23  
Updated legal text  
F5  
Contacting Cirrus Logic Support  
For all product questions and inquiries, contact a Cirrus Logic Sales Representative.  
To find the one nearest you, go to www.cirrus.com.  
IMPORTANT NOTICE  
Cirrus Logic, Inc. and its subsidiaries ("Cirrus") believe that the information contained in this document is accurate and reliable. However, the information is subject  
to change without notice and is provided "AS IS" without warranty of any kind (express or implied). Customers are advised to obtain the latest version of relevant  
information to verify, before placing orders, that information being relied on is current and complete. All products are sold subject to the terms and conditions of sale  
supplied at the time of order acknowledgment, including those pertaining to warranty, indemnification, and limitation of liability. No responsibility is assumed by Cirrus  
for the use of this information, including use of this information as the basis for manufacture or sale of any items, or for infringement of patents or other rights of third  
parties. This document is the property of Cirrus and by furnishing this information, Cirrus grants no license, express or implied under any patents, mask work rights,  
copyrights, trademarks, trade secrets or other intellectual property rights. Cirrus owns the copyrights associated with the information contained herein and gives con-  
sent for copies to be made of the information only for use within your organization with respect to Cirrus integrated circuits or other products of Cirrus. This consent  
does not extend to other copying such as copying for general distribution, advertising or promotional purposes, or for creating any work for resale.  
CERTAIN APPLICATIONS USING SEMICONDUCTOR PRODUCTS MAY INVOLVE POTENTIAL RISKS OF DEATH, PERSONAL INJURY, OR SEVERE PROP-  
ERTY OR ENVIRONMENTAL DAMAGE (“CRITICAL APPLICATIONS”). CIRRUS PRODUCTS ARE NOT DESIGNED, AUTHORIZED OR WARRANTED FOR USE  
IN PRODUCTS SURGICALLY IMPLANTED INTO THE BODY, AUTOMOTIVE SAFETY OR SECURITY DEVICES, LIFE SUPPORT PRODUCTS OR OTHER CRIT-  
ICAL APPLICATIONS. INCLUSION OF CIRRUS PRODUCTS IN SUCH APPLICATIONS IS UNDERSTOOD TO BE FULLY AT THE CUSTOMER’S RISK AND  
CIRRUS DISCLAIMS AND MAKES NO WARRANTY, EXPRESS, STATUTORY OR IMPLIED, INCLUDING THE IMPLIED WARRANTIES OF MERCHANTABILITY  
AND FITNESS FOR PARTICULAR PURPOSE, WITH REGARD TO ANY CIRRUS PRODUCT THAT IS USED IN SUCH A MANNER. IF THE CUSTOMER OR  
CUSTOMER’S CUSTOMER USES OR PERMITS THE USE OF CIRRUS PRODUCTS IN CRITICAL APPLICATIONS, CUSTOMER AGREES, BY SUCH USE, TO  
FULLY INDEMNIFY CIRRUS, ITS OFFICERS, DIRECTORS, EMPLOYEES, DISTRIBUTORS AND OTHER AGENTS FROM ANY AND ALL LIABILITY, INCLUD-  
ING ATTORNEYS’ FEES AND COSTS, THAT MAY RESULT FROM OR ARISE IN CONNECTION WITH THESE USES.  
Cirrus Logic, Cirrus, the Cirrus Logic logo designs and Popguard are trademarks of Cirrus Logic, Inc. All other brand and product names in this document may be  
trademarks or service marks of their respective owners.  
24  
DS248F5  

相关型号:

CS4335-DSZR

暂无描述
CIRRUS

CS4335-KS

8-Pin, 24-Bit, 96 kHz Stereo D/A Converter
CIRRUS

CS4335-KSZ

8-Pin, 24-Bit, 96 kHz Stereo D/A Converter
CIRRUS

CS4335-KSZR

D/A Converter, 2 Func, PDSO8,
CIRRUS

CS4336

8-Pin, 24-Bit, 96 kHz Stereo D/A Converter
CIRRUS

CS4336-BS

8-Pin, 24-Bit, 96 kHz Stereo D/A Converter
CIRRUS

CS4336-KS

8-Pin, 24-Bit, 96 kHz Stereo D/A Converter
CIRRUS

CS4337

8-Pin, 24-Bit, 96 kHz Stereo D/A Converter
CIRRUS

CS4337-BS

8-Pin, 24-Bit, 96 kHz Stereo D/A Converter
CIRRUS

CS4337-KS

8-Pin, 24-Bit, 96 kHz Stereo D/A Converter
CIRRUS

CS4338

8-Pin, 24-Bit, 96 kHz Stereo D/A Converter
CIRRUS

CS4338-BS

8-Pin, 24-Bit, 96 kHz Stereo D/A Converter
CIRRUS