CS5016-JP16 [CIRRUS]

16, 14 & 12-Bit, Self-Calibrating A/D Converters; 16 , 14和12位,自校准的A / D转换器
CS5016-JP16
型号: CS5016-JP16
厂家: CIRRUS LOGIC    CIRRUS LOGIC
描述:

16, 14 & 12-Bit, Self-Calibrating A/D Converters
16 , 14和12位,自校准的A / D转换器

转换器 模数转换器 光电二极管
文件: 总46页 (文件大小:401K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
CS5016 CS5014 CS5012A  
16, 14 & 12-Bit, Self-Calibrating A/D Converters  
Semiconductor Corporation  
Features  
General Description  
The CS5012A/14/16 are 12, 14 and 16-bit monolithic  
analog to digital converters with conversion times of  
7.2µs, 14.25µs and 16.25µs. Unique self-calibration cir-  
cuitry insures excellent linearity and differential non-  
linearity, with no missing codes. Offset and full scale  
errors are kept within 1/2 LSB (CS5012A/14) and  
1 LSB (CS5016), eliminating the need for calibration.  
Unipolar and bipolar input ranges are digitally select-  
able.  
Monolithic CMOS A/D Converters  
Microprocessor Compatible  
Parallel and Serial Output  
Inherent Track/Hold Input  
True 12, 14 and 16-Bit Precision  
The pin compatible CS5012A/14/16 consist of a DAC,  
conversion and calibration microcontroller, oscillator,  
comparator, microprocessor compatible 3-state I/O,  
and calibration circuitry. The input track-and-hold, in-  
herent to the devices’ sampling architecture, acquires  
the input signal after each conversion using a fast  
slewing on-chip buffer amplifier. This allows throughput  
rates up to 100 kHz (CS5012A), 56 kHz (CS5014) and  
50 kHz (CS5016).  
Conversion Times:  
CS5016 16.25 µs  
CS5014 14.25 µs  
CS5012A 7.20 µs  
Self Calibration Maintains Accuracy  
Over Time and Temperature  
An evaluation board (CDB5012/14/16) is available  
which allows fast evaluation of ADC performance.  
Low Power Dissipation: 150 mW  
Low Distortion  
ORDERING INFORMATION: Pages 2-45, 2-46, & 2-47  
HOLD CS RD  
A0 BP/UP RST BW INTRLV CAL  
23 24 32 33 34 35  
EOT EOC SCLK SDATA  
1
21  
22  
37  
38  
39  
40  
2
3
D0 (LSB) CS5016  
D1  
4
20  
CLOCK  
GENERATOR  
D2 (LSB) CS5014  
CONTROL  
CLKIN  
5
D3  
6
D4 (LSB) CS5012A  
29  
CALIBRATION  
MEMORY  
7
REFBUF  
VREF  
MICROCONTROLLER  
D5  
8
-
D6  
28  
26  
27  
9
+
D7  
12  
13  
14  
15  
16  
17  
18  
19  
D8  
D9  
-
+
CHARGE  
REDISTRIBUTION  
DAC  
-
+
D10  
D11  
D12  
D13  
D14  
D15 (MSB)  
AIN  
COMPARATOR  
-
+
AGND  
STATUS REGISTER  
25  
30  
VA-  
11  
VD+  
36  
VD-  
10  
31  
TST  
VA+  
DGND  
Crystal Semiconductor Corporation  
P.O. Box 17847, Austin, TX 78760  
(512) 445 7222 FAX: (512) 445 7581  
MAR ’95  
DS14F6  
Copyright Crystal Semiconductor Corporation 1995  
(All Rights Reserved)  
2-7  
CS5012A  
CS5012A ANALOG CHARACTERISTICS (T = T  
to T  
; VA+, VD+ = 5V;  
A
MIN  
MAX  
VA-, VD- = -5V; VREF = 2.5V to 4.5V; f = 6.4 MHz for -7, 4 MHz for -12; Analog Source Impedance = 200)  
clk  
CS5012A-K  
CS5012A-B  
CS5012-T  
Parameter*  
Min Typ Max Min Typ Max Min Typ Max Units  
Specified Temperature Range  
0 to +70  
-40 to +85  
-55 to +125  
°C  
Accuracy  
Linearity Error  
Drift  
(Note 1)  
(Note 2)  
LSB  
LSB  
±1/4 ±1/2  
±1/8  
±1/4 ±1/2  
±1/8  
±1/4 ±1/2  
±1/8  
12  
12  
12  
12  
12  
12  
12  
12  
Differential Linearity  
Drift  
(Note 1)  
(Note 2)  
LSB  
±1/4 ±1/2  
±1/32  
±1/4 ±1/2  
±1/32  
±1/4 ±1/2  
±1/32  
12  
LSB  
Full Scale Error  
Drift  
(Note 1)  
(Note 2)  
LSB  
±1/4 ±1/2  
±1/16  
±1/4 ±1/2  
±1/16  
±1/4 ±1/2  
±1/8  
12  
LSB  
Unipolar Offset  
Drift  
(Note 1)  
(Note 2)  
LSB  
±1/4 ±1/2  
±1/16  
±1/4 ±1/2  
±1/16  
±1/4 ±1/2  
±1/16  
12  
LSB  
Bipolar Offset  
Drift  
(Note 1)  
(Note 2)  
LSB  
±1/4 ±1/2  
±1/16  
±1/4 ±1/2  
±1/16  
±1/4 ±1/2  
±1/16  
12  
LSB  
Bipolar Negative Full-Scale Error(Note 1)  
LSB  
±1/4 ±1/2  
±1/16  
±1/4 ±1/2  
±1/16  
±1/4 ±1/2  
±1/16  
12  
Drift  
(Note 2)  
LSB  
Total Unadjusted Error  
Drift  
(Note 1)  
(Note 2)  
LSB  
±1/4  
±1/4  
±1/4  
±1/4  
±1/4  
±1/4  
12  
LSB  
Dynamic Performance (Bipolar Mode)  
Peak Harmonic or  
(Note 1)  
Spurious Noise  
Full Scale, 1 kHz Input  
Full Scale, 12 kHz Input  
84  
84  
92  
88  
84  
84  
92  
88  
84  
84  
92  
88  
dB  
dB  
Total Harmonic Distortion  
0.008  
0.008  
0.008  
%
Signal-to-Noise Ratio  
1 kHz, 0 dB Input  
(Note 1)  
(Note 3)  
72  
73  
13  
72  
73  
13  
72  
73  
13  
dB  
dB  
1 kHz, -60 dB Input  
Noise  
Unipolar Mode  
Bipolar Mode  
45  
90  
45  
90  
45  
90  
µV  
µV  
rms  
rms  
Notes: 1. Applies after calibration at any temperature within the specified temperature range.  
2. Total drift over specified temperature range since calibration at power-up at 25 °C  
3. Wideband noise aliased into the baseband. Referred to the input.  
* Refer to Parameter Definitions (immediately following the pin descriptions at the end of this data sheet).  
Specifications are subject to change without notice.  
2-8  
DS14F6  
CS5012A  
CS5012A ANALOG CHARACTERISTICS (continued)  
CS5012A-K  
CS5012A-B  
CS5012-T  
Parameter*  
Min Typ Max Min Typ Max Min Typ Max Units  
Specified Temperature Range  
Analog Input  
0 to +70  
-40 to +85  
-55 to +125  
°C  
Aperture Time  
25  
25  
25  
ns  
ps  
Aperture Jitter  
100  
100  
100  
Input Capacitance  
Unipolar Mode CS5012  
CS5012A  
(Note 4)  
275 375  
103 137  
165 220  
275 375  
103 137  
165 220  
275 375  
103 137  
165 220  
pF  
pF  
pF  
pF  
Bipolar Mode CS5012  
CS5012A  
72  
96  
72  
96  
72  
96  
Conversion & Throughput  
Conversion Time -7 (Notes 5 and 6)  
-12  
7.2  
12.25  
7.2  
12.25  
µs  
µs  
12.25  
Acquisition Time  
-7  
-12  
(Note 6)  
2.5  
3.0 3.75  
2.8  
2.5  
3.0 3.75  
2.8  
µs  
µs  
3.0 3.75  
Throughput  
-7  
-12  
(Note 6) 100  
62.5  
100  
62.5  
kHz  
kHz  
62.5  
Power Supplies  
DC Power Supply Currents  
I +  
(Note 7)  
12  
-12  
3
6
-3  
19  
-19  
6
7.5  
-6  
12  
-12  
3
6
-3  
19  
-19  
6
7.5  
-6  
12  
-12  
3
19  
-19  
6
mA  
mA  
mA  
mA  
mA  
A
I -  
A
D
(CS5012)  
(CS5012A)  
I +  
I +  
D
I -  
-3  
-6  
D
Power Dissipation  
(Note 7)  
(Note 8)  
150 250  
150 250  
150 250  
mW  
Power Supply Rejection  
Positive Supplies  
84  
84  
84  
84  
84  
84  
dB  
dB  
Negative Supplies  
Notes: 4. Applies only in track mode. When converting or calibrating, input capacitance will not exceed 15 pF.  
5. Measured from falling transition on HOLD to falling transition on EOC.  
6. Conversion, acquisition, and throughput times depend on CLKIN, sampling, and calibration conditions.  
The numbers shown assume sampling and conversion is synchronized with the CS5012A/14/16 ’s  
conversion clock, interleave calibrate is disabled, and operation is from the full-rated, external clock.  
Refer to the section Conversion Time/Throughput for a detailed discussion of conversion timing.  
7. All outputs unloaded. All inputs CMOS levels.  
8. With 300 mV p-p, 1 kHz ripple applied to each analog supply separately in bipolar mode. Rejection  
improves by 6 dB in the unipolar mode to 90 dB. Figure 13 shows a plot of typical power supply  
rejection versus frequency.  
DS14F6  
2-9  
CS5014  
CS5014 ANALOG CHARACTERISTICS (T = T  
to T  
; VA+, VD+ = 5V;  
A
MIN  
MAX  
VA-, VD- = -5V; VREF = 4.5V; CLKIN = 4 MHz for -14, 2 MHz for -28; Analog Source Impedance = 200)  
CS5014-K CS5014-B CS5014-S, T  
Min Typ Max Min Typ Max Min Typ Max Units  
Parameter*  
Specified Temperature Range  
0 to +70  
-40 to +85  
-55 to +125  
°C  
Accuracy  
Linearity Error  
K, B, T  
S
(Note 1)  
(Note 2)  
LSB  
±1/4 ±1/2  
±1/8  
±1/4 ±1/2  
±1/4 ±1/2  
±1/2 ±1.5  
±1/8  
14  
LSB  
14  
Drift  
LSB  
±1/8  
14  
14  
14  
Differential Linearity  
Drift  
(Note 1)  
(Note 2)  
LSB  
±1/4 ±1/2  
±1/32  
±1/4 ±1/2  
±1/32  
±1/4 ±1/2  
±1/32  
14  
LSB  
Full Scale Error  
Drift  
(Note 1)  
(Note 2)  
LSB  
±1/2  
±1/4  
±1  
±1/2  
±1/4  
±1  
±1/2  
±1/2  
±1  
14  
LSB  
Unipolar Offset  
K, B, T  
S
(Note 1)  
LSB  
±1/4 ±3/4  
±1/4 ±3/4  
±1/4 ±3/4  
±1  
±1/2  
14  
LSB  
14  
Drift  
(Note 2)  
(Note 1)  
LSB  
±1/4  
±1/4  
14  
Bipolar Offset  
K, B, T  
S
LSB  
±1/4 ±3/4  
±1/4 ±3/4  
±1/4 ±3/4  
±1  
±1/2  
14  
LSB  
14  
Drift  
(Note 2)  
LSB  
±1/4  
±1/2  
14  
Bipolar Negative Full-Scale Error(Note 1)  
K, B, T  
S
LSB  
±1/2  
±1/4  
±1  
±1/2  
±1/4  
±1  
±1/2  
±1/2  
±1  
±1.5  
14  
LSB  
14  
Drift  
(Note 2)  
LSB  
14  
Total Unadjusted Error  
Drift  
(Note 1)  
(Note 2)  
LSB  
LSB  
±1  
±1/2  
±1  
±1  
±1  
±1  
14  
14  
Dynamic Performance (Bipolar Mode)  
Peak Harmonic or  
Spurious Noise  
(Note 1)  
Full Scale, 1 kHz Input  
K, B, T 94  
98  
87  
94  
84  
98  
87  
94  
85  
84  
80  
98  
87  
dB  
dB  
dB  
dB  
S
K, B, T 84  
S
Full Scale, 12 kHz Input  
Total Harmonic Distortion  
0.003  
0.003  
0.003  
%
Signal-to-Noise Ratio  
1 kHz, 0 dB Input  
(Notes 1 and 9)  
K, B, T 82  
S
84  
23  
82  
84  
23  
82  
80  
84  
23  
dB  
dB  
dB  
1 kHz, -60 dB Input  
Noise  
(Note 3)  
Unipolar Mode  
Bipolar Mode  
45  
90  
45  
90  
45  
90  
µV  
µV  
rms  
rms  
Notes: 9. A detailed plot of S/(N+D) vs. input amplitude appears in Figure 26 for the CS5014 and Figure 28  
for the CS5016.  
* Refer to Parameter Definitions (immediately following the pin descriptions at the end of this data sheet).  
Specifications are subject to change without notice.  
2-10  
DS14F6  
CS5014  
CS5014 ANALOG CHARACTERISTICS (continued)  
CS5014-K  
CS5014-B  
CS5014-S, T  
Parameter*  
Min Typ Max Min Typ Max Min Typ Max Units  
Specified Temperature Range  
Analog Input  
0 to +70  
-40 to +85  
-55 to +125  
°C  
Aperture Time  
25  
25  
25  
ns  
ps  
Aperture Jitter  
100  
100  
100  
Input Capacitance  
Unipolar Mode  
Bipolar Mode  
(Note 4)  
275 375  
165 220  
275 375  
165 220  
275 375  
165 220  
pF  
pF  
Conversion & Throughput  
Conversion Time -14 (Notes 5 and 6)  
-28  
14.25  
28.5  
14.25  
28.5  
14.25  
28.5  
µs  
µs  
Acquisition Time  
-14  
-28  
(Note 6)  
3.0 3.75  
4.5 5.25  
3.0 3.75  
4.5 5.25  
3.0 3.75  
4.5 5.25  
µs  
µs  
Throughput  
-14  
-28  
(Note 6) 55.6  
27.7  
55.6  
27.7  
55.6  
27.7  
kHz  
kHz  
Power Supplies  
DC Power Supply Currents  
I +  
(Note 7)  
9
-9  
3
19  
-19  
6
9
-9  
3
19  
-19  
6
9
-9  
3
19  
-19  
6
mA  
mA  
mA  
mA  
A
I -  
A
I +  
D
I -  
-3  
-6  
-3  
-6  
-3  
-6  
D
Power Dissipation  
(Note 7)  
(Note 8)  
120 250  
120 250  
120 250  
mW  
Power Supply Rejection  
Positive Supplies  
84  
84  
84  
84  
84  
84  
dB  
dB  
Negative Supplies  
DS14F6  
2-11  
CS5016  
CS5016 ANALOG CHARACTERISTICS (T = T  
to T  
; VA+, VD+ = 5V;  
A
MIN  
MAX  
VA-, VD- = -5V; VREF = 4.5V; CLKIN = 4 MHz for -16, 2 MHz for -32; Analog Source Impedance = 200;  
Synchronous Sampling.)  
CS5016-J, K  
CS5016-A, B  
CS5016-S, T  
Parameter*  
Min Typ Max Min Typ Max Min Typ Max Units  
Specified Temperature Range  
0 to +70  
-40 to +85  
-55 to +125  
°C  
Accuracy  
Linearity Error  
J, A, S  
K, B, T  
(Note 1)  
0.002 0.003  
0.001 0.0015  
±1/4  
0.002 0.003  
0.001 0.0015  
±1/4  
0.002 0.0076 %FS  
0.001 0.0015 %FS  
Drift  
(Note 2)  
±1/4  
LSB  
16  
Differential Linearity  
Full Scale Error  
(Note 10) 16  
(Note 1)  
16  
16  
Bits  
J, A, S  
K, B, T  
LSB  
±2  
±2  
±1  
±3  
±3  
±2  
±2  
±1  
±3  
±3  
±2  
±2  
±2  
±4  
±3  
16  
LSB  
16  
Drift  
(Note 2)  
(Note 1)  
LSB  
16  
16  
16  
Unipolar Offset  
J, A, S  
K, B, T  
LSB  
±1  
±1  
±1  
±2  
±3/2  
±1  
±1  
±1  
±3  
±3  
±1  
±1  
±2  
±4  
±3  
16  
LSB  
16  
Drift  
(Note 2)  
(Note 1)  
LSB  
Bipolar Offset  
J, A, S  
K, B, T  
LSB  
±1  
±1  
±1  
±2  
±3/2  
±1  
±1  
±2  
±2  
±2  
±1  
±1  
±2  
±4  
±2  
16  
LSB  
16  
Drift  
(Note 2)  
LSB  
Bipolar Negative Full-Scale Error(Note 1)  
J, A, S  
K, B, T  
LSB  
±2  
±2  
±1  
±3  
±3  
±2  
±2  
±2  
±3  
±3  
±2  
±2  
±2  
±5  
±3  
16  
LSB  
16  
Drift  
(Note 2)  
LSB  
16  
Dynamic Performance (Bipolar Mode)  
Peak Harmonic or  
Spurious Noise  
(Note 1)  
Full Scale, 1 kHz Input  
J, A, S 96  
100  
96  
100  
92  
100  
dB  
dB  
dB  
dB  
K, B, T 100 104  
100 104  
85  
85  
100 104  
82  
85  
Full Scale, 12 kHz Input  
J, A, S 85  
K, B, T 85  
88  
91  
88  
91  
88  
91  
Total Harmonic Distortion  
Full Scale, 1 kHz Input  
J, A, S  
K, B, T  
0.002  
0.001  
0.002  
0.001  
0.002  
0.001  
%
%
Signal-to-Noise Ratio  
1 kHz, 0 dB Input  
(Notes 1 and 9)  
J, A, S 87  
K, B, T 90  
J, A, S  
90  
92  
30  
32  
87  
90  
90  
92  
30  
32  
84  
90  
90  
92  
30  
32  
dB  
dB  
dB  
dB  
1 kHz, -60 dB Input  
K, B, T  
Noise  
(Note 3)  
Unipolar Mode  
Bipolar Mode  
35  
70  
35  
70  
35  
70  
µV  
µV  
rms  
rms  
Notes: 10. Minimum resolution for which no missing codes is guaranteed  
* Refer to Parameter Definitions (immediately following the pin descriptions at the end of this data sheet).  
Specifications are subject to change without notice.  
2-12  
DS14F6  
CS5016  
CS5016 ANALOG CHARACTERISTICS (continued)  
CS5016-J, K  
CS5016-A, B  
CS5016-S, T  
Parameter*  
Min Typ Max Min Typ Max Min Typ Max Units  
Specified Temperature Range  
Analog Input  
0 to +70  
-40 to +85  
-55 to +125  
°C  
Aperture Time  
25  
25  
25  
ns  
ps  
Aperture Jitter  
100  
100  
100  
Input Capacitance  
Unipolar Mode  
Bipolar Mode  
(Note 4)  
275 375  
165 220  
275 375  
165 220  
275 375  
165 220  
pF  
pF  
Conversion & Throughput  
Conversion Time -16 (Notes 5 and 6)  
-32  
16.25  
32.5  
16.25  
32.5  
16.25  
32.5  
µs  
µs  
Acquisition Time  
-16  
-32  
(Note 6)  
3.0 3.75  
4.5 5.25  
3.0 3.75  
4.5 5.25  
3.0 3.75  
4.5 5.25  
µs  
µs  
Throughput  
-16  
-32  
(Note 6) 50  
26.5  
50  
26.5  
50  
26.5  
kHz  
kHz  
Power Supplies  
DC Power Supply Currents  
I +  
(Note 7)  
9
-9  
3
19  
-19  
6
9
-9  
3
19  
-19  
6
9
-9  
3
19  
-19  
6
mA  
mA  
mA  
mA  
A
I -  
A
I +  
D
I -  
-3  
-6  
-3  
-6  
-3  
-6  
D
Power Dissipation  
(Note 7)  
(Note 8)  
120 250  
120 250  
120 250  
mW  
Power Supply Rejection  
Positive Supplies  
84  
84  
84  
84  
84  
84  
dB  
dB  
Negative Supplies  
DS14F6  
2-13  
CS5012A, CS5014, CS5016  
SWITCHING CHARACTERISTICS (T = T  
to T ; VA+, VD+ = 5V ±10%;  
MAX  
A
MIN  
VA-, VD- = -5V ±10%; Inputs: Logic 0 = 0V, Logic 1 = VD+; C = 50 pF, BW = VD+)  
L
Parameter  
CS5012A CLKIN Frequency:  
Symbol  
Min  
Typ  
Max  
Units  
f
CLK  
CLK  
Internally Generated:  
Externally Supplied:  
1.75  
100 kHz  
100 kHz  
-
-
-
-
MHz  
MHz  
MHz  
-7  
-12  
6.4  
4.0  
CS5014/5016 CLKIN Frequency:  
f
Internally Generated:  
-14, -16  
-28, -32  
-14, -16  
-28, -32  
1.75  
1
100 kHz  
100 kHz  
-
-
-
-
-
-
4
2
MHz  
MHz  
MHz  
MHz  
Externally Supplied:  
CLKIN Duty Cycle  
Rise Times:  
40  
-
60  
%
Any Digital Input  
Any Digital Output  
t
-
-
-
20  
1.0  
-
µs  
ns  
rise  
Fall Times:  
Any Digital Input  
Any Digital Output  
t
fall  
-
-
-
20  
1.0  
-
µs  
ns  
HOLD Pulse Width  
Conversion Time:  
t
1/f  
+50  
-
t
c
ns  
hpw  
CLK  
CS5012A  
CS5014  
CS5016  
t
c
49/f  
57/f  
65/f  
+50  
CLK  
-
-
-
53/f  
61/f  
69/f  
+235 ns  
+235 ns  
+235 ns  
CLK  
CLK  
CLK  
CLK  
CLK  
Data Delay Time  
EOC Pulse Width  
Set Up Times:  
t
-
40  
-
100  
-
ns  
ns  
dd  
(Note 11)  
t
4/f  
-20  
CLK  
epw  
CAL, INTRLV to CS Low  
A0 to CS and RD Low  
t
t
20  
20  
10  
10  
-
-
ns  
ns  
cs  
as  
Hold Times:  
CS or RD High to A0 Invalid  
CS High to CAL, INTRLV Invalid  
t
t
50  
50  
30  
30  
-
-
ns  
ns  
ah  
ch  
Access Times:  
CS Low to Data Valid  
A, B, J, K  
t
-
-
-
-
90  
115  
90  
120  
150  
120  
150  
ns  
ns  
ns  
ns  
ca  
S, T  
A, B, J, K  
S, T  
RD Low to Data Valid  
t
ra  
90  
Output Float Delay:  
Serial Clock  
K, B  
t
-
-
90  
90  
110  
140  
ns  
ns  
fd  
CS or RD High to Output Hi-Z  
T
Pulse Width Low  
Pulse Width High  
t
-
-
2/f  
-
-
ns  
ns  
pwl  
CLK  
CLK  
t
2/f  
2/f  
2/f  
pwh  
Set Up Times:  
Hold Times:  
SDATA to SCLK Rising  
SCLK Rising to SDATA  
t
2/f  
-50  
-
-
ns  
ns  
ss  
sh  
CLK  
CLK  
CLK  
t
2/f  
-100  
CLK  
Notes: 11. EOC remains low 4 CLKIN cycles if CS and RD are held low. Otherwise, it returns high  
within 4 CLKIN cycles from the start of a data read operation or a conversion cycle.  
2-14  
DS14F6  
CS5012A, CS5014, CS5016  
t
t
rise  
fall  
90%  
10%  
90%  
10%  
Rise and Fall Times  
t
t
t
pwl  
pwh  
sh  
SCLK  
t
ss  
SDATA  
Serial Output Timing  
t
ca  
CS  
t
ra  
RD  
A0  
t
ah  
t
as  
cs  
t
fd  
Hi-Z  
Hi-Z  
D0-D15  
t
t
ch  
CAL, INTRLV  
Read and Calibration Control Timing  
t
hpw  
HOLD  
EOC  
t
t
epw  
c
t
dd  
LAST CONVERSION DATA VALID  
NEW DATA VALID  
Output Data  
Conversion Timing  
DS14F6  
2-15  
CS5012A, CS5014, CS5016  
DIGITAL CHARACTERISTICS (T = T  
to T ; VA+, VD+ = 5V ±10%; VA-, VD- = -5V ±10%)  
MAX  
A
MIN  
Parameter  
Symbol  
Min  
Typ  
Max  
Units  
High-Level Input Voltage  
Low-Level Input Voltage  
V
2.0  
-
-
-
0.8  
-
V
V
IH  
V
-
IL  
High-Level Output Voltage  
Low-Level Output Voltage  
Input Leakage Current  
(Note 12)  
= 1.6mA  
V
OH  
(VD+) - 1.0V  
-
V
I
V
I
-
-
-
-
-
0.4  
10  
±10  
-
V
OL  
out  
-
µA  
µA  
pF  
in  
3-State Leakage Current  
Digital Output Pin Capacitance  
I
-
OZ  
C
out  
9
Notes: 12. I = -100 µA. This specification guarantees TTL compatibility (V  
= 2.4V @ I = -40 µA).  
out  
out  
OH  
RECOMMENDED OPERATING CONDITIONS (AGND, DGND = 0V, see Note 13)  
Parameter  
Symbol  
Min  
Typ  
Max  
Units  
DC Power Supplies:  
Positive Digital  
Negative Digital  
Positive Analog  
Negative Analog  
VD+  
VD-  
VA+  
VA-  
4.5  
-4.5  
4.5  
5.0  
-5.0  
5.0  
VA+  
-5.5  
5.5  
V
V
V
V
-4.5  
-5.0  
-5.5  
Analog Reference Voltage  
VREF  
2.5  
4.5  
(VA+) - 0.5  
V
Analog Input Voltage:  
Unipolar  
(Note 14)  
V
V
AGND  
-VREF  
-
-
VREF  
VREF  
V
V
AIN  
AIN  
Bipolar  
Notes: 13. All voltages with respect to ground.  
14. The CS5012A/14/16 can accept input voltages up to the analog supplies (VA+ and VA-).  
It will output all 1’s for inputs above VREF and all 0’s for inputs below AGND in unipolar mode  
and -VREF in bipolar mode.  
ABSOLUTE MAXIMUM RATINGS (AGND, DGND = 0V, all voltages with repect to ground.)  
WARNING: Operation at or beyond these limits may reult in permanent damage to the device.  
Normal operation is not guaranteed at these extremes.  
Parameter  
Symbol  
Min  
Max  
Units  
DC Power Supplies:  
Positive Digital  
(Note 15)  
VD+  
VD-  
VA+  
VA-  
-0.3  
0.3  
-0.3  
0.3  
6.0  
-6.0  
6.0  
V
V
V
V
Negative Digital  
Positive Analog  
Negative Analog  
-6.0  
Input Current, Any Pin Except Supplies  
(Note 16)  
I
-
(VA-) - 0.3  
-0.3  
mA  
V
±10  
(VA+) + 0.3  
(VA+) + 0.3  
125  
in  
Analog Input Voltage  
(AIN and VREF pins)  
V
V
INA  
Digital Input Voltage  
V
IND  
Ambient Operating Temperature  
Storage Temperature  
T
-55  
°C  
°C  
A
T
-65  
150  
stg  
Notes: 15. In addition, VD+ should not be greater than (VA+) + 0.3V.  
16. Transient currents of up to 100 mA will not cause SCR latch-up.  
2-16  
DS14F6  
CS5012A, CS5014, CS5016  
AIN  
VREF  
AGND  
S1  
C/X  
C
C/2  
C/4  
C/8  
C/X  
CS5012A X = 2048  
CS5014 X = 8192  
CS5016 X = 32768  
CS5012A:  
CS5014:  
CS5016:  
Bit 11  
Bit 10  
Bit 12  
Bit 14  
Bit 9  
Bit 11  
Bit 13  
Bit 8  
Bit 10  
Bit 12  
Bit 0 Dummy  
LSB  
Bit 13  
Bit 15  
MSB  
C
= C + C/2 + C/4 + ... + C/X  
tot  
Figure 1. Charge Redistribution DAC  
THEORY OF OPERATION  
algorithm. Instead of the traditional resistor net-  
work, the DAC is an array of binary-weighted  
capacitors. All capacitors in the array share a  
common node at the comparator’s input. Their  
other terminals are capable of being connected to  
AIN, AGND, or VREF (Figure 1). When the de-  
vice is not calibrating or converting, all capacitors  
The CS5012A/14/16 family utilize a successive  
approximation conversion technique. The analog  
input is successively compared to the output of a  
D/A converter controlled by the conversion algo-  
rithm. Successive approximation begins by  
comparing the analog input to the DAC output  
which is set to half-scale (MSB on, all other bits  
off). If the input is found to be below half-scale,  
the MSB is reset to zero and the input is com-  
pared to one-quarter scale (next MSB on, all  
others off). If the input were above half-scale, the  
MSB would remain high and the next compari-  
son would be at three-quarters of full scale. This  
procedure continues until all bits have been exer-  
cised.  
are tied to AIN forming C . Switch S1 is closed  
tot  
and the charge on the array, Q , tracks the input  
in  
signal V (Figure 2a).  
in  
When the conversion command is issued, switch  
S1 opens as shown in Figure 2b. This traps  
charge Q on the comparator side of the capaci-  
in  
tor array and creates a floating node at the  
comparator’s input. The conversion algorithm op-  
erates on this fixed charge, and the signal at the  
analog input pin is ignored. In effect, the entire  
DAC capacitor array serves as analog memory  
A unique charge redistribution architecture is  
used to implement the successive approximation  
.
D C  
tot  
S1  
S1  
VREF  
AGND  
Q
in  
Q
in  
+
AIN  
V
+
fn  
-
To MCU  
V
C
in  
tot  
To MCU  
-
(1-D) C  
tot  
V
in  
D =  
for V = 0V  
fn  
-Q = V  
C
in in tot  
VREF  
Figure 2a. Tracking Mode  
Figure 2b. Convert Mode  
DS14F6  
2-17  
CS5012A, CS5014, CS5016  
during conversion much like a hold capacitor in a  
sample/hold amplifier.  
Auto-zeroing enhances power supply rejection at  
frequencies well below the conversion rate.  
The conversion consists of manipulating the free  
plates of the capacitor array to VREF and AGND  
to form a capacitive divider. Since the charge at  
the floating node remains fixed, the voltage at  
that point depends on the proportion of capaci-  
tance tied to VREF versus AGND. The  
successive-approximation algorithm is used to  
find the proportion of capacitance, termed D in  
Figure 2b, which when connected to the refer-  
ence will drive the voltage at the floating node  
To achieve complete accuracy from the DAC, the  
CS5012A/14/16 use a novel self-calibration  
scheme. Each bit capacitor, shown in Figure 1,  
actually consists of several capacitors which can  
be manipulated to adjust the overall bit weight.  
An on-chip microcontroller adjusts the subarrays  
to precisely ratio the bits. Each bit is adjusted to  
just balance the sum of all less significant bits  
plus one dummy LSB (for example, 16C = 8C +  
4C + 2C + C + C). Calibration resolution for the  
array is a small fraction of an LSB resulting in  
nearly ideal differential and integral linearity.  
(V ) to zero. That binary fraction of capacitance  
fn  
represents the converter’s digital output.  
This charge redistribution architecture easily sup-  
ports bipolar input ranges. If half the capacitor  
array (the MSB capacitor) is tied to VREF rather  
than AIN in the track mode, the input range is  
doubled and is offset half-scale. The magnitude  
of the reference voltage thus defines both positive  
and negative full-scale (-VREF to +VREF), and  
the digital code is an offset binary representation  
of the input.  
DIGITAL CIRCUIT CONNECTIONS  
The CS5012A/14/16 can be applied in a wide va-  
riety of master clock, sampling, and calibration  
conditions which directly affect the devices’ con-  
version time and throughput. The devices also  
feature on-chip 3-state output buffers and a com-  
plete interface for connecting to 8-bit and 16-bit  
digital systems. Output data is also available in  
serial format.  
Calibration  
Master Clock  
The ability of the CS5012A/14/16 to convert ac-  
curately clearly depends on the accuracy of their  
comparator and DAC. The CS5012A/14/16 util-  
ize an "auto-zeroing" scheme to null errors  
introduced by the comparator. All offsets are  
stored on the capacitor array while in the track  
mode and are effectively subtracted from the in-  
put signal when a conversion is initiated.  
The CS5012A/14/16 operate from a master clock  
(CLKIN) which can be externally supplied or in-  
ternally generated. The internal oscillator is  
activated by externally tying the CLKIN input  
low. Alternatively, the CS5012A/14/16 can be  
synchronized to the external system by driving  
the CLKIN pin with a TTL or CMOS clock sig-  
nal.  
HOLD  
EOT  
Sampling  
HOLD  
Clock  
CS5012A/14/16  
CS5012A/14/16  
Master Clock  
(Optional)  
Master Clock  
CLKIN  
CLKIN  
(Optional)  
Figure 3a. Asynchronous Sampling  
Figure 3b. Synchronous Sampling  
2-18  
DS14F6  
CS5012A, CS5014, CS5016  
All calibration, conversion, and throughput times  
directly scale to CLKIN frequency. Thus,  
throughput can be precisely controlled and/or  
maximized using an external CLKIN signal. In  
contrast, the CS5012A/14/16’s internal oscillator  
will vary from unit-to-unit and over temperature.  
The CS5012A/14/16 can typically convert with  
CLKIN as low as 10 kHz at room temperature.  
the odd address (A0 high) to avoid initiating a  
software controlled reset (see Reset below).  
The calibration control inputs, CAL, and  
INTRLV are inputs to a set of transparent latches.  
These signals are internally latched by CS return-  
ing high. They must be in the appropriate state  
whenever the chip is selected during a read or  
write cycle. Address lines A1 and A2 are shown  
connected to CAL and INTRLV in Figure 4 plac-  
ing calibration under microprocessor control as  
well. Thus, any read or write cycle to the  
CS5012A/14/16’s base address will initiate or ter-  
minate calibration. Alternatively, A0, INTRLV,  
and CAL may be connected to the microproces-  
sor data bus.  
Initiating Conversions  
A falling transition on the HOLD pin places the  
input in the hold mode and initiates a conversion  
cycle. Upon completion of the conversion cycle,  
the CS5012A/14/16 automatically return to the  
track mode. In contrast to systems with separate  
track-and-holds and A/D converters, a sampling  
clock can simply be connected to the HOLD in-  
put (Figure 3a). The duty cycle of this clock is  
not critical. It need only remain low at least one  
CLKIN cycle plus 50 ns, but no longer than the  
minimum conversion time or an additional con-  
version cycle will be initiated with inadequate  
time for acquisition.  
Conversion Time/Throughput  
Upon completing a conversion cycle and return-  
ing to the track mode, the CS5012A/14/16  
require time to acquire the analog input signal  
before another conversion can be initiated. The  
acquisition time is specified as six CLKIN cycles  
plus 2.25 µs (1.32 µs for the CS5012A -7 version  
only). This adds to the conversion time to define  
the converter’s maximum throughput. The con-  
version time of the CS5012A/14/16, in turn,  
depends on the sampling, calibration, and CLKIN  
conditions.  
Microprocessor-Controlled Operation  
Sampling and conversion can be placed under  
microprocessor control (Figure 4) by simply gat-  
ing the devices’ decoded address with the write  
strobe for the HOLD input. Thus, a write cycle to  
the CS5012A/14/16’s base address will initiate a  
conversion. However, the write cycle must be to  
RD  
RD  
RD  
RD  
CONCLK  
HOLD  
WR  
ADDR VALID  
AN  
HOLD  
ADDR VALID  
AN  
Address  
Bus  
Addr  
Dec  
CS  
Addr  
Dec  
Address  
Bus  
CS  
A3  
A2  
CS5012A/14/16  
A3  
CS5012A/14/16  
CAL  
CAL  
A2  
A1  
A0  
INTRLV  
A0  
A1  
A0  
INTRLV  
A0  
Figure 4a. Conversions Asynchronous to CLKIN  
Figure 4b. Conversions under Microprocessor Control  
DS14F6  
2-19  
CS5012A, CS5014, CS5016  
1 / Throughput  
HOLD  
Input  
1 / Throughput  
(64 + N cycles)  
HOLD  
Input  
Conversion  
(49 + N cycles)  
Conversion  
*
EOC  
Output  
EOC  
Output  
Acquisition  
(15 cycles)  
Acquisition  
EOT  
EOT  
Output  
Output  
*Dashed line: CS & RD = 0 CS5012A N = 0  
Solid line: See Figure 9  
Synchronization Uncertainty (4 cycles)  
CS5014 N = 8  
CS5016 N = 16  
Figure 5b. Synchronous (Loopback Mode)  
Figure 5a. Asynchronous Sampling (External Clock)  
Asynchronous Sampling  
Synchronous Sampling  
The CS5012A/14/16 internally operate from a  
clock which is delayed and divided down from  
To achieve maximum throughput, sampling can  
be synchronized with the internal conversion  
clock by connecting the End-of-Track (EOT) out-  
put to HOLD (Figure 3b). The EOT output falls  
15 CLKIN cycles after EOC indicating the ana-  
log input has been acquired to the  
CS5012A/14/16’s specified accuracy. The EOT  
output is synchronized to the internal conversion  
clock, so the four clock cycle synchronization un-  
certainty is removed yielding throughput at  
CLKIN (f  
/4). If sampling is not synchronized  
CLK  
to this internal clock, the conversion cycle may  
not begin until up to four clock cycles after  
HOLD goes low even though the charge is  
trapped immediately. In this asynchronous mode  
(Figure 3a), the four clock cycles add to the mini-  
mum 49, 57 and 65 clock cycles (for the  
CS5012A/14/16 respectively) to define the maxi-  
mum conversion time (see Figure 5a and  
Table 1).  
[1/64]f  
for the CS5012A, [1/72]f  
for  
CLK  
CLK  
CS5014 and [1/80]f  
for CS5016 where f  
CLK  
CLK  
is the CLKIN frequency (see Figure 5b and Ta-  
ble 1).  
Conversion Time  
Throughput Time  
Sampling Mode  
CS5012A  
Min  
Max  
Min  
Max  
49 t  
49 t  
+
64 t  
64 t  
Synchronous (Loopback)  
clk  
clk  
clk  
clk  
49 t  
49 t  
53 t  
53 t  
235 ns  
235 ns  
N/A  
N/A  
59 t  
59 t  
-7  
+
+
1.32  
2.25  
µ
s
clk  
clk  
clk  
clk  
clk  
Asynchronous  
+
-12,-24  
µ
s
clk  
CS5014  
57 t  
57 t  
57 t  
+
72 t  
N/A  
72 t  
Synchronous (Loopback)  
Asynchronous  
clk  
clk  
clk  
clk  
clk  
clk  
61 t  
235 ns  
67 t  
+
clk  
2.25  
µ
µ
s
s
clk  
CS5016  
65 t  
65 t  
65 t  
+
80 t  
N/A  
80 t  
Synchronous (Loopback)  
Asynchronous  
clk  
clk  
clk  
clk  
69 t  
235 ns  
75 t  
2.25  
+
clk  
clk  
Table 1. Conversion and Throughput Times (t = Master Clock Period)  
clk  
2-20  
DS14F6  
CS5012A, CS5014, CS5016  
Also, the CS5012A/14/16’s internal RC oscillator  
±
exhibits jitter (typically 0.05% of its period),  
+5V  
which is high compared to crystal oscillators. If  
the CS5012A/14/16 is configured for synchro-  
nous sampling while operating from its internal  
oscillator, this jitter will directly affect sampling  
purity. The user can obtain best sampling purity  
while synchronously sampling by using an exter-  
nal crystal-based clock.  
R
C
RST  
CS5012A/14/16  
Figure 6. Power-on Reset Circuit  
Reset  
Upon power up, the CS5012A/14/16 must be re-  
set to guarantee a consistent starting condition  
and initially calibrate the devices. Due to the  
CS5012A/14/16’s low power dissipation and low  
temperature drift, no warm-up time is required  
before reset to accommodate any self-heating ef-  
fects. However, the voltage reference input  
should have stabilized to within 5%, 1% or  
0.25% of its final value, for the CS5012A/14/16  
respectively, before RST falls to guarantee an ac-  
curate calibration. Later, the CS5012A/14/16 may  
be reset at any time to initiate a single full cali-  
bration. Reset overrides all other functions. If  
reset, the CS5012A/14/16 will clear and initiate a  
new calibration cycle mid-conversion or mid-cali-  
bration.  
eliminate the possibility of inadvertent software  
reset. The EOC output remains high throughout  
the calibration operation and will fall upon its  
completion. It can thus be used to generate an  
interrupt indicating the CS5012A/14/16 is ready  
for operation. While calibrating, the HOLD input  
is ignored until EOC falls. After EOC falls, six  
CLKIN cycles plus 2.25 µs (1.32 µs for the  
CS5012A -7 version only) must be allowed for  
signal acquisition before HOLD is activated. Un-  
der microprocessor-independent operation (CS,  
RD low; A0 high) the CS5014’s and CS5016’s  
EOC output will not fall at the completion of the  
calibration cycle, but EOT will fall 15 CLKIN  
cycles later.  
Initiating Calibration  
Resets can be initiated in hardware or software.  
The simplest method of resetting the  
CS5012A/14/16 involves strobing the RST pin  
high for at least 100 ns. When RST is brought  
high all internal logic clears. When it returns low,  
a full calibration begins which takes 58,280  
CLKIN cycles for the CS5012A (approximately  
9.1 ms with a 6.4 MHz clock) and 1,441,020  
CLKIN cycles for the CS5016, CS5014 and  
CS5012 (approximately 360 ms with a 4 MHz  
CLKIN). A simple power-on reset circuit can be  
built using a resistor and capacitor, and a  
Schmitt-trigger inverter to prevent oscillation (see  
Figure 6). The CS5012A/14/16 can also be reset  
in software when under microprocessor control.  
The CS5012A/14/16 will reset whenever CS, A0,  
and HOLD are taken low simultaneously. See the  
Microprocessor Interface section (below) to  
All modes of calibration can be controlled in  
hardware or software. Accuracy can thereby be  
insured at any time or temperature throughout op-  
erating life. After initial calibration at power-up,  
the CS5012A/14/16’s charge-redistribution design  
yields better temperature drift and more graceful  
aging than resistor-based technologies, so calibra-  
tion is normally only required once, after  
power-up.  
The first mode of calibration, reset, results in a  
single full calibration cycle. The second type of  
calibration, "burst" cal, allows control of partial  
calibration cycles. Due to an unforeseen con-  
didtion inside the part, asynchronous termination  
of calibration may result in a sub-optimal result.  
Burst cal should not be used.  
DS14F6  
2-21  
CS5012A, CS5014, CS5016  
The reset calibration always works perfectly, and  
should be used instead of burst mode. The  
CS5012’s and CS5012A/14/16’s very low drift  
over temperature means that, under most circum-  
stances, calibration will only need to be  
performed at power-up, using reset.  
temperature or to long-term aging, will generally  
dominate total system error.  
Microprocessor Interface  
The CS5012A/14/16 feature an intelligent micro-  
processor interface which offers detailed status  
information and allows software control of the  
self-calibration functions. Output data is available  
in either 8-bit or 16-bit formats for easy interfac-  
ing to industry-standard microprocessors.  
The CS5012A/14/16 feature a background cali-  
bration mode called "interleave." Interleave  
appends a single calibration experiment to each  
conversion cycle and thus requires no dead time  
for calibration. The CS5012A/14/16 gathers data  
between conversions and will adjust its transfer  
function once it completes the entire sequence of  
experiments (one calibration cycle per 2,014 con-  
versions in the CS5012A and one calibration per  
72,051 conversions in the CS5012, CS5014 and  
CS5016). Initiated by bringing both the INTRLV  
input and CS low (or hard-wiring INTRLV low),  
interleave extends the CS5012A/14/16’s effective  
conversion time by 20 CLKIN cycles. Other than  
reduced throughput, interleave is totally transpar-  
ent to the user. Interleave calibration should not  
be used intermittently.  
Strobing both CS and RD low enables the  
CS5012A/14/16’s 3-state output buffers with  
either output data or status information depending  
on the status of A0. An address bit can be con-  
nected to A0 as shown in Figure 4b thereby  
memory mapping the status register and output  
data. Conversion status can be polled in software  
by reading the status register (CS and RD strobed  
low with A0 low), and masking status bits S0-S5  
and S7 (by logically AND’ing the status word  
with 01000000) to determine the value of S6.  
Similarly, the software routine can determine  
calibration status using other status bits (see Ta-  
ble 2). Care must be taken not to read the status  
register (A0 low) while HOLD is low, or a soft-  
ware reset will result (see Reset above).  
The fact that the CS5012A/14/16 offer several  
calibration modes is not to imply that the devices  
need to be recalibrated often. The devices are  
very stable in the presence of large temperature  
changes. Tests have indicated that after using a  
single reset calibration at 25 °C most devices ex-  
hibit very little change in offset or gain when  
exposed to temperatures from -55 to +125 °C.  
The data indicated 30 ppm as the typical worst  
case total change in offset or gain over this tem-  
perature range. Differential linearity remained  
virtually unchanged. System error sources outside  
of the A/D converter, whether due to changes in  
Alternatively, the End-of-Convert (EOC) output  
can be used to generate an interrupt or drive a  
DMA controller to dump the output directly into  
memory after each conversion. The EOC pin falls  
as each conversion cycle is completed and data is  
valid at the output. It returns high within four  
CLKIN cycles of the first subsequent data read  
operation or after the start of a new conversion  
cycle.  
2-22  
DS14F6  
CS5012A, CS5014, CS5016  
PIN STATUS BIT  
STATUS  
DEFINITION  
D0  
S0  
END OF CONVERSION  
Falls upon completion of a conversion,  
and returns high on the first subsequent read.  
D1  
D2  
S1  
S2  
RESERVED  
Reserved for factory use.  
LOW BYTE/HIGH BYTE  
When data is to be read in an 8-bit format (BW=0),  
indicates which byte will appear at the output next.  
D3  
S3  
END OF TRACK  
When low, indicates the input has been acquired to  
the devices specified accuracy.  
D4  
D5  
D6  
D7  
S4  
S5  
S6  
S7  
RESERVED  
TRACKING  
Reserved for factory use.  
High when the device is tracking the input.  
High when the device is converting the held input.  
High when the device is calibrating.  
CONVERTING  
CALIBRATING  
Table 2. Status Pin Definitions  
To interface with a 16-bit data bus, the BW input  
to the CS5012A/14/16 should be held high and  
all data bits (12, 14 and 16 for the CS5012A,  
CS5014 and CS5016 respectively) read in paral-  
lel on pins D4-D15 (CS5012A), D2-D15  
(CS5014), or D0-D15 (CS5016). With an 8-bit  
bus, the converter’s result must be read in two  
portions. In this instance, BW should be held low  
and the 8 MSB’s obtained on the first read cycle  
following a conversion. The second read cycle  
will yield the remaining LSB’s (4, 6 or 8 for the  
CS5012A/14/16 respectively) with 4, 2 or 0 trail-  
ing zeros. Both bytes appear on pins D0-D7. The  
upper/lower bytes of the same data will continue  
to toggle on subsequent reads until the next con-  
version finishes. Status bit S2 indicates which  
byte will appear on the next data read operation.  
The CS5012A/14/16 internally buffer their output  
data, so data can be read while the devices are  
tracking or converting the next sample. Therefore,  
retrieving the converters’ digital output requires  
no reduction in ADC throughput. Enabling the 3-  
state outputs while the CS5012A/14/16 is  
converting will not introduce conversion errors.  
Connecting CMOS logic to the digital outputs is  
recommended. Suitable logic families include  
4000B, 74HC, 74AC, 74ACT, and 74HCT.  
D15 D14 D13 D12 D11 D10 D9 D8  
Status  
(A0=0)  
D7  
D6 D5 D4 D3 D2 D1 D0  
S1 S0  
8- or 16-Bit  
Data Bus  
X
X
X
X
X
X
X
X
S7 S6 S5 S4 S3 S2  
CS5012A  
CS5014  
CS5016  
B11 B10  
B5 B4  
B7 B6  
B9 B8  
B3 B2 B1 B0  
B5 B4 B3 B2  
B7 B6 B5 B4  
0
0
0
0
0
0
B9 B8  
B7  
B6  
B8  
16-Bit Bus  
(BW=1)  
B13 B12 B11 B10 B9  
B1 B0  
B3 B2  
B15  
B14 B13 B12 B11 B10  
B1 B0  
Data  
(A0=1)  
CS5012A  
CS5014  
CS5016  
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
B11 B10 B9 B8  
B7 B6  
B5  
B4  
0
B3  
B2  
B1 B0  
0
0
0
X
X
B13 B12 B11 B10 B9 B8  
B7  
0
B6  
0
8-Bit Bus  
(BW=0)  
B5 B4 B3 B2 B1 B0  
B15 B14 B13 B12 B11 B10 B9  
B7 B6 B5 B4 B3 B2 B1  
B8  
B0  
"X" Denotes High Impedance Output  
Figure 7. CS5012A/14/16 Data Format  
DS14F6  
2-23  
CS5012A, CS5014, CS5016  
Microprocessor Independent Operation  
connections. The CS5012A/14/16 internally buff-  
er all analog inputs (AIN, VREF, and AGND) to  
ease the demands placed on external circuitry.  
However, accurate system operation still requires  
careful attention to details at the design stage re-  
garding source impedances as well as grounding  
and decoupling schemes.  
The CS5012A/14/16 can be operated in a stand-  
alone mode independent of intelligent control. In  
this mode, CS and RD are hard-wired low. This  
permanently enables the 3-state output buffers  
and allows transparent latch inputs (CAL and  
INTRLV) to be active. A free-running condition  
is established when BW is tied high, CAL is tied  
low, and HOLD is continually strobed low or tied  
to EOT. The CS5012A/14/16’s EOC output can  
be used to externally latch the output data if de-  
sired. With CS and RD hard-wired low, EOC will  
strobe low for four CLKIN cycles after each con-  
version. Data will be unstable up to 100 ns after  
EOC falls, so it should be latched on the rising  
edge of EOC.  
Reference Considerations  
An application note titled "Voltage References for  
the CS501X Series of A/D Converters" is avail-  
able for the CS5012A/14/16. In addition to  
working through a reference circuit design exam-  
ple, it offers several built-and-tested reference  
circuits.  
During conversion, each capacitor of the cali-  
brated capacitor array is switched between VREF  
and AGND in a manner determined by the suc-  
cessive-approximation algorithm. The charging  
and discharging of the array results in a current  
load at the reference. The CS5012A/14/16 in-  
clude an internal buffer amplifier to minimize the  
external reference circuit’s drive requirement and  
preserve the reference’s integrity. Whenever the  
array is switched during conversion, the buffer is  
used to pre-charge the array thereby providing  
the bulk of the necessary charge. The appropriate  
array capacitors are then switched to the unbuf-  
fered VREF pin to avoid any errors due to offsets  
and/or noise in the buffer.  
+5V  
Reset  
INTRLV  
BW  
RST  
EOC  
Latching  
Output  
A0  
D15  
Sampling  
Clock  
HOLD  
12-Bit  
Data  
Out  
CS  
CS5012A  
CS5014  
CS5016  
RD  
CAL  
D4  
Figure 8. Microprocessor-Independent Connections  
Serial Output  
All successive-approximation A/D converters de-  
rive their digital output serially starting with the  
MSB. The CS5012A/14/16 present each bit to the  
SDATA pin four CLKIN cycles after it is derived  
and can be latched using the serial clock output,  
SCLK. Just subsequent to each bit decision  
SCLK will fall and return high once the bit infor-  
mation on SDATA has stabilized. Thus, the rising  
edge of the SCLK output should be used to clock  
the data from the CS5012A/14/16 (See Figure 9).  
The external reference circuitry need only pro-  
vide the residual charge required to fully charge  
the array after pre-charging from the buffer. This  
creates an ac current load as the CS5012A/14/16  
sequence through conversions. The reference cir-  
cuitry must have a low enough output impedance  
to drive the requisite current without changing its  
output voltage significantly. As the analog input  
signal varies, the switching sequence of the inter-  
nal capacitor array changes. The current load on  
the external reference circuitry thus varies in re-  
sponse with the analog input. Therefore, the  
external reference must not exhibit significant  
ANALOG CIRCUIT CONNECTIONS  
Most popular successive-approximation A/D con-  
verters generate dynamic loads at their analog  
2-24  
DS14F6  
CS5012A, CS5014, CS5016  
peaking in its output impedance characteristic at  
signal frequencies or their harmonics.  
pedance of less than 15 at frequencies greater  
than 10 kHz. Similarly, for the CS5014 with a  
4.5V reference (275µV/LSB), better than  
1/4 LSB accuracy can be insured with an output  
impedance of 4or less (maximum error of  
40 µV). A 2.2 µF capacitor exhibits an imped-  
ance of less than 4at frequencies greater than  
5kHz. For the CS5016 with a 4.5V reference  
(69µV/LSB), better than 1/4 LSB accuracy can  
be insured with an output impedance of less than  
2(maximum error of 20 µV). A 20 µF capaci-  
tor exhibits an impedance of less than 2at  
frequencies greater than 16 kHz. A high-quality  
tantalum capacitor in parallel with a smaller ce-  
ramic capacitor is recommended.  
A large capacitor connected between VREF and  
AGND can provide sufficiently low output im-  
pedance at the high end of the frequency  
spectrum, while almost all precision references  
exhibit extremely low output impedance at dc.  
The magnitude of the current load on the external  
reference circuitry will scale to the CLKIN fre-  
quency. At full speed, the reference must supply a  
maximum load current of 10 µA peak-to-peak  
(1 µA typical). For the CS5012A an output im-  
pedance of 15 will therefore yield a maximum  
error of 150 mV. With a 2.5V reference and LSB  
size of 600 mV, this would insure better than 1/4  
LSB accuracy. A 1 µF capacitor exhibits an im-  
60  
52  
44  
62  
54  
46  
64  
56  
48  
66  
58  
50  
68  
60  
52  
70  
62  
54  
72  
64  
56  
74  
66  
58  
76  
68  
60  
78 80/0  
70 72/0  
62 64/0  
2
2
2
4
4
4
6
6
6
8
8
8
10  
10  
10  
12  
12  
12  
CS5016:  
CS5014:  
CS5012A:  
CLKIN  
EOC  
LSB  
Determined  
MSB - 1  
Determined  
Determined  
MSB  
Determined  
MSB - 2  
Status  
Coarse Charge  
Fine Charge  
EOT  
t
d
HOLD  
SCLK  
SDATA  
t
d
LSB+2  
LSB+1  
LSB  
MSB  
MSB - 1  
Notes: 1. Synchronous (loopback) mode is illustrated. After EOC falls the converter goes into coarse charge mode for  
6 CLKIN cycles, then to fine charge mode for 9 cycles, then EOT falls. In loopback mode, EOT trips HOLD  
which captures the analog sample. Conversion begins on the next rising edge of CLKIN. If operated asynchro-  
nously, EOT will remain low until after HOLD is taken low. When HOLD occurs the analog sample is captured  
immediately, but conversion may not begin until four CLKIN cycles later. EOT will return high  
when conversion begins.  
2. Timing delay t (relative to CLKIN) can vary between 135 ns to 235 ns over the military temperature range  
d
and over ± 10% supply variation  
3. EOC returns high in 4 CLKIN cycles if A0 = 1 and CS = RD = 0 (Microprocessor Independent Mode);  
within 4 CLKIN cycles after a data read (Microprocessor Mode); or 4 CLKIN cycles after HOLD = 0  
is recognized on a rising edge of CLKIN/4.  
Figure 9. Serial Output Timing  
DS14F6  
2-25  
CS5012A, CS5014, CS5016  
+V  
Peaking in the reference’s output impedance can  
occur because of capacitive loading at its output.  
Any peaking that might occur can be reduced by  
placing a small resistor in series with the capaci-  
tors (Figure 10). The equation in Figure 10 can  
be used to help calculate the optimum value of R  
ee  
28 VREF  
V
ref  
29  
REFBUF  
C1  
1.0  
C2  
0.01  
µ
F
µ
F
0.1  
µ
F
for a particular reference. The term "f " is the  
peak  
30  
VA-  
frequency of the peak in the output impedance of  
the reference before the resistor is added.  
R
CS5012A  
CS5014  
CS5016  
-5V  
The CS5012A/14/16 can operate with a wide  
range of reference voltages, but signal-to-noise  
performance is maximized by using as wide a  
signal range as possible. The recommended refer-  
ence voltage is between 2.5 and 4.5 V for the  
CS5012A and 4.5 V for the CS5014/16. The  
CS5012A/14/16 can actually accept reference  
voltages up to the positive analog supply. How-  
ever, the buffer’s offset may increase as the  
reference voltage approaches VA+ thereby in-  
creasing external drive requirements at VREF. A  
4.5V reference is the maximum reference voltage  
recommended. This allows 0.5V headroom for  
the internal reference buffer. Also, the buffer en-  
lists the aid of an external 0.1 µF ceramic  
capacitor which must be tied between its output,  
REFBUF, and the negative analog supply, VA-. For  
more information on references, consult the applica-  
1
R =  
2π (C + C ) f  
peak  
Figure 10. Reference Connections  
1
2
tion note: Voltage References for the CS501X Se-  
ries of A/D Converters. For an example of using  
the CS5012A/14/16 with a 5 volt reference, see  
the application note: A Collection of Application  
Hints for the CS501X Series of A/D Converters.  
Analog Input Connection  
The analog input terminal functions similarly to  
the VREF input after each conversion when  
switching into the track mode. During the first  
six CLKIN cycles in the track mode, the buffered  
version of the analog input is used for pre-charg-  
ing the capacitor array. An additional period is  
required for fine-charging directly from AIN to  
CS5016 CS5014 CS5012A  
+200  
+50  
+12.5  
0
0
0
Pre-Charge  
Fine-Charge  
-200  
-50  
-12.5  
-400  
-100  
-25.0  
0.5  
1.0  
1.5  
2.0  
2.5  
Acquisition Time (us)  
(Delay from EOC)  
Figure 11. Internal Acquisition Time  
2-26  
DS14F6  
CS5012A, CS5014, CS5016  
obtain the specified accuracy. Figure 11 illustrates  
this operation. During pre-charge the charge on  
the capacitor array first settles to the buffered ver-  
sion of the analog input. This voltage is offset  
from the actual input voltage. During fine-charge,  
the charge then settles to the accurate unbuffered  
version.  
essary acquisition time. For more information on  
input applications, consult the application note:  
Input Buffer Amplifiers for the CS501X Family of  
A/D Converters.  
During the first six clock cycles following a con-  
version (pre-charge) in unipolar mode, the  
CS5012A is capable of slewing at 20V/µs and the  
CS5014/16 can slew at 5V/µs. In bipolar mode,  
only half the capacitor array is connected to the  
analog input so the CS5012A can slew at 40V/µs,  
and the CS5014/16 can slew at 10V/µs. After the  
first six CLKIN cycles, the CS5012A will slew at  
1.25V/µs in unipolar mode and 3.0V/µs in bipolar  
mode, and the CS5014/16 will slew at 0.25V/µs  
in unipolar mode and 0.5V/µs in bipolar mode.  
Acquisition of fast slewing signals (step func-  
tions) can be hastened if the step occurs during or  
immediately following the conversion cycle. For  
instance, channel selection in multiplexed appli-  
cations should occur while the CS5012A/14/16 is  
converting (see Figure 12). Multiplexer settling is  
thereby removed from the overall throughput  
equation, and the CS5012A/14/16 can convert at  
full speed.  
The acquisition time of the CS5012A/14/16 de-  
pends on the CLKIN frequency. This is due to a  
fixed pre-charge period. For instance, operating  
the CS5012A -12, CS5014 -14 or CS5016 -16  
version with an external 4 MHz CLKIN results in  
a 3.75 µs acquisition time: 1.5 µs for pre-charging  
(6 clock cycles) and 2.25 µs for fine-charging.  
Fine-charge settling is specified as a maximum of  
2.25 µs for an analog source impedance of less  
than 200 . (For the CS5012A -7 version it is  
specified as 1.32 µs.) In addition, the comparator  
requires a source impedance of less than 400 Ω  
around 2 MHz for stability, which is met by prac-  
tically all bipolar op amps. Large dc source  
impedances can be accommodated by adding ca-  
pacitance from AIN to ground (typically 200 pF)  
to decrease source impedance at high frequencies.  
However, high dc source resistances will increase  
the input’s RC time constant and extend the nec-  
Convert Channel N  
CS5012A/14/16  
Convert Channel N+1  
HOLD  
Input  
CS5012A/14/16  
EOC  
Output  
MUX  
Address  
Address N  
Address N + 1  
Address N + 2  
Address N + 3  
MUX Settling  
to Channel N + 2  
MUX Settling  
to Channel N + 1  
CS5012A/14/16  
Analog  
Input  
Figure 12. Pipelined MUX Input Channels  
DS14F6  
2-27  
CS5012A, CS5014, CS5016  
Analog Input Range/Coding Format  
The digital and analog supplies to the  
CS5012A/14/16 are pinned out separately to  
minimize coupling between the analog and digital  
sections of the chip. All four supplies should be  
decoupled to their respective grounds using  
0.1 µF ceramic capacitors. If significant low-fre-  
quency noise is present on the supplies, 1 µF  
tantalum capacitors are recommended in parallel  
with the 0.1 µF capacitors.  
The reference voltage directly defines the input  
voltage range in both the unipolar and bipolar  
configurations. In the unipolar configuration  
(BP/UP low), the first code transition occurs  
0.5 LSB above AGND, and the final code transi-  
tion occurs 1.5 LSB’s below VREF. Coding is in  
straight binary format. In the bipolar configura-  
tion (BP/UP high), the first code transition occurs  
0.5 LSB above -VREF and the last transition oc-  
curs 1.5 LSB’s below +VREF. Coding is in an  
offset-binary format. Positive full scale gives a  
digital output of all ones, and negative full scale  
gives a digital output of all zeros.  
The positive digital power supply of the  
CS5012A/14/16 must never exceed the positive  
analog supply by more than a diode drop or the  
device could experience permanent damage. If  
the two supplies are derived from separate  
sources, care must be taken that the analog sup-  
ply comes up first at power-up. The system  
connection diagram in Figure 36 shows a decou-  
pling scheme which allows the CS5012A/14/16  
The BP/UP mode pin may be switched after cali-  
bration without having to recalibrate the  
converter. However, the BP/UP mode should be  
changed during the previous conversion cycle,  
that is, between HOLD falling and EOC falling.  
If BP/UP is changed at any other time, one  
dummy conversion cycle must be allowed for  
proper acquisition of the input.  
±
to be powered from a single set of 5V rails.  
As with any high-precision A/D converter, the  
CS5012A/14/16 require careful attention to  
grounding and layout arrangements. However, no  
unique layout issues must be addressed to prop-  
erly apply the device. The CDB5012/14/16  
evaluation board is available for the  
CS5012A/14/16, which avoids the need to de-  
sign, build, and debug a high-precision PC board  
to initially characterize the part. The board comes  
with a socketed CS5012A/14/16, and can be  
quickly reconfigured to simulate any combination  
of sampling, calibration, CLKIN, and analog in-  
put range conditions.  
Grounding and Power Supply Decoupling  
The CS5012A/14/16 use the analog ground con-  
nection, AGND, only as a reference voltage. No  
dc power currents flow through the AGND con-  
nection, and it is completely independent of  
DGND. However, any noise riding on the AGND  
input relative to the system’s analog ground will  
induce conversion errors. Therefore, both the ana-  
log input and reference voltage should be referred  
to the AGND pin, which should be used as the  
entire system’s analog ground reference point.  
2-28  
DS14F6  
CS5012A, CS5014, CS5016  
Power Supply Rejection  
CS5012A/14/16 PERFORMANCE  
The CS5012A/14/16’s power supply rejection  
performance is enhanced by the on-chip self-cali-  
bration and an "auto-zero" process. Drifts in  
power supply voltages at frequencies less than the  
calibration rate have negligible effect on the  
CS5012A/14/16’s accuracy. This is because the  
CS5012A/14/16 adjust their offset to within a  
small fraction of an LSB during calibration.  
Above the calibration frequency the excellent  
power supply rejection of the internal amplifiers  
is augmented by an auto-zero process. Any  
offsets are stored on the capacitor array and are  
effectively subtracted once conversion is initiated.  
Figure 13 shows power supply rejection of the  
CS5012A/14/16 in the bipolar mode with the  
analog input grounded and a 300 mVp-p ripple  
applied to each supply. Power supply rejection  
improves by 6 dB in the unipolar mode.  
Differential Nonlinearity  
One source of nonlinearity in A/D converters is  
bit weight errors. These errors arise from the de-  
viation of bits from their ideal binary-weighted  
ratios, and lead to nonideal widths for each code.  
If DNL errors are large, and code widths shrink  
to zero, it is possible for one or more codes to be  
entirely missing. The CS5012A/14/16 calibrate  
all bits in the capacitor array to a small fraction  
of an LSB resulting in nearly ideal DNL. Histo-  
gram plots of typical DNL of the CS5012A/14/16  
can be seen in Figures 14, 16, 17. Figure 15 il-  
lustrates the DNL of the CS5012 for comparison  
with the CS5012A (Figure 14).  
A histogram test is a statistical method of deriv-  
ing an A/D converter’s differential nonlinearity. A  
ramp is input to the A/D and a large number of  
samples are taken to insure a high confidence  
level in the test’s result. The number of occur-  
rences for each code is monitored and stored. A  
perfect A/D converter would have all codes of  
equal size and therefore equal numbers of occur-  
rences. In the histogram test a code with the  
average number of occurrences will be consid-  
ered ideal (DNL = 0). A code with more or less  
occurrences than average will appear as a DNL  
of greater or less than zero LSB. A missing code  
has zero occurrences, and will appear as a DNL  
of -1 LSB.  
The plot in Figure 13 shows worst-case rejection  
for all combinations of conversion rates and input  
conditions in the bipolar mode.  
90  
80  
70  
60  
50  
Integral Nonlinearity  
Integral Nonlinearity (INL; also termed Relative  
Accuracy or just Nonlinearity) is defined as the  
deviation of the transfer function from an ideal  
straight line. Bows in the transfer curve generate  
harmonic distortion. The worst-case condition of  
bit-weight errors (DNL) has traditionally also de-  
fined the point of maximum INL.  
40  
30  
20  
1 kHz  
10 kHz  
100 kHz  
1 MHz  
Power Supply Ripple Frequency  
Bit-weight errors have a drastic effect on a con-  
verter’s ac performance. They can be analyzed as  
step functions superimposed on the input signal.  
Figure 13. Power Supply Rejection  
DS14F6  
2-29  
CS5012A, CS5014, CS5016  
+1  
+1/2  
0
-1/2  
-1  
0
2,048  
4,095  
Codes  
Figure 14. CS5012A Differential Nonlinearity Plot  
+1  
+1/2  
0
-1/2  
-1  
0
2,048  
4,095  
Codes  
Figure 15. CS5012 Differential Nonlinearity Plot  
+1  
+1/2  
0
-1/2  
-1  
0
8,192  
16,383  
Codes  
Figure 16. CS5014 Differential Nonlinearity Plot  
+1  
+1/2  
0
-1/2  
-1  
0
32,768  
65,535  
Codes  
Figure 17. CS5016 Differential Nonlinearity Plot  
2-30  
DS14F6  
CS5012A, CS5014, CS5016  
Since bits (and their errors) switch in and out  
throughout the transfer curve, their effect is sig-  
nal dependent. That is, harmonic and  
intermodulation distortion, as well as noise, can  
vary with different input conditions. Designing a  
system around characterization data is risky since  
transfer curves can differ drastically unit-to-unit  
and lot-to-lot.  
Equally important is the spectral content of this  
error signal. It can be shown to be approximately  
white, with its energy spread uniformly over the  
band from dc to one-half the sampling rate. Ad-  
vantage of this characteristic can be made by  
judicious use of filtering. If the signal is ban-  
dlimited, much of the quantization error can be  
filtered out, and improved system performance  
can be attained.  
The CS5012A/14/16 achieves repeatable signal-  
to-noise and harmonic distortion performance  
using an on-chip self-calibration scheme. The  
CS5012A calibrates its bit weight errors to a  
small fraction of an LSB at 12-bits yielding peak  
distortion below the noise floor (see Figure 19).  
The CS5014 calibrates its bit weights to within  
FFT Tests and Windowing  
In the factory, the CS5012A/14/16 are tested us-  
ing Fast Fourier Transform (FFT) techniques to  
analyze the converter’s dynamic performance. A  
pure sinewave is applied to the CS5012A/14/16,  
and a "time record" of 1024 samples is captured  
and processed. The FFT algorithm analyzes the  
spectral content of the digital waveform and dis-  
tributes its energy among 512 "frequency bins."  
Assuming an ideal sinewave, distribution of en-  
ergy in bins outside of the fundamental and dc  
can only be due to quantization effects and errors  
in the CS5012A/14/16.  
±
±
1/16 LSB at 14-bits ( 0.0004% FS) yielding  
peak distortion as low as -105 dB (see Fig-  
ure 22). The CS5016 calibrates its bit weights to  
±
±
within 1/4 LSB at 16-bits ( 0.0004% FS) yield-  
ing peak distortion as low as -105 dB (see  
Figure 24). Unlike traditional ADC’s, the linear-  
ity of the CS5012A/14/16 are not limited by  
bit-weight errors; their performance is therefore  
extremely repeatable and independent of input  
signal conditions.  
If sampling is not synchronized to the input sine-  
wave, it is highly unlikely that the time record  
will contain an integer number of periods of the  
input signal. However, the FFT assumes that the  
signal is periodic, and will calculate the spectrum  
of a signal that appears to have large discontinui-  
ties, thereby yielding a severely distorted  
spectrum. To avoid this problem, the time record  
is multiplied by a window function prior to per-  
forming the FFT. The window function smoothly  
forces the endpoints of the time record to zero,  
thereby removing the discontinuities. The effect  
of the window in the frequency-domain is to con-  
volute the spectrum of the window with that of  
the actual input.  
Quantization Noise  
The error due to quantization of the analog input  
ultimately dictates the accuracy of any A/D con-  
verter. The continuous analog input must be  
represented by one of a finite number of digital  
codes, so the best accuracy to which an analog  
input can be known from its digital code is  
±
1/2 LSB. Under circumstances commonly en-  
countered in signal processing applications, this  
quantization error can be treated as a random  
variable. The magnitude of the error is limited to  
±
1/2 LSB, but any value within this range has  
equal probability of occurrence. Such a prob-  
ability distribution leads to an error "signal" with  
an rms value of 1 LSB/12. Using an rms signal  
value of FS/8 (amplitude = FS/2), this relates to  
ideal 12, 14 and 16-bit signal-to-noise ratios of  
74, 86 and 98 dB respectively.  
Figure 18 shows an FFT computed from an ideal  
12-bit sinewave. The quality of the window used  
for harmonic analysis is typically judged by its  
highest side-lobe level. The Blackman-Harris  
window used for testing the CS5014 and CS5016  
has a maximum side-lobe level of -92 dB. Fig-  
DS14F6  
2-31  
CS5012A, CS5014, CS5016  
0.0  
-20.0  
0.0  
-20.0  
-40.0  
-60.0  
-80.0  
-100.0  
-120.0  
Sampling Rate: 100kHz  
Full Scale: 9Vp-p  
S/N+D: 73.6dB  
S/N+D: 73.9 dB  
-40.0  
Signal  
Signal  
Amplitude  
Relative to  
Full Scale  
(dB)  
Amplitude  
Relative to  
Full Scale  
(dB)  
-60.0  
-80.0  
-100.0  
-120.0  
dc  
f /2  
s
dc 1.0  
50.0  
Input Frequency  
Input Frequency (kHz)  
Figure 18. Plot of Ideal 12-bit ADC  
Figure 19. Plot of CS5012A with 1 kHz  
Full Scale Input  
0.0  
-20.0  
ures 21 and 23 show FFT plots computed from  
an ideal 14 and 16-bit sinewave multiplied by a  
Blackman-Harris window. Artifacts of window-  
ing are discarded from the signal-to-noise  
calculation using the assumption that quantization  
noise is white. All FFT plots in this data sheet  
were derived by averaging the FFT results from  
ten 1024 point time records. This filters the spec-  
tral variability that can arise from capturing finite  
time records without disturbing the total energy  
outside the fundamental. All harmonics which ex-  
ist above the noise floor and the -92 dB  
side-lobes from the Blackman-Harris window are  
therefore clearly visible in the plots. For more in-  
formation on FFT’s and windowing refer to: F.J.  
HARRIS, "On the use of windows for harmonic  
Sampling Rate: 100kHz  
Full Scale: 9Vp-p  
S/N+D: 72.9dB  
-40.0  
Signal  
Amplitude  
Relative to  
Full Scale  
(dB)  
-60.0  
-80.0  
-100.0  
-120.0  
12.0  
dc  
50.0  
Input Frequency (kHz)  
Figure 20. FFT Plot of CS5012A with 12 kHz  
Full-Scale Input  
0dB  
0dB  
Sampling Rate: 56 kHz  
S/(N+D): 86.1 dB  
Full Scale: 9V p-p  
-20dB  
-20dB  
S/(N+D): 85.3 dB  
-40dB  
-40dB  
-60dB  
-60dB  
Signal  
Signal  
Amplitude  
Relative to  
Full Scale  
Amplitude  
Relative to  
Full Scale  
-80dB  
-80dB  
-100dB  
-120dB  
-100dB  
-120dB  
1 kHz  
28 kHz  
f /2  
s
dc  
dc  
Input Frequency  
Input Frequency  
Figure 22. CS5014 FFT plot with 1 kHz  
Full Scale Input  
Figure 21. Plot of Ideal 14-bit ADC  
2-32  
DS14F6  
CS5012A, CS5014, CS5016  
0dB  
-20dB  
-40dB  
-60dB  
-80dB  
-100dB  
-120dB  
0dB  
-20dB  
-40dB  
-60dB  
-80dB  
-100dB  
-120dB  
Sampling Rate: 50 kHz  
Full Scale: 9V p-p  
S/(N+D): 92.4 dB  
S/(N+D): 97.5 dB  
Signal  
Signal  
Amplitude  
Relative to  
Full Scale  
Amplitude  
Relative to  
Full Scale  
1 kHz  
25 kHz  
dc  
f /2  
s
dc  
Input Frequency  
Input Frequency  
Figure 24. CS5016 FFT plot with 1 kHz  
Full Scale Input  
Figure 23. Plot of Ideal 16-bit ADC  
CS5012A High Frequency Performance  
analysis with the Discrete Fourier Transform",  
Proc. IEEE, Vol. 66, No. 1, Jan 1978, pp.51-83.  
This is available on request from Crystal Semi-  
conductor.  
The CS5012A performs very well over a wide  
range of input frequencies as shown in Figure 25.  
The figure depicts the CS5012A-KP7 tested un-  
der four different conditions. The conditions  
include tests with the voltage reference set at 4.5  
and at 2.5 volts with input signals at 0.5 dB down  
from full scale and 6.0 dB down from full scale.  
The sample rate is at 100 kHz for all cases. The  
plots indicate that the part performs very well  
even with input frequencies above the Nyquist  
rate. Best performance at the higher frequencies  
is achieved with a 2.5 volt reference.  
Figures 19, 22, and 24 show the performance of  
the CS5012A/14/16 with 1kHz full scale inputs.  
Figure 20 shows CS5012A performance with  
12kHz full scale inputs. Notice that the perform-  
ance CS5012A/14/16 closely approaches that of  
the corresponding ideal ADC.  
75  
f =100 kHz  
s
CS5012A-KP7  
VREF  
Signal  
1.  
2.  
3.  
4.  
4.5  
2.5  
4.5  
2.5  
FS-0.5dB  
FS-0.5dB  
FS-6.0dB  
FS-6.0dB  
1
70  
65  
60  
55  
Signal to  
Noise +  
Distortion  
2
(dB)  
4
3
0
20  
40  
60  
80  
100  
s
120  
140  
160  
180  
200  
f
/2  
f
s
Input Frequency (kHz)  
Figure 25. CS5012A High Frequency Input Performance  
DS14F6  
2-33  
CS5012A, CS5014, CS5016  
100 dB  
80 dB  
60 dB  
40 dB  
20 dB  
0 dB  
0dB  
-20dB  
-40dB  
-60dB  
-80dB  
-100dB  
-120dB  
Sampling Rate: 56 kHz  
Full Scale: 9V p-p  
S/(N+D): 24.1 dB  
1 kHz  
12 kHz  
24 kHz  
Input  
Frequencies  
Signal  
Amplitude  
Relative to  
Full Scale  
-100 dB -80 dB -60 dB -40 dB -20 dB  
0 dB  
1 kHz  
28 kHz  
dc  
Analog Input Amplitude  
Input Frequency  
Figure 27. CS5014 FFT plot with 1 kHz  
-60 dB Input  
Figure 26. CS5014 S/(N+D) vs. Input Amplitude  
(9Vp-p Full-Scale Input)  
100 dB  
0dB  
1 kHz  
12 kHz  
Sampling Rate: 50 kHz  
Full Scale: 9V p-p  
S/(N+D): 9.6 dB  
-20dB  
-40dB  
80 dB  
24 kHz  
Input  
60 dB  
40 dB  
20 dB  
0 dB  
Frequency  
-60dB  
Signal  
Amplitude  
Relative to  
Full Scale  
-80dB  
-100dB  
-120dB  
1 kHz  
25 kHz  
-100 dB -80 dB -60 dB -40 dB -20 dB  
0 dB  
dc  
Input Frequency  
Analog Input Amplitude  
Figure 28. CS5016 S/(N+D) vs. Input Amplitude  
(9Vp-p Full-Scale Input)  
Figure 29. CS5016 FFT plot with 1 kHz  
-80 dB Input  
rms with a 4.5V reference in both modes. Figure  
30 shows a histogram plot of output code occur-  
rences obtained from 5000 samples taken from a  
CS5016 in the bipolar mode. Hexadecimal code  
80CD was arbitrarily selected and the analog in-  
put was set close to code center. With a noiseless  
converter, code 80CD would always appear. The  
histogram plot of the CS5016 has a "bell" shape  
with all codes other than 80CD due to internal  
noise.  
Signal to Noise + Distortion vs Signal Level  
As illustrated in Figures 26 - 29, the CS5014/16’s  
on-chip self-calibration provides very accurate bit  
weights which yield no degradation in quantiza-  
tion noise with low-level input signals. In fact,  
quantization noise remains below the noise floor  
in the CS5016, which dictates the converter’s sig-  
nal-to-noise performance.  
CS5016 Noise Considerations  
In a sampled data system all information about the  
analog input applied to the sample/hold appears in  
the baseband from dc to one-half the sampling rate.  
This includes high-frequency components which  
alias into the baseband. Low-pass (anti-alias) filters  
All analog circuitry in the CS5016 is wideband in  
order to achieve fast conversions and high  
throughput. Wideband noise in the CS5016 inte-  
grates to 35 µV rms in unipolar mode (70 µV rms  
in bipolar mode). This is approximately 1/2 LSB  
2-34  
DS14F6  
CS5012A, CS5014, CS5016  
Count  
5000  
formed on the charge trapped on the capacitor ar-  
ray at the moment the HOLD command is given.  
The charge on the array is ideally related to the  
analog input voltage by Q = -V x C as  
Noiseless  
Converter  
CS5016  
4000  
in  
in  
tot  
shown in Figure 2. Any deviation from this ideal  
relationship will result in conversion errors even  
if the conversion process proceeds flawlessly.  
3000  
2000  
At dc, the DAC capacitor array’s voltage coeffi-  
cient dictates the converter’s linearity. This  
variation in capacitance with respect to applied  
signal voltage yields a nonlinear relationship be-  
1000  
tween charge Q and the analog input voltage  
80CA 80CB 80CC 80CD 80CE 80CF  
Code (Hexadecimal)  
80D0  
0
in  
V
in  
and places a bow or wave in the transfer  
Counts:  
0
11  
911  
3470  
599  
9
function. This is the dominant source of distor-  
tion at low input frequencies (Figures 22 and 24).  
Figure 30. Histogram Plot of 5000 Conversion  
Inputs from the CS5016  
The ideal relationship between Q and V can  
in  
in  
are therefore used to remove frequency compo-  
nents in the input signal which are above one-half  
the sample rate. However, all wideband noise in-  
troduced by the CS5016 still aliases into the  
baseband. This "white" noise is evenly spread  
from dc to one-half the sampling rate and inte-  
grates to 35 µV rms in unipolar mode.  
also be distorted at high signal frequencies due to  
nonlinearities in the internal MOS switches. Dy-  
namic signals cause ac current to flow through  
the switches connecting the capacitor array to the  
analog input pin in the track mode. Nonlinear on-  
resistance in the switches causes a nonlinear  
voltage drop. This effect worsens with increased  
signal frequency as shown in Figures 26 and 28  
since the magnitude of the steady state current in-  
creases. First noticeable at 1 kHz, this distortion  
assumes a linear relationship with input fre-  
quency. With signals 20 dB or more below  
full-scale, it no longer dominates the converter’s  
overall S/(N+D) performance (Figures 31-34).  
Noise can be reduced by sampling at higher than  
the desired word rate and averaging multiple  
samples for each word. Oversampling spreads the  
CS5016’s noise over a wider band (for lower  
noise density), and averaging applies a low-pass  
response which filters noise above the desired  
signal bandwidth. In general, the CS5016’s noise  
performance can be maximized in any application  
by always sampling at the maximum specified  
rate of 50 kHz (for lowest noise density) and  
digitally filtering to the desired signal bandwidth.  
This distortion is strictly an ac sampling phe-  
nomenon. If significant energy exists at high  
frequencies, the effect can be eliminated using an  
external track-and-hold amplifier to allow the ar-  
ray’s charge current to decay, thereby eliminating  
any voltage drop across the switches. Since the  
CS5014/16 has a second sampling function on-  
chip, the external track-and-hold can return to the  
track mode once the converter’s HOLD input  
falls. It need only acquire the analog input by the  
time the entire conversion cycle finishes.  
CS5014 and CS5016 Sampling Distortion  
The ultimate limitation on the CS5014/16’s  
linearity (and distortion) arises from nonideal  
sampling of the analog input voltage. The cali-  
brated capacitor array used during conversions is  
also used to track and hold the analog input sig-  
nal. The conversion is not performed on the  
analog input voltage per se, but is actually per-  
DS14F6  
2-35  
CS5012A, CS5014, CS5016  
0dB  
-20dB  
-40dB  
-60dB  
-80dB  
-100dB  
-120dB  
0dB  
-20dB  
-40dB  
-60dB  
-80dB  
-100dB  
-120dB  
Sampling Rate: 56 kHz  
Full Scale: 9V p-p  
S/(N+D): 81.5 dB  
Sampling Rate: 56 kHz  
Full Scale: 9V p-p  
S/(N+D): 64.6 dB  
Signal  
Signal  
Amplitude  
Relative to  
Full Scale  
Amplitude  
Relative to  
Full Scale  
12 kHz  
28 kHz  
12 kHz  
28 kHz  
dc  
dc  
Input Frequency  
Input Frequency  
Figure 31. CS5014 FFT plot with 12 kHz  
Full Scale Input  
Figure 32. CS5014 FFT plot with 12 kHz  
-20 dB Input  
0dB  
0dB  
Sampling Rate: 50 kHz  
Sampling Rate: 50 kHz  
Full Scale: 9V p-p  
S/(N+D): 71.9 dB  
-20dB  
-40dB  
Full Scale: 9V p-p  
S/(N+D): 84.3 dB  
-20dB  
-40dB  
-60dB  
Signal  
-60dB  
Signal  
Amplitude  
Relative to  
Full Scale  
Amplitude  
Relative to  
Full Scale  
-80dB  
-80dB  
-100dB  
-120dB  
-100dB  
-120dB  
12 kHz  
Input Frequency  
25 kHz  
12 kHz  
Input Frequency  
25 kHz  
dc  
dc  
Figure 34. CS5016 FFT plot with 12 kHz  
-20 dB Input  
Figure 33. CS5016 FFT plot with 12 kHz  
Full Scale Input  
Clock Feedthrough in the CS5014 and CS5016  
(Figure 35), but the probability of this occurring  
is small since the peaks are spikes of short dura-  
tion.  
Maintaining the integrity of analog signals in the  
presence of digital switching noise is a difficult  
problem. The CS5014/16 can be synchronized to  
the digital system using the CLKIN input to  
avoid conversion errors due to asynchronous in-  
terference. However, digital interference will still  
affect sampling purity due to coupling between  
the CS5014/16’s analog input and master clock.  
Master Clock  
Analog Input  
Clock Feedthrough  
Int/Ext Freq Source Impedance RMS Peak-to-Peak  
Internal 2MHz  
External 2MHz  
External 4MHz  
External 4MHz  
External 4MHz  
50  
50  
15uV  
25uV  
40uV  
25uV  
80uV  
70uV  
110uV  
150uV  
110uV  
325uV  
50  
25  
200  
The effect of clock feedthrough depends on the  
sampling conditions. If the sampling signal at the  
HOLD input is synchronized to the master clock,  
clock feedthrough will appear as a dc offset at the  
CS5014/16’s output. The offset could theoreti-  
cally reach the peak coupling magnitude  
Figure 35. Examples of Measured Clock Feedthrough  
If sampling is performed asynchronously with the  
master clock, clock feedthrough will appear as an  
ac error at the CS5014/16’s output. With a fixed  
2-36  
DS14F6  
CS5012A, CS5014, CS5016  
sampling rate, a tone will appear as the clock fre-  
quency aliases into the baseband. The tone  
frequency can be calculated using the equation  
below and could be selectively filtered in soft-  
ware using DSP techniques.  
Differences between the CS5012A and the  
CS5012  
The differences between the CS5012A and the  
CS5012 are tabulated in Table 3. The CS5012 is  
a short-cycled version of the CS5016 A/D con-  
verter and includes the same 18-bit calibration  
circuitry. This calibration circuitry sets the cali-  
bration resolution of the CS5012 at 1/64th of an  
LSB and achieves the near perfect differential  
linearity performance illustrated by the CS5012  
DNL plot in Figure 15. The CS5012A calibration  
circuitry was modified to provide calibration to  
15-bit resolution therefore achieving calibration  
to 1/8 of an LSB. This reduction in calibration  
resolution for the CS5012A reduces the time re-  
quired to calibrate the device (see Table 3) and  
reduces the size of the total array capacitance.  
The reduced array capacitance improves the high  
frequency performance by allowing higher slew  
rate in the input circuitry.  
f
= (N f - f )  
s clk  
tone  
where N = f /f rounded to the nearest integer  
clk s  
The magnitude of clock feedthrough depends on  
the master clock conditions and the source im-  
pedance applied to the analog input. When  
operating with the CS5014/16’s internally gener-  
ated clock, the CLKIN input is grounded and the  
dominant source of coupling is through the de-  
vice’s substrate. As shown in Figure 35, a typical  
CS5014/16 operating with their internal oscillator  
at 2 MHz and 50 of analog input source im-  
pedance will exhibit only 15 µV rms of clock  
feedthrough. However, if a 2 MHz external clock  
is applied to CLKIN under the same conditions,  
feedthrough increases to 25 µV rms. Feedthrough  
also increases with clock frequency; a 4 MHz  
clock yields 40 µV rms.  
Table 3 documents some other improvements in-  
cluded in the CS5012A. The burst mode  
calibration was made functional, although it  
should not be used. The device was also modified  
so the EOC signal goes low at the end of a reset  
calibration in either microprocessor or microproc-  
essor-independent mode. The CS5012A was  
modified to maintain a throughput rate of 64  
CLKIN cycles in loopback mode for all frequen-  
cies of CLKIN.  
Clock feedthrough can be reduced by limiting the  
source impedance applied at the analog input. As  
shown in Figure 35, reducing source impedance  
from 50 to 25 yields a 15 µV rms reduction  
in feedthrough. Therefore, when operating the  
CS5014/16 with high-frequency external master  
clocks, it is important to minimize source imped-  
ance applied to the CS5014/16’s input.  
Also, the overall effect of clock feedthrough can  
be minimized by maximizing the input range and  
LSB size. The reference voltage applied to VREF  
can be maximized, and the CS5014/16 can be op-  
erated in bipolar mode which inherently doubles  
the LSB size over the unipolar mode.  
Schematic & Layout Review Service  
Confirm Optimum  
Schematic & Layout  
Before Building Your Board.  
For Our Free Review Service  
Call Applications Engineering.  
C a l l : ( 5 1 2 ) 4 4 5 - 7 2 2 2  
DS14F6  
2-37  
CS5012A, CS5014, CS5016  
CS5012  
CS5012A  
Calibration resolution  
15 bits. Results in DNL calibration  
to 1/8 LSB at 12 bits.  
18 bits. Results in DNL calibration  
to 1/64 LSB at 12 bits.  
Calibration time  
reset:  
1,441,020 CLKIN cycles  
72,051 conversions  
not functional  
58,280 CLKIN cycles  
2,014 conversions  
fully functional  
interleave:  
burst:  
End of calibration  
indicator  
EOC falls in either microprocessor  
or microprocessor-independent  
mode at the completion of a RESET  
calibration cycle.  
EOC falls at the completion of a RESET  
calibration cycle in microprocessor mode  
only. In microprocessor-independent mode  
EOT must be used. EOT falls 15 CLKIN  
cycles after completion of a RESET calibration.  
Throughput rate in  
loopback mode  
The device acquires and converts  
a sample in 64 CLKIN cycles for all  
CLKIN frequencies when in loopback.  
The device acquires and converts in 64  
CLKIN cycles for CLKIN=4MHz, but will  
require 68 CLKIN cycles at 100kHz through-  
put. This is due to excess delay on EOT.  
Input capacitance  
in fine-charge mode  
103pF typical, unipolar mode  
72pF typical, bipolar mode  
275pF typical, unipolar mode  
165pF typical, bipolar mode  
Slew Rate  
Unipolar  
20V/us  
1.5V/us  
Coarse charge  
Fine charge  
5V/us  
0.25V/us  
Bipolar  
Coarse charge  
Fine charge  
40V/us  
3.0V/us  
10V/us  
0.5V/us  
Table 3. Differences Between the CS5012A and CS5012  
2-38  
DS14F6  
CS5012A, CS5014, CS5016  
HOLD  
CS  
X
CAL  
X
INTRLV  
RD  
X
A0  
*
RST  
Function  
Hold and Start Convert  
X
X
X
0
0
0
0
0
Initiate Burst Calibration  
X
1
0
1
X
*
Stop Burst Cal and Begin Track  
0
0
X
*
Initiate Interleave Calibration  
Terminate Interleave Cal  
Read Output Data  
X
0
X
X
*
X
X
1
0
0
0
1
X
X
X
X
1
X
X
X
X
0
0
X
*
1
0
*
0
0
0
X
Read Status Register  
X
High Impedance Data Bus  
X
X
0
X
X
0
X
X
X
X
X
X
1
X
X
*
X
0
X
1
High Impedance Data Bus  
Reset  
Reset  
X
*
The status of A0 is not critical to the operation specified. However, A0 should not be low with  
CS and HOLD low, or a software reset will result.  
Table 4. CS5012A/14/16 Truth Table  
+5V  
Analog  
Supply  
10  
25  
11  
0.1 µF  
VA+  
VD+  
BW  
0.1 µF  
33  
24  
Mode  
Select *  
BP/UP  
Clock  
Source  
(optional)  
20  
CLKIN  
CS5012A  
CS5014  
CS5016  
Serial  
Data  
Interface  
40  
39  
SDATA  
SCLK  
(optional)  
Analog  
Signal  
Source  
200  
Data  
Signal  
Conditioning  
26  
AIN  
8 or 16  
38  
D0-D15  
Processor  
1000 pF  
EOC  
EOT  
May be  
microprocessor  
or discrete logic.  
37  
1
HOLD  
35  
0
VREF  
or  
CAL  
INTRLV  
CS  
Control  
Logic  
34  
21  
22  
23  
32  
31  
10  
±VREF  
RD  
28  
Voltage  
VREF  
AGND  
A0  
Reference  
0.01  
µ
F
Unused Logic inputs should only  
be connected to VD+ or DGND.  
RESET  
Reset  
Generator  
10  
µ
F
27  
29  
* BW and BP/UP should always  
be terminated to VD+ or DGND,  
or driven by a logic gate.  
TST  
REFBUF  
VA-  
DGND  
0.1 µF  
0.1  
µ
F
VD- 0.1  
µF  
For best dynamic  
S/(N+D) performance.  
30  
36  
-5V  
10  
Analog  
Supply  
Figure 36. CS5012A/14/16 System Connection Diagram  
DS14F6  
2-39  
CS5012A, CS5014, CS5016  
1
40  
39  
38  
37  
36  
35  
34  
33  
32  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
HOLD  
CS5016 (LSB) DATA BUS BIT 0  
DATA BUS BIT 1  
CS5014 (LSB) DATA BUS BIT 2  
DATA BUS BIT 3  
HOLD  
D0  
SDATA  
SCLK  
EOC  
EOT  
VD-  
CAL  
INTRLV  
BW  
RST  
TST  
VA-  
SERIAL OUTPUT  
SERIAL CLOCK  
END OF CONVERSION  
END OF TRACK  
NEGATIVE DIGITAL POWER  
CALIBRATE  
INTERLEAVE  
BUS WIDTH SELECT  
RESET  
2
3
D1  
D2  
D3  
D4  
D5  
D6  
D7  
CS5012A  
CS5012  
CS5014  
CS5016  
4
5
6
7
CS5012 (LSB) DATA BUS BIT 4  
DATA BUS BIT 5  
8
DATA BUS BIT 6  
DATA BUS BIT 7  
DIGITAL GROUND  
POSITIVE DIGITAL POWER  
DATA BUS BIT 8  
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
DGND  
VD+  
D8  
TEST  
NEGATIVE ANALOG POWER  
REFBUF REFERENCE BUFFER OUTPUT  
DATA BUS BIT 9  
DATA BUS BIT 10  
DATA BUS BIT 11  
DATA BUS BIT 12  
DATA BUS BIT 13  
DATA BUS BIT 14  
D9  
VREF  
AGND  
AIN  
VA+  
BP/UP  
A0  
VOLTAGE REFERENCE  
ANALOG GROUND  
ANALOG INPUT  
POSITIVE ANALOG POWER  
BIPOLAR/UNIPOLAR SELECT  
READ ADDRESS  
D10  
D11  
D12  
D13  
D14  
D15  
CLKIN  
(MSB) DATA BUS BIT 15  
CLOCK INPUT  
RD  
CS  
READ  
CHIP SELECT  
HOLD  
D0  
D1  
D2  
D3  
D4  
SDATA  
SCLK  
EOC  
EOT  
VD-  
D5  
D6  
NC  
D7  
CAL  
INTRLV  
BW  
RST  
TST  
VA-  
NC  
REFBUF  
VREF  
AGND  
AIN  
VA+  
BP/UP  
A0  
RD  
CS  
6
4
2
1
44  
42  
40  
7
39  
8
9
38  
37  
36  
35  
34  
33  
32  
31  
30  
29  
10  
11  
12  
13  
14  
15  
16  
17  
DGND  
VD+  
NC  
top  
view  
CS5012A  
CS5012  
CS5014  
CS5016  
D8  
NC  
D9  
D10  
D11  
D12  
D13  
D14  
D15  
18  
20  
22  
24  
26  
28  
CLKIN  
NOTE: All pin references in this data sheet refer to the 40-pin DIP package numbering.  
Use this figure to determine pin numbers for 44-pin package.  
2-40  
DS14F6  
CS5012A, CS5014, CS5016  
PIN DESCRIPTIONS  
Power Supply Connections  
VD+ – Positive Digital Power, PIN 11.  
Positive digital power supply. Nominally +5 volts.  
VD- – Negative Digital Power, PIN 36.  
Negative digital power supply. Nominally -5 volts.  
DGND – Digital Ground, PIN 10.  
Digital ground.  
VA+ – Positive Analog Power, PIN 25.  
Positive analog power supply. Nominally +5 volts.  
VA- – Negative Analog Power, PIN 30.  
Negative analog power supply. Nominally -5 volts.  
AGND – Analog Ground, PIN 27.  
Analog ground.  
Oscillator  
CLKIN – Clock Input, PIN 20.  
All conversions and calibrations are timed from a master clock which can either be supplied by  
driving this pin with an external clock signal, or can be internally generated by tying this pin to  
DGND.  
Digital Inputs  
HOLD – Hold, PIN 1.  
A falling transition on this pin sets the CS5012A/14/16 to the hold state and initiates a conversion.  
This input must remain low at least one CLKIN cycle plus 50 ns.  
CS – Chip Select, PIN 21.  
When high, the data bus outputs are held in a high impedance state and the input to CAL and  
INTRLV are ignored. A falling transition initiates or terminates burst or interleave calibration  
(depending on the status of CAL and INTRLV) and a rising transition latches both the CAL and  
INTRLV inputs. If RD is low, the data bus is driven as indicated by BW and A0.  
RD – Read, PIN 22.  
When RD and CS are both low, data is driven onto the data bus. If either signal is high, the data  
bus outputs are held in a high impedance state. The data driven onto the bus is determined by BW  
and A0.  
DS14F6  
2-41  
CS5012A, CS5014, CS5016  
A0 – Read Address, PIN 23.  
Determines whether data or status information is placed onto the data bus. When high during the  
read operation, converted data is placed onto the data bus; when low, the status register is driven  
onto the bus.  
BP/UP – Bipolar/Unipolar Input Select, PIN 24.  
When high, the device is configured with a bipolar transfer function ranging from -VREF to  
+VREF. Encoding is in an offset binary format, with the mid-scale code 100...0000 centered at  
AGND. When low, the device is configured for a unipolar transfer function from AGND to VREF.  
Unipolar encoding is in straight binary format. Once calibration has been performed, either bipolar  
or unipolar mode may be selected without the need to recalibrate.  
RST – Reset, PIN 32.  
When taken high for at least 100 ns, all internal digital logic is reset. Upon being taken low, a full  
calibration sequence is initiated.  
BW – Bus Width Select, PIN 33.  
When hard-wired high, all 12 data bits are driven onto the bus simultaneously during a data read  
cycle. When low, the bus is in a byte wide format. On the first read following a conversion, the  
eight MSB’s are driven onto D0-D7. A second read cycle places the four LSB’s with four trailing  
zeros on D0-D7. Subsequent reads will toggle the higher/lower order byte. Regardless of BW’s  
status, a read cycle with A0 low yields the status information on D0-D7.  
INTRLV – Interleave, PIN 34.  
When latched low using CS, the device goes into interleave calibration mode. A full calibration  
will complete every 2,014 conversions in the CS5012A, and every 72,051 conversions in the  
CS5014/16. The effective conversion time extends by 20 clock cycles.  
CAL – Calibrate, PIN 35. (See Addendum appending this data sheet))  
When latched high using CS, burst calibration results. The device cannot perform conversions  
during the calibration period which will terminate only once CAL is latched low again.  
Calibration picks up where the previous calibration left off, and calibration cycles complete every  
58,280 CLKIN cycles in the CS5012A, and every 1,441,020 CLKIN cycles in the CS5014/16 . If  
the device is converting when a calibration is signaled, it will wait until that conversion completes  
before beginning.  
Analog Inputs  
AIN – Analog Input, PIN 26.  
Input range in the unipolar mode is zero volts to VREF. Input range in bipolar mode is -VREF to  
+VREF. The output impedance of buffer driving this input should be less than or equal to 200 .  
2-42  
DS14F6  
CS5012A, CS5014, CS5016  
VREF – Voltage Reference, PIN 28.  
The analog reference voltage which sets the analog input range. It represents positive full scale for  
both bipolar and unipolar operation, and its magnitude sets negative full scale in bipolar mode.  
Digital Outputs  
D0 through D15 – Data Bus Outputs, PINS 2 thru 9, 12 thru 19.  
3-state output pins. Enabled by CS and RD, they offer the converter’s output in a format  
consistent with the state of BW if A0 is high. If A0 is low, bits D0-D7 offer status register data.  
EOT – End Of Track, PIN 37.  
If low, indicates that enough time has elapsed since the last conversion for the device to acquire  
the analog input signal.  
EOC – End Of Conversion, PIN 38.  
This output indicates the end of a conversion or calibration cycle. It is high during a conversion  
and will fall to a low state upon completion of the conversion cycle indicating valid data is  
available at the output. Returns high on the first subsequent read or the start of a new conversion  
cycle.  
SDATA – Serial Output, PIN 40.  
Presents each output data bit after it is determined by the successive approximation algorithm.  
Valid on the rising edge of SCLK, data appears MSB first, LSB last, and each bit remains valid  
until the next bit appears.  
SCLK – Serial Clock Output, PIN 39.  
Used to clock converted output data serially from the CS5012A/14/16. Serial data is stable on the  
rising edge of SCLK.  
Analog Outputs  
REFBUF – Reference Buffer Output, PIN 29.  
Reference buffer output. A 0.1 µF ceramic capacitor must be tied between this pin and VA-.  
Miscellaneous  
TST – Test, PIN 31.  
Allows access to the CS5012A/14/16’s test functions which are reserved for factory use. Must be  
tied to DGND.  
DS14F6  
2-43  
CS5012A, CS5014, CS5016  
PARAMETER DEFINITIONS  
Linearity Error  
The deviation of a code from a straight line passing through the endpoints of the transfer  
function after zero- and full-scale errors have been accounted for. "Zero-scale" is a point 1/2 LSB  
below the first code transition and "full-scale" is a point 1/2 LSB beyond the code transition to  
all ones. The deviation is measured from the middle of each particular code. Units in %  
Full-Scale.  
Differential Linearity  
Minimum resolution for which no missing codes is guaranteed. Units in bits.  
Full Scale Error  
The deviation of the last code transition from the ideal (VREF-3/2 LSB’s).  
Units in LSB’s.  
Unipolar Offset  
The deviation of the first code transition from the ideal (1/2 LSB above AGND) when in  
unipolar mode (BP/UP low). Units in LSB’s.  
Bipolar Offset  
The deviation of the mid-scale transition (011...111 to 100...000) from the ideal (1/2 LSB below  
AGND) when in bipolar mode (BP/UP high). Units in LSB’s.  
Bipolar Negative Full-Scale Error  
The deviation of the first code transition from the ideal when in bipolar mode (BP/UP high). The  
ideal is defined as lying on a straight line which passes through the final and mid-scale code  
transitions. Units in LSB’s.  
Peak Harmonic or Spurious Noise (More accurately, Signal to Peak Harmonic or Spurious Noise)  
The ratio of the rms value of the signal to the rms value of the next largest spectral component  
below the Nyquist rate (excepting dc). This component is often an aliased harmonic when the  
signal frequency is a significant proportion of the sampling rate. Expressed in decibels.  
Total Harmonic Distortion  
The ratio of the rms sum of all harmonics to the rms value of the signal. Units in percent.  
Signal-to-Noise Ratio  
The ratio of the rms value of the signal to the rms sum of all other spectral components below  
the Nyquist rate (excepting dc), including distortion components. Expressed in decibels.  
Aperture Time  
The time required after the hold command for the sampling switch to open fully. Effectively a  
sampling delay which can be nulled by advancing the sampling signal. Units in nanoseconds.  
Aperture Jitter  
The range of variation in the aperture time. Effectively the "sampling window" which ultimately  
dictates the maximum input signal slew rate acceptable for a given accuracy. Units in  
picoseconds.  
NOTE: Temperatures specified define ambient conditions in free-air during test and do not refer to the junction  
temperature of the device.  
2-44  
DS14F6  
CS5012A, CS5014, CS5016  
CS5012A Ordering Guide  
Model  
Throughput Conversion Time  
Maximum DNL  
±1/2 LSB  
±1/2 LSB  
±1/2 LSB  
±1/2 LSB  
±1/2 LSB  
±1/2 LSB  
±1/2 LSB  
±1/2 LSB  
±1/2 LSB  
±1/2 LSB  
Temp. Range  
0 to 70 °C  
0 to 70 °C  
0 to 70 °C  
0 to 70 °C  
-40 to +85 °C  
-40 to +85 °C  
-40 to +85 °C  
-40 to +85 °C  
-55 to +125 °C 40-Pin CerDIP  
-55 to +125 °C 44-Pin Ceramic LCC  
Package  
CS5012A-KP12  
CS5012A-KP7  
CS5012A-KL12  
CS5012A-KL7  
CS5012A-BP12  
CS5012A-BP7  
CS5012A-BL12  
CS5012A-BL7  
5962-8967901QA  
5962-8967901XA  
63 kHz  
100 kHz  
63 kHz  
100 kHz  
63 kHz  
100 kHz  
63 kHz  
100 kHz  
63 kHz  
63 kHz  
12.25 µs  
7.20µs  
40-Pin Plastic DIP  
40-Pin Plastic DIP  
44-Pin PLCC  
12.25 µs  
7.20 µs  
12.25 µs  
7.20 µs  
12.25 µs  
7.20 µs  
12.25 µs  
12.25 µs  
44-Pin PLCC  
40-Pin Plastic DIP  
40-Pin Plastic DIP  
44-Pin PLCC  
44-Pin PLCC  
The CS5012A is recommended for new designs. The following is a list of upgraded part numbers.  
Discontinued  
Part Number  
CS5012-KP24  
CS5012-KP12  
CS5012-KP7  
CS5012-KL24  
CS5012-KL12  
CS5012-KL7  
CS5012-BD24  
CS5012-BD12  
CS5012-BD7  
CS5012-BL24  
CS5012-BL12  
CS5012-BL7  
Equivalent  
Recommended Device.  
CS5012A-KP12  
CS5012A-KP12  
CS5012A-KP7  
CS5012A-KL12  
CS5012A-KL12  
CS5012A-KL7  
CS5012A-BP12  
CS5012A-BP12  
CS5012A-BP7  
CS5012A-BL12  
CS5012A-BL12  
CS5012A-BL7  
CS5012-TD24B  
CS5012-TD12B  
CS5012-TE24B  
CS5012-TE12B  
5962-897901QA  
5962-897901QA  
5962-897901XA  
5962-897901XA  
AS PER EOL MAY 22, 2000  
CURRENT PRODUCT  
BEING OBSOLETED  
REPLACEMENT  
PRODUCT  
CS5012A -KP12 40 pin DIP  
CS5012A -BP7  
CS5012A -BP7  
CS5012A -BP7  
CS5012A -KP7  
40 pin DIP  
CS5012A -BP12 40 pin DIP  
CS5012A -KL12 44 pin PLCC  
CS5012A -KL7 44 pin PLCC  
CS5012A -BL12 44 pin PLCC  
CS5012A -BL7  
CS5012A -BL7  
CS5012A -BL7  
DS14F6  
2-45  
CS5012A, CS5014, CS5016  
CS5014 Ordering Guide  
Model  
Throughput Conversion Time  
Linearity  
±0.5 LSB  
±0.5 LSB  
±0.5 LSB  
±0.5 LSB  
±0.5 LSB  
±0.5 LSB  
±0.5 LSB  
±0.5 LSB  
±1.5 LSB  
±0.5 LSB  
±1.5 LSB  
±0.5 LSB  
±1.5 LSB  
±0.5 LSB  
±1.5 LSB  
±0.5 LSB  
Temp. Range  
0 to 70 °C  
0 to 70 °C  
0 to 70 °C  
0 to 70 °C  
-40 to +85 °C  
-40 to +85 °C  
-40 to +85 °C  
-40 to +85 °C  
-55 to +125 °C  
-55 to +125 °C  
-55 to +125 °C  
-55 to +125 °C  
-55 to +125 °C  
-55 to +125 °C  
-55 to +125 °C  
-55 to +125 °C  
Package  
CS5014-KP28  
CS5014-KP14  
CS5014-KL28  
CS5014-KL14  
CS5014-BP28  
CS5014-BP14  
CS5014-BL28  
CS5014-BL14  
CS5014-SD14  
CS5014-TD14  
CS5014-SE14  
CS5014-TE14  
5962-8967401QA  
5962-8967402QA  
5962-8967401XA  
5962-8967402XA  
28 kHz  
56 kHz  
28 kHz  
56 kHz  
28 kHz  
56 kHz  
28 kHz  
56 kHz  
56 kHz  
56 kHz  
56 kHz  
56 kHz  
56 kHz  
56 kHz  
56 kHz  
56 kHz  
28.50 µs  
14.25 µs  
28.50 µs  
14.25 µs  
28.50 µs  
14.25µs  
28.50 µs  
14.25 µs  
14.25 µs  
14.25 µs  
14.25 µs  
14.25 µs  
14.25 µs  
14.25 µs  
14.25 µs  
14.25 µs  
40-Pin Plastic DIP  
40-Pin Plastic DIP  
44-Pin PLCC  
44-Pin PLCC  
40-Pin Plastic DIP  
40-Pin Plastic DIP  
44-Pin PLCC  
44-Pin PLCC  
40-Pin CerDIP  
40-Pin CerDIP  
44-Pin Ceramic LCC  
44-Pin Ceramic LCC  
40-Pin CerDIP  
40-Pin CerDIP  
44-Pin Ceramic LCC  
44-Pin Ceramic LCC  
The following is a list of upgraded part numbers.  
Discontinued  
Part Number  
CS5014-SD14B  
CS5014-TD14B  
CS5014-SE14B  
CS5014-TE14B  
Equivalent  
Recommended Device  
5962-8967401QA  
5962-8967402QA  
5962-8967401XA  
5962-8967402XA  
AS PER EOL MAY 22, 2000  
CURRENT PRODUCT  
BEING OBSOLETED  
REPLACEMENT  
PRODUCT  
CS5014 -KP28 40 pin DIP  
CS5014 -KP14 40 pin DIP  
CS5014 -BP28 40 pin DIP  
CS5014 -BP14  
CS5014 -BP14  
CS5014 -BP14  
CS5014 -KL28 44 pin PLCC  
CS5014 -KL14 44 pin PLCC  
CS5014 -BL28 44 pin PLCC  
CS5014 -BL14  
CS5014 -BL14  
CS5014 -BL14  
2-46  
DS14F6  
CS5012A, CS5014, CS5016  
CS5016 Ordering Guide  
Signal to  
Model  
Linearity  
.0030%  
.0030%  
.0015%  
.0015%  
.0030%  
.0030%  
.0015%  
.0015%  
.0030%  
.0030%  
.0015%  
.0015%  
.0030%  
.0030%  
.0015%  
.0015%  
.0076%  
.0015%  
.0076%  
.0015%  
.0076%  
.0015%  
.0076%  
.0015%  
Noise Ratio  
Conversion Time Temp. Range  
Package  
CS5016-JP32  
CS5016-JP16  
CS5016-KP32  
CS5016-KP16  
CS5016-JL32  
CS5016-JL16  
CS5016-KL32  
CS5016-KL16  
CS5016-AP32  
CS5016-AP16  
CS5016-BP32  
CS5016-BP16  
CS5016-AL32  
CS5016-AL16  
CS5016-BL32  
CS5016-BL16  
CS5016-SD16  
CS5016-TD16  
CS5016-SE16  
CS5016-TE16  
5962-8967601QA  
5962-8967602QA  
5962-8967601XA  
5962-8967602XA  
87 dB  
87 dB  
90 dB  
90 dB  
87 dB  
87 dB  
90 dB  
90 dB  
87 dB  
87 dB  
90 dB  
90 dB  
87 dB  
87 dB  
90 dB  
90 dB  
87 dB  
90 dB  
87 dB  
90 dB  
87 dB  
90 dB  
87 dB  
90 dB  
32.50 µs  
16.25 µs  
32.50 µs  
16.25 µs  
32.50 µs  
16.25 µs  
32.50 µs  
16.25 µs  
32.50 µs  
16.25 µs  
32.50 µs  
16.25 µs  
32.50 µs  
16.25 µs  
32.50 µs  
16.25 µs  
16.25 µs  
16.25 µs  
16.25 µs  
16.25 µs  
16.25 µs  
16.25 µs  
16.25 µs  
16.25 µs  
0 to 70 °C  
0 to 70 °C  
0 to 70 °C  
0 to 70 °C  
0 to 70 °C  
0 to 70 °C  
0 to 70 °C  
0 to 70 °C  
-40 to +85 °C  
-40 to +85 °C  
-40 to +85 °C  
-40 to +85 °C  
-40 to +85 °C  
-40 to +85 °C  
-40 to +85 °C  
-40 to +85 °C  
-55 to +125 °C 40-Pin CerDIP  
-55 to +125 °C 40-Pin CerDIP  
-55 to +125 °C 44-Pin Ceramic LCC  
-55 to +125 °C 44-Pin Ceramic LCC  
-55 to +125 °C 40-Pin CerDIP  
-55 to +125 °C 40-Pin CerDIP  
-55 to +125 °C 44-Pin Ceramic LCC  
-55 to +125 °C 44-Pin Ceramic LCC  
40-Pin Plastic DIP  
40-Pin Plastic DIP  
40-Pin Plastic DIP  
40-Pin Plastic DIP  
44-Pin PLCC  
44-Pin PLCC  
44-Pin PLCC  
44-Pin PLCC  
40-Pin Plastic DIP  
40-Pin Plastic DIP  
40-Pin Plastic DIP  
40-Pin Plastic DIP  
44-Pin PLCC  
44-Pin PLCC  
44-Pin PLCC  
44-Pin PLCC  
The following is a list of upgraded part numbers.  
Discontinued  
Part Number  
Equivalent  
Recommended Device  
5962-8967601QA  
5962-8967602QA  
5962-8967601XA  
5962-8967602XA  
CS5016-SD16B  
CS5016-TD16B  
CS5016-SE16B  
CS5016-TE16B  
DS14F6  
2-47  
MILLIMETERS  
MIN NOM  
INCHES  
MIN NOM MAX  
0.155 0.170 0.200  
40  
1
21  
20  
DIM  
A
A1  
MAX  
40 pin  
Plastic DIP  
3.94 4.32  
0.51 0.76 1.02  
5.08  
E1  
0.040  
0.020 0.030  
0.014 0.018 0.022  
0.040 0.050 0.065  
0.008 0.010 0.015  
2.035 2.055 2.075  
B
B1  
C
D
E1  
e1  
0.36 0.46  
1.02 1.27  
0.20 0.25  
51.69 52.20  
13.72 13.97  
0.56  
1.65  
0.38  
D
52.71  
A
14.22 0.540 0.550 0.560  
0.095 0.100 0.105  
SEATING  
PLANE  
L
2.41 2.54 2.67  
A1  
C
eA  
L
0.600  
-
-
-
15.24  
3.18  
0°  
-
-
-
15.87  
3.81 0.125  
15° 0°  
0.625  
0.150  
15°  
eA  
B1  
e1  
B
NOTES:  
1. POSITIONAL TOLERANCE OF LEADS SHALL BE WITHIN  
0.25mm (0.010") AT MAXIMUM MATERIAL CONDITION, IN  
RELATION TO SEATING PLANE AND EACH OTHER.  
2. DIMENSION eA TO CENTER OF LEADS WHEN FORMED PARALLEL.  
3. DIMENSION E1 DOES NOT INCLUDE MOLD FLASH.  
44 pin  
PLCC  
NO. OF TERMINALS  
MILLIMETERS  
INCHES  
E
E1  
DIM MIN NOM MAX MIN NOM MAX  
A
4.20 4.45 4.57 0.165 0.175 0.180  
2.29 2.79 3.04 0.090 0.110 0.120  
0.33 0.41 0.53 0.013 0.016 0.021  
17.40 17.53 17.65 0.685 0.690 0.695  
16.51 16.59 16.66 0.650 0.653 0.656  
14.99 15.50 16.00 0.590 0.610 0.630  
1.19 1.27 1.35 0.047 0.050 0.053  
A1  
B
D/E  
D1/E1  
D2/E2  
e
D1  
D
e
B
A1  
A
D2/E2  
40  
1
21  
20  
MILLIMETERS  
MIN NOM MAX MIN NOM MAX  
INCHES  
40 pin  
CerDIP  
E1  
DIM  
A
4.06  
0.51  
0.230  
0.050  
0.160  
0.020  
0.015  
0.050  
5.84  
1.27  
A1  
B
0.38  
0.56  
1.65  
0.46  
0.018  
0.022  
0.065  
B1  
C
1.27  
D
0.010 0.012  
0.30 0.008  
52.57 1.980  
0.20  
0.25  
D
2.070  
0.605  
2.060  
0.580  
50.29  
12.70  
52.32  
A
SEATING  
PLANE  
E1  
e1  
eA  
0.500  
0.095  
14.73 15.37  
C
L
A1  
0.100 0.105  
eA  
2.41 2.54 2.67  
15.11 15.24  
e1  
B1  
0.595 0.600 0.605  
15.37  
B
0.115  
5°  
0.160  
15°  
0.150  
3.81 4.06  
15°  
L
2.92  
5°  
NOTES:  
1. POSITIONAL TOLERANCE OF LEADS SHALL BE WITHIN  
0.13mm (0.005") AT MAXIMUM MATERIAL CONDITION, IN  
RELATION TO SEATING PLANE AND EACH OTHER.  
2. DIMENSION eA TO CENTER OF LEADS WHEN FORMED PARALLEL.  
A
28/44 pin  
CLCC  
1
B
D4/E4  
Top View  
E2  
E1 E  
B1  
e1  
D2  
D1  
D
NO. OF TERMINALS  
INCHES MILLIMETERS  
28  
44  
MILLIMETERS  
INCHES  
DIM  
A
MIN NOM MAX MIN NOM MAX MIN NOM MAX MIN NOM MAX  
2.54 3.05 3.43 0.100 0.120 0.135 2.54 3.05 3.43 0.100 0.120 0.135  
0.33 0.46 0.58 0.013 0.018 0.023 0.33 0.46 0.58 0.013 0.018 0.023  
B
B1  
0.51 0.64 0.81 0.02 0.025 0.032 0.51 0.64 0.81 0.02 0.025 0.032  
12.19 12.46 12.70 0.480 0.490 0.500 17.27 17.53 17.78 0.680 0.690 0.700  
D/E  
D1/E1  
D2/E2  
11.18 11.43 11.68 0.440 0.450 0.460 16.26 16.51 16.76 0.640 0.650 0.660  
7.49 7.62 7.75 0.295 0.300 0.305 12.57 12.70 12.83 0.495 0.500 0.505  
10.80 10.92 11.05 0.425 0.430 0.435 15.88 16.00 16.13 0.625 0.630 0.635  
1.14 1.27 1.40 0.045 0.050 0.055 1.14 1.27 1.40 0.045 0.050 0.055  
D4/E4  
e1  
Smart AnalogTM is a Trademark of Crystal Semiconductor Corporation  

相关型号:

CS5016-JP32

16, 14 & 12-Bit, Self-Calibrating A/D Converters
CIRRUS

CS5016-JU16

Analog-to-Digital Converter, 16-Bit
ETC

CS5016-JU32

Analog-to-Digital Converter, 16-Bit
ETC

CS5016-KL16

16, 14 & 12-Bit, Self-Calibrating A/D Converters
CIRRUS

CS5016-KL32

16, 14 & 12-Bit, Self-Calibrating A/D Converters
CIRRUS

CS5016-KP16

16, 14 & 12-Bit, Self-Calibrating A/D Converters
CIRRUS

CS5016-KP32

16, 14 & 12-Bit, Self-Calibrating A/D Converters
CIRRUS

CS5016-SD16

16, 14 & 12-Bit, Self-Calibrating A/D Converters
CIRRUS

CS5016-SD16B

ADC, Successive Approximation, 16-Bit, 1 Func, 1 Channel, Serial, Parallel, Word Access, CMOS, CDIP40, CERAMIC, DIP-40
CIRRUS

CS5016-SE16

16, 14 & 12-Bit, Self-Calibrating A/D Converters
CIRRUS

CS5016-SE16B

ADC, Successive Approximation, 16-Bit, 1 Func, 1 Channel, Serial, Parallel, Word Access, CMOS, CQCC44, CERAMIC, LCC-44
CIRRUS

CS5016-SU16

Analog-to-Digital Converter, 16-Bit
ETC