CS4373A [CIRRUS]

Low-power, High-performance Test DAC; 低功耗,高性能的测试DAC
CS4373A
型号: CS4373A
厂家: CIRRUS LOGIC    CIRRUS LOGIC
描述:

Low-power, High-performance Test DAC
低功耗,高性能的测试DAC

测试
文件: 总34页 (文件大小:728K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
CS4373A  
Low-power, High-performance ∆Σ Test DAC  
Features  
Description  
The CS4373A is a high-performance, differential output  
digital-to-analog converter (DAC) with programmable at-  
tenuation and multiple operational modes. AC test  
modes measure system dynamic performance through  
THD and CMRR tests while DC test modes are for gain  
calibration and pulse tests.  
z Digital ∆Σ Input from CS5376A Digital Filter  
z Selectable Differential Analog Outputs  
• Precision output (OUT±) for electronics tests  
• Buffered output (BUF±) for sensor tests  
z Multiple AC and DC Operational Modes  
• Signal bandwidth: DC to 100 Hz  
• Max AC amplitude: 5 VPP differential  
• Max DC amplitude: + 2.5 Vdc differential  
z Selectable Attenuation for CS3301A / CS3302A  
• 1, 1/2, 1/4, 1/8, 1/16, 1/32, 1/64  
The CS4373A is driven by a ∆Σ digital bit stream from the  
CS5376A digital filter test bit stream (TBS) generator. It  
has two sets of differential analog outputs, OUT and  
BUF, to simplify system design as dedicated outputs for  
testing the electronics channel and for in-circuit sensor  
tests. Analog output attenuation is selected by simple pin  
settings  
and  
matches  
the  
gain  
of  
the  
z Outstanding Performance  
CS3301A / CS3302A differential amplifiers for full-scale  
testing at all gain ranges.  
• AC (OUT): -116 dB THD typical, -112 dB max  
• AC (BUF): -108 dB THD typical, -90 dB max  
• DC absolute accuracy: 0.4% typical, 1% max  
z Low Power Consumption  
The CS4373A test DAC provides self-test and precision  
calibration capability for high-resolution, low-frequency  
multi-channel measurement systems designed from  
• AC modes / DC modes: 40 mW / 20 mW  
• Sleep mode / Power Down: 1 mW / 10 µW  
z Extremely Small Footprint  
CS3301A / CS3302A  
CS5371A / CS5372A ∆Σ modulators and the CS5376A  
digital filter.  
differential  
amplifiers,  
• 28-pin SSOP package, 8 mm x 10 mm  
z Bipolar Power Supply Configuration  
• VA+ = +2.5 V;VA- = -2.5 V;VD = +3.3 V  
ORDERING INFORMATION  
See page 34.  
VA+  
MODE(0, 1, 2)  
ATT(0, 1, 2)  
Attenuator  
VD  
TDATA  
OUT+  
OUT-  
BUF+  
BUF-  
24-Bit ∆Σ  
DAC  
VREF+  
VREF-  
MCLK  
Clock  
Generator  
MSYNC  
VA-  
CAP+ CAP-  
GND  
Copyright © Cirrus Logic, Inc. 2006  
DEC ‘06  
DS699F2  
http://www.cirrus.com  
(All Rights Reserved)  
CS4373A  
TABLE OF CONTENTS  
1. CHARACTERISTICS AND SPECIFICATIONS ........................................................................ 4  
2. GENERAL DESCRIPTION ..................................................................................................... 16  
2.1 Digital Inputs .................................................................................................................... 16  
2.2 Analog Outputs ................................................................................................................ 16  
2.3 Multiple Operational Modes ............................................................................................. 16  
2.4 Low Power ....................................................................................................................... 16  
3. SYSTEM DIAGRAMS .......................................................................................................... 17  
4. POWER MODES ..................................................................................................................... 18  
4.1 Power Down ..................................................................................................................... 18  
4.2 Sleep Modes .................................................................................................................... 18  
4.3 AC Test Modes ................................................................................................................ 18  
4.4 DC Test Modes ................................................................................................................ 18  
5. OPERATIONAL MODES ........................................................................................................ 19  
5.1 Sleep Modes .................................................................................................................... 19  
5.2 AC Test Modes ................................................................................................................ 19  
5.2.1 AC Differential ..................................................................................................... 19  
5.2.2 AC Common Mode .............................................................................................. 20  
5.2.3 AC Stability .......................................................................................................... 20  
5.3 DC Test Modes ................................................................................................................ 20  
5.3.1 DC Common Mode ............................................................................................. 20  
5.3.2 DC Differential ..................................................................................................... 20  
6. DIGITAL INPUTS .................................................................................................................... 22  
6.1 TDATA Connection .......................................................................................................... 22  
6.2 MCLK Connection ............................................................................................................ 22  
6.3 MSYNC Connection ......................................................................................................... 22  
6.4 GPIO Connections ........................................................................................................... 23  
7. ANALOG OUTPUTS ............................................................................................................... 24  
7.1 Differential Signals ........................................................................................................... 24  
7.2 Analog Output Attenuation ............................................................................................... 24  
7.3 OUT± Precision Output .................................................................................................... 25  
7.4 BUF± Buffered Output ..................................................................................................... 25  
7.5 CAP± Analog Output ........................................................................................................ 25  
8. VOLTAGE REFERENCE ........................................................................................................ 26  
8.1 VREF Power Supply ........................................................................................................ 26  
8.2 VREF RC Filter ................................................................................................................ 26  
8.3 VREF PCB Routing .......................................................................................................... 26  
8.4 VREF Input Impedance .................................................................................................... 27  
8.5 VREF Accuracy ................................................................................................................ 27  
8.6 VREF Independence ....................................................................................................... 27  
9. POWER SUPPLIES ................................................................................................................ 28  
9.1 Power Supply Bypassing ................................................................................................. 28  
9.2 PCB Layers and Routing ................................................................................................. 28  
9.3 Power Supply Rejection ................................................................................................... 28  
9.4 SCR Latch-up .................................................................................................................. 29  
9.5 DC-DC Converters .......................................................................................................... 29  
10. TERMINOLOGY .................................................................................................................... 30  
11. PIN DESCRIPTION ............................................................................................................... 31  
12. PACKAGE DIMENSIONS ..................................................................................................... 33  
13. ORDERING INFORMATION ................................................................................................ 34  
14. ENVIRONMENTAL, MANUFACTURING, & HANDLING INFORMATION .......................... 34  
15. REVISION HISTORY ........................................................................................................... 34  
2
DS699F2  
CS4373A  
LIST OF FIGURES  
Figure 1. Digital Input Rise and Fall Times ................................................................................... 12  
Figure 2. System Timing Diagram................................................................................................. 14  
Figure 3. MCLK / MSYNC Timing Detail....................................................................................... 14  
Figure 4. CS4373A Block Diagram ............................................................................................... 16  
Figure 6. Connection Diagram ...................................................................................................... 17  
Figure 5. System Diagram ............................................................................................................ 17  
Figure 7. Power Mode Diagram .................................................................................................... 18  
Figure 8. AC Differential Modes.................................................................................................... 19  
Figure 9. AC Common Mode ........................................................................................................ 20  
Figure 10. DC Test Modes............................................................................................................ 21  
Figure 11. Digital Inputs ................................................................................................................ 22  
Figure 12. Analog Outputs ............................................................................................................ 24  
Figure 13. Voltage Reference Circuit............................................................................................ 26  
Figure 14. Power Supply Diagram ................................................................................................ 28  
LIST OF TABLES  
Table 1. Selections for Operational Mode and Attenuation............................................................. 4  
Table 2. Operational Modes.......................................................................................................... 19  
Table 3. Output Attenuation Settings ............................................................................................ 24  
DS699F2  
3
CS4373A  
1. CHARACTERISTICS AND SPECIFICATIONS  
Min / Max characteristics and specifications are guaranteed over the Specified Operating Conditions.  
Typical performance characteristics and specifications are measured at nominal supply voltages and T = 25°C.  
GND = 0 V. Single-ended voltages with respect to GND, differential voltages with respect to opposite half.  
Device is connected as shown in Figure 6 on page 17, unless otherwise noted.  
A
SPECIFIED OPERATING CONDITIONS  
Parameter  
Symbol  
Min  
Nom  
Max  
Unit  
Bipolar Power Supplies  
Positive Analog  
± 2%  
(Note 1) ± 2%  
± 3%  
VA+  
VA-  
VD  
2.45  
-2.45  
3.20  
2.50  
-2.50  
3.30  
2.55  
-2.55  
3.40  
V
V
V
Negative Analog  
Positive Digital  
Voltage Reference Input  
{VREF+} - {VREF-}  
VREF-  
(Note 2, 3)  
VREF  
-
-
2.500  
VA -  
-
-
V
V
(Note 4) VREF-  
Thermal  
Ambient Operating Temperature  
Industrial (-IS, -ISZ)  
T
-40  
25  
85  
°C  
A
Notes: 1. VA- must always be the most-negative input voltage to avoid potential SCR latch-up conditions.  
2. By design, a 2.500 V voltage reference input results in the best signal-to-noise performance.  
3. Full-scale accuracy is directly proportional to the voltage reference absolute accuracy.  
4. VREF inputs must satisfy: VA- < VREF- < VREF+ < VA+.  
Modes of Operation  
Selection MODE[2:0] Mode Description  
Sleep mode.  
Attenuation  
Selection ATT[2:0] Attenuation  
dB  
0 dB  
0
1
2
3
4
5
6
7
0 0 0  
0 0 1  
0 1 0  
0 1 1  
1 0 0  
1 0 1  
1 1 0  
1 1 1  
0
1
2
3
4
5
6
7
0 0 0  
0 0 1  
0 1 0  
0 1 1  
1 0 0  
1 0 1  
1 1 0  
1 1 1  
1/1  
1/2  
AC OUT and BUF outputs.  
AC OUT only, BUF high-z.  
AC BUF only, OUT high-z.  
DC common mode output.  
DC differential output.  
AC common mode output.  
Sleep mode.  
-6.02 dB  
1/4  
-12.04 dB  
-18.06 dB  
-24.08 dB  
-30.10 dB  
-36.12 dB  
reserved  
1/8  
1/16  
1/32  
1/64  
reserved  
Table 1. Selections for Operational Mode and Attenuation  
4
DS699F2  
CS4373A  
TEMPERATURE CONDITIONS  
Parameter  
Ambient Operating Temperature  
Symbol  
Min  
-40  
-65  
-
Typ  
Max  
+85  
150  
125  
-
Unit  
ºC  
T
-
-
A
Storage Temperature Range  
T
ºC  
STG  
Allowable Junction Temperature  
T
-
ºC  
JCT  
-
Junction to Ambient Thermal Impedance (4-layer PCB)  
Θ
65  
ºC / W  
JA  
ABSOLUTE MAXIMUM RATINGS  
Parameter  
Symbol  
Min  
Max  
Parameter  
DC Power Supplies  
Positive Analog  
Negative Analog  
Digital  
VA+  
VA-  
VD  
-0.5  
-6.8  
-0.5  
6.8  
0.5  
6.8  
V
V
V
Analog Supply Differential  
Digital Supply Differential  
Input Current, Power Supplies  
Input Current, Any Pin Except Supplies  
Output Current  
(VA+) - (VA-)  
(VD) - (VA-)  
(Note 5)  
VA  
-
6.8  
7.6  
V
V
DIFF  
DIFF  
IN  
VD  
-
I
I
-
±50  
±10  
±25  
500  
mA  
mA  
mA  
mW  
V
(Note 5)  
-
IN  
(Note 5)  
I
-
OUT  
Power Dissipation  
PDN  
-
Analog Input Voltages  
V
V
(VA-) - 0.5  
-0.5  
(VA+) + 0.5  
(VD) + 0.5  
INA  
IND  
Digital Input Voltages  
V
WARNING: Operation at or beyond these limits may result in permanent damage to the device.  
Normal operation is not guaranteed at these extremes.  
Notes: 5. Transient currents up to ±100 mA will not cause SCR latch-up.  
DS699F2  
5
CS4373A  
ANALOG CHARACTERISTICS  
Parameter  
VREF Input  
Symbol  
Min  
Typ  
Max  
Unit  
{VREF+} - {VREF-}  
(Note 2, 3)  
(Note 4)  
VREF  
-
-
-
-
-
2.500  
VA -  
80  
-
-
V
V
VREF-  
VREF-  
VREF Input Current, AC modes  
VREF Input Current, DC modes  
VREF Input Noise  
VREF  
VREF  
-
µA  
µA  
IAC  
IDC  
40  
-
(Note 6) VREF  
-
1
µV  
rms  
IN  
Analog OUT± Output  
R
C
50  
-
-
-
-
50  
MΩ  
pF  
Analog External Load at OUT±  
(Note 7, 8)  
Load Resistance  
Load Capacitance  
LOUT  
LOUT  
Differential Output Impedance  
1/1 ZDIF  
-
-
-
-
-
-
-
1.4  
10.1  
7.9  
5.1  
3.3  
2.3  
1.7  
-
-
-
-
-
-
-
kΩ  
kΩ  
kΩ  
kΩ  
kΩ  
kΩ  
kΩ  
OUT  
1/2  
1/4  
1/8  
1/16  
1/32  
1/64  
Single-ended Output Impedance  
1/1 ZSE  
1/2  
1/4  
-
-
-
-
-
-
-
0.7  
7.4  
9.0  
9.4  
9.5  
9.5  
9.4  
-
-
-
-
-
-
-
kΩ  
kΩ  
kΩ  
kΩ  
kΩ  
kΩ  
kΩ  
OUT  
1/8  
1/16  
1/32  
1/64  
High-Z Impedance  
(Note 8)  
(Note 8)  
HZ  
XT  
-
-
3
-
-
MΩ  
dB  
OUT  
-120  
Crosstalk to BUF± High-Z Output  
Analog BUF± Output  
OUT  
R
1
-
-
-
-
2
kΩ  
nF  
Analog External Load at BUF±  
(Note 8)  
Load Resistance  
Load Capacitance  
LBUF  
LBUF  
C
Differential Output Impedance  
Single-ended Output Impedance  
1/1 - 1/64 ZDIF  
1/1 - 1/32 ZSE  
(Note 9) (BUF-) 1/64  
(Note 9) (BUF+) 1/64  
-
6
-
BUF  
-
-
-
3
3
50  
-
-
-
BUF  
High-Z Impedance  
(Note 8)  
(Note 8)  
HZ  
XT  
-
-
4.5  
-
-
MΩ  
dB  
BUF  
-120  
Crosstalk to OUT± High-Z Output  
BUF  
Notes: 6. Maximum integrated noise over the measurement bandwidth for the voltage reference device attached  
to the VREF± inputs.  
7. Load on the precision OUT± outputs is normally from the CS3301A / CS3302A amplifiers, which have  
1 G/1 Ttypical input impedance and 18 pF typical input capacitance.  
8. Guaranteed by design and/or characterization.  
9. Single-ended output impedance at 1/64 is different for BUF+ and BUF- due to the output attenuator  
architecture.  
6
DS699F2  
CS4373A  
AC DIFFERENTIAL MODES 1, 2, 3  
Parameter  
AC Differential Characteristics  
Full-scale Differential AC Output  
Symbol  
Min  
Typ  
Max  
Unit  
1/1  
1/2  
1/4  
VAC  
-
-
-
-
-
-
-
5
2.5  
1.25  
625  
312.5  
156.25  
78.125  
-
-
-
-
-
-
-
V
V
V
FS  
pp  
pp  
pp  
1/8  
mV  
mV  
mV  
mV  
pp  
pp  
pp  
pp  
1/16  
1/32  
1/64  
Full-scale Bandwidth  
Impulse Amplitude  
(Note 8) VAC  
-
-
-
-
100  
-20  
Hz  
BW  
(Note 8, 10) VAC  
dBfs  
IMP  
AC Differential Accuracy  
Full-scale Accuracy  
(Note 3, 11)  
1/1 VAC  
1/2 VAC  
1/4  
1/8  
1/16  
1/32  
1/64  
- 0.5  
- 0.2  
0.2  
%FS  
ABS  
- 0.2  
± 0.1  
± 0.1  
± 0.1  
- 0.1 ± 0.2  
- 0.2 ± 0.3  
- 0.5 ± 0.5  
0.2  
%
%
%
%
%
%
Relative Accuracy  
(Note 12)  
REL  
-
-
-
-
-
-
-
-
-
-
Full-scale Drift  
(Note 14)  
VAC  
-
25  
-
µV/°C  
TC  
DC Common Mode Characteristics  
Common Mode  
(Note 13) VAC  
-
-
(VA-)+2.35  
-
-
V
CM  
Common Mode Drift  
(Note 13, 14) VAC  
300  
µV/°C  
CMTC  
Notes: 10. Maximum amplitude for operation above 100 Hz. A reduced amplitude for higher frequencies is required  
to guarantee stability of the low-power delta-sigma architecture.  
11. Full-scale accuracy compares the defined full-scale 1/1 amplitude to the measured 1/1 amplitude.  
Specification is for unloaded outputs. Applying a differential load lowers the output amplitude ratiometric  
to the differential output impedance.  
12. Relative accuracy compares the measured 1/2,1/4,1/8,1/16,1/32,1/64 amplitude to the measured 1/1  
amplitude.  
13. Common mode voltage is defined as [(SIG+) + (SIG-)] / 2.  
14. Specification is for the parameter over the specified temperature range and is for the device only. It does  
not include the effects of external components.  
DS699F2  
7
CS4373A  
AC DIFFERENTIAL MODES 1, 2, 3 (CONT.)  
Parameter  
Symbol  
Min  
Typ  
Max  
Unit  
Signal to Noise  
Signal to Noise  
(OUT± Unloaded)  
(Note 15)  
1/1 -> 1x SNR  
1/2 -> 2x  
1/4 -> 4x  
-
-
-
-
-
-
-
114  
114  
114  
113  
111  
108  
103  
-
-
-
-
-
-
-
dB  
dB  
dB  
dB  
dB  
dB  
dB  
OUT  
1/8 -> 8x  
1/16 -> 16x  
1/32 -> 32x  
1/64 -> 64x  
Signal to Noise  
(BUF± Unloaded, 1 kLoad)  
(Note 15, 16)  
1/1 -> 1x SNR  
1/2 -> 2x  
1/4 -> 4x  
-
-
-
-
-
-
-
110  
106  
101  
95  
89  
83  
-
-
-
-
-
-
-
dB  
dB  
dB  
dB  
dB  
dB  
dB  
BUF  
1/8 -> 8x  
1/16 -> 16x  
1/32 -> 32x  
1/64 -> 64x  
77  
Total Harmonic Distortion  
Total Harmonic Distortion  
(OUT± Unloaded)  
(Note 17, 18)  
1/1 -> 1x THD  
1/2 -> 2x  
1/4 -> 4x  
-
-
-
-
-
-
-
- 116  
- 115  
- 114  
- 112  
- 111  
- 110  
- 106  
- 112  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
OUT  
-
-
-
-
-
-
1/8 -> 8x  
1/16 -> 16x  
1/32 -> 32x  
1/64 -> 64x  
Total Harmonic Distortion  
(BUF± Unloaded)  
(Note 16, 17, 18)  
1/1 -> 1x THD  
1/2 -> 2x  
1/4 -> 4x  
-
-
-
-
-
-
-
- 108  
- 105  
- 100  
- 94  
- 88  
- 82  
- 90  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
BUF  
-
-
-
-
-
-
1/8 -> 8x  
1/16 -> 16x  
1/32 -> 32x  
1/64 -> 64x  
- 76  
Total Harmonic Distortion  
(BUF± 1 kLoad)  
(Note 16, 17, 18)  
1/1 -> 1x THD  
1/2 -> 2x  
1/4 -> 4x  
-
-
-
-
-
-
-
- 102  
- 101  
- 97  
- 92  
- 87  
- 82  
- 76  
- 80  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
BUFL  
-
-
-
-
-
-
1/8 -> 8x  
1/16 -> 16x  
1/32 -> 32x  
1/64 -> 64x  
Notes: 15. Specification measured using CS3301A amplifier at corresponding gain with the CS5371A / CS5372A  
modulator measuring a 430 Hz bandwidth. Amplified noise dominates for x16, x32, x64 amplifier gains.  
16. Buffered outputs (BUF±) include 1/f noise not present on the precision outputs (OUT±).  
17. Tested with a 31.25 Hz sine wave at -1 dB amplitude.  
18. Specification measured using CS3301A amplifier at corresponding gain using the CS5371A / CS5372A  
modulator measuring a 430 Hz bandwidth. Amplified noise in the harmonic bins dominates THD  
measurements for x16, x32, x64 amplifier gains.  
8
DS699F2  
CS4373A  
DC COMMON MODE 4  
Parameter  
DC Common Mode Characteristics  
Common Mode Output  
Common Mode Drift  
Symbol  
VDC  
Min  
Typ  
Max  
Unit  
-
-
(VA-)+2.35  
-
-
V
CM  
(Note 14) VDC  
300  
µV/°C  
CMTC  
DC Common Mode Accuracy  
Common Mode Match  
1/1 VDC  
- 5  
± 1  
5
mV  
CMM  
Noise  
N
-
-
-
-
-
-
-
6
7
7
7
7
-
-
-
-
-
-
-
µV  
Noise (OUT± Unloaded)  
(Note 15)  
1/1 -> 1x  
1/2 -> 2x  
1/4 -> 4x  
1/8 -> 8x  
1/16 -> 16x  
1/32 -> 32x  
1/64 -> 64x  
OUT  
rms  
µV  
rms  
µV  
rms  
µV  
rms  
µV  
rms  
µV  
9
14  
rms  
µV  
rms  
N
-
-
-
-
-
-
-
7
10  
17  
33  
64  
130  
257  
-
-
-
-
-
-
-
µV  
Noise (BUF± Unloaded, 1 kLoad)  
(Note 15, 16)  
1/1 -> 1x  
1/2 -> 2x  
1/4 -> 4x  
1/8 -> 8x  
1/16 -> 16x  
1/32 -> 32x  
1/64 -> 64x  
BUF  
rms  
µV  
rms  
µV  
rms  
µV  
rms  
µV  
rms  
µV  
rms  
µV  
rms  
DS699F2  
9
CS4373A  
DC DIFFERENTIAL MODE 5  
Parameter  
Symbol  
Min  
Typ  
Max  
Unit  
DC Differential Mode Characteristics  
Full-scale Differential DC Output  
(Note 19)  
1/1  
1/2  
1/4  
VDC  
-
-
-
-
-
-
-
2.5  
1.25  
625  
312.5  
156.25  
78.125  
39.0625  
-
-
-
-
-
-
-
V
V
FS  
mV  
mV  
mV  
mV  
mV  
1/8  
1/16  
1/32  
1/64  
DC Differential Accuracy  
Full-scale Accuracy  
(Note 3, 11)  
1/1 VDC  
1/2 VDC  
1/4  
1/8  
1/16  
1/32  
1/64  
- 1.0  
- 0.4  
0.2  
%FS  
ABS  
- 0.2  
± 0.1  
± 0.1  
-0.1 ± 0.4  
-0.2 ± 0.9  
-0.5 ± 1.7  
-1.0 ± 3.6  
0.2  
%
%
%
%
%
%
Relative Accuracy  
(Note 12)  
REL  
-
-
-
-
-
-
-
-
-
-
Full-scale Drift  
(Note 14) VDC  
-
25  
-
µV/°C  
TC  
DC Common Mode Characteristics  
Common Mode  
(Note 13) VDC  
-
-
(VA-)+2.35  
-
-
V
CM  
Common Mode Drift  
Noise  
(Note 13, 14) VDC  
300  
µV/°C  
CMTC  
N
-
-
-
-
-
-
-
9
9
9
-
-
-
-
-
-
-
µV  
Noise (OUT± Unloaded)  
(Note 15, 19)  
1/1 -> 1x  
1/2 -> 2x  
1/4 -> 4x  
1/8 -> 8x  
1/16 -> 16x  
1/32 -> 32x  
1/64 -> 64x  
OUT  
rms  
µV  
rms  
µV  
rms  
µV  
9
rms  
10  
11  
15  
µV  
rms  
µV  
rms  
µV  
rms  
N
-
-
-
-
-
-
-
10  
12  
18  
32  
67  
-
-
-
-
-
-
-
µV  
Noise (BUF± Unloaded, 1 kLoad)  
(Note 15, 16, 19)  
1/1 -> 1x  
1/2 -> 2x  
1/4 -> 4x  
1/8 -> 8x  
1/16 -> 16x  
1/32 -> 32x  
1/64 -> 64x  
BUF  
rms  
µV  
rms  
µV  
rms  
µV  
rms  
µV  
rms  
µV  
122  
265  
rms  
µV  
rms  
Notes: 19. DC differential output is chopper stabilized and includes low-level 32 kHz out-of-band noise which is  
rejected by the digital filter during acquisition.  
10  
DS699F2  
CS4373A  
AC COMMON MODE 6  
Parameter  
Symbol  
Min  
Typ  
Max  
Unit  
AC Common Mode Characteristics  
Full-scale Common Mode AC Output  
(Note 20)  
1/1 VCM  
1/2  
1/4  
1/8  
1/16  
1/32  
-
-
-
-
-
-
2.5  
1.25  
625  
312.5  
156.25  
78.125  
-
-
-
-
-
-
V
V
mV  
mV  
mV  
mV  
FS  
pp  
pp  
pp  
pp  
pp  
pp  
Full-scale Bandwidth  
(Note 8) VCM  
-
-
-
-
100  
-20  
Hz  
BW  
Impulse Amplitude  
(Note 8, 10) VCM  
dBfs  
IMP  
AC Common Mode Accuracy  
VCM  
-
-
-
-115  
-95  
-105  
-85  
-
dB  
dB  
Common Mode Match (OUT± Unloaded)  
(Note 17, 20)  
CMM  
CMM  
VCM  
Common Mode Match (BUF± Unloaded, 1 kLoad)  
(Note 16, 17, 20)  
Full-scale Accuracy  
(Note 3, 11)  
1/1 VAC  
- 0.3  
%FS  
ABS  
REL  
Relative Accuracy  
(Note 12, 20)  
1/2 VAC  
1/4  
-
-
-
-
-
- 0.1  
- 0.5  
- 1.0  
-2.0  
-5.0  
-
-
-
-
-
%
%
%
%
%
1/8  
1/16  
1/32  
(Note 14) VCM  
Full-scale Drift  
-
25  
-
µV/°C  
TC  
DC Common Mode Characteristics  
Common Mode Mean  
(Note 21) VCM  
-
-
(VA-)+2.35  
-
-
V
CM  
Common Mode Mean Drift  
(Note 14, 21) VCM  
300  
µV/°C  
CMTC  
Notes: 20. No AC common mode signal is output at 1/64 attenuation due to the attenuator architecture.  
21. Common mode mean is defined as [(SIG ) + (SIG )] / 2.  
max  
min  
DS699F2  
11  
CS4373A  
DIGITAL CHARACTERISTICS  
Parameter  
Digital Inputs  
Symbol  
Min  
Typ  
Max  
Unit  
High-level Input Drive Voltage  
Low-level Input Drive Voltage  
Input Leakage Current  
(Note 22)  
(Note 22)  
V
0.6*VD  
-
-
VD  
0.8  
+10  
-
V
V
IH  
V
I
0.0  
IL  
-
-
-
-
+1  
9
-
µA  
pF  
ns  
ns  
IN  
Digital Input Capacitance  
Rise Times Except MCLK  
Fall Times Except MCLK  
TDATA Input  
(Note 8)  
(Note 8)  
(Note 8)  
C
IN  
t
t
100  
100  
RISE  
FALL  
-
TDATA Input Bit Rate  
(Note 23)  
(Note 8)  
f
-
25  
-
256  
-
75  
-
kbits/s  
%
tdata  
TDATA Input One’s Density Range  
TBSGAIN Full-scale Code  
TBSGAIN -20 dB Code  
INR  
-
OD  
0x04B8F2  
(Note 24)  
TBS  
FS  
0x0078E5  
(Note 24) TBS  
-
-
-20dB  
Notes: 22. Device is intended to be driven with CMOS logic levels.  
23. TDATA is generated by the test bit stream generator in the CS5376A digital filter.  
24. TBSGAIN register value in the CS5376A digital filter.  
t
t
fall  
rise  
0.9 * VD  
0.1 * VD  
Figure 1. Digital Input Rise and Fall Times  
12  
DS699F2  
CS4373A  
DIGITAL CHARACTERISTICS (CONT.)  
Parameter  
Symbol  
Min  
Typ  
Max  
Unit  
Master Clock  
MCLK Frequency  
(Note 25)  
(Note 25)  
f
-
-
2.048  
-
-
MHz  
ns  
CLK  
MCLK Period  
t
488  
mclk  
MCLK Duty Cycle  
(Note 8) MCLK  
40  
-
-
-
-
-
-
60  
50  
50  
300  
1
%
DC  
RISE  
FALL  
MCLK Rise Time  
(Note 8)  
(Note 8)  
t
t
ns  
MCLK Fall Time  
-
ns  
MCLK Jitter (In-band or aliased in-band)  
MCLK Jitter (Out-of-band)  
Master Sync  
(Note 8) MCLK  
-
ps  
IBJ  
(Note 8) MCLK  
-
ns  
OBJ  
MSYNC Setup Time to MCLK rising  
MSYNC Period  
(Note 8, 26)  
(Note 8, 26)  
(Note 8, 26)  
(Note 8, 27)  
t
20  
40  
20  
-
122  
976  
-
-
-
-
ns  
ns  
ns  
ns  
mss  
t
msync  
MSYNC Hold Time after MCLK falling  
MSYNC Instant to TDATA Start  
t
122  
msh  
t
1220  
tdata  
Notes: 25. MCLK is generated by the CS5376A digital filter. If MCLK is disabled, the device automatically enters  
a power-down state.  
26. MSYNC is generated by the CS5376A digital filter and is latched on MCLK rising edge, synchronization  
instant (t ) on next MCLK rising edge.  
0
27. TDATA can be delayed from 0 to 63 full bit periods by the CS5376A test bit stream generator. The timing  
diagram shows no TBSDATA delay.  
DS699F2  
13  
CS4373A  
DIGITAL CHARACTERISTICS (CONT.)  
SYNC  
MCLK  
(2.048 MHz)  
MSYNC  
t
0
TDATA  
(256 kHz)  
Figure 2. System Timing Diagram  
MCLK  
(2.048 MHz)  
tmss  
tmsh  
tmclk  
t
MSYNC  
0
tmsync  
TDATA  
(256 kHz)  
ttdata  
Figure 3. MCLK / MSYNC Timing Detail  
14  
DS699F2  
CS4373A  
POWER SUPPLY CHARACTERISTICS  
Parameter  
Symbol  
Min  
Typ  
Max  
Unit  
AC Mode Supply Current (MODE = 1, 2, 3, 6)  
Analog Power Supply Current  
(Note 28)  
(Note 28)  
I
I
-
-
8
10  
-
mA  
A
Digital Power Supply Current  
20  
µA  
D
DC Mode Supply Current (MODE = 4)  
Analog Power Supply Current  
(Note 28)  
(Note 28)  
I
-
-
2.7  
20  
-
-
mA  
A
Digital Power Supply Current  
I
µA  
D
DC Mode Supply Current (MODE = 5)  
Analog Power Supply Current  
(Note 28)  
(Note 28)  
I
I
-
-
4.2  
20  
-
-
mA  
A
Digital Power Supply Current  
µA  
D
Sleep Mode Supply Current (MODE = 0, 7)  
Analog Power Supply Current  
(Note 28)  
(Note 28)  
I
-
-
200  
260  
-
-
µA  
µA  
A
Digital Power Supply Current  
I
D
Power Down Supply Current (MCLK = 0)  
Analog Power Supply Current  
(Note 28)  
(Note 28)  
(Note 8)  
I
I
-
-
-
1
-
-
-
µA  
µA  
µS  
A
Digital Power Supply Current  
20  
40  
D
Time to Enter Power Down (MCLK disabled)  
Power Supply Rejection  
PD  
TC  
Power Supply Rejection Ratio  
(Note 29)  
PSRR  
-
90  
-
dB  
Notes: 28. All outputs unloaded. Digital inputs forced to VD or DGND respectively.  
29. Power supply rejection is characterized by applying a 100 mVp-p 50-Hz sine wave to each supply.  
DS699F2  
15  
CS4373A  
VA+  
MODE(0, 1, 2)  
ATT(0, 1, 2)  
Attenuator  
VD  
TDATA  
OUT+  
OUT-  
BUF+  
BUF-  
24-Bit ∆Σ  
DAC  
VREF+  
VREF-  
MCLK  
Clock  
Generator  
MSYNC  
VA-  
CAP+ CAP-  
GND  
Figure 4. CS4373A Block Diagram  
2. GENERAL DESCRIPTION  
The CS4373A is a differential output digital-to-  
For maximum performance, the precision out-  
analog converter with multiple operational puts (OUT±) must drive only high-impedance  
modes and programmable output attenuation.  
It provides self-test and precision calibration  
capability for high-resolution, low-frequency  
measurement systems designed from  
CS3301A / CS3302A differential amplifiers,  
CS5371A / CS5372A ∆Σ modulators, and the  
CS5376A digital filter.  
loads such as the CS3301A / CS3302A ampli-  
fier inputs. The buffered outputs (BUF±) can  
drive lower-impedance loads, down to 1 k,  
but with reduced performance compared to  
the precision outputs.  
2.3 Multiple Operational Modes  
The CS4373A operates in either AC or DC test  
modes. AC test modes (MODE 1, 2, 3, 6) are  
used to measure system THD and CMRR per-  
2.1 Digital Inputs  
The CS4373A is driven by a ∆Σ digital bit  
stream from the CS5376A digital filter test bit formance. DC test modes (MODE 4, 5) are for  
stream (TBS) generator. The digital filter also  
provides clock and sync signals as well as  
GPIO control signals to set the operational  
mode and attenuation.  
gain calibration and pulse tests.  
2.4 Low Power  
The CS4373A is optimized for low-power op-  
eration and has a restricted operational band-  
width in the AC modes. For stable operation,  
2.2 Analog Outputs  
Two sets of differential analog outputs, OUT full-scale AC test signals must not contain fre-  
and BUF, simplify system design as dedicated  
outputs for testing the electronics channel and  
for in-circuit sensor tests. Output attenuator  
settings are binary weighted (1, 1/2, 1/4, 1/8,  
quencies above 100 Hz. AC test signals above  
100 Hz (TBS impulse mode, for example)  
must have a -20 dB reduced amplitude to en-  
sure stability of the CS4373A low-power ∆Σ ar-  
chitecture.  
1/16,  
1/32,  
1/64)  
and  
match  
the  
CS3301A / CS3302A amplifier input levels for  
full-scale testing at all gain ranges.  
16  
DS699F2  
CS4373A  
3. SYSTEM DIAGRAMS  
Geophone  
or  
Hydrophone  
Sensor  
CS3301A  
CS3302A  
M
U
X
CS5371A  
CS5372A  
AMP  
AMP  
System Telemetry  
∆Σ  
Modulator  
Geophone  
or  
Hydrophone  
Sensor  
CS3301A  
CS3302A  
µController  
or  
M
U
X
Configuration  
EEPROM  
CS5376A  
Digital Filter  
Geophone  
or  
Hydrophone  
Sensor  
CS3301A  
CS3302A  
M
U
X
CS5371A  
CS5372A  
AMP  
AMP  
Communication  
Interface  
∆Σ  
Geophone  
or  
Hydrophone  
Sensor  
Modulator  
CS3301A  
CS3302A  
M
U
X
CS4373A  
Test  
DAC  
Switch  
MUX  
Figure 5. System Diagram  
VA+  
VD  
0.1µF  
0.1µF  
SWITCH  
CONTROL  
VA-  
VD  
10nF  
C0G  
MCLK  
MSYNC  
CAP+  
CAP-  
MCLK  
SENSOR  
MSYNC  
TDATA  
CH1 BUF  
CH2 BUF  
CH3 BUF  
CH4 BUF  
Route BUF as diff pair BUF+  
BUF-  
Analog  
Switches  
TBSDATA  
CS4373A  
GPIO  
GPIO  
GPIO  
ELECTRONICS  
MODE0  
MODE1  
MODE2  
Route OUT as diff pair  
Route VREF as diff pair  
OUT+  
OUT-  
CH1,2,3,4 OUT  
VA+  
10  
GPIO  
GPIO  
GPIO  
VREF+  
VREF-  
ATT0  
ATT1  
ATT2  
2.5 V  
VREF  
100µF  
+
VA-  
DGND  
CS5376A  
SIGNALS  
VA-  
VA-  
0.1µF  
Figure 6. Connection Diagram  
DS699F2  
17  
CS4373A  
POWER DOWN  
MCLK = OFF  
MODE = XXX  
SLEEP MODES  
MCLK = ON  
MODE = 0, 7  
AC TEST MODES  
MCLK = ON  
DC TEST MODES  
MCLK = ON  
MODE = 1, 2, 3, 6  
MODE = 4, 5  
Figure 7. Power Mode Diagram  
4. POWER MODES  
The CS4373A has four power modes. AC test  
modes and DC test modes are operational  
sleep mode for normal data acquisition. In  
sleep mode the AC and DC test circuitry is in-  
modes, while the power down and sleep active and the analog outputs are high imped-  
modes are non-operational, standby modes.  
ance.  
4.1 Power Down  
4.3 AC Test Modes  
If MCLK is stopped, an internal loss-of-clock  
detection circuit automatically places the  
With MCLK and TDATA active, selecting an  
AC test mode (MODE 1, 2, 3, 6) causes the  
CS4373A into power down. Power down is in- CS4373A to output AC waveforms on the en-  
dependent of the MODE and ATT pin settings,  
and is automatically invoked after approxi-  
mately 40 µs without an incoming MCLK edge.  
abled analog outputs. AC test modes use the  
low-power ∆Σ circuitry in the CS4373A to cre-  
ate precision differential or common mode an-  
alog AC output signals from the encoded  
digital test bit stream (TBS) input.  
In power down the AC and DC test circuitry is  
inactive and the analog outputs are high im-  
pedance. When used with the CS5376A digital  
filter, the CS4373A is powered down immedi-  
ately after reset since MCLK is disabled by de-  
fault.  
4.4 DC Test Modes  
With MCLK active, selecting a DC test mode  
(MODE 4, 5) causes the CS4373A to generate  
precision DC voltages on the analog outputs.  
DC test modes use switch-capacitor level-  
shifting buffer circuitry in the CS4373A to cre-  
ate differential or common mode DC analog  
output voltages from the voltage reference in-  
put.  
4.2 Sleep Modes  
With MCLK enabled, selecting either of the  
sleep modes (MODE 0, 7) places the  
CS4373A into a micropower sleep state. Fol-  
lowing completion of the AC and DC system  
self-tests, the CS4373A is typically set into  
18  
DS699F2  
CS4373A  
only the BUF analog output is enabled, and  
OUT is high impedance.  
5. OPERATIONAL MODES  
The CS4373A has six operational modes and  
two sleep modes selected by the MODE2,  
MODE1, and MODE0 pins.  
OUT+  
Maximum  
5 Vpp  
Differential  
OUT-  
Selection MODE[2:0]  
Mode Description  
Sleep mode.  
CS4373A  
MODE 1  
0
1
2
3
4
5
6
7
0 0 0  
0 0 1  
0 1 0  
0 1 1  
1 0 0  
1 0 1  
1 1 0  
1 1 1  
AC OUT and BUF outputs.  
AC OUT only, BUF high-z.  
AC BUF only, OUT high-z.  
DC common mode output.  
DC differential output.  
AC common mode output.  
Sleep mode.  
BUF+  
Maximum  
5 Vpp  
Differential  
BUF-  
OUT+  
Maximum  
5 Vpp  
Differential  
OUT-  
CS4373A  
MODE 2  
Table 2. Operational Modes  
BUF+  
High  
Impedance  
BUF-  
5.1 Sleep Modes  
Sleep modes (MODE 0, 7) save power during  
normal acquisition by turning off the AC and  
DC test circuitry after system self-tests are  
complete. In sleep mode the OUT and BUF  
analog outputs are high impedance.  
OUT+  
OUT-  
High  
Impedance  
CS4373A  
MODE 3  
5.2 AC Test Modes  
BUF+  
Maximum  
5 Vpp  
Differential  
AC test modes use the digital test bit stream  
(TBS) input from the CS5376A digital filter to  
construct analog AC waveforms. The digital bit  
stream input to the TDATA pin encodes the  
analog waveform as over-sampled one bit ∆Σ  
data, which is then converted into precision  
differential or common mode analog AC sig-  
nals by the CS4373A.  
BUF-  
Figure 8. AC Differential Modes  
Differential AC signals out of the CS4373A  
consist of two halves with equal but opposite  
magnitude, varying about a common mode  
5.2.1  
AC Differential  
The first three AC test modes (MODE 1, 2, 3)  
create precision differential analog signals for  
THD and impulse testing of the measurement  
channel. In mode 1, both sets of differential an-  
alog outputs (OUT and BUF) are enabled. In  
mode 2 only the OUT analog output is en-  
abled, and BUF is high impedance. In mode 3  
voltage. A full-scale 5 V differential AC sig-  
nal centered on a -0.15 V common mode volt-  
age will have:  
PP  
SIG+ = -0.15 V + 1.25 V = +1.1 V  
SIG- = -0.15 V - 1.25 V = -1.4 V  
SIG+ is +2.5 V relative to SIG-  
DS699F2  
19  
CS4373A  
For the opposite case:  
verted to a measurable differential signal at  
the fundamental frequency.  
SIG+ = -0.15 V - 1.25 V = -1.4 V  
SIG- = -0.15 V + 1.25 V = +1.1 V  
SIG+ is -2.5 V relative to SIG-  
So the total swing for SIG+ relative to SIG- is  
(+2.5 V) - (-2.5 V) = 5 V differential. A similar  
calculation can be done for SIG- relative to  
5.2.3  
AC Stability  
For the CS4373A low-power ∆Σ architecture to  
remain stable, the TDATA input bit stream  
should only encode 100 Hz or lower band-  
width analog signals. For TDATA bit stream  
frequencies above 100 Hz (for example, TBS  
impulse mode), the encoded amplitude must  
be reduced -20 dB below full scale to guaran-  
tee stability.  
pp  
SIG+. It’s important to note that a 5 V differ-  
pp  
ential signal centered on a -0.15 V common  
mode voltage never exceeds +1.1 V with re-  
spect to ground and never drops below -1.4 V  
with respect to ground on either half. By defini-  
tion, differential voltages are measured with  
respect to the opposite half, not relative to  
ground. A voltmeter differentially measuring  
between SIG+ and SIG- in the above example  
If the CS4373A low-power ∆Σ architecture be-  
comes unstable, persistent elevated noise will  
be present on the analog outputs and AC lin-  
earity will be poor. To recover stability, place  
the CS4373A into power down or sleep mode  
and restart the CS5376A test bit stream gener-  
ator before placing the CS4373A back into an  
AC test mode.  
would read 1.767 V , or 5 V .  
rms  
pp  
5.2.2  
AC Common Mode  
The final AC test mode (MODE 6) creates a  
matched AC common mode analog signal for  
CMRR testing of the measurement channel. In 5.3 DC Test Modes  
mode 6, both sets of analog outputs (OUT and  
BUF) are enabled. There is no common mode  
AC waveform output for an attenuator setting  
of 1/64.  
DC test modes create precision level-shifted  
and buffered versions of the voltage reference  
input as precision DC common mode and DC  
differential analog outputs. The absolute accu-  
racy of the DC test modes is highly dependent  
on the absolute accuracy of the voltage refer-  
ence input voltage.  
Maximum  
OUT+  
2.5 Vpp  
Common  
Mode  
5.3.1  
DC Common Mode  
OUT-  
The first DC test mode (MODE 4) creates a  
matched DC common mode analog output  
voltage as a baseline measurement for gain  
calibration and differential pulse tests. In mode  
4, both sets of analog outputs (OUT and BUF)  
are enabled.  
CS4373A  
MODE 6  
Maximum  
BUF+  
2.5 Vpp  
Common  
Mode  
BUF-  
5.3.2  
DC Differential  
Figure 9. AC Common Mode  
The second DC test mode (MODE 5) creates  
a precision differential DC analog output volt-  
age as the final measurement for gain calibra-  
tion and as the step/pulse output for  
differential pulse tests. In mode 5, both sets of  
analog outputs (OUT and BUF) are enabled.  
Gross leakage in the sensor channel can be  
detected by applying a full-scale AC common  
mode signal. If there is a significant differential  
mismatch in the channel due to sensor leak-  
age, the AC common mode signal will be con-  
20  
DS699F2  
CS4373A  
In DC differential output mode (MODE 5) the channel. By first measuring the differential off-  
level-shifting buffer circuitry adds low-level set of the DC common mode output (MODE 4)  
32 kHz switched-capacitor noise to the DC and then measuring the DC differential mode  
output. This noise is out of the measurement  
bandwidth for systems designed with  
amplitude (MODE 5), a precise offset correct-  
ed volts-to-codes conversion ratio can be cal-  
culated. This known ratio is then used to  
normalize the full-scale amplitude using the  
CS5376A digital filter GAIN registers to match  
other channels in the measurement network.  
CS3301A / CS3302A  
amplifiers  
and  
CS5371A / CS5372A modulators, and is re-  
jected by the CS5376A digital filter. This  
32 kHz switch-capacitor noise does not affect  
DC system tests, though it may be visible on  
an oscilloscope at high gain levels.  
By switching between DC common mode  
(MODE 4) and DC differential mode  
(MODE 5), pulse waveforms can be created to  
characterize the step response of the mea-  
surement channel. If a pulse test requires pre-  
cise timing control, an external controller  
should directly toggle the MODE pins of the  
CS4373A to avoid delays associated with writ-  
ing to the CS5376A digital filter GPIO regis-  
ters.  
Approx  
-0.15 VDC  
Common  
OUT+  
OUT-  
Mode  
CS4373A  
MODE 4  
Approx  
-0.15 VDC  
Common  
BUF+  
Sensor impedance can be measured using  
DC differential mode (MODE 5), provided  
matched series resistors are installed between  
the BUF analog outputs and the sensor. Ap-  
plying the known DC differential voltage to the  
resistor-sensor-resistor string permits a ratio-  
metric sensor impedance calculation from the  
measured voltage drop across the sensor.  
BUF-  
Mode  
OUT+  
Maximum  
2.5 VDC  
Differential  
OUT-  
CS4373A  
MODE 5  
BUF+  
Maximum  
2.5 VDC  
Differential  
Switching between DC differential mode  
(MODE 5) and sleep mode (MODE 0, 7) can,  
in the case of a moving-coil geophone, test ba-  
sic parameters of the electro-mechanical  
transfer function. The voltage relaxation char-  
acteristic of the sensor when switching the an-  
alog outputs from a differential DC voltage to  
high impedance depends primarily on the geo-  
phone resonant frequency and damping fac-  
tor.  
BUF-  
Figure 10. DC Test Modes  
By measuring both DC test modes  
(MODE 4, 5), precision gain-calibration coeffi-  
cients can be calculated for the measurement  
DS699F2  
21  
CS4373A  
VA+  
VD  
0.1µF  
0.1µF  
SWITCH  
CONTROL  
VA-  
VD  
10nF  
C0G  
MCLK  
MSYNC  
CAP+  
CAP-  
MCLK  
SENSOR  
MSYNC  
TDATA  
CH1 BUF  
CH2 BUF  
CH3 BUF  
CH4 BUF  
Route BUF as diff pair BUF+  
BUF-  
Analog  
Switches  
TBSDATA  
CS4373A  
GPIO  
GPIO  
GPIO  
ELECTRONICS  
MODE0  
MODE1  
MODE2  
Route OUT as diff pair  
Route VREF as diff pair  
OUT+  
OUT-  
CH1,2,3,4 OUT  
VA+  
10  
GPIO  
GPIO  
GPIO  
VREF+  
VREF-  
ATT0  
ATT1  
ATT2  
2.5 V  
VREF  
100µF  
+
VA-  
DGND  
CS5376A  
SIGNALS  
VA-  
VA-  
0.1µF  
Figure 11. Digital Inputs  
6. DIGITAL INPUTS  
The CS4373A is designed to operate with the  
CS5376A digital filter. The digital filter gener-  
ates one-bit ∆Σ test bit stream data (TDATA),  
a master clock (MCLK) and a synchronization  
signal (MSYNC). In addition, the digital filter  
GPIO pins control the CS4373A operational  
mode (MODE) and attenuator (ATT) settings.  
CS4373A low-power ∆Σ circuitry. Details on  
the setup and operation of the digital filter TBS  
generator can be found in the CS5376A data  
sheet.  
6.2 MCLK Connection  
The CS5376A digital filter generates the mas-  
ter clock for CS4373A, typically 2.048 MHz,  
from a synchronous CLK input from the exter-  
6.1 TDATA Connection  
The TDATA digital input expects encoded nal system. By default, MCLK is disabled at re-  
one-bit ∆Σ data nominally at a 256 kHz rate.  
The one’s density input range is approximately  
25% minimum to 75% maximum, with differen-  
tial mid-scale at 50% one’s density.  
set and is enabled by writing the digital filter  
CONFIG register. If MCLK is disabled during  
operation, the CS4373A will enter power down  
after approximately 40 µS.  
The CS5376A digital filter test bit stream  
(TBS) generator can encode two types of AC  
MCLK must have low in-band jitter to guaran-  
tee full analog performance, requiring a crys-  
signals as over-sampled, one-bit ∆Σ data - a tal- or VCXO-based system clock into the  
pure sine wave for THD and CMRR testing or  
a triggerable impulse waveform for synchroni-  
zation testing and impulse response charac-  
terization. In the AC operational modes, the  
CS4373A converts the over-sampled bit  
stream digital data into precision differential or  
common mode analog AC signals.  
digital filter. Clock jitter on the digital filter ex-  
ternal CLK input directly translates to jitter on  
MCLK.  
6.3 MSYNC Connection  
The CS5376A digital filter also provides a syn-  
chronization signal to the CS4373A. The  
MSYNC signal is generated following a rising  
edge received on the digital filter SYNC input.  
By default MSYNC generation is disabled at  
reset and is enabled by writing to the digital fil-  
ter CONFIG register.  
The CS5376A TBS sine mode encodes an ap-  
proximately 5 V full-scale sine wave signal  
pp  
with a digital filter TBSGAIN register setting of  
0x04B8F2. Because TBS impulse mode en-  
codes frequencies above 100 Hz, a maximum  
0x0078E5 TBSGAIN impulse mode register  
setting is specified to guarantee stability of the  
The input SYNC signal to the CS5376A digital  
filter sets a common reference time t for mea-  
0
22  
DS699F2  
CS4373A  
surement events, thereby synchronizing ana-  
log sampling across a measurement network.  
The timing accuracy of the input SYNC signal  
from measurement node to measurement  
node must be +/- 1 MCLK to maximize  
MSYNC analog sample synchronization accu-  
racy.  
put output (GPIO) pins through the digital filter  
GPCFG registers. These GPIO pins are typi-  
cally assigned to operate the CS4373A mode  
and attenuator pins, along with the  
CS3301A / CS3302A amplifiers input mux and  
gain pins. The gain and attenuation settings of  
the CS3301A / CS3302A amplifiers and  
CS4373A are identically decoded to allow full-  
scale performance testing at all system gain  
ranges with shared GAIN and ATT control sig-  
nals.  
The CS4373A MSYNC input is rising-edge  
triggered and resets the internal MCLK  
counter/divider to guarantee synchronous op-  
eration with other system devices. While the  
MSYNC signal synchronizes the internal oper-  
ation of the CS4373A, by default, it does not  
synchronize the phase of the encoded digital  
test bit stream (TBS) sine wave unless en-  
abled in the digital filter TBSCFG register.  
If precise timing control of operational modes  
is required (for example, switching between  
DC modes for pulse generation), an external  
controller should directly toggle the MODE  
pins of the CS4373A to avoid the delay asso-  
ciated with writing to the CS5376A digital filter  
GPCFG registers.  
6.4 GPIO Connections  
The CS5376A controls 12 general-purpose in-  
DS699F2  
23  
CS4373A  
VA+  
VD  
0.1µF  
0.1µF  
SWITCH  
CONTROL  
VA-  
VD  
10nF  
C0G  
MCLK  
MSYNC  
CAP+  
CAP-  
MCLK  
SENSOR  
MSYNC  
TDATA  
CH1 BUF  
CH2 BUF  
CH3 BUF  
CH4 BUF  
Route BUF as diff pair BUF+  
BUF-  
Analog  
Switches  
TBSDATA  
CS4373A  
GPIO  
GPIO  
GPIO  
ELECTRONICS  
MODE0  
MODE1  
MODE2  
Route OUT as diff pair  
Route VREF as diff pair  
OUT+  
OUT-  
CH1,2,3,4 OUT  
VA+  
10  
GPIO  
GPIO  
GPIO  
VREF+  
VREF-  
ATT0  
ATT1  
ATT2  
2.5 V  
VREF  
100µF  
+
VA-  
DGND  
CS5376A  
SIGNALS  
VA-  
VA-  
0.1µF  
Figure 12. Analog Outputs  
7. ANALOG OUTPUTS  
The CS4373A has multiple differential analog  
mode voltage never exceeds +1.1 V with re-  
outputs. The best possible analog perfor- spect to ground and never drops below -1.4 V  
mance is achieved from the precision outputs  
(OUT±), but with only minimal drive capability.  
with respect to ground on either half. By defini-  
tion, differential voltages are measured with  
A buffered output (BUF±) can drive an external respect to the opposite half, not relative to  
load, but with reduced analog performance.  
The internal anti-alias filter requires a dedicat-  
ed capacitor connection (CAP±) to eliminate  
undesired high-frequency signals.  
ground. A voltmeter differentially measuring  
between SIG+ and SIG- in the above example  
would read 1.767 V , or 5 V .  
rms  
pp  
7.2 Analog Output Attenuation  
7.1 Differential Signals  
The CS4373A has seven analog output atten-  
Differential AC signals out of the CS4373A uation settings from 1/1 to 1/64 selected with  
consist of two halves with equal but opposite  
magnitude varying about a common mode  
the ATT2, ATT1, and ATT0 pins. At 1/64 atten-  
uation in AC Common Mode (MODE 6) there  
is no output signal amplitude due to the atten-  
uator architecture.  
voltage. A full-scale 5 V differential AC sig-  
PP  
nal centered on a -0.15 V common mode volt-  
age will have:  
SIG+ = -0.15 V + 1.25 V = +1.1 V  
SIG- = -0.15 V - 1.25 V = -1.4 V  
SIG+ is +2.5 V relative to SIG-  
For the opposite case:  
Selection ATT[2:0] Attenuation  
dB  
0
1
2
3
4
5
6
7
0 0 0  
0 0 1  
0 1 0  
0 1 1  
1 0 0  
1 0 1  
1 1 0  
1 1 1  
1/1  
1/2  
0 dB  
-6.02 dB  
-12.04 dB  
-18.06 dB  
-24.08 dB  
-30.10 dB  
-36.12 dB  
reserved  
1/4  
1/8  
SIG+ = -0.15 V - 1.25 V = -1.4 V  
SIG- = -0.15 V + 1.25 V = +1.1 V  
SIG+ is -2.5 V relative to SIG-  
So the total swing for SIG+ relative to SIG- is  
1/16  
1/32  
1/64  
reserved  
(+2.5 V) - (-2.5 V) = 5 V differential. A similar  
pp  
calculation can be done for SIG- relative to  
Table 3. Output Attenuation Settings  
SIG+. It’s important to note that a 5 V differ-  
pp  
ential signal centered on a -0.15 V common  
24  
DS699F2  
CS4373A  
When enabled, attenuation is applied to both  
the OUT and BUF differential analog outputs.  
The OUT± pins connect directly into the inter-  
nal attenuator resistors and so attenuation ac-  
curacy is highly sensitive to load impedance  
on the OUT± pins. Loading on the BUF± pins  
does not affect attenuator accuracy.  
AC BUF Only and sleep modes the OUT± pins  
are high impedance.  
7.4 BUF Buffered Output  
The BUF± pins are buffered differential analog  
outputs for testing external sensors such as  
geophones or hydrophones. The buffered out-  
puts have reduced performance specifications  
compared with the OUT outputs, but are less  
sensitive to external loading.  
The attenuation settings of CS4373A match  
the gain ranges of the CS3301A / CS3302A  
differential amplifiers to enable full-scale test-  
The BUF± outputs are enabled in all operation-  
al modes except “AC OUT Only” mode  
(MODE 2) and sleep modes (MODE 0, 7). In  
AC OUT Only and sleep modes the BUF± pins  
are high impedance to ensure they do not in-  
terfere with sensor operation during normal  
data acquisition.  
ing  
at  
all  
gain  
ranges.  
The  
CS3301A / CS3302A amplifier gain settings  
(GAIN) are decoded identical to the CS4373A  
attenuator settings (ATT) and so can share  
GPIO signals from the digital filter.  
7.3 OUT Precision Output  
The OUT± pins are precision differential ana-  
log outputs for testing the high-performance  
electronics measurement channel. These pre-  
cision outputs have higher performance spec-  
ifications than the BUF outputs, but with a  
much higher sensitivity to external loading. Ex-  
cessive resistive or capacitive loading on the  
OUT± pins will degrade the analog perfor-  
mance characteristics of the CS4373A in all  
operational modes.  
For sensor impedance testing, it is required to  
place matched series resistors in between the  
BUF± outputs and the differential sensor. With  
known series resistors and a known DC differ-  
ential source voltage, sensor resistance can  
be calculated ratiometrically from the mea-  
sured voltage drop across the sensor.  
7.5 CAP Analog Output  
The CS4373A requires a 10 nF C0G or NPO-  
type capacitor connected differentially across  
the CAP± pins. This capacitor creates an inter-  
nal anti-alias filter to eliminate high-frequency  
signals from the OUT± and BUF± analog out-  
puts and helps to maintain the stability of the  
low-power ∆Σ circuitry.  
The OUT± precision output is optimized for di-  
rect connection to the CS3301A / CS3302A  
amplifier differential inputs, which have very  
high input impedance. These amplifiers in-  
clude a pin-controlled input multiplexer to  
switch between an internal differential termina-  
tion for noise tests and two external differential  
inputs. One external amplifier input is typically  
dedicated to sensor measurements and the  
other to testing the electronics channel.  
A COG, NPO or similar high-quality capacitor  
is required for CAP± since other capacitor  
types, such as X7R, do not have the required  
linearity. Using a poor-quality capacitor on  
CAP± will significantly degrade THD perfor-  
mance in the AC operational modes.  
The OUT± outputs are enabled in all opera-  
tional modes except “AC BUF Only” mode  
(MODE 3) and sleep modes (MODE 0, 7). In  
DS699F2  
25  
CS4373A  
To VA+  
Regulator  
Route VREF±as a differential pair  
from the 100uF RC filter capacitor  
100 µF  
100 µF  
0.1 µF  
10  
To VREF+  
2.500 V  
VREF  
0.1 µF  
0.1 µF  
100 µF  
0.1 µF  
+
To VA-  
Regulator  
To VREF-  
0.1 µF  
Figure 13. Voltage Reference Circuit  
8. VOLTAGE REFERENCE  
The CS4373A requires a 2.500 V precision  
voltage reference to be supplied to the VREF±  
pins.  
ogy LT1019AIS8-2.5 voltage reference yields  
acceptable noise levels if the output is filtered  
with a low-pass RC filter.  
A separate RC filter is required for each sys-  
tem device connected to a given voltage refer-  
ence. By sharing a common RC filter, signal-  
dependent sampling of the voltage reference  
by one system device could cause unwanted  
tones to appear in the measurement band-  
width of another system device via common  
impedance coupling.  
8.1 VREF Power Supply  
To guarantee proper regulation headroom for  
the voltage reference device, the voltage refer-  
ence GND pin should be connected to VA- in-  
stead of system ground, as shown in  
Figure 13. This connection results in VREF-  
voltage equal to VA- and VREF+ voltage very  
near ground potential [(VA-) + 2.500 VREF].  
8.3 VREF PCB Routing  
Power supply inputs to the voltage reference  
device should be bypassed to system ground  
with 0.1 µF capacitors placed as close as pos-  
sible to the power and ground pins. In addition  
to 0.1 µF local bypass capacitors, at least  
To minimize the possibility of outside noise  
coupling into the CS4373A voltage reference  
input, the VREF± traces should be routed as a  
differential pair from the large capacitor of the  
100 µF of bulk capacitance to system ground voltage reference RC filter. Careful control of  
should be placed on each power supply near  
the voltage regulator outputs. Bypass capaci-  
tors should be X7R, C0G, tantalum, or other  
high-quality dielectric type.  
the voltage reference source and return cur-  
rents by routing VREF± as a differential pair  
will improve immunity from external noise.  
To further improve noise rejection of the  
VREF± routing, include 0.1 µF bypass ca-  
pacitors to system ground as close as possible  
to the VREF+ and VREF- pins of the  
CS4373A.  
8.2 VREF RC Filter  
A primary concern in selecting a precision volt-  
age reference is noise performance in the  
measurement bandwidth. The Linear Technol-  
26  
DS699F2  
CS4373A  
8.4 VREF Input Impedance  
Since temperature drift of the voltage refer-  
ence results in gain drift of the analog full-scale  
amplitude, care should be taken to minimize  
temperature drift effects through careful selec-  
tion of passive components and the voltage  
reference device itself. Gain drift specifications  
of the CS4373A do not include the tempera-  
ture drift effects of external passive compo-  
nents or of the voltage reference device itself.  
The switched-capacitor input architecture of  
the VREF± inputs results in an input imped-  
ance that depends on the internal capacitor  
size and the clock frequency. With a 15 pF in-  
ternal capacitor and a 2.048 MHz MCLK the  
VREF input impedance is approximately  
[1 / [(2.048 MHz) * (15 pF)]] = 32 k.  
While  
the size of the internal capacitor is fixed, the  
voltage reference input impedance will vary  
with MCLK.  
8.6 VREF Independence  
If the test signal source is required to be fully  
independent of the measurement channel, a  
separate voltage reference device for the  
CS4373A is required. Using a separate volt-  
age reference minimizes the possibility of un-  
detected ratiometric errors when the same  
voltage reference is used by both the test sig-  
nal source and the measurement channel.  
The voltage reference external RC filter series  
resistor creates a voltage divider with the  
VREF input impedance to reduce the effective  
applied input voltage. To minimize gain error  
resulting from this voltage divider effect, the  
RC filter series resistor should be the minimum  
size recommended in the voltage reference  
device data sheet.  
Because modern precision voltage references  
are highly reliable, requirements for separate  
modulator and test DAC voltage references  
should be considered carefully. In the unlikely  
event of voltage reference failure independent  
of other system components, the CS4373A  
volts-to-codes ratio will be out of spec and per-  
formance will be poor during system self-tests.  
8.5 VREF Accuracy  
The nominal voltage reference input is speci-  
fied as 2.500 V across the VREF± pins, and all  
CS4373A gain accuracy specifications are  
measured with a nominal voltage reference in-  
put. Any variation from a nominal VREF input  
will proportionally vary the analog full-scale  
gain accuracy.  
DS699F2  
27  
CS4373A  
To VA+  
To VD  
Regulator  
Regulator  
100 uF  
0.1 uF  
0.1 uF  
100 uF  
VA+  
VA-  
VD  
CS4373A  
GND  
To VA-  
Regulator  
0.1 uF  
100 uF  
Figure 14. Power Supply Diagram  
9. POWER SUPPLIES  
The CS4373A has a positive analog power  
supply pin (VA+), a negative analog power  
supply pin (VA-), a digital power supply pin  
(VD), and a ground pin (GND).  
planes or routed traces. When routing power  
traces, it is recommended to use a “star” rout-  
ing scheme with the star point either at the  
voltage regulator output or at a local power  
supply bulk capacitor.  
For proper operation, power must be supplied  
to all power supply pins, and the ground pin  
must be connected to system ground. The  
CS4373A digital power supply (VD) and the  
It is also recommended to dedicate a full PCB  
layer to a solid ground plane, without splits or  
routing. All bypass capacitors should connect  
CS5376A  
digital  
power  
supplies between the power supply circuit and the solid  
(VDD1 / VDD2) must share a common power  
supply voltage.  
ground plane as near as possible to the device  
power supply pins.  
The CS4373A analog outputs are differentially  
routed and do not normally require connection  
to a separate analog ground. However, if a  
separate analog ground is required, it should  
be routed using a “star” routing scheme on a  
separate layer from the solid ground plane and  
connected to the ground plane only at the star  
point. Be sure all active devices and passive  
components connected to the analog ground  
are included in the “star” route to ensure sen-  
sitive analog currents do not return through the  
ground plane.  
9.1 Power Supply Bypassing  
The VA+, VA-, and VD power supplies should  
be bypassed to system ground with 0.1 µF ca-  
pacitors placed as close as possible to the  
power pins of the device. In addition to the  
0.1 µF local bypass capacitors, at least 100 µF  
bulk capacitance to system ground should be  
placed on each power supply near the voltage  
regulator output, with additional power supply  
bulk capacitance placed among the analog  
component route if space permits. Bypass ca-  
pacitors should be X7R, C0G, tantalum, or  
other high-quality dielectric type.  
9.3 Power Supply Rejection  
Power supply rejection of the CS4373A is fre-  
quency dependent. The CS5376A digital filter  
rejects power supply noise for frequencies  
above the selected digital filter corner frequen-  
cy. Power supply noise frequencies between  
DC and the digital filter corner frequency are  
9.2 PCB Layers and Routing  
The CS4373A is a high-performance device,  
and special care must be taken to ensure pow-  
er and ground routing is correct. Power can be  
supplied either through dedicated power  
28  
DS699F2  
CS4373A  
rejected  
as  
specified  
in  
the are battery powered and utilize DC-DC con-  
verters to efficiently generate power supply  
voltages. To minimize interference effects, op-  
erate the DC-DC converter at a frequency  
Power Supply Characteristics table.  
9.4 SCR Latch-up  
The VA- pin is tied to the CS4373A CMOS  
substrate and must always be the most-nega-  
tive voltage applied to the device to ensure  
SCR latch-up does not occur. In general,  
latch-up may occur when any pin voltage ex-  
which is rejected by the digital filter, or operate  
it synchronous to the MCLK rate.  
A synchronous DC-DC converter whose oper-  
ating frequency is derived from MCLK will the-  
oretically minimize the potential for “beat  
frequencies” to appear in the measurement  
bandwidth. However this requires the source  
clock to remain jitter-free within the DC-DC  
converter circuitry. If clock jitter can occur with-  
in the DC-DC converter (as in a PLL-based ar-  
chitecture), it’s better to use a non-  
synchronous DC-DC converter whose switch-  
ing frequency is rejected by the digital filter.  
ceeds  
the  
limits  
of  
the  
Absolute Maximum Ratings table.  
It is recommended to connect the VA- power  
supply to system ground (GND) with a re-  
verse-biased Schottky diode. At power up, if  
the VA+ power supply ramps before the VA-  
supply is established, the VA- pin voltage  
could be pulled above ground potential  
through the CS4373A device. If the VA- supply  
is pulled 0.7 V or more above GND, SCR  
latch-up can occur. A reverse-biased Schottky  
diode will clamp the VA- voltage a maximum of  
0.3 V above ground to ensure SCR latch-up  
does not occur at power up.  
During PCB layout, do not place high-current  
DC-DC converters near sensitive analog com-  
ponents. Carefully routing a separate DC-DC  
“star” ground will help isolate noisy switching  
currents away from the sensitive analog com-  
ponents.  
9.5 DC-DC Converters  
Many low-frequency measurement systems  
DS699F2  
29  
CS4373A  
10. TERMINOLOGY  
Signal-to-Noise Ratio (Dynamic Range) - Ratio of the rms magnitude of the full-scale signal to the integrated  
rms noise from DC to 430 Hz. The following formula is used to calculate SNR:  
(
rms magnitude of full scale signal  
SNR = 20log  
(
rms magnitude of noise floor  
Total Harmonic Distortion - Ratio of the power of the fundamental frequency to the sum of the powers of all  
harmonic frequencies from DC to 430 Hz. The following formula is used to calculate THD:  
(
sum of the powers of the harmonic frequencies  
THD = 10log  
(
power of the fundamental frequency  
Full-scale Bandwidth - The bandwidth in which the converter can generate a full-scale signal while maintaining  
performance specifications.  
Impulse Amplitude - The maximum amplitude of the output signal beyond the full-scale bandwidth.  
Differential Output Level - The voltage between the analog output pins of the device.  
Full-scale Accuracy - Variation in the measured output voltage from the theoretical full-scale output voltage at  
1x attenuation. The following formula is used to calculate full-scale accuracy:  
|
( |  
measured full scale voltage - theoretical full scale voltage  
theoretical full scale voltage  
•100%  
full scale accuracy =  
(
Relative Accuracy - Variation in the measured output voltage from the theoretical attenuated output voltage at  
each of the attenuation ranges. The following formula is used to calculate relative accuracy:  
|
( |  
measured attenuated voltage - theoretical attenuated voltage  
theoretical attenuated voltage (relative to the measured full scale voltage)  
•100%  
relative accuracy =  
(
Full Scale Drift - The variation of the measured full-scale voltage across the specified temperature range.  
Common Mode Drift - The variation in the measured common mode voltage across the specified temperature  
range.  
30  
DS699F2  
CS4373A  
11. PIN DESCRIPTION  
Positive Capacitor Output  
Negative Capacitor Output  
Positive Buffered Output  
CAP+  
CAP-  
BUF+  
BUF-  
OUT+  
OUT-  
VA+  
GND  
System Ground  
Mode Select  
Mode Select  
Mode Select  
1
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
15  
MODE0  
MODE1  
MODE2  
ATT0  
2
3
Negative Buffered Output  
4
Positive High Precision Output  
Negative High Precision Output  
Positive Analog Power Supply  
Negative Analog Power Supply  
Attenuation Range Select  
Attenuation Range Select  
Attenuation Range Select  
Signal Bitstream Input  
Positive Digital Power Supply  
System Ground  
5
ATT1  
6
ATT2  
7
VA-  
TDATA  
VD  
8
Negative Voltage Reference VREF-  
Positive Voltage Reference VREF+  
9
GND  
10  
11  
12  
13  
14  
No Connect  
No Connect  
No Connect  
No Connect  
NC  
NC  
NC  
NC  
MCLK  
MSYNC  
DNC  
Master Clock Input  
Master Sync Input  
Do Not Connect  
DNC  
Do Not Connect  
Pin Name  
Pin # I/O  
Pin Description  
1
2
O
O
O
I
Capacitor connection for internal anti-alias filter.  
CAP+,  
CAP-  
3
4
Buffered differential analog output.  
BUF+,  
BUF-  
5
6
Precision differential analog output.  
OUT+,  
OUT-  
7
8
Analog power supply. Refer to the Specified Operating Conditions.  
Voltage reference input. Refer to the Specified Operating Conditions.  
VA+,  
VA-  
9
10  
I
VREF-,  
VREF+  
17  
18  
19  
20  
21  
I
Master Sync Input. Low to high transition resets the internal clock phasing.  
Master Clock Input. CMOS compatible clock input.  
System ground.  
MSYNC  
MCLK  
GND  
I
Digital power supply. Refer to the Specified Operating Conditions.  
Test Bit Stream input from digital filter TBS generator.  
VD  
I
TDATA  
DS699F2  
31  
CS4373A  
Pin Name  
Pin # I/O  
Pin Description  
22,  
23,  
24  
I
Attenuation Range. Selects the output attenuation range.  
ATT2,  
ATT1,  
ATT0  
Attenuation  
Selection ATT[2:0] Attenuation  
dB  
0
1
2
3
4
5
6
7
0 0 0  
0 0 1  
0 1 0  
0 1 1  
1 0 0  
1 0 1  
1 1 0  
1 1 1  
1/1  
1/2  
0 dB  
-6.02 dB  
-12.04 dB  
-18.06 dB  
-24.08 dB  
-30.10 dB  
-36.12 dB  
reserved  
1/4  
1/8  
1/16  
1/32  
1/64  
reserved  
25,  
26,  
27  
I
Mode Selection. Determines the operational mode of the device.  
MODE2,  
MODE1,  
MODE0  
Selection MODE[2:0]  
Mode Description  
Sleep mode.  
0
1
2
3
4
5
6
7
0 0 0  
0 0 1  
0 1 0  
0 1 1  
1 0 0  
1 0 1  
1 1 0  
1 1 1  
AC OUT and BUF outputs.  
AC OUT only, BUF tri-state.  
AC BUF only, OUT tri-state.  
DC common mode output.  
DC differential output.  
AC common mode output.  
Sleep mode.  
28  
System ground.  
GND  
32  
DS699F2  
CS4373A  
12. PACKAGE DIMENSIONS  
28L SSOP PACKAGE DRAWING  
N
D
E11  
A2  
A
E
A1  
b2  
e
L
END VIEW  
SEATING  
PLANE  
SIDE VIEW  
1
2 3  
TOP VIEW  
INCHES  
NOM  
--  
0.006  
0.069  
--  
0.4015  
0.307  
0.209  
0.026  
0.0354  
4°  
MILLIMETERS  
NOTE  
DIM  
A
A1  
A2  
b
D
E
E1  
e
L
MIN  
--  
MAX  
0.084  
0.010  
0.074  
0.015  
0.413  
0.323  
0.220  
0.030  
0.041  
8°  
MIN  
--  
NOM  
--  
0.15  
1.75  
--  
10.20  
7.80  
5.30  
0.65  
0.90  
4°  
MAX  
2.13  
0.25  
1.88  
0.38  
10.50  
8.20  
5.60  
0.75  
1.03  
8°  
0.002  
0.064  
0.009  
0.390  
0.291  
0.197  
0.022  
0.025  
0°  
0.05  
1.62  
0.22  
9.90  
7.40  
5.00  
0.55  
0.63  
0°  
2,3  
1
1
JEDEC #: MO-150  
Controlling Dimension is Millimeters  
Notes: 1. “D” and “E1” are reference datums and do not included mold flash or protrusions, but do include mold  
mismatch and are measured at the parting line, mold flash or protrusions shall not exceed 0.20 mm per  
side.  
2. Dimension “b” does not include dambar protrusion/intrusion. Allowable dambar protrusion shall be  
0.13 mm total in excess of “b” dimension at maximum material condition. Dambar intrusion shall not  
reduce dimension “b” by more than 0.07 mm at least material condition.  
3. These dimensions apply to the flat section of the lead between 0.10 and 0.25 mm from lead tips.  
DS699F2  
33  
CS4373A  
13.ORDERING INFORMATION  
Model  
Temperature  
Package  
28-pin SSOP  
CS4373A-ISZ (lead free)  
-40 to +85 °C  
14.ENVIRONMENTAL, MANUFACTURING, & HANDLING INFORMATION  
Model Number  
Peak Reflow Temp  
MSL Rating*  
Max Floor Life  
CS4373A-ISZ (lead free)  
260 °C  
3
7 Days  
* MSL (Moisture Sensitivity Level) as specified by IPC/JEDEC J-STD-020.  
15.REVISION HISTORY  
Revision  
PP1  
PP2  
PP3  
F1  
Date  
Changes  
MAR 2003  
SEP 2005  
NOV 2005  
DEC 2005  
DEC 2006  
Preliminary release for CS4373.  
Update for new CS4373A features and most-current characterization data.  
Remove references to CS5378. Update for most-current characterization data.  
Updated with final characterization data.  
F2  
Updated to final status with most-recent characterization data for Cirrus QPL pro-  
cess.  
Contacting Cirrus Logic Support  
For all product questions and inquiries contact a Cirrus Logic Sales Representative.  
To find the one nearest to you go to www.cirrus.com  
IMPORTANT NOTICE  
Cirrus Logic, Inc. and its subsidiaries ("Cirrus") believe that the information contained in this document is accurate and reliable. However, the information is subject  
to change without notice and is provided "AS IS" without warranty of any kind (express or implied). Customers are advised to obtain the latest version of relevant  
information to verify, before placing orders, that information being relied on is current and complete. All products are sold subject to the terms and conditions of sale  
supplied at the time of order acknowledgment, including those pertaining to warranty, indemnification, and limitation of liability. No responsibility is assumed by Cirrus  
for the use of this information, including use of this information as the basis for manufacture or sale of any items, or for infringement of patents or other rights of third  
parties. This document is the property of Cirrus and by furnishing this information, Cirrus grants no license, express or implied under any patents, mask work rights,  
copyrights, trademarks, trade secrets or other intellectual property rights. Cirrus owns the copyrights associated with the information contained herein and gives con-  
sent for copies to be made of the information only for use within your organization with respect to Cirrus integrated circuits or other products of Cirrus. This consent  
does not extend to other copying such as copying for general distribution, advertising or promotional purposes, or for creating any work for resale.  
CERTAIN APPLICATIONS USING SEMICONDUCTOR PRODUCTS MAY INVOLVE POTENTIAL RISKS OF DEATH, PERSONAL INJURY, OR SEVERE PROP-  
ERTY OR ENVIRONMENTAL DAMAGE ("CRITICAL APPLICATIONS"). CIRRUS PRODUCTS ARE NOT DESIGNED, AUTHORIZED OR WARRANTED FOR USE  
IN AIRCRAFT SYSTEMS, MILITARY APPLICATIONS, PRODUCTS SURGICALLY IMPLANTED INTO THE BODY, AUTOMOTIVE SAFETY OR SECURITY DE-  
VICES, LIFE SUPPORT PRODUCTS OR OTHER CRITICAL APPLICATIONS. INCLUSION OF CIRRUS PRODUCTS IN SUCH APPLICATIONS IS UNDERSTOOD  
TO BE FULLY AT THE CUSTOMER'S RISK AND CIRRUS DISCLAIMS AND MAKES NO WARRANTY, EXPRESS, STATUTORY OR IMPLIED, INCLUDING THE  
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR PARTICULAR PURPOSE, WITH REGARD TO ANY CIRRUS PRODUCT THAT IS USED  
IN SUCH A MANNER. IF THE CUSTOMER OR CUSTOMER'S CUSTOMER USES OR PERMITS THE USE OF CIRRUS PRODUCTS IN CRITICAL APPLICA-  
TIONS, CUSTOMER AGREES, BY SUCH USE, TO FULLY INDEMNIFY CIRRUS, ITS OFFICERS, DIRECTORS, EMPLOYEES, DISTRIBUTORS AND OTHER  
AGENTS FROM ANY AND ALL LIABILITY, INCLUDING ATTORNEYS' FEES AND COSTS, THAT MAY RESULT FROM OR ARISE IN CONNECTION WITH  
THESE USES.  
Cirrus Logic, Cirrus, and the Cirrus Logic logo designs are trademarks of Cirrus Logic, Inc. All other brand and product names in this document may be trademarks  
or service marks of their respective owners.  
34  
DS699F2  

相关型号:

CS4373A-IS

D/A Converter, 1 Func, Serial Input Loading, PDSO28, SSOP-28
CIRRUS

CS4373A-ISZ

Low-power, High-performance Test DAC
CIRRUS

CS4382

114 dB, 192 kHz 8-Channel D/A Converter
CIRRUS

CS4382-BQ

D/A Converter, 1 Func, Serial Input Loading, PQFP48, MS-022, LQFP-48
CIRRUS

CS4382-KQ

D/A Converter, 1 Func, Serial Input Loading, PQFP48, MS-022, LQFP-48
CIRRUS

CS4382-KQZ

114 dB, 192 kHz 8-Channel D/A Converter
CIRRUS

CS4382-KQZR

114 dB, 192 kHz 8-Channel D/A Converter
CIRRUS

CS4382A

114 dB, 192 kHz 8-channel D/A Converter
CIRRUS

CS4382A-CQZ

114 dB, 192 kHz 8-channel D/A Converter
CIRRUS

CS4382A-CQZR

114 dB, 192 kHz 8-channel D/A Converter
CIRRUS

CS4382A-DQZ

114 dB, 192 kHz 8-Channel D/A Converter
CIRRUS

CS4382A-DQZR

114 dB, 192 kHz 8-Channel D/A Converter
CIRRUS