CS4362A-DQZR [CIRRUS]

114 dB, 192 kHz 6-Channel D/A Converter; 114分贝192千赫6声道D / A转换器
CS4362A-DQZR
型号: CS4362A-DQZR
厂家: CIRRUS LOGIC    CIRRUS LOGIC
描述:

114 dB, 192 kHz 6-Channel D/A Converter
114分贝192千赫6声道D / A转换器

转换器 数模转换器
文件: 总50页 (文件大小:973K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
CS4362A  
114 dB, 192 kHz 6-Channel D/A Converter  
Features  
Description  
The CS4362A is a complete 6-channel digital-to-analog  
system. This D/A system includes digital de-emphasis,  
1 dB step size volume control, ATAPI channel mixing,  
selectable fast and slow digital interpolation filters fol-  
lowed by an oversampled, multi-bit delta-sigma  
modulator which includes mismatch shaping technolo-  
gy that eliminates distortion due to capacitor mismatch.  
Following this stage is a multi-element switched capac-  
itor stage and low-pass filter with differential analog  
outputs.  
 Advanced Multi-bit Delta Sigma Architecture  
 24-bit Conversion  
 Up to 192 kHz Sample Rates  
 114 dB Dynamic Range  
 -100 dB THD+N  
 Direct Stream Digital® (DSD) Mode  
 On-chip 50 kHz Filter  
The CS4362A also has a proprietary DSD processor  
which allows for 50 kHz on-chip filtering without an in-  
termediate decimation stage. The CS4362A is available  
in a 48-pin LQFP package in both Commercial (-40°C to  
+85°C) and Automotive grades (-40°C to +105°C). The  
CDB4362A Customer Demonstration board is also  
available for device evaluation and implementation sug-  
gestions. Please see “Ordering Information” on page 48  
for complete details.  
 Matched PCM and DSD Analog Output Levels  
 Selectable Digital Filters  
 Volume Control with 1 dB Step Size and Soft  
Ramp  
The CS4362A accepts PCM data at sample rates from  
4 kHz to 216 kHz, DSD audio data, and delivers excel-  
lent sound quality. These features are ideal for multi-  
channel audio systems including SACD players, A/V re-  
ceivers, digital TV’s, mixing consoles, effects  
processors, sound cards, and automotive audio  
systems.  
 Low Clock-jitter Sensitivity  
 +5 V Analog Supply, +2.5 V Digital Supply  
 Separate 1.8 to 5 V Logic Supplies for the  
Control & Serial Ports  
Control Port Supply = 1.8 V to 5 V  
Digital Supply = 2.5 V  
Analog Supply = 5 V  
Hardware Mode or  
I2C/SPI Software Mode  
Control Data  
Internal Voltage  
Reference  
Register/Hardware  
Configuration  
Reset  
Serial Audio Port  
Supply = 1.8 V to 5 V  
Six Channels of  
Differential  
Outputs  
Switch-Cap  
DAC and  
Analog Filters  
6
6
Volume  
Controls  
Digital  
Filters  
Multi-bit ∆Σ  
Modulators  
PCM Serial  
Audio Input  
6
External Mute  
Control  
Mute Signals  
DSD Processor  
-50 kHz filter  
DSD Audio  
Input  
6
Copyright © Cirrus Logic, Inc. 2009  
JAN '09  
DS617F2  
(All Rights Reserved)  
http://www.cirrus.com  
CS4362A  
TABLE OF CONTENTS  
1. PIN DESCRIPTION ................................................................................................................................. 6  
2. CHARACTERISTICS AND SPECIFICATIONS ...................................................................................... 8  
RECOMMENDED OPERATING CONDITIONS .................................................................................... 8  
ABSOLUTE MAXIMUM RATINGS ........................................................................................................ 8  
DAC ANALOG CHARACTERISTICS - COMMERCIAL (-CQZ) ............................................................. 9  
DAC ANALOG CHARACTERISTICS - AUTOMOTIVE (-DQZ) ........................................................... 10  
POWER AND THERMAL CHARACTERISTICS .................................................................................. 11  
COMBINED INTERPOLATION & ON-CHIP ANALOG FILTER RESPONSE ...................................... 12  
COMBINED INTERPOLATION & ON-CHIP ANALOG FILTER RESPONSE ...................................... 13  
DSD COMBINED DIGITAL & ON-CHIP ANALOG FILTER RESPONSE ............................................ 13  
DIGITAL CHARACTERISTICS ............................................................................................................ 14  
SWITCHING CHARACTERISTICS - PCM .......................................................................................... 15  
SWITCHING CHARACTERISTICS - DSD ........................................................................................... 16  
SWITCHING CHARACTERISTICS - CONTROL PORT - I²C FORMAT ............................................. 17  
SWITCHING CHARACTERISTICS - CONTROL PORT - SPI FORMAT ............................................ 18  
3. TYPICAL CONNECTION DIAGRAM .................................................................................................. 19  
4. APPLICATIONS ................................................................................................................................... 21  
4.1 Master Clock .................................................................................................................................. 21  
4.2 Mode Select ................................................................................................................................... 21  
4.3 Digital Interface Formats ................................................................................................................ 23  
4.4 Oversampling Modes ..................................................................................................................... 24  
4.5 Interpolation Filter .......................................................................................................................... 24  
4.6 De-emphasis .................................................................................................................................. 24  
4.7 ATAPI Specification ....................................................................................................................... 25  
4.8 Direct Stream Digital (DSD) Mode ................................................................................................. 26  
4.9 Grounding and Power Supply Arrangements ................................................................................ 26  
4.9.1 Capacitor Placement ............................................................................................................. 26  
4.10 Analog Output and Filtering ......................................................................................................... 26  
4.11 Mute Control ................................................................................................................................ 27  
4.12 Recommended Power-Up Sequence .......................................................................................... 28  
4.12.1 Hardware Mode ................................................................................................................... 28  
4.12.2 Software Mode .................................................................................................................... 28  
4.13 Recommended Procedure for Switching Operational Modes ...................................................... 29  
4.14 Control Port Interface ................................................................................................................... 29  
4.14.1 MAP Auto Increment ........................................................................................................... 29  
4.14.2 I²C Mode .............................................................................................................................. 29  
4.14.2.1 I²C Write ................................................................................................................... 29  
4.14.2.2 I²C Read .................................................................................................................. 30  
4.14.3 SPI Mode ............................................................................................................................. 30  
4.14.3.1 SPI Write .................................................................................................................. 30  
4.15 Memory Address Pointer (MAP) ................................................................................................. 31  
4.16 INCR (Auto Map Increment Enable) ............................................................................................ 31  
4.16.1 MAP4-0 (Memory Address Pointer) .................................................................................... 31  
5. REGISTER QUICK REFERENCE ........................................................................................................ 32  
6. REGISTER DESCRIPTION .................................................................................................................. 33  
6.1 Mode Control 1 (Address 01h) ....................................................................................................... 33  
6.1.1 Control Port Enable (CPEN) .................................................................................................. 33  
6.1.2 Freeze Controls (FREEZE) ................................................................................................... 33  
6.1.3 Master Clock Divide Enable (MCLKDIV) ............................................................................... 33  
6.1.4 DAC Pair Disable (DACx_DIS) .............................................................................................. 33  
6.1.5 Power Down (PDN) ............................................................................................................... 34  
6.2 Mode Control 2 (Address 02h) ....................................................................................................... 34  
2
DS617F2  
CS4362A  
6.2.1 Digital Interface Format (DIF) ................................................................................................ 34  
6.3 Mode Control 3 (Address 03h) ....................................................................................................... 35  
6.3.1 Soft Ramp and Zero Cross Control (SZC) ............................................................................ 35  
6.3.2 Single Volume Control (SNGLVOL) ...................................................................................... 36  
6.3.3 Soft Volume Ramp-Up After Error (RMP_UP) ...................................................................... 36  
6.3.4 Mutec Polarity (MUTEC+/-) ................................................................................................... 36  
6.3.5 Auto-Mute (AMUTE) .............................................................................................................. 36  
6.3.6 Mute Pin Control (MUTEC1, MUTEC0) ................................................................................. 37  
6.4 Filter Control (Address 04h) ........................................................................................................... 37  
6.4.1 Interpolation Filter Select (FILT_SEL) ................................................................................... 37  
6.4.2 De-Emphasis Control (DEM) ................................................................................................. 37  
6.4.3 Soft Ramp-Down Before Filter Mode Change (RMP_DN) .................................................... 37  
6.5 Invert Control (Address 05h) .......................................................................................................... 38  
6.5.1 Invert Signal Polarity (Inv_Xx) ............................................................................................... 38  
6.6 Mixing Control Pair 1 (Channels A1 & B1)(Address 06h)  
Mixing Control Pair 2 (Channels A2 & B2)(Address 09h)  
Mixing Control Pair 3 (Channels A3 & B3)(Address 0Ch) .................................................................... 38  
6.6.1 Channel A Volume = Channel B Volume (A=B) .................................................................... 38  
6.6.2 ATAPI Channel Mixing and Muting (ATAPI) .......................................................................... 39  
6.6.3 Functional Mode (FM) ........................................................................................................... 40  
6.7 Volume Control (Addresses 07h, 08h, 0Ah, 0Bh, 0Dh, 0Eh) ........................................................ 40  
6.7.1 Mute (MUTE) ......................................................................................................................... 40  
6.7.2 Volume Control (XX_VOL) .................................................................................................... 41  
6.8 Chip Revision (Address 12h) ......................................................................................................... 41  
6.8.1 Part Number ID (PART) [Read Only] .................................................................................... 41  
6.8.2 Revision ID (REV) [Read Only] ............................................................................................. 41  
7. FILTER PLOTS ..................................................................................................................................... 42  
8. PARAMETER DEFINITIONS ................................................................................................................ 46  
9. PACKAGE DIMENSIONS .................................................................................................................... 47  
10. ORDERING INFORMATION .............................................................................................................. 48  
11. REFERENCES .................................................................................................................................... 48  
12. REVISION HISTORY .......................................................................................................................... 49  
DS617F2  
3
CS4362A  
LIST OF FIGURES  
Figure 1.Serial Audio Interface Timing ...................................................................................................... 15  
Figure 2.Direct Stream Digital - Serial Audio Input Timing ........................................................................ 16  
Figure 3.Control Port Timing - I²C Format ................................................................................................. 17  
Figure 4.Control Port Timing - SPI Format ................................................................................................ 18  
Figure 5.Typical Connection Diagram, Software Mode ............................................................................. 19  
Figure 6.Typical Connection Diagram, Hardware Mode ........................................................................... 20  
Figure 7.Format 0 - Left-Justified up to 24-bit Data .................................................................................. 23  
Figure 8.Format 1 - I²S up to 24-bit Data .................................................................................................. 23  
Figure 9.Format 2 - Right-Justified 16-bit Data ......................................................................................... 23  
Figure 10.Format 3 - Right-Justified 24-bit Data ....................................................................................... 23  
Figure 11.Format 4 - Right-Justified 20-bit Data ....................................................................................... 24  
Figure 12.Format 5 - Right-Justified 18-bit Data ....................................................................................... 24  
Figure 13.De-Emphasis Curve .................................................................................................................. 25  
Figure 14.ATAPI Block Diagram (x = channel pair 1, 2, or 3) ................................................................... 25  
Figure 15.Full-Scale Output ...................................................................................................................... 27  
Figure 16.Recommended Output Filter ..................................................................................................... 27  
Figure 17.Recommended Mute Circuitry .................................................................................................. 28  
Figure 18.Control Port Timing, I²C Mode .................................................................................................. 30  
Figure 19.Control Port Timing, SPI Mode ................................................................................................. 31  
Figure 20.Single-Speed (fast) Stopband Rejection ................................................................................... 42  
Figure 21.Single-Speed (fast) Transition Band ......................................................................................... 42  
Figure 22.Single-Speed (fast) Transition Band (detail) ............................................................................. 42  
Figure 23.Single-Speed (fast) Passband Ripple ....................................................................................... 42  
Figure 24.Single-Speed (slow) Stopband Rejection ................................................................................. 42  
Figure 25.Single-Speed (slow) Transition Band ........................................................................................ 42  
Figure 26.Single-Speed (slow) Transition Band (detail) ............................................................................ 43  
Figure 27.Single-Speed (slow) Passband Ripple ...................................................................................... 43  
Figure 28.Double-Speed (fast) Stopband Rejection ................................................................................. 43  
Figure 29.Double-Speed (fast) Transition Band ........................................................................................ 43  
Figure 30.Double-Speed (fast) Transition Band (detail) ............................................................................ 43  
Figure 31.Double-Speed (fast) Passband Ripple ...................................................................................... 43  
Figure 32.Double-Speed (slow) Stopband Rejection ................................................................................ 44  
Figure 33.Double-Speed (slow) Transition Band ...................................................................................... 44  
Figure 34.Double-Speed (slow) Transition Band (detail) .......................................................................... 44  
Figure 35.Double-Speed (slow) Passband Ripple .................................................................................... 44  
Figure 36.Quad-Speed (fast) Stopband Rejection .................................................................................... 44  
Figure 37.Quad-Speed (fast) Transition Band .......................................................................................... 44  
Figure 38.Quad-Speed (fast) Transition Band (detail) .............................................................................. 45  
Figure 39.Quad-Speed (fast) Passband Ripple ........................................................................................ 45  
Figure 40.Quad-Speed (slow) Stopband Rejection ................................................................................... 45  
Figure 41.Quad-Speed (slow) Transition Band ......................................................................................... 45  
Figure 42.Quad-Speed (slow) Transition Band (detail) ............................................................................. 45  
Figure 43.Quad-Speed (slow) Passband Ripple ....................................................................................... 45  
4
DS617F2  
CS4362A  
LIST OF TABLES  
Table 1. Common Clock Frequencies ....................................................................................................... 21  
Table 2. Digital Interface Format, Stand-Alone Mode Options .................................................................. 22  
Table 3. Mode Selection, Stand-Alone Mode Options .............................................................................. 22  
Table 4. Direct Stream Digital (DSD), Stand-Alone Mode Options ........................................................... 22  
Table 5. Digital Interface Formats - PCM Mode ........................................................................................ 34  
Table 6. Digital Interface Formats - DSD Mode ........................................................................................ 35  
Table 7. ATAPI Decode ............................................................................................................................ 39  
Table 8. Example Digital Volume Settings ................................................................................................ 41  
DS617F2  
5
CS4362A  
1. PIN DESCRIPTION  
48 47 46 45 44 43 42 41 40 39 38 37  
36  
35  
34  
33  
32  
31  
30  
29  
28  
27  
26  
25  
AOUTA2-  
AOUTA2+  
AOUTB2+  
AOUTB2-  
DSDA2  
DSDB1  
DSDA1  
VD  
1
2
3
4
GND  
5
VA  
6
GND  
MCLK  
CS4362A  
LRCK(DSD_EN)  
SDIN1  
7
AOUTA3-  
AOUTA3+  
AOUTB3+  
AOUTB3-  
MUTEC2  
MUTEC3  
8
SCLK  
9
10  
TST  
SDIN2 11  
TST  
2
1
13 14 15 16 17 18 19 20 21 22 23 24  
Pin Name  
#
Pin Description  
Digital Power (Input) - Positive power supply for the digital section. Refer to the Recom-  
mended Operating Conditions for appropriate voltages.  
VD  
4
GND  
5,31 Ground (Input) - Ground reference. Should be connected to analog ground.  
Master Clock (Input) - Clock source for the delta-sigma modulator and digital filters. Table 1  
illustrates several standard audio sample rates and the required master clock frequencies.  
MCLK  
LRCK  
6
Left Right Clock (Input) - Determines which channel, Left or Right, is currently active on the  
serial audio data line. The frequency of the left/right clock must be at the audio sample rate, Fs.  
7
SDIN1  
SDIN2  
SDIN3  
8
11 Serial Data Input (Input) - Input for two’s complement serial audio data.  
13  
SCLK  
9
Serial Clock (Input) - Serial clocks for the serial audio interface.  
10,12  
TST  
14,44 Test - These pins need to be tied to analog ground.  
45  
Reset (Input) - The device enters a low power mode and all internal registers are reset to their  
default settings when low.  
RST  
VA  
19  
Analog Power (Input) - Positive power supply for the analog section. Refer to the Recom-  
mended Operating Conditions for appropriate voltages.  
32  
Serial Audio Interface Power (Input) - Determines the required signal level for the serial audio  
interface. Refer to the Recommended Operating Conditions for appropriate voltages.  
VLS  
43  
Control Port Power (Input) - Determines the required signal level for the control port and hard-  
18 ware mode configuration pins. Refer to the Recommended Operating Conditions for appropri-  
ate voltages.  
VLC  
6
DS617F2  
CS4362A  
Pin Name  
#
Pin Description  
Quiescent Voltage (Output) - Filter connection for internal quiescent voltage. VQ must be  
capacitively coupled to analog ground, as shown in the Typical Connection Diagram. The nom-  
inal voltage level is specified in the Analog Characteristics and Specifications section. VQ pre-  
VQ  
21 sents an appreciable source impedance and any current drawn from this pin will alter device  
performance. However, VQ can be used to bias the analog circuitry assuming there is no AC  
signal component and the DC current is less then the maximum specified in the Analog Charac-  
teristics and Specifications section.  
Positive Voltage Reference (Output) - Positive reference voltage for the internal sampling cir-  
20 cuits. Requires the capacitive decoupling to analog ground as shown in the Typical Connection  
Diagram.  
FILT+  
AOUTA1 +,-  
AOUTB1 +,-  
AOUTA2 +,-  
AOUTB2 +,-  
AOUTA3 +,-  
AOUTB3 +,-  
39,40  
38,37  
35,36 Differential Analog Output (Output) - The full-scale differential analog output level is specified  
34,33 in the Analog Characteristics specification table.  
29,30  
28,27  
MUTEC1  
MUTEC2  
MUTEC3  
MUTEC4  
MUTEC5  
MUTEC6  
41  
26 Mute Control (Output) - These pins are intended to be used as a control for external mute cir-  
25 cuits on the line outputs to prevent the clicks and pops that can occur in any single supply sys-  
24 tem. Use of Mute Control is not mandatory but recommended for designs requiring the absolute  
23 minimum in extraneous clicks and pops.  
22  
Hardware Mode Definitions  
17  
M0  
16 Mode Selection (Input) - Determines the operational mode of the device as detailed in Table 6  
15 and Table 7.  
42  
M2  
M3  
Software Mode Definitions  
Serial Control Port Clock (Input) - Serial clock for the serial control port. Requires an external  
pull-up resistor to the logic interface voltage in I²C® Mode as shown in the Typical Connection  
Diagram.  
SCL/CCLK  
SDA/CDIN  
15  
Serial Control Port Data (Input/Output) - SDA is a data I/O line in I²C Mode and is open drain,  
16 requiring an external pull-up resistor to the logic interface voltage, as shown in the Typical Con-  
nection Diagram; CDIN is the input data line for the control port interface in SPI™ mode.  
Address Bit 0 (C) / Control Port Chip Select (SPI) (Input) - AD0 is a chip address pin in I²C  
Mode; CS is the chip select signal for SPI mode.  
AD0/CS  
17  
DSD Definitions  
DSDA1  
DSDB1  
DSDA2  
DSDB2  
DSDA3  
DSDB3  
3
2
1
48  
47  
46  
Direct Stream Digital Input (Input) - Input for Direct Stream Digital serial audio data.  
DSD_SCLK  
42 DSD Serial Clock (Input) - Serial clock for the Direct Stream Digital serial audio interface.  
DSD Enable (Input) - When held at logic ‘1’, the device will enter DSD Mode (Stand-Alone Mode  
only).  
DSD_EN  
7
DS617F2  
7
CS4362A  
2. CHARACTERISTICS AND SPECIFICATIONS  
RECOMMENDED OPERATING CONDITIONS  
(GND = 0 V; all voltages with respect to ground.)  
Parameters  
Symbol  
Min  
Typ  
Max  
Units  
DC Power Supply  
Analog Power  
Digital Internal Power  
Serial Data Port Interface Power  
Control Port Interface Power  
VA  
VD  
VLS  
VLC  
4.75  
2.37  
1.71  
1.71  
5.0  
2.5  
5.0  
5.0  
5.25  
2.63  
5.25  
5.25  
V
V
V
V
Ambient Operating Temperature (power applied)  
Commercial Grade (-CQZ)  
Automotive Grade (-DQZ)  
-40  
-40  
-
-
+85  
+105  
TA  
°C  
°C  
ABSOLUTE MAXIMUM RATINGS  
(GND = 0 V; all voltages with respect to ground.)  
Parameters  
Symbol  
Min  
Max  
Units  
DC Power Supply  
Analog Power  
VA  
VD  
VLS  
VLC  
-0.3  
-0.3  
-0.3  
-0.3  
6.0  
3.2  
6.0  
6.0  
V
V
V
V
Digital Internal Power  
Serial Data Port Interface Power  
Control Port Interface Power  
Input Current  
Any Pin Except Supplies  
Iin  
-
±10  
mA  
Digital Input Voltage  
Serial Data Port Interface  
Control Port Interface  
VIND-S  
VIND-C  
-0.3  
-0.3  
VLS+ 0.4  
VLC+ 0.4  
V
V
Ambient Operating Temperature (power applied)  
Storage Temperature  
Top  
-55  
-65  
125  
150  
°C  
°C  
Tstg  
WARNING: Operation at or beyond these limits may result in permanent damage to the device. Normal operation  
is not guaranteed at these extremes.  
8
DS617F2  
CS4362A  
DAC ANALOG CHARACTERISTICS - COMMERCIAL (-CQZ)  
Test Conditions (unless otherwise specified): VA = VLS = VLC = 5 V; VD = 2.5 V; T = 25°C; Full-Scale 997 Hz  
A
input sine wave (Note 1); Tested under max ac-load resistance; Valid with FILT+ and VQ capacitors as shown in  
“Typical Connection Diagram” on page 19; Measurement Bandwidth 10 Hz to 20 kHz.  
Parameters  
Symbol  
Min  
Typ  
Max  
Unit  
FS = 48 kHz, 96 kHz, 192 kHz and DSD  
Dynamic Range  
24-bit A-weighted  
108  
105  
-
-
114  
111  
97  
-
-
-
-
dB  
dB  
dB  
dB  
Unweighted  
16-bit A-weighted  
(Note 2) Unweighted  
94  
Total Harmonic Distortion + Noise  
24-bit  
0 dB  
-
-
-
-
-
-
-100  
-91  
-51  
-94  
-74  
-34  
-94  
-
-45  
-
-
-
dB  
dB  
dB  
dB  
dB  
dB  
-20 dB  
-60 dB THD+N  
0 dB  
-20 dB  
-60 dB  
(Note 2) 16-bit  
Idle Channel Noise / Signal-to-noise Ratio  
Interchannel Isolation  
-
-
114  
110  
-
-
dB  
dB  
(1 kHz)  
DC Accuracy  
Interchannel Gain Mismatch  
Gain Drift  
-
-
0.1  
-
-
dB  
100  
ppm/°C  
Analog Output  
Full-scale Differential Output Voltage  
Output Impedance  
VFS  
128%•VA  
132%•VA  
130  
136%•VA  
Vpp  
(Note 3) ZOUT  
-
-
-
-
-
-
-
-
-
-
-
-
Max DC Current Draw From an AOUT Pin  
Min AC-load Resistance  
Max Load Capacitance  
Quiescent Voltage  
IOUTmax  
RL  
1.0  
mA  
kΩ  
3
CL  
100  
pF  
VQ  
50%•VA  
10  
VDC  
µA  
Max Current draw from VQ  
IQMAX  
Notes:  
1. One-half LSB of triangular PDF dither is added to data.  
2. Performance limited by 16-bit quantization noise.  
3.  
V
is tested under load R and includes attenuation due to Z  
FS L OUT  
DS617F2  
9
CS4362A  
DAC ANALOG CHARACTERISTICS - AUTOMOTIVE (-DQZ)  
Test Conditions (unless otherwise specified): VA = 4.75 to 5.25 V; VLS = 1.71 to 5.25 V; VLC = 1.71 to 5.25 V; VD  
= 2.37 to 2.63 V; T = -40°C to 85°C; Full-Scale 997 Hz input sine wave (Note 1); Tested under max ac-load resis-  
A
tance; Valid with FILT+ and VQ capacitors as shown in “Typical Connection Diagram” on page 19; Measurement  
Bandwidth 10 Hz to 20 kHz.  
Parameters  
Symbol  
Min  
Typ  
Max  
Unit  
FS = 48 kHz, 96 kHz, 192 kHz and DSD  
Dynamic Range  
24-bit A-weighted  
105  
102  
-
-
114  
111  
97  
-
-
-
-
dB  
dB  
dB  
dB  
Unweighted  
16-bit A-weighted  
(Note 2) Unweighted  
94  
Total Harmonic Distortion + Noise  
24-bit  
0 dB  
-
-
-
-
-
-
-100  
-91  
-51  
-94  
-74  
-34  
-91  
-
-42  
-
-
-
dB  
dB  
dB  
dB  
dB  
dB  
-20 dB  
-60 dB THD+N  
0 dB  
-20 dB  
-60 dB  
(Note 2) 16-bit  
Idle Channel Noise / Signal-to-noise Ratio  
Interchannel Isolation  
-
-
114  
110  
-
-
dB  
dB  
(1 kHz)  
DC Accuracy  
Interchannel Gain Mismatch  
Gain Drift  
-
-
0.1  
-
-
dB  
100  
ppm/°C  
Analog Output  
Full-scale Differential Output Voltage  
Output Impedance  
VFS  
128%•VA  
132%•VA  
130  
136%•VA  
Vpp  
(Note 3) ZOUT  
-
-
-
-
-
-
-
-
-
-
-
-
Max DC Current Draw From an AOUT Pin  
Min AC-load Resistance  
Max Load Capacitance  
Quiescent Voltage  
IOUTmax  
RL  
1.0  
mA  
kΩ  
3
CL  
100  
pF  
VQ  
50%•VA  
10  
VDC  
µA  
Max Current draw from VQ  
IQMAX  
10  
DS617F2  
CS4362A  
POWER AND THERMAL CHARACTERISTICS  
Parameters  
Symbol  
Min  
Typ  
Max  
Units  
Power Supplies  
Power Supply Current  
(Note 4)  
Normal Operation, VA= 5 V  
VD= 2.5 V  
(Note 5) Interface Current, VLC=5 V  
VLS=5 V  
IA  
ID  
ILC  
ILS  
Ipd  
-
-
-
-
-
60  
16  
2
84  
200  
65  
22  
-
-
-
mA  
mA  
µA  
µA  
µA  
(Note 6) Power-down State (all supplies)  
Power Dissipation (Note 4)  
VA = 5 V, VD = 2.5 V  
Normal Operation  
-
-
340  
1
390  
-
mW  
mW  
(Note 6) Power-down  
Package Thermal Resistance  
Multi-layer  
Two-layer  
θJA  
θJA  
θJC  
-
-
-
48  
65  
15  
-
-
-
°C/Watt  
°C/Watt  
°C/Watt  
Power Supply Rejection Ratio (Note 7)  
(1 kHz)  
(60 Hz)  
-
-
60  
40  
-
-
dB  
dB  
PSRR  
Notes:  
4. Current consumption increases with increasing FS within a given speed mode and is signal-dependent.  
Max values are based on highest FS and highest MCLK.  
5.  
I
measured with no external loading on the SDA pin.  
LC  
6. Power-down Mode is defined as RST pin = Low with all clock and data lines held static.  
7. Valid with the recommended capacitor values on FILT+ and VQ as shown in Figure 5 and Figure 6.  
DS617F2  
11  
CS4362A  
COMBINED INTERPOLATION & ON-CHIP ANALOG FILTER RESPONSE  
The filter characteristics have been normalized to the sample rate (Fs) and can be referenced to the desired sam-  
ple rate by multiplying the given characteristic by Fs.  
See Note 12.  
Fast Roll-Off  
Parameter  
Min  
Typ  
Max  
Unit  
Combined Digital and On-chip Analog Filter Response - Single-Speed Mode - 48 kHz  
Passband (Note 9)  
to -0.01 dB corner  
to -3 dB corner  
10 Hz to 20 kHz  
0
0
-
-
-
-
.454  
.499  
+0.01  
-
-
-
±0.23  
±0.14  
±0.09  
Fs  
Fs  
dB  
Fs  
dB  
s
dB  
dB  
dB  
Frequency Response  
Stop Band  
Stop-band Attenuation  
Group Delay  
De-emphasis Error (Note 11)  
(Relative to 1 kHz)  
-0.01  
0.547  
102  
-
-
-
-
(Note 10)  
-
10.4/Fs  
Fs = 32 kHz  
Fs = 44.1 kHz  
Fs = 48 kHz  
-
-
-
Combined Digital and On-chip Analog Filter Response - Double-Speed Mode - 96 kHz  
Passband (Note 9)  
to -0.01 dB corner  
to -3 dB corner  
10 Hz to 20 kHz  
0
0
-
-
-
-
.430  
.499  
+0.01  
-
-
-
Fs  
Fs  
dB  
Fs  
dB  
s
Frequency Response  
Stop Band  
Stop-band Attenuation  
Group Delay  
-0.01  
.583  
80  
(Note 10)  
-
-
6.15/Fs  
Combined Digital and On-chip Analog Filter Response - Quad-Speed Mode - 192 kHz  
Passband (Note 9)  
to -0.01 dB corner  
to -3 dB corner  
10 Hz to 20 kHz  
0
0
-
-
-
-
-
.105  
.490  
+0.01  
-
-
-
Fs  
Fs  
dB  
Fs  
dB  
s
Frequency Response  
Stop Band  
Stop-band Attenuation  
Group Delay  
-0.01  
.635  
90  
(Note 10)  
-
7.1/Fs  
Notes:  
8. Slow roll-off interpolation filter is only available in Software Mode.  
9. Response is clock-dependent and will scale with Fs.  
10. For Single-Speed Mode, the Measurement Bandwidth is from stopband to 3 Fs.  
For Double-Speed Mode, the Measurement Bandwidth is from stopband to 3 Fs.  
For Quad-Speed Mode, the Measurement Bandwidth is from stopband to 1.34 Fs.  
11. De-emphasis is available only in Single-Speed Mode; only 44.1 kHz De-emphasis is available in Hard-  
ware Mode.  
12. Amplitude vs. Frequency plots of this data are available in Section 7. “Filter Plots” on page 42.  
12  
DS617F2  
CS4362A  
COMBINED INTERPOLATION & ON-CHIP ANALOG FILTER RESPONSE  
(CONTINUED)  
Slow Roll-Off (Note 8)  
Parameter  
Min  
Typ  
Max  
Unit  
Single-Speed Mode - 48 kHz  
Passband (Note 9)  
to -0.01 dB corner  
to -3 dB corner  
10 Hz to 20 kHz  
0
0
-
-
-
-
0.417  
0.499  
+0.01  
-
-
-
Fs  
Fs  
dB  
Fs  
dB  
s
Frequency Response  
Stop Band  
Stop-band Attenuation  
Group Delay  
-0.01  
.583  
64  
-
(Note 10)  
-
7.8/Fs  
De-emphasis Error (Note 11)  
(Relative to 1 kHz)  
Fs = 32 kHz  
Fs = 44.1 kHz  
Fs = 48 kHz  
-
-
-
-
-
-
±0.36  
±0.21  
±0.14  
dB  
dB  
dB  
Double-Speed Mode - 96 kHz  
Passband (Note 9)  
to -0.01 dB corner  
to -3 dB corner  
10 Hz to 20 kHz  
0
0
-
-
-
-
-
.296  
.499  
+0.01  
-
-
-
Fs  
Fs  
dB  
Fs  
dB  
s
Frequency Response  
Stop Band  
Stop-band Attenuation  
Group Delay  
-0.01  
.792  
70  
(Note 10)  
-
5.4/Fs  
Quad-Speed Mode - 192 kHz  
Passband (Note 9)  
to -0.01 dB corner  
to -3 dB corner  
10 Hz to 20 kHz  
0
0
-
-
-
-
-
.104  
.481  
+0.01  
-
-
-
Fs  
Fs  
dB  
Fs  
dB  
s
Frequency Response  
Stop Band  
Stop-band Attenuation  
Group Delay  
-0.01  
.868  
75  
(Note 10)  
-
6.6/Fs  
DSD COMBINED DIGITAL & ON-CHIP ANALOG FILTER RESPONSE  
Parameter  
Min  
Typ  
Max  
Unit  
DSD Processor mode  
Passband (Note 9)  
Frequency Response  
Roll-off  
to -3 dB corner  
10 Hz to 20 kHz  
0
-
-
-
50  
+0.05  
-
kHz  
dB  
dB/Oct  
-0.05  
27  
DS617F2  
13  
CS4362A  
DIGITAL CHARACTERISTICS  
Parameters  
Input Leakage Current  
Symbol  
Min  
-
-
Typ  
-
Max  
±10  
-
Units  
µA  
pF  
(Note 13)  
Iin  
Input Capacitance  
8
High-level Input Voltage  
Serial I/O  
Control I/O  
VIH  
VIH  
70%  
70%  
-
-
-
-
VLS  
VLC  
Low-level Input Voltage  
Serial I/O  
Control I/O  
VIL  
VIL  
-
-
-
-
30%  
30%  
VLS  
VLC  
Low-level Output Voltage (IOL = -1.2 mA)  
Control I/O = 3.3 V, 5 V  
Control I/O = 1.8 V, 2.5 V  
VOL  
VOL  
-
-
-
-
20%  
25%  
VLC  
VLC  
Maximum MUTEC Drive Current  
MUTEC High-level Output Voltage  
MUTEC Low-level Output Voltage  
Imax  
VOH  
VOL  
-
-
-
3
VA  
0
-
-
-
mA  
V
V
13. Any pin except supplies. Transient currents of up to ±100 mA on the input pins will not cause SCR latch-  
up.  
14  
DS617F2  
CS4362A  
SWITCHING CHARACTERISTICS - PCM  
(Inputs: Logic 0 = GND, Logic 1 = VLS, C = 30 pF)  
L
Parameters  
Symbol  
Min  
Max  
Units  
RST pin Low Pulse Width  
(Note 14)  
(Note 15)  
1
-
ms  
MCLK Frequency  
1.024  
45  
55.2  
55  
MHz  
%
MCLK Duty Cycle  
Input Sample Rate - LRCK  
Single-speed Mode  
Double-speed Mode  
Quad-speed Mode  
Fs  
Fs  
Fs  
4
50  
100  
54  
108  
216  
kHz  
kHz  
kHz  
LRCK Duty Cycle  
45  
45  
8
55  
55  
-
%
%
SCLK Duty Cycle  
SCLK High Time  
tsckh  
tsckl  
tlcks  
tds  
ns  
ns  
ns  
ns  
ns  
SCLK Low Time  
8
-
LRCK Edge to SCLK rising edge  
SDIN Setup Time before SCLK rising edge  
SDIN Hold Time after SCLK rising edge  
5
-
3
-
tdh  
5
-
Notes:  
14. After powering up, RST should be held low until after the power supplies and clocks are settled.  
15. See Table 1 on page 21 for suggested MCLK frequencies.  
LRCK  
tlcks  
tsckh  
tsckl  
SCLK  
tds  
tdh  
MSB  
SDINx  
MSB-1  
Figure 1. Serial Audio Interface Timing  
DS617F2  
15  
CS4362A  
SWITCHING CHARACTERISTICS - DSD  
(Logic 0 = AGND = DGND; Logic 1 = VLS; CL = 20 pF)  
Parameter  
MCLK Duty Cycle  
Symbol  
Min  
40  
Typ  
Max  
60  
-
Unit  
%
-
-
-
DSD_SCLK Pulse Width Low  
DSD_SCLK Pulse Width High  
tsclkl  
160  
160  
ns  
tsclkh  
-
ns  
DSD_SCLK Frequency  
(64x Oversampled)  
(128x Oversampled)  
1.024  
2.048  
-
-
3.2  
6.4  
MHz  
MHz  
DSD_A / _B valid to DSD_SCLK rising setup time  
DSD_SCLK rising to DSD_A or DSD_B hold time  
tsdlrs  
tsdh  
20  
20  
-
-
-
-
ns  
ns  
t
sclkh  
t
sclkl  
DSD_SCLK  
DSDxx  
t
t
sdlrs  
sdh  
Figure 2. Direct Stream Digital - Serial Audio Input Timing  
16  
DS617F2  
CS4362A  
SWITCHING CHARACTERISTICS - CONTROL PORT - I²C FORMAT  
(Inputs: Logic 0 = GND, Logic 1 = VLC, CL = 30 pF)  
Parameter  
Symbol  
fscl  
Min  
-
Max  
Unit  
kHz  
ns  
SCL Clock Frequency  
100  
RST Rising Edge to Start  
tirs  
500  
4.7  
4.0  
4.7  
4.0  
4.7  
0
-
Bus Free Time Between Transmissions  
Start Condition Hold Time (prior to first clock pulse)  
Clock Low time  
tbuf  
-
µs  
thdst  
tlow  
-
µs  
-
µs  
Clock High Time  
thigh  
tsust  
thdd  
-
µs  
Setup Time for Repeated Start Condition  
SDA Hold Time from SCL Falling  
SDA Setup time to SCL Rising  
Rise Time of SCL and SDA  
-
µs  
(Note 16)  
-
µs  
tsud  
250  
-
-
1
ns  
trc, trc  
tfc, tfc  
tsusp  
tack  
µs  
Fall Time SCL and SDA  
-
300  
-
ns  
Setup Time for Stop Condition  
Acknowledge Delay from SCL Falling  
4.7  
300  
µs  
1000  
ns  
Notes:  
16. Data must be held for sufficient time to bridge the transition time, tfc, of SCL.  
RST  
t
irs  
Repeated  
Start  
Stop  
Start  
Stop  
SDA  
SC L  
t
t
t
t
t
buf  
t
high  
hdst  
f
susp  
hdst  
t
t
t
t
t
sust  
sud  
r
low  
hdd  
Figure 3. Control Port Timing - I²C Format  
DS617F2  
17  
CS4362A  
SWITCHING CHARACTERISTICS - CONTROL PORT - SPI FORMAT  
(Inputs: Logic 0 = GND, Logic 1 = VLC, CL = 30 pF)  
Parameter  
Symbol  
fsclk  
tsrs  
Min  
-
Max  
Unit  
MHz  
ns  
CCLK Clock Frequency  
6
RST Rising Edge to CS Falling  
CCLK Edge to CS Falling  
CS High Time Between Transmissions  
CS Falling to CCLK Edge  
CCLK Low Time  
500  
500  
1.0  
20  
66  
66  
40  
15  
-
-
(Note 17)  
tspi  
-
ns  
tcsh  
tcss  
tscl  
-
µs  
-
ns  
-
ns  
CCLK High Time  
tsch  
tdsu  
tdh  
-
-
ns  
CDIN to CCLK Rising Setup Time  
CCLK Rising to DATA Hold Time  
Rise Time of CCLK and CDIN  
Fall Time of CCLK and CDIN  
ns  
(Note 18)  
(Note 19)  
(Note 19)  
-
ns  
tr2  
100  
100  
ns  
tf2  
-
ns  
Notes:  
17. tspi only needed before first falling edge of CS after RST rising edge. tspi = 0 at all other times.  
18. Data must be held for sufficient time to bridge the transition time of CCLK.  
19. For FSCK < 1 MHz.  
RST  
CS  
t
srs  
spi  
t
t
t
t
css  
scl  
sch  
t
csh  
CCLK  
t
t
r2  
f2  
C DIN  
t
t
dsu  
dh  
Figure 4. Control Port Timing - SPI Format  
18  
DS617F2  
CS4362A  
3. TYPICAL CONNECTION DIAGRAM  
+2.5 V  
+5 V  
+
+
1 µF  
0.1 µF  
0.1 µF  
1 µF  
4
32  
VA  
VD  
220 Ω  
6
7
9
MCLK  
39  
40  
AOUTA1+  
AOUTA1-  
Analog Conditioning  
and Muting  
LRCK  
SCLK  
PCM  
Digital  
Audio  
Source  
8
11  
13  
SDIN1  
SDIN2  
SDIN3  
38  
37  
AOUTB1+  
AOUTB1-  
Analog Conditioning  
and Muting  
470 Ω  
470 Ω  
35  
36  
AOUTA2+  
AOUTA2-  
Analog Conditioning  
and Muting  
43  
+1.8 V to +5 V  
VLS  
CS4362A  
34  
33  
AOUTB2+  
0.1 µF  
Analog Conditioning  
and Muting  
AOUTB2-  
3
2
29  
30  
DSDA1  
DSDB1  
DSDA2  
AOUTA3+  
AOUTA3-  
Analog Conditioning  
and Muting  
1
DSD  
Audio  
Source  
48  
28  
27  
AOUTB3+  
AOUTB3-  
DSDB2  
Analog Conditioning  
and Muting  
47  
DSDA3  
DSDB3  
46  
42  
41  
26  
25  
24  
23  
22  
DSD_SCLK  
MUTEC1  
MUTEC2  
MUTEC3  
MUTEC4  
Mute  
Drive  
19  
RST  
MUTEC5  
MUTEC6  
15  
16  
Micro-  
Controller  
SCL/CCLK  
SDA/CDIN  
17  
ADO/CS  
Note*  
20  
21  
FILT+  
18  
+1.8 V to +5 V  
VLC  
+
CMOUT  
0.1 µF  
F
47 µF  
0.1 µ  
F
1 µF  
0.1 µ  
+
GND  
5
TST  
GND  
31  
10, 12,  
14, 44, 45  
Note*: Necessary for I2C  
control port operation  
Figure 5. Typical Connection Diagram, Software Mode  
DS617F2  
19  
CS4362A  
+2.5 V  
+5 V  
+
+
1 µF  
0.1 µF  
0.1 µF  
1 µF  
4
VD  
32  
VA  
47 K  
NoteDSD  
VLS  
220 Ω  
6
MCLK  
39  
40  
41  
AOUTA1+  
AOUTA1-  
MUTEC1  
7
9
8
LRCK  
SCLK  
SDIN1  
SDIN2  
Analog Conditioning  
and Muting  
PCM  
Digital  
Audio  
Source  
11  
13  
38  
37  
26  
AOUTB1+  
AOUTB1-  
MUTEC2  
SDIN3  
Analog Conditioning  
and Muting  
470 Ω  
470 Ω  
43  
+1.8 V to +5 V  
VLS  
CS4362A  
0.1 µF  
35  
36  
25  
AOUTA2+  
AOUTA2-  
MUTEC3  
Analog Conditioning  
and Muting  
3
2
DSDA1  
DSDB1  
DSDA2  
1
34  
DSD  
Audio  
Source  
AOUTB2+  
AOUTB2-  
MUTEC4  
48  
Analog Conditioning  
and Muting  
33  
24  
DSDB2  
47  
46  
DSDA3  
DSDB3  
29  
30  
23  
AOUTA3+  
AOUTA3-  
MUTEC5  
Analog Conditioning  
and Muting  
NoteDSD  
Optional  
47 KΩ  
42  
M3(DSD_SCLK)  
28  
27  
22  
AOUTB3+  
AOUTB3-  
MUTEC6  
15  
16  
Analog Conditioning  
and Muting  
M2  
M1  
Stand-Alone  
Mode  
Configuration  
17  
19  
M0  
RST  
20  
21  
FILT+  
+
CMOUT  
F
47 µF  
0.1 µ  
18  
F
0.1 µ  
1 µF  
+1.8 V to +5 V  
VLC  
+
0.1 µF  
NoteDSD: For DSD operation:  
1) LRCK must be tied to VLS and  
remain static high.  
GND  
5
TST  
GND  
31  
10, 12,  
14, 44, 45  
2) M3 PCM stand-alone configuration  
pin becomes DSD_SCLK  
Figure 6. Typical Connection Diagram, Hardware Mode  
20  
DS617F2  
CS4362A  
4. APPLICATIONS  
The CS4362A serially accepts two’s-complement formatted PCM data at standard audio sample rates including 48,  
44.1, and 32 kHz in SSM, 96, 88.2, and 64 kHz in DSM, and 192, 176.4, and 128 kHz in QSM. Audio data is input  
via the serial data input pins (SDINx). The Left/Right Clock (LRCK) determines which channel is currently being input  
on SDINx, and the Serial Clock (SCLK) clocks audio data into the input data buffer.  
The CS4362A can be configured in Hardware Mode by the M0, M1, M2, M3, and DSD_EN pins and in Software  
Mode through I²C or SPI.  
4.1  
Master Clock  
MCLK/LRCK must be an integer ratio as shown in Table 1. The LRCK frequency is equal to Fs, the frequen-  
cy at which words for each channel are input to the device. The MCLK-to-LRCK frequency ratio is detected  
automatically during the initialization sequence by counting the number of MCLK transitions during a single  
LRCK period. Internal dividers are then set to generate the proper internal clocks. Table 1 illustrates several  
standard audio sample rates and the required MCLK and LRCK frequencies. Please note there is no re-  
quired phase relationship, but MCLK, LRCK, and SCLK must be synchronous.  
Sample  
Rate  
(kHz)  
Speed Mode  
(sample-rate range)  
Software  
Mode Only  
MCLK (MHz)  
MCLK Ratio  
256x  
8.1920  
11.2896  
12.2880  
128x  
384x  
512x  
768x  
1024x*  
32.7680  
45.1584  
49.1520  
512x*  
32  
44.1  
48  
12.2880  
16.9344  
18.4320  
192x  
16.3840  
22.5792  
24.5760  
256x  
24.5760  
33.8688  
36.8640  
384x  
Single-Speed  
(4 to 50 kHz)  
MCLK Ratio  
64  
88.2  
96  
8.1920  
11.2896  
12.2880  
64x  
12.2880  
16.9344  
18.4320  
96x  
16.3840  
22.5792  
24.5760  
128x  
24.5760  
33.8688  
36.8640  
192x  
32.7680  
45.1584  
49.1520  
256x*  
Double-Speed  
(50 to 100 kHz)  
MCLK Ratio  
176.4  
192  
11.2896  
12.2880  
16.9344  
18.4320  
22.5792  
24.5760  
33.8688  
36.8640  
45.1584  
49.1520  
Quad-Speed  
(100 to 200 kHz)  
Note: These modes are only available in Software Mode by setting the MCLKDIV bit = 1.  
Table 1. Common Clock Frequencies  
4.2  
Mode Select  
In Hardware Mode, operation is determined by the Mode Select pins. The states of these pins are continu-  
ally scanned for any changes; however, the mode should only be changed while the device is in reset  
(RST pin low) to ensure proper switching from one mode to another. These pins require connection to sup-  
ply or ground as outlined in Figure 6. VLC supplies M0, M1, and M2. VLS supplies M3 and DSD_EN.  
Tables 2 - 4 show the decode of these pins.  
In Software Mode, the operational mode and data format are set in the FM and DIF registers. See “Digital  
Interface Format (DIF)” on page 34 and “Functional Mode (FM)” on page 40.  
DS617F2  
21  
CS4362A  
M1  
(DIF1)  
M0  
(DIF0)  
DESCRIPTION  
Left-justified, up to 24-bit data  
I²S, up to 24-bit data  
Right-justified, 16-bit Data  
Right-justified, 24-bit Data  
FORMAT  
FIGURE  
0
0
1
1
0
1
0
1
0
1
2
3
Figure 7  
Figure 8  
Figure 9  
Figure 10  
Table 2. Digital Interface Format, Stand-Alone Mode Options  
M3  
M2  
DESCRIPTION  
(DEM)  
Single-speed without De-emphasis (4 to 50 kHz sample rates)  
Single-speed with 44.1 kHz De-Emphasis; see Figure 13  
Double-speed (50 to 100 kHz sample rates)  
0
0
1
1
0
1
0
1
Quad-speed (100 to 200 kHz sample rates)  
Table 3. Mode Selection, Stand-Alone Mode Options  
DSD_EN  
(LRCK)  
M2  
M1  
M0  
DESCRIPTION  
64x oversampled DSD data with a 4x MCLK to DSD data rate  
64x oversampled DSD data with a 6x MCLK to DSD data rate  
64x oversampled DSD data with a 8x MCLK to DSD data rate  
64x oversampled DSD data with a 12x MCLK to DSD data rate  
128x oversampled DSD data with a 2x MCLK to DSD data rate  
128x oversampled DSD data with a 3x MCLK to DSD data rate  
128x oversampled DSD data with a 4x MCLK to DSD data rate  
128x oversampled DSD data with a 6x MCLK to DSD data rate  
1
1
1
1
1
1
1
1
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
Table 4. Direct Stream Digital (DSD), Stand-Alone Mode Options  
22  
DS617F2  
CS4362A  
4.3  
Digital Interface Formats  
The serial port operates as a slave and supports the I²S, Left-justified, and Right-justified digital interface  
formats with varying bit depths from 16 to 24 as shown in Figures 7-12. Data is clocked into the DAC on the  
rising edge.  
Left Channel  
Right Channel  
LRCK  
SCLK  
SDINx  
MSB  
LSB  
MSB  
LSB  
+5 +4 +3 +2 +1  
+5 +4 +3 +2 +1  
-1 -2 -3 -4 -5  
-1 -2 -3 -4  
Figure 7. Format 0 - Left-Justified up to 24-bit Data  
Left Channel  
Right Channel  
LRCK  
SCLK  
SDINx  
MSB  
+5 +4 +3 +2 +1  
LSB  
MSB  
LSB  
+5 +4 +3 +2 +1  
-1 -2 -3 -4 -5  
-1 -2 -3 -4  
Figure 8. Format 1 - I²S up to 24-bit Data  
Right Channel  
LRCK  
SCLK  
Left Channel  
SDINx  
9
8
7
6
5
4
3
2
1
0
9
15 14 13 12 11 10  
8
7
6
5
4
3
2
1
0
15 14 13 12 11 10  
32 clocks  
Figure 9. Format 2 - Right-Justified 16-bit Data  
Right Channel  
LRCK  
SCLK  
Left Channel  
SDINx  
7
6
5
4
3
2
1
0
7
6
5
4
3
2
1
0
0
23 22 21 20 19 18  
32 clocks  
23 22 21 20 19 18  
Figure 10. Format 3 - Right-Justified 24-bit Data  
DS617F2  
23  
CS4362A  
Right Channel  
LRCK  
SCLK  
Left Channel  
SDINx  
1
0
19 18 17 16  
9
8
7
6
5
4
3
2
1
0
8
7
6
5
4
3
2
1
0
15 14 13 12 11 10  
32 clocks  
15 14 13 12 11 10  
19 18 17 16 9  
Figure 11. Format 4 - Right-Justified 20-bit Data  
Right Channel  
LRCK  
SCLK  
Left Channel  
SDINx  
1
0
17 16  
9
8
7
6
5
4
3
2
1
0
8
7
6
5
4
3
2
1 0  
15 14 13 12 11 10  
32 clocks  
15 14 13 12 11 10  
17 16 9  
Figure 12. Format 5 - Right-Justified 18-bit Data  
4.4  
Oversampling Modes  
The CS4362A operates in one of three oversampling modes based on the input sample rate. Mode selection  
is determined by the DSD_EN, M3, and M2 pins in Hardware Mode or the FM bits in Software Mode. Single-  
speed mode supports input sample rates up to 50 kHz and uses a 128x oversampling ratio. Double-speed  
Mode supports input sample rates up to 100 kHz and uses an oversampling ratio of 64x. Quad-speed Mode  
supports input sample rates up to 200 kHz and uses an oversampling ratio of 32x.  
4.5  
Interpolation Filter  
To accommodate the increasingly complex requirements of digital audio systems, the CS4362A incorpo-  
rates selectable interpolation filters for each mode of operation. A “fast” and a “slow” roll-off filter is available  
in each of Single, Double, and Quad-Speed modes. These filters have been designed to accommodate a  
variety of musical tastes and styles. The FILT_SEL bit is used to select which filter is used (see the “Filter  
Plots” on page 42 for more details).  
When in Hardware Mode, only the “fast” roll-off filter is available.  
Filter specifications can be found in Section 2, and filter response plots can be found in Figures 20 to 43.  
4.6  
De-emphasis  
The CS4362A includes on-chip digital de-emphasis filters. The de-emphasis feature is included to accom-  
modate older audio recordings that utilize pre-emphasis equalization as a means of noise reduction.  
Figure 13 shows the de-emphasis curve. The frequency response of the de-emphasis curve will scale pro-  
portionally with changes in sample rate (Fs) if the input sample rate does not match the coefficient which  
has been selected.  
24  
DS617F2  
CS4362A  
In Software Mode, the required de-emphasis filter coefficients for 32 kHz, 44.1 kHz, or 48 kHz are selected  
via the de-emphasis control bits.  
In Hardware Mode, only the 44.1 kHz coefficient is available (enabled through the M2 pin). If the input sam-  
ple rate is not 44.1 kHz and de-emphasis has been selected, the corner frequencies of the de-emphasis  
filter will be scaled by a factor of the actual Fs over 44,100.  
Gain  
dB  
T1=50 µs  
0dB  
T2 = 15 µs  
-10dB  
F1  
F2  
Frequency  
3.183 kHz  
10.61 kHz  
Figure 13. De-Emphasis Curve  
4.7  
ATAPI Specification  
The CS4362A implements the channel mixing functions of the ATAPI CD-ROM specification. The  
ATAPI functions are applied per A-B pair. Refer to Table 8 on page 41 and Figure 14 for additional informa-  
tion.  
A Channel  
Volume  
Control  
Left Channel  
Audio Data  
MUTE  
AoutAx  
Σ
Σ
SDINx  
B Channel  
Volume  
Control  
Right Channel  
Audio Data  
MUTE  
AoutBx  
Figure 14. ATAPI Block Diagram (x = channel pair 1, 2, or 3)  
DS617F2  
25  
CS4362A  
4.8  
Direct Stream Digital (DSD) Mode  
In Stand-alone Mode, DSD operation is selected by holding DSD_EN(LRCK) high and applying the DSD  
data and clocks to the appropriate pins. The M[2:0] pins set the expected DSD rate and MCLK ratio.  
In Control Port Mode, the FM bits set the device into DSD Mode (DSD_EN pin is not required to be held  
high). The DIF register then controls the expected DSD rate and MCLK ratio.  
During DSD operation, the PCM related pins should either be tied low or remain active with clocks (except  
LRCK in Stand-alone Mode). When the DSD related pins are not being used, they should either be tied static  
low or remain active with clocks (except M3 in Stand-alone Mode).  
4.9  
Grounding and Power Supply Arrangements  
As with any high-resolution converter, the CS4362A requires careful attention to power supply and ground-  
ing arrangements if its potential performance is to be realized. The Typical Connection Diagram shows the  
recommended power arrangements, with VA, VD, VLC, and VLS connected to clean supplies. If the ground  
planes are split between digital ground and analog ground, the GND pins of the CS4362A should be con-  
nected to the analog ground plane.  
All signals, especially clocks, should be kept away from the FILT+ and VQ pins in order to avoid unwanted  
coupling into the DAC.  
4.9.1  
Capacitor Placement  
Decoupling capacitors should be placed as close to the DAC as possible, with the low-value ceramic ca-  
pacitor being the closest. To further minimize impedance, these capacitors should be located on the same  
layer as the DAC. If desired, all supply pins with similar voltage ratings may be connected to the same  
supply, but a decoupling capacitor should still be placed on each supply pin.  
Notes: All decoupling capacitors should be referenced to analog ground.  
The CDB4362A evaluation board demonstrates the optimum layout and power supply arrangements.  
4.10 Analog Output and Filtering  
The application note “Design Notes for a 2-pole Filter with Differential Input” discusses the second-order  
Butterworth filter and differential-to-single-ended converter which was implemented on the CS4362A eval-  
uation board, CDB4362A, as seen in Figure 16. The CS4362A does not include phase or amplitude com-  
pensation for an external filter. Therefore, the DAC system phase and amplitude response will be dependent  
on the external analog circuitry. The off-chip filter has been designed to attenuate the typical full-scale out-  
put level to below 2 Vrms.  
Figure 15 shows how the full-scale differential analog output level specification is derived.  
26  
DS617F2  
CS4362A  
3.85 V  
2.5 V  
AOUT+  
AOUT-  
1.15 V  
3.85 V  
2.5 V  
1.15 V  
Full-Scale Output Level= (AOUT+) - (AOUT-)= 6.7 Vpp  
Figure 15. Full-Scale Output  
Figure 16. Recommended Output Filter  
4.11 Mute Control  
The Mute Control pins go active during power-up initialization, muting, or if the MCLK-to-LRCK ratio is in-  
correct. These pins are intended to be used as control for external mute circuits to prevent the clicks and  
pops that can occur in any single-ended, single-supply system. The MUTEC output pins are high impedance  
at the time of reset. The external mute circuitry needs to be self biased into an active state in order to be  
muted during reset. Once reset has been released, the MUTEC pins are active high in hardware mode and  
the active state is set by the MUTEC+/- register in software mode (see Section 6.3.4).  
Figure 17 shows a single example of both an active high and an active low mute drive circuit. In these de-  
signs, the pull-up and pull-down resistors have been especially chosen to meet the input high/low threshold  
when used with the MMUN2111 and MMUN2211 internal bias resistances of 10 k.  
DS617F2  
27  
CS4362A  
Use of the Mute Control function is not mandatory but recommended for designs requiring the absolute min-  
imum in extraneous clicks and pops. Also, use of the Mute Control function can enable the system designer  
to achieve idle channel noise/signal-to-noise ratios which are only limited by the external mute circuit.  
Figure 17. Recommended Mute Circuitry  
4.12 Recommended Power-Up Sequence  
4.12.1 Hardware Mode  
1. Hold RST low until the power supplies and configuration pins are stable, and the master and left/right  
clocks are locked to the appropriate frequencies, as discussed in Section 4.1. In this state, the  
registers are reset to the default settings, FILT+ will remain low, and VQ will be connected to VA/2.  
If RST can not be held low long enough the SDINx pins should remain static low until all other clocks  
are stable, and if possible the RST should be toggled low again once the system is stable.  
2. Bring RST high. The device will remain in a low power state with FILT+ low and will initiate the  
Hardware power-up sequence after approximately 512 LRCK cycles in Single-Speed Mode (1024  
LRCK cycles in Double-Speed Mode, and 2048 LRCK cycles in Quad-Speed Mode).  
4.12.2 Software Mode  
1. Hold RST low until the power supply is stable, and the master and left/right clocks are locked to the  
appropriate frequencies, as discussed in Section 4.1. In this state, the registers are reset to the default  
settings; FILT+ will remain low, and VQ will be connected to VA/2.  
2. Bring RST high. The device will remain in a low-power state with FILT+ low for 512 LRCK cycles in  
Single-speed Mode (1024 LRCK cycles in Double-speed Mode, and 2048 LRCK cycles in Quad-  
speed Mode).  
3. In order to reduce the chances of clicks and pops, perform a write to the CP_EN bit prior to the  
completion of approximately 512 LRCK cycles in Single-speed Mode (1024 LRCK cycles in Double-  
speed Mode, and 2048 LRCK cycles in Quad-speed Mode). The desired register settings can be  
loaded while keeping the PDN bit set to 1. Set the RMP_UP and RMP_DN bits to 1; then set the  
format and mode control bits to the desired settings.  
If more than the stated number of LRCK cycles passes before CPEN bit is written, the chip will enter  
Hardware Mode and begin to operate with the M0-M3 as the mode settings. CPEN bit may be written  
at anytime, even after the Hardware sequence has begun. It is advised that if the CPEN bit cannot be  
set in time, the SDINx pins should remain static low (this way, no audio data can be converted  
incorrectly by the Hardware Mode settings).  
4. Set the PDN bit to 0. This will initiate the power-up sequence, which lasts approximately 50 µs.  
28  
DS617F2  
CS4362A  
4.13 Recommended Procedure for Switching Operational Modes  
For systems where the absolute minimum in clicks and pops is required, it is recommended that the MUTE  
bits are set prior to changing significant DAC functions (such as changing sample rates or clock sources).  
The mute bits may then be released after clocks have settled and the proper modes have been set.  
It is required to have the device held in reset if the minimum high/low time specs of MCLK cannot be met  
during clock source changes.  
4.14 Control Port Interface  
The Control Port is used to load all the internal register settings in order to operate in Software Mode (see  
the “Filter Plots” on page 42). The operation of the Control Port may be completely asynchronous with the  
audio sample rate. However, to avoid potential interference problems, the Control Port pins should remain  
static if no operation is required.  
The Control Port operates in one of two modes: I²C or SPI.  
4.14.1 MAP Auto Increment  
The device has MAP (memory address pointer) auto-increment capability enabled by the INCR bit (also  
the MSB) of the MAP. If INCR is set to 0, MAP will stay constant for successive I²C writes or reads and  
SPI writes. If INCR is set to 1, MAP will auto increment after each byte is written, allowing block reads or  
writes of successive registers.  
4.14.2 I²C Mode  
In the I²C Mode, data is clocked into and out of the bi-directional serial control data line, SDA, by the serial  
Control Port clock, SCL (see Figure 18 for the clock to data relationship). There is no CS pin. Pin AD0  
enables the user to alter the chip address (001100[AD0][R/W]) and should be tied to VLC or GND, as re-  
quired, before powering up the device. If the device ever detects a high-to-low transition on the AD0/CS  
pin after power-up, SPI Mode will be selected.  
4.14.2.1 I²C Write  
To write to the device, follow the procedure below while adhering to the Control Port Switching Specifica-  
tions in Section 2.  
1. Initiate a START condition to the I²C bus followed by the address byte. The upper 6 bits must be  
001100. The seventh bit must match the setting of the AD0 pin, and the eighth must be 0. The eighth  
bit of the address byte is the R/W bit.  
2. Wait for an acknowledge (ACK) from the part; then write to the memory address pointer, MAP. This  
byte points to the register to be written.  
3. Wait for an acknowledge (ACK) from the part; then write the desired data to the register pointed to by  
the MAP.  
4. If the INCR bit (see Section 4.14.1) is set to 1, repeat the previous step until all the desired registers  
are written, then initiate a STOP condition to the bus.  
5. If the INCR bit is set to 0 and further I²C writes to other registers are desired, it is necessary to initiate  
a repeated START condition and follow the procedure detailed from step 1. If no further writes to other  
registers are desired, initiate a STOP condition to the bus.  
DS617F2  
29  
CS4362A  
4.14.2.2 I²C Read  
To read from the device, follow the procedure below while adhering to the Control Port Switching Speci-  
fications.  
1. Initiate a START condition to the I²C bus followed by the address byte. The upper 6 bits must be  
001100. The seventh bit must match the setting of the AD0 pin, and the eighth must be 1. The eighth  
bit of the address byte is the R/W bit.  
2. After transmitting an acknowledge (ACK), the device will then transmit the contents of the register  
pointed to by the MAP. The MAP register will contain the address of the last register written to the  
MAP, or the default address (see Section 4.14.1) if an I²C read is the first operation performed on the  
device.  
3. Once the device has transmitted the contents of the register pointed to by the MAP, issue an ACK.  
4. If the INCR bit is set to 1, the device will continue to transmit the contents of successive registers. Con-  
tinue providing a clock and issue an ACK after each byte until all the desired registers are read; then  
initiate a STOP condition to the bus.  
5. If the INCR bit is set to 0 and further I²C reads from other registers are desired, it is necessary to initiate  
a repeated START condition and follow the procedure detailed from steps 1 and 2 from the I²C Write  
instructions followed by step 1 of the I²C Read section. If no further reads from other registers are de-  
sired, initiate a STOP condition to the bus.  
Note 1  
ADDR  
AD0  
DATA  
1-8  
DATA  
1-8  
001100  
R/W  
ACK  
ACK  
ACK  
SDA  
SCL  
Start  
Stop  
Note: If operation is a write, this byte contains the Memory Address Pointer, MAP.  
Figure 18. Control Port Timing, I²C Mode  
4.14.3 SPI Mode  
In SPI Mode, data is clocked into the serial control data line, CDIN, by the serial Control Port clock, CCLK  
(see Figure 19 for the clock-to-data relationship). There is no AD0 pin. Pin CS is the chip select signal and  
is used to control SPI writes to the Control Port. When the device detects a high-to-low transition on the  
AD0/CS pin after power-up, SPI Mode will be selected. All signals are inputs and data is clocked in on the  
rising edge of CCLK.  
4.14.3.1 SPI Write  
To write to the device, follow the procedure below while adhering to the Control Port Switching Specifica-  
tions in Section 2.  
1. Bring CS low.  
2. The address byte on the CDIN pin must then be 00110000.  
3. Write to the memory address pointer, MAP. This byte points to the register to be written.  
4. Write the desired data to the register pointed to by the MAP.  
5. If the INCR bit (see Section 4.14.1) is set to 1, repeat the previous step until all the desired registers  
are written, then bring CS high.  
30  
DS617F2  
CS4362A  
6. If the INCR bit is set to 0 and further SPI writes to other registers are desired, it is necessary to bring  
CS high, and follow the procedure detailed from step 1. If no further writes to other registers are de-  
sired, bring CS high.  
CS  
CCLK  
CHIP  
ADDRESS  
MAP  
DATA  
0011000  
LSB  
CDIN  
MSB  
R/W  
byte 1  
byte n  
MAP = Memory Address Pointer  
Figure 19. Control Port Timing, SPI Mode  
4.15 Memory Address Pointer (MAP)  
7
INCR  
0
6
Reserved  
0
5
Reserved  
0
4
MAP4  
0
3
MAP3  
0
2
MAP2  
0
1
MAP1  
0
0
MAP0  
0
4.16 INCR (Auto Map Increment Enable)  
Default = ‘0’  
0 - Disabled  
1 - Enabled  
4.16.1 MAP4-0 (Memory Address Pointer)  
Default = ‘00000’  
DS617F2  
31  
CS4362A  
5. REGISTER QUICK REFERENCE  
Addr  
Function  
7
6
5
4
3
2
1
0
01h Mode Control 1  
CPEN  
FREEZE MCLKDIV Reserved DAC3_DIS DAC2_DIS DAC1_DIS  
PDN  
1
0
0
DIF2  
0
0
DIF0  
0
0
0
0
default  
0
DIF1  
0
02h Mode Control 2  
default  
03h Mode Control 3  
default  
Reserved  
Reserved Reserved Reserved Reserved  
0
SZC1  
1
0
0
0
MUTEC1  
0
0
SZC0  
0
SNGLVOL RMP_UP MUTEC+/-  
AMUTE  
MUTEC0  
0
0
0
1
DEM1  
0
0
RMP_DN  
0
04h Filter Control  
default  
Reserved Reserved Reserved FILT_SEL Reserved  
DEM0  
0
0
0
0
INV_B3  
0
0
INV_A3  
0
0
INV_B2  
0
05h Invert Control  
Reserved Reserved  
INV_A2  
0
INV_B1  
0
INV_A1  
0
0
0
default  
06h Mixing Control  
Pair 1 (AOUTx1)  
P1_A=B P1ATAPI4 P1ATAPI3 P1ATAPI2 P1ATAPI1 P1ATAPI0  
FM1  
FM0  
0
0
1
0
0
1
0
0
default  
07h Vol. Control A1  
default  
A1_MUTE A1_VOL6 A1_VOL5 A1_VOL4 A1_VOL3 A1_VOL2 A1_VOL1 A1_VOL0  
0
0
0
0
0
0
0
0
08h Vol. Control B1  
default  
B1_MUTE B1_VOL6 B1_VOL5 B1_VOL4 B1_VOL3 B1_VOL2 B1_VOL1 B1_VOL0  
0
0
0
0
0
0
0
0
09h Mixing Control  
Pair 2 (AOUTx2)  
P2_A=B P2ATAPI4 P2ATAPI3 P2ATAPI2 P2ATAPI1 P2ATAPI0 Reserved Reserved  
0
0
1
0
0
1
0
0
default  
0Ah Vol. Control A2  
default  
A2_MUTE A2_VOL6 A2_VOL5 A2_VOL4 A2_VOL3 A2_VOL2 A2_VOL1 A2_VOL0  
0
0
0
0
0
0
0
0
0Bh Vol. Control B2  
B2_MUTE B2_VOL6 B2_VOL5 B2_VOL4 B2_VOL3 B2_VOL2 B2_VOL1 B2_VOL0  
0
0
0
0
0
0
0
0
default  
0Ch Mixing Control  
Pair 3 (AOUTx3)  
P3_A=B P3ATAPI4 P3ATAPI3 P3ATAPI2 P3ATAPI1 P3ATAPI0 Reserved Reserved  
0
0
1
0
0
1
0
0
default  
0Dh Vol. Control A3  
default  
A3_MUTE A3_VOL6 A3_VOL5 A3_VOL4 A3_VOL3 A3_VOL2 A3_VOL1 A3_VOL0  
0
0
0
0
0
0
0
0
0Eh Vol. Control B3  
default  
12h Chip Revision  
default  
B3_MUTE B3_VOL6 B3_VOL5 B3_VOL4 B3_VOL3 B3_VOL2 B3_VOL1 B3_VOL0  
0
PART4  
0
0
PART3  
1
0
PART2  
0
0
PART1  
1
0
PART0  
0
0
REV2  
x
0
REV1  
x
0
REV0  
x
32  
DS617F2  
CS4362A  
6. REGISTER DESCRIPTION  
Note: All registers are read/write in I²C Mode and write only in SPI, unless otherwise noted.  
6.1  
Mode Control 1 (Address 01h)  
7
CPEN  
0
6
FREEZE  
0
5
MCLKDIV  
0
4
Reserved  
0
3
DAC3_DIS  
0
2
DAC2_DIS  
0
1
0
PDN  
1
DAC1_DIS  
0
6.1.1  
Control Port Enable (CPEN)  
Default = 0  
0 - Disabled  
1 - Enabled  
Function:  
This bit defaults to 0, allowing the device to power-up in Stand-Alone Mode. The Control Port Mode can  
be accessed by setting this bit to 1. This will allow the operation of the device to be controlled by the reg-  
isters and the pin definitions will conform to Control Port Mode. To accomplish a clean power-up, the user  
should write this bit within 10 ms following the release of Reset.  
6.1.2  
Freeze Controls (FREEZE)  
Default = 0  
0 - Disabled  
1 - Enabled  
Function:  
This function allows modifications to be made to the registers without the changes taking effect until the  
FREEZE is disabled. To make multiple changes in the Control Port registers take effect simultaneously,  
enable the FREEZE Bit, make all register changes, then Disable the FREEZE bit.  
6.1.3  
Master Clock Divide Enable (MCLKDIV)  
Default = 0  
0 - Disabled  
1 - Enabled  
Function:  
The MCLKDIV bit enables a circuit which divides the externally applied MCLK signal by 2 prior to all other  
internal circuitry.  
6.1.4  
DAC Pair Disable (DACx_DIS)  
Default = 0  
0 - DAC Pair x Enabled  
1 - DAC Pair x Disabled  
Function:  
When the bit is set, the respective DAC channel pair (AOUTAx and AOUTBx) will remain in a reset state.  
It is advised that changes to these bits be made while the power-down (PDN) bit is enabled to eliminate  
the possibility of audible artifacts.  
DS617F2  
33  
CS4362A  
6.1.5  
Power Down (PDN)  
Default = 1  
0 - Disabled  
1 - Enabled  
Function:  
The entire device will enter a low-power state when this function is enabled, and the contents of the control  
registers are retained in this mode. The power-down bit defaults to ‘enabled’ on power-up and must be  
disabled before normal operation in Control Port Mode can occur.  
6.2  
Mode Control 2 (Address 02h)  
7
6
DIF2  
0
5
DIF1  
0
4
DIF0  
0
3
Reserved  
0
2
Reserved  
0
1
Reserved  
0
0
Reserved  
0
Reserved  
0
6.2.1  
Digital Interface Format (DIF)  
Default = 000 - Format 0 (Left-Justified, up to 24-bit data)  
Function:  
These bits select the interface format for the serial audio input. The Functional Mode bits determine  
whether PCM or DSD Mode is selected.  
PCM Mode: The required relationship between the Left/Right clock, serial clock and serial data is defined  
by the Digital Interface Format and the options are detailed in Figures 7-12.  
Note: While in PCM Mode, the DIF bits should only be changed when the power-down (PDN) bit is set  
to ensure proper switching from one mode to another.  
DIF2  
DIF1  
DIF0  
DESCRIPTION  
Left-Justified, up to 24-bit data  
Format  
FIGURE  
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
0
1
2
3
4
5
-
7
8
9
10  
11  
12  
I²S, up to 24-bit data  
Right-Justified, 16-bit data  
Right-Justified, 24-bit data  
Right-Justified, 20-bit data  
Right-Justified, 18-bit data  
Reserved  
Reserved  
-
Table 5. Digital Interface Formats - PCM Mode  
34  
DS617F2  
CS4362A  
DSD Mode: The relationship between the oversampling ratio of the DSD audio data and the required  
master clock-to-DSD-data-rate is defined by the Digital Interface Format pins.  
DIF2  
DIF1  
DIFO  
DESCRIPTION  
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
64x oversampled DSD data with a 4x MCLK to DSD data rate  
64x oversampled DSD data with a 6x MCLK to DSD data rate  
64x oversampled DSD data with a 8x MCLK to DSD data rate  
64x oversampled DSD data with a 12x MCLK to DSD data rate  
128x oversampled DSD data with a 2x MCLK to DSD data rate  
128x oversampled DSD data with a 3x MCLK to DSD data rate  
128x oversampled DSD data with a 4x MCLK to DSD data rate  
128x oversampled DSD data with a 6x MCLK to DSD data rate  
Table 6. Digital Interface Formats - DSD Mode  
6.3  
Mode Control 3 (Address 03h)  
7
SZC1  
1
6
SZC0  
0
5
SNGLVOL  
0
4
RMP_UP  
0
3
MUTEC+/-  
0
2
AMUTE  
1
1
MUTEC1  
0
0
MUTEC0  
0
6.3.1  
Soft Ramp and Zero Cross Control (SZC)  
Default = 10  
00 - Immediate Change  
01 - Zero Cross  
10 - Soft Ramp  
11 - Soft Ramp on Zero Crossings  
Function:  
Immediate Change  
When Immediate Change is selected, all level changes will take effect immediately in one step.  
Zero Cross  
Zero Cross Enable dictates that signal level changes, either by attenuation changes or muting, will occur  
on a signal zero crossing to minimize audible artifacts. The requested level change will occur after a time-  
out period between 512 and 1024 sample periods (10.7 ms to 21.3 ms at 48 kHz sample rate) if the signal  
does not encounter a zero crossing. The zero cross function is independently monitored and implemented  
for each channel.  
Soft Ramp  
Soft Ramp allows level changes, both muting and attenuation, to be implemented by incrementally ramp-  
ing, in 1/8 dB steps, from the current level to the new level at a rate of 1 dB per 8 left/right clock periods.  
Soft Ramp on Zero Crossing  
Soft Ramp and Zero Cross Enable dictates that signal level changes, either by attenuation changes or  
muting, will occur in 1/8 dB steps and be implemented on a signal zero crossing. The 1/8 dB level change  
will occur after a time-out period between 512 and 1024 sample periods (10.7 ms to 21.3 ms at 48 kHz  
sample rate) if the signal does not encounter a zero crossing. The zero cross function is independently  
monitored and implemented for each channel.  
DS617F2  
35  
CS4362A  
6.3.2  
Single Volume Control (SNGLVOL)  
Default = 0  
0 - Disabled  
1 - Enabled  
Function:  
The individual channel volume levels are independently controlled by their respective Volume Control  
Bytes when this function is disabled. The volume on all channels is determined by the A1 Channel Volume  
Control Byte, and the other Volume Control Bytes are ignored when this function is enabled.  
6.3.3  
Soft Volume Ramp-Up After Error (RMP_UP)  
Default = 0  
0 - Disabled  
1 - Enabled  
Function:  
An un-mute will be performed after a LRCK/MCLK ratio change or error, and after changing the Functional  
Mode. When this feature is enabled, this un-mute is affected, similar to attenuation changes, by the Soft  
and Zero Cross bits in the Mode Control 3 register. When disabled, an immediate un-mute is performed  
in these instances.  
Notes: For best results, it is recommended that this feature be used in conjunction with the RMP_DN bit.  
6.3.4  
Mutec Polarity (MUTEC+/-)  
Default = 0  
0 - Active High  
1 - Active Low  
Function:  
The active polarity of the MUTEC pin(s) is determined by this register. When set to 0 (default), the MUTEC  
pins are high when active. When set to 1 the MUTEC pin(s) are low when active.  
Note: During reset the MUTEC output pins are high impedance and the external mute circuitry will need  
to be self biased into an active state, see Section 4.11. Once reset has been released, the MUTEC out-  
puts’ active polarity will be set by this bit.  
6.3.5  
Auto-Mute (AMUTE)  
Default = 1  
0 - Disabled  
1 - Enabled  
Function:  
The Digital-to-Analog converter output will mute following the reception of 8192 consecutive audio sam-  
ples of static 0 or -1. A single sample of non-static data will release the mute. Detection and muting is  
done independently for each channel. The quiescent voltage on the output will be retained, and the Mute  
Control pin will go active during the mute period. The muting function is affected, similar to volume control  
changes, by the Soft and Zero Cross bits in the Mode Control 3 register.  
36  
DS617F2  
CS4362A  
6.3.6  
Mute Pin Control (MUTEC1, MUTEC0)  
Default = 00  
00 - Six mute control signals  
01, 10 - One mute control signal  
11 - Three mute control signals  
Function:  
Selects how the internal mute control signals are routed to the MUTEC1 through MUTEC6 pins. When  
set to ‘00’, there is one mute control signal for each channel: AOUT1A on MUTEC1, AOUT1B on  
MUTEC2, etc. When set to ‘01’ or ‘10’, there is a single mute control signal on the MUTEC1 pin. When  
set to ‘11’, there are three mute control signals, one for each stereo pair: AOUT1A and AOUT1B on  
MUTEC1, AOUT2A and AOUT2B on MUTEC2, and AOUT3A and AOUT3B on MUTEC3.  
6.4  
Filter Control (Address 04h)  
7
6
Reserved  
0
5
Reserved  
0
4
FILT_SEL  
0
3
Reserved  
0
2
DEM1  
0
1
DEM0  
0
0
RMP_DN  
0
Reserved  
0
6.4.1  
Interpolation Filter Select (FILT_SEL)  
Default = 0  
0 - Fast roll-off  
1 - Slow roll-off  
Function:  
This function allows the user to select whether the interpolation filter has a fast or slow roll off. For filter  
characteristics, please see Section 2.  
6.4.2  
De-Emphasis Control (DEM)  
Default = 00  
00 - Disabled  
01 - 44.1 kHz  
10 - 48 kHz  
11 - 32 kHz  
Function:  
Selects the appropriate digital filter to maintain the standard 15 µs/50 µs digital de-emphasis filter re-  
sponse at 32, 44.1 or 48 kHz sample rates. (see Figure 13)  
De-emphasis is only available in Single-Speed Mode.  
6.4.3  
Soft Ramp-Down Before Filter Mode Change (RMP_DN)  
Default = 0  
0 - Disabled  
1 - Enabled  
Function:  
If either the FILT_SEL or DEM bits are changed, the DAC will stop conversion for a period of time to  
change filter values. This bit selects how the data is effected prior to and after the change of the filter val-  
DS617F2  
37  
CS4362A  
ues. When this bit is enabled, the DAC will ramp down the volume prior to a filter-mode change and ramp  
from mute to the original volume value after a filter-mode change according to the settings of the Soft and  
Zero Cross bits in the Mode Control 3 register. When disabled, an immediate mute and unmute is per-  
formed.  
Loss of clocks or a change in the FM bits will always cause an immediate mute; unmute in these condi-  
tions is affected by the RMP_UP bit.  
Note: For best results, it is recommended that this feature be used in conjunction with the RMP_UP bit.  
6.5  
Invert Control (Address 05h)  
7
6
Reserved  
0
5
INV_B3  
0
4
INV_A3  
0
3
INV_B2  
0
2
INV_A2  
0
1
INV_B1  
0
0
INV_A1  
0
Reserved  
0
6.5.1  
Invert Signal Polarity (Inv_Xx)  
Default = 0  
0 - Disabled  
1 - Enabled  
Function:  
When enabled, these bits will invert the signal polarity of their respective channels.  
6.6  
Mixing Control Pair 1 (Channels A1 & B1)(Address 06h)  
Mixing Control Pair 2 (Channels A2 & B2)(Address 09h)  
Mixing Control Pair 3 (Channels A3 & B3)(Address 0Ch)  
7
6
PxATAPI4  
0
5
PxATAPI3  
1
4
PxATAPI2  
0
3
PxATAPI1  
0
2
PxATAPI0  
1
1
PxFM1  
0
0
PxFM0  
0
Px_A=B  
0
6.6.1  
Channel A Volume = Channel B Volume (A=B)  
Default = 0  
0 - Disabled  
1 - Enabled  
Function:  
The AOUTAx and AOUTBx volume levels are independently controlled by the A and the B Channel Vol-  
ume Control Bytes when this function is disabled. The volume on both AOUTAx and AOUTBx are deter-  
mined by the A Channel Attenuation and Volume Control Bytes (per A-B pair), and the B Channel Bytes  
are ignored when this function is enabled.  
38  
DS617F2  
CS4362A  
6.6.2  
ATAPI Channel Mixing and Muting (ATAPI)  
Default = 01001 - AOUTAx=aL, AOUTBx=bR (Stereo)  
Function:  
The CS4362A implements the channel mixing functions of the ATAPI CD-ROM specification. The ATAPI  
functions are applied per A-B pair. Refer to Table 7 and Figure 14 for additional information.  
ATAPI4  
ATAPI3  
ATAPI2  
ATAPI1  
ATAPI0  
AOUTAx  
MUTE  
MUTE  
MUTE  
MUTE  
aR  
AOUTBx  
MUTE  
bR  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
bL  
b[(L+R)/2]  
MUTE  
bR  
aR  
aR  
aR  
aL  
aL  
aL  
aL  
bL  
b[(L+R)/2]  
MUTE  
bR  
bL  
b[(L+R)/2]  
MUTE  
bR  
a[(L+R)/2]  
a[(L+R)/2]  
a[(L+R)/2]  
a[(L+R)/2]  
MUTE  
MUTE  
MUTE  
MUTE  
aR  
bL  
b[(L+R)/2]  
MUTE  
bR  
bL  
[(aL+bR)/2]  
MUTE  
bR  
aR  
aR  
aR  
aL  
aL  
aL  
aL  
bL  
[(bL+aR)/2]  
MUTE  
bR  
bL  
[(aL+bR)/2]  
MUTE  
bR  
[(aL+bR)/2]  
[(aL+bR)/2]  
[(bL+aR)/2]  
[(aL+bR)/2]  
bL  
[(aL+bR)/2]  
Table 7. ATAPI Decode  
DS617F2  
39  
CS4362A  
6.6.3  
Functional Mode (FM)  
Default = 00  
00 - Single-Speed Mode (4 to 50 kHz sample rates)  
01 - Double-Speed Mode (50 to 100 kHz sample rates)  
10 - Quad-Speed Mode (100 to 200 kHz sample rates)  
11 - Direct Stream Digital Mode  
Function:  
Selects the required range of input sample rates or DSD Mode. All DAC pairs are required to be set to the  
same functional mode setting before a speed-mode change is accepted. When DSD Mode is selected for  
any channel pair, all pairs switch to DSD Mode.  
6.7  
Volume Control (Addresses 07h, 08h, 0Ah, 0Bh, 0Dh, 0Eh)  
7
6
xx_VOL6  
0
5
xx_VOL5  
0
4
xx_VOL4  
0
3
xx_VOL3  
0
2
xx_VOL2  
0
1
xx_VOL1  
0
0
xx_VOL0  
0
xx_MUTE  
0
Note: These six registers provide individual volume and mute control for each of the six channels.  
The values for “xx” in the bit fields above are as follows:  
Register address 07h - xx = A1  
Register address 08h - xx = B1  
Register address 0Ah - xx = A2  
Register address 0Bh - xx = B2  
Register address 0Dh - xx = A3  
Register address 0Eh - xx = B3  
6.7.1  
Mute (MUTE)  
Default = 0  
0 - Disabled  
1 - Enabled  
Function:  
The Digital-to-Analog converter output will mute when enabled. The quiescent voltage on the output will  
be retained. The muting function is affected, similarly to attenuation changes, by the Soft and Zero Cross  
bits. The MUTE pins will go active during the mute period according to the MUTEC bits.  
40  
DS617F2  
CS4362A  
6.7.2  
Volume Control (XX_VOL)  
Default = 0 (No attenuation)  
Function:  
The Digital Volume Control registers allow independent control of the signal levels in 1 dB increments  
from 0 to -127 dB. Volume settings are decoded as shown in Table 8. The volume changes are imple-  
mented as dictated by the Soft and Zero Cross bits. All volume settings less than -127 dB are equivalent  
to enabling the MUTE bit.  
Binary Code  
0 0 0 0 0 0 0  
0 0 1 0 1 0 0  
0 1 0 1 0 0 0  
0 1 1 1 1 0 0  
1 0 1 1 0 1 0  
Decimal Value  
Volume Setting  
0 dB  
0
20  
40  
60  
90  
-20 dB  
-40 dB  
-60 dB  
-90 dB  
Table 8. Example Digital Volume Settings  
6.8  
Chip Revision (Address 12h)  
7
6
PART3  
1
5
PART2  
0
4
PART1  
1
3
PART0  
0
2
REV2  
-
1
REV1  
-
0
REV0  
-
PART4  
0
6.8.1  
Part Number ID (PART) [Read Only]  
01010 - CS4362A  
6.8.2  
Revision ID (REV) [Read Only]  
000 - Revision A  
001 - Revision B  
Function:  
This read-only register can be used to identify the model and revision number of the device.  
DS617F2  
41  
CS4362A  
7. FILTER PLOTS  
0
−20  
0
−20  
−40  
−40  
−60  
−60  
−80  
−80  
−100  
−100  
−120  
−120  
0.4  
0.42  
0.44  
0.46  
0.48  
0.5  
0.52  
0.54  
0.56  
0.58  
0.6  
0.4  
0.5  
0.6  
0.7  
0.8  
0.9  
1
Frequency(normalized to Fs)  
Frequency(normalized to Fs)  
Figure 20. Single-Speed (fast) Stopband Rejection  
Figure 21. Single-Speed (fast) Transition Band  
0
−1  
−2  
−3  
−4  
−5  
−6  
−7  
−8  
−9  
−10  
0.02  
0.015  
0.01  
0.005  
0
−0.005  
−0.01  
−0.015  
−0.02  
0.45  
0.46  
0.47  
0.48  
0.49  
0.5  
0.51  
0.52  
0.53  
0.54  
0.55  
0
0.05  
0.1  
0.15  
0.2  
0.25  
0.3  
0.35  
0.4  
0.45  
0.5  
Frequency(normalized to Fs)  
Frequency(normalized to Fs)  
Figure 22. Single-Speed (fast) Transition Band (detail)  
Figure 23. Single-Speed (fast) Passband Ripple  
0
−20  
0
−20  
−40  
−40  
−60  
−60  
−80  
−80  
−100  
−120  
−100  
−120  
0.4  
0.5  
0.6  
0.7  
0.8  
0.9  
1
0.4  
0.42  
0.44  
0.46  
0.48  
0.5  
0.52  
0.54  
0.56  
0.58  
0.6  
Frequency(normalized to Fs)  
Frequency(normalized to Fs)  
Figure 24. Single-Speed (slow) Stopband Rejection  
Figure 25. Single-Speed (slow) Transition Band  
42  
DS617F2  
CS4362A  
0.02  
0.015  
0.01  
0
−1  
−2  
−3  
−4  
−5  
−6  
−7  
−8  
−9  
−10  
0.005  
0
−0.005  
−0.01  
−0.015  
−0.02  
0
0.05  
0.1  
0.15  
0.2  
0.25  
0.3  
0.35  
0.4  
0.45  
0.5  
0.45  
0.46  
0.47  
0.48  
0.49  
0.5  
0.51  
0.52  
0.53  
0.54  
0.55  
Frequency(normalized to Fs)  
Frequency(normalized to Fs)  
Figure 26. Single-Speed (slow) Transition Band (detail)  
Figure 27. Single-Speed (slow) Passband Ripple  
0
0
20  
20  
40  
40  
60  
60  
80  
80  
100  
120  
100  
120  
0.4  
0.42  
0.44  
0.46  
0.48  
0.5  
0.52  
0.54  
0.56  
0.58  
0.6  
0.4  
0.5  
0.6  
0.7  
0.8  
0.9  
1
Frequency(normalized to Fs)  
Frequency(normalized to Fs)  
Figure 28. Double-Speed (fast) Stopband Rejection  
Figure 29. Double-Speed (fast) Transition Band  
0
1
0.02  
0.015  
0.01  
2
3
0.005  
0
4
5
6
0.005  
0.01  
7
8
0.015  
0.02  
9
10  
0.45  
0.46  
0.47  
0.48  
0.49  
0.5  
0.51  
0.52  
0.53  
0.54  
0.55  
0
0.05  
0.1  
0.15  
0.2  
0.25  
0.3  
0.35  
0.4  
0.45  
0.5  
Frequency(normalized to Fs)  
Frequency(normalized to Fs)  
Figure 30. Double-Speed (fast) Transition Band (detail)  
Figure 31. Double-Speed (fast) Passband Ripple  
DS617F2  
43  
CS4362A  
0
0
20  
40  
20  
40  
60  
60  
80  
80  
100  
120  
100  
120  
0.2  
0.3  
0.4  
0.5  
0.6  
0.7  
0.8  
0.2  
0.3  
0.4  
0.5  
0.6  
0.7  
0.8  
0.9  
1
Frequency(normalized to Fs)  
Frequency(normalized to Fs)  
Figure 32. Double-Speed (slow) Stopband Rejection  
Figure 33. Double-Speed (slow) Transition Band  
0
1
0.02  
0.015  
0.01  
2
3
0.005  
0
4
5
6
0.005  
0.01  
7
8
0.015  
0.02  
9
10  
0.45  
0.46  
0.47  
0.48  
0.49  
0.5  
0.51  
0.52  
0.53  
0.54  
0.55  
0
0.05  
0.1  
0.15  
0.2  
0.25  
0.3  
0.35  
Frequency(normalized to Fs)  
Frequency(normalized to Fs)  
Figure 34. Double-Speed (slow) Transition Band (detail)  
Figure 35. Double-Speed (slow) Passband Ripple  
0
0
20  
20  
40  
40  
60  
60  
80  
80  
100  
120  
100  
120  
0.2  
0.3  
0.4  
0.5  
0.6  
0.7  
0.8  
0.2  
0.3  
0.4  
0.5  
0.6  
0.7  
0.8  
0.9  
1
Frequency(normalized to Fs)  
Frequency(normalized to Fs)  
Figure 36. Quad-Speed (fast) Stopband Rejection  
Figure 37. Quad-Speed (fast) Transition Band  
44  
DS617F2  
CS4362A  
0
0.2  
0.15  
0.1  
1
2
3
0.05  
0
4
5
6
0.05  
7
0.1  
0.15  
0.2  
8
9
10  
0
0.05  
0.1  
0.15  
0.2  
0.25  
0.45  
0.46  
0.47  
0.48  
0.49  
0.5  
0.51  
0.52  
0.53  
0.54  
0.55  
Frequency(normalized to Fs)  
Frequency(normalized to Fs)  
Figure 38. Quad-Speed (fast) Transition Band (detail)  
Figure 39. Quad-Speed (fast) Passband Ripple  
0
0
20  
40  
20  
40  
60  
60  
80  
80  
100  
120  
100  
120  
0.1  
0.2  
0.3  
0.4  
0.5  
0.6  
0.7  
0.8  
0.9  
0.1  
0.2  
0.3  
0.4  
0.5  
0.6  
0.7  
0.8  
0.9  
1
Frequency(normalized to Fs)  
Frequency(normalized to Fs)  
Figure 40. Quad-Speed (slow) Stopband Rejection  
Figure 41. Quad-Speed (slow) Transition Band  
0
1
0.02  
0.015  
0.01  
0.005  
0
2
3
4
5
6
0.005  
0.01  
0.015  
0.02  
7
8
9
10  
0.45  
0.46  
0.47  
0.48  
0.49  
0.5  
0.51  
0.52  
0.53  
0.54  
0.55  
0
0.02  
0.04  
0.06  
0.08  
0.1  
0.12  
Frequency(normalized to Fs)  
Frequency(normalized to Fs)  
Figure 42. Quad-Speed (slow) Transition Band (detail)  
Figure 43. Quad-Speed (slow) Passband Ripple  
DS617F2  
45  
CS4362A  
8. PARAMETER DEFINITIONS  
Total Harmonic Distortion + Noise (THD+N)  
The ratio of the rms value of the signal to the rms sum of all other spectral components over the specified  
bandwidth (typically 10 Hz to 20 kHz), including distortion components. Expressed in decibels.  
Dynamic Range  
The ratio of the full-scale rms value of the signal to the rms sum of all other spectral components over the  
specified bandwidth. Dynamic range is a signal-to-noise measurement over the specified bandwidth  
made with a -60 dBFS signal. 60 dB is then added to the resulting measurement to refer the measure-  
ment to full scale. This technique ensures that the distortion components are below the noise level and  
do not affect the measurement. This measurement technique has been accepted by the Audio Engineer-  
ing Society, AES17-1991, and the Electronic Industries Association of Japan, EIAJ CP-307.  
Interchannel Isolation  
A measure of crosstalk between the left and right channels. Measured for each channel at the converter's  
output with all zeros to the input under test and a full-scale signal applied to the other channel. Units in  
decibels.  
Interchannel Gain Mismatch  
The gain difference between left and right channels. Units in decibels.  
Gain Error  
The deviation from the nominal full-scale analog output for a full-scale digital input.  
Gain Drift  
The change in gain value with temperature. Units in ppm/°C.  
46  
DS617F2  
CS4362A  
9. PACKAGE DIMENSIONS  
48L LQFP PACKAGE DRAWING  
E
E1  
D1  
D
1
e
B
A
A1  
L
INCHES  
MILLIMETERS  
DIM  
A
A1  
B
D
D1  
E
E1  
e*  
L
MIN  
---  
NOM  
0.055  
0.004  
0.009  
0.354  
0.28  
0.354  
0.28  
0.020  
0.24  
MAX  
MIN  
---  
NOM  
1.40  
0.10  
MAX  
1.60  
0.15  
0.27  
9.30  
7.10  
9.30  
7.10  
0.60  
0.75  
7.00°  
0.063  
0.006  
0.011  
0.366  
0.280  
0.366  
0.280  
0.024  
0.030  
7.000°  
0.002  
0.007  
0.343  
0.272  
0.343  
0.272  
0.016  
0.018  
0.000°  
0.05  
0.17  
8.70  
6.90  
8.70  
6.90  
0.40  
0.45  
0.00°  
0.22  
9.0 BSC  
7.0 BSC  
9.0 BSC  
7.0 BSC  
0.50 BSC  
0.60  
µ
4°  
4°  
* Nominal pin pitch is 0.50 mm  
Controlling dimension is mm.  
JEDEC Designation: MS022  
DS617F2  
47  
CS4362A  
10.ORDERING INFORMATION  
Product  
Description  
Package Pb-Free  
Grade  
Temp Range Container  
Order #  
CS4362A-CQZ  
Tray  
Commercial -40°C to +85°C  
Tape & Reel CS4362A-CQZR  
114 dB, 192 kHz 6-  
channel D/A Converter  
48-pin  
YES  
CS4362A  
LQFP  
Tray  
Tape & Reel CS4362A-DQZR  
CDB4362A  
CS4362A-DQZ  
Automotive -40°C to +105°C  
CDB4362A CS4362A Evaluation Board  
-
-
-
-
11.REFERENCES  
1. How to Achieve Optimum Performance from Delta-Sigma A/D & D/A Converters, by Steven Harris. Paper  
presented at the 93rd Convention of the Audio Engineering Society, October 1992.  
2. CDB4362A data sheet, available at http://www.cirrus.com.  
3. Design Notes for a 2-Pole Filter with Differential Input, by Steven Green. Cirrus Logic Application Note  
AN48.  
4. The I²C Bus Specification: Version 2.0, Philips Semiconductors, December 1998  
http://www.semiconductors.philips.com.  
48  
DS617F2  
CS4362A  
12.REVISION HISTORY  
Release  
Changes  
Updated output impedance spec in “DAC Analog Characteristics - Automotive (-DQZ)” on page 10.  
Improved interchannel isolation spec in “DAC Analog Characteristics - Automotive (-DQZ)” on page 10.  
Corrected package type.  
PP1  
PP2  
Corrected register description in “DAC Pair Disable (DACx_DIS)” on page 33.  
Added note to “Digital Interface Format (DIF)” on page 34.  
Added PCM mode format changeable in reset only to “Mode Select” on page 21.  
Updated ambient operating temperature range for Commercial and Automotive grade.  
Updated “DAC Analog Characteristics - Commercial (-CQZ)” on page 9.  
Updated “DAC Analog Characteristics - Automotive (-DQZ)” on page 10.  
Updated “Power and Thermal Characteristics” on page 11.  
F1  
F2  
Updated “Digital Characteristics” on page 14.  
Updated Legal Information under “IMPORTANT NOTICE” on page 50  
Updated MUTEC pin description in “Pin Description” on page 6.  
Updated “Mute Control” on page 27.  
Updated “Mutec Polarity (MUTEC+/-)” on page 36.  
DS617F2  
49  
CS4362A  
Contacting Cirrus Logic Support  
For all product questions and inquiries, contact a Cirrus Logic Sales Representative.  
To find the one nearest you, go to www.cirrus.com.  
IMPORTANT NOTICE  
Cirrus Logic, Inc. and its subsidiaries ("Cirrus") believe that the information contained in this document is accurate and reliable. However, the information is subject  
to change without notice and is provided "AS IS" without warranty of any kind (express or implied). Customers are advised to obtain the latest version of relevant  
information to verify, before placing orders, that information being relied on is current and complete. All products are sold subject to the terms and conditions of sale  
supplied at the time of order acknowledgment, including those pertaining to warranty, indemnification, and limitation of liability. No responsibility is assumed by Cirrus  
for the use of this information, including use of this information as the basis for manufacture or sale of any items, or for infringement of patents or other rights of third  
parties. This document is the property of Cirrus and by furnishing this information, Cirrus grants no license, express or implied under any patents, mask work rights,  
copyrights, trademarks, trade secrets or other intellectual property rights. Cirrus owns the copyrights associated with the information contained herein and gives con-  
sent for copies to be made of the information only for use within your organization with respect to Cirrus integrated circuits or other products of Cirrus. This consent  
does not extend to other copying such as copying for general distribution, advertising or promotional purposes, or for creating any work for resale.  
CERTAIN APPLICATIONS USING SEMICONDUCTOR PRODUCTS MAY INVOLVE POTENTIAL RISKS OF DEATH, PERSONAL INJURY, OR SEVERE PROP-  
ERTY OR ENVIRONMENTAL DAMAGE (“CRITICAL APPLICATIONS”). CIRRUS PRODUCTS ARE NOT DESIGNED, AUTHORIZED OR WARRANTED FOR USE  
IN PRODUCTS SURGICALLY IMPLANTED INTO THE BODY, AUTOMOTIVE SAFETY OR SECURITY DEVICES, LIFE SUPPORT PRODUCTS OR OTHER CRIT-  
ICAL APPLICATIONS. INCLUSION OF CIRRUS PRODUCTS IN SUCH APPLICATIONS IS UNDERSTOOD TO BE FULLY AT THE CUSTOMER’S RISK AND CIR-  
RUS DISCLAIMS AND MAKES NO WARRANTY, EXPRESS, STATUTORY OR IMPLIED, INCLUDING THE IMPLIED WARRANTIES OF MERCHANTABILITY AND  
FITNESS FOR PARTICULAR PURPOSE, WITH REGARD TO ANY CIRRUS PRODUCT THAT IS USED IN SUCH A MANNER. IF THE CUSTOMER OR CUSTOM-  
ER’S CUSTOMER USES OR PERMITS THE USE OF CIRRUS PRODUCTS IN CRITICAL APPLICATIONS, CUSTOMER AGREES, BY SUCH USE, TO FULLY  
INDEMNIFY CIRRUS, ITS OFFICERS, DIRECTORS, EMPLOYEES, DISTRIBUTORS AND OTHER AGENTS FROM ANY AND ALL LIABILITY, INCLUDING AT-  
TORNEYS’ FEES AND COSTS, THAT MAY RESULT FROM OR ARISE IN CONNECTION WITH THESE USES.  
Cirrus Logic, Cirrus, and the Cirrus Logic logo designs are trademarks of Cirrus Logic, Inc. All other brand and product names in this document may be trademarks  
or service marks of their respective owners.  
I²C is a registered trademark of Philips Semiconductor.  
SPI is a trademark of Motorola, Inc.  
Direct Stream Digital is a registered trademark of Sony Kabushiki Kaisha TA Sony Corporation.  
DSD is a trademark of Sony Kabushiki Kaisha TA Sony Corporation  
50  
DS617F2  

相关型号:

CS4362A-EQZ

114 dB, 192 kHz 6-channel D/A Converter
CIRRUS

CS4362A-EQZR

114 dB, 192 kHz 6-channel D/A Converter
CIRRUS

CS4362A_08

114 dB, 192 kHz 6-Channel D/A Converter
CIRRUS

CS4362A_09

114 dB, 192 kHz 6-Channel D/A Converter
CIRRUS

CS4362_04

114 dB, 192 kHz 6-channel D/A Converter
CIRRUS

CS4362_08

114 dB, 192 kHz 6-Channel D/A Converter
CIRRUS

CS4364

103 dB, 192 kHz 6-Channel D/A Converter
CIRRUS

CS4364-CQZ

103 dB, 192 kHz 6-Channel D/A Converter
CIRRUS

CS4364-CQZR

103 dB, 192 kHz 6-Channel D/A Converter
CIRRUS

CS4364-DQZ

103 dB, 192 kHz 6-Channel D/A Converter
CIRRUS

CS4364-DQZR

103 dB, 192 kHz 6-Channel D/A Converter
CIRRUS

CS4364_08

103 dB, 192 kHz 6-Channel D/A Converter
CIRRUS