CS5366_09 [CIRRUS]

114 dB, 192 kHz, 6-Channel A/D Converter; 114分贝192千赫, 6通道A / D转换器
CS5366_09
型号: CS5366_09
厂家: CIRRUS LOGIC    CIRRUS LOGIC
描述:

114 dB, 192 kHz, 6-Channel A/D Converter
114分贝192千赫, 6通道A / D转换器

转换器
文件: 总42页 (文件大小:368K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
CS5366  
114 dB, 192 kHz, 6-Channel A/D Converter  
Features  
Advanced Multi-bit Delta-Sigma Architecture  
24-Bit Conversion  
Separate 1.8 V to 5 V Logic Supplies for  
Control and Serial Ports  
High-Pass Filter for DC Offset Calibration  
Overflow Detection  
114 dB Dynamic Range  
-105 dB THD+N  
Supports Audio Sample Rates up to 216 kHz  
Selectable Audio Interface Formats  
Footprint Compatible with the 8-Channel  
CS5368  
Left-Justified, I²S, TDM  
Additional Control Port Features  
6-Channel TDM Interface Formats  
Supports Standard I²C™ or SPI™ Control  
Low Latency Digital Filter  
Interface  
Less than 535 mW Power Consumption  
On-Chip Oscillator Driver  
Individual Channel HPF Disable  
Overflow Detection for Individual Channels  
Mute Control for Individual Channels  
Operation as System Clock Master or Slave  
Auto-Detect Speed in Slave Mode  
Differential Analog Architecture  
Independent Power-Down Control per Channel  
Pair  
VLC  
1.8 - 5V  
VA  
5V  
VD  
3.3 - 5V  
Voltage  
Reference  
Control Interface  
I2C, SPI  
Configuration  
Registers  
Device  
Control  
or Pins  
Internal  
Oscillator  
Serial  
6 Differential  
Analog Inputs  
Digital  
Audio  
Audio Out  
PCM or  
TDM  
Multi-bit  
ΔΣ ADC  
Decimation  
Filter  
High Pass  
Filter  
VLS  
1.8 - 5V  
Copyright Cirrus Logic, Inc. 2009  
APRIL '09  
DS626F4  
(All Rights Reserved)  
http://www.cirrus.com  
CS5366  
Description  
The CS5366 is a complete 6-channel analog-to-digital converter for digital audio systems. It performs sampling, an-  
alog-to-digital conversion, and anti-alias filtering, generating 24-bit values for all 6-channel inputs in serial form at  
sample rates up to 216 kHz per channel.  
The CS5366 uses a 5th-order, multi-bit delta sigma modulator followed by low latency digital filtering and decima-  
tion, which removes the need for an external anti-aliasing filter. The ADC uses a differential input architecture which  
provides excellent noise rejection.  
Dedicated level translators for the Serial Port and Control Port allow seamless interfacing between the CS5366 and  
other devices operating over a wide range of logic levels. In addition, an on-chip oscillator driver provides clocking  
flexibility and simplifies design.  
The CS5366 is the industry’s first audio A/D to support a high-speed TDM interface which provides a serial output  
of 6 channels of audio data with sample rates up to 216 kHz within a single data stream. It further reduces layout  
complexity and relieves input/output constraints in digital signal processors.  
The CS5366 is available in a 48-pin LQFP package in both Commercial (-40°C to 85°C) and Automotive grades  
(-40°C to +105°C). The CDB5366 Customer Demonstration board is also available for device evaluation and  
implementation suggestions. Please see “Ordering Information” on page 41 for complete ordering information.  
The CS5366 is ideal for high-end and pro-audio systems requiring unrivaled sound quality, transparent conversion,  
wide dynamic range and negligible distortion, such as A/V receivers, digital mixing consoles, multi-channel record-  
ers, outboard converters, digital effect processors, and automotive audio systems.  
2
DS626F4  
CS5366  
TABLE OF CONTENTS  
1. PIN DESCRIPTION ................................................................................................................................. 6  
2. TYPICAL CONNECTION DIAGRAM ................................................................................................... 9  
3. CHARACTERISTICS AND SPECIFICATIONS .................................................................................... 10  
RECOMMENDED OPERATING CONDITIONS ................................................................................. 10  
ABSOLUTE RATINGS ....................................................................................................................... 10  
SYSTEM CLOCKING ......................................................................................................................... 10  
DC POWER ........................................................................................................................................ 11  
LOGIC LEVELS ................................................................................................................................. 11  
PSRR, VQ AND FILT+ CHARACTERISTICS .................................................................................... 11  
ANALOG CHARACTERISTICS (COMMERCIAL) .............................................................................. 12  
ANALOG CHARACTERISTICS (AUTOMOTIVE) ............................................................................... 13  
DIGITAL FILTER CHARACTERISTICS ............................................................................................. 14  
OVERFLOW TIMEOUT ...................................................................................................................... 14  
SERIAL AUDIO INTERFACE - I²S/LJ TIMING ................................................................................... 15  
SERIAL AUDIO INTERFACE - TDM TIMING ..................................................................................... 16  
SWITCHING SPECIFICATIONS - CONTROL PORT - I²C TIMING ................................................... 17  
SWITCHING SPECIFICATIONS - CONTROL PORT - SPI TIMING .................................................. 18  
4. APPLICATIONS ................................................................................................................................... 19  
4.1 Power ............................................................................................................................................. 19  
4.2 Control Port Mode and Stand-Alone Operation .............................................................................. 19  
4.2.1 Stand-Alone Mode ................................................................................................................. 19  
4.2.2 Control Port Mode ................................................................................................................. 19  
4.3 Master Clock Source ...................................................................................................................... 20  
4.3.1 On-Chip Crystal Oscillator Driver .......................................................................................... 20  
4.3.2 Externally Generated Master Clock ....................................................................................... 20  
4.4 Master and Slave Operation ........................................................................................................... 21  
4.4.1 Synchronization of Multiple Devices ...................................................................................... 21  
4.5 Serial Audio Interface (SAI) Format ................................................................................................ 22  
4.5.1 I²S and LJ Format .................................................................................................................. 22  
4.5.2 TDM Format .......................................................................................................................... 23  
4.5.3 Configuring Serial Audio Interface Format ............................................................................ 23  
4.6 Speed Modes ................................................................................................................................. 23  
4.6.1 Sample Rate Ranges ............................................................................................................ 23  
4.6.2 Using M1 and M0 to Set Sampling Parameters .................................................................... 23  
4.6.3 Master Mode Clock Dividers ................................................................................................. 24  
4.6.4 Slave Mode Audio Clocking With Auto-Detect ...................................................................... 24  
4.7 Master and Slave Clock Frequencies ............................................................................................. 25  
4.8 Reset .............................................................................................................................................. 27  
4.8.1 Power-Down Mode ................................................................................................................ 27  
4.9 Overflow Detection ......................................................................................................................... 27  
4.9.1 Overflow in Stand-Alone Mode .............................................................................................. 27  
4.9.2 Overflow in Control Port Mode .............................................................................................. 27  
4.10 Analog Connections ..................................................................................................................... 28  
4.11 Optimizing Performance in TDM Mode ........................................................................................ 29  
4.12 DC Offset Control ......................................................................................................................... 29  
4.13 Control Port Operation .................................................................................................................. 30  
4.13.1 SPI Mode ............................................................................................................................. 30  
4.13.2 I²C Mode .............................................................................................................................. 31  
5. REGISTER MAP ................................................................................................................................... 32  
5.1 Register Quick Reference ............................................................................................................. 32  
5.2 00h (REVI) Chip ID Code & Revision Register ............................................................................... 32  
DS626F4  
3
CS5366  
5.3 01h (GCTL) Global Mode Control Register ................................................................................... 32  
5.4 02h (OVFL) Overflow Status Register ........................................................................................... 33  
5.5 03h (OVFM) Overflow Mask Register ............................................................................................ 33  
5.6 04h (HPF) High-Pass Filter Register ............................................................................................. 34  
5.7 05h Reserved ................................................................................................................................ 34  
5.8 06h (PDN) Power Down Register .................................................................................................. 34  
5.9 07h Reserved ................................................................................................................................ 34  
5.10 08h (MUTE) Mute Control Register .............................................................................................. 34  
5.11 09h Reserved .............................................................................................................................. 35  
5.12 0Ah (SDEN) SDOUT Enable Control Register ............................................................................ 35  
6. FILTER PLOTS ..................................................................................................................................... 36  
7. PARAMETER DEFINITIONS ................................................................................................................ 39  
8. PACKAGE DIMENSIONS ................................................................................................................... 40  
THERMAL CHARACTERISTICS ....................................................................................................... 40  
9. ORDERING INFORMATION ................................................................................................................ 41  
10. REVISION HISTORY ......................................................................................................................... 41  
LIST OF FIGURES  
Figure 1. CS5368 Pinout ............................................................................................................................. 6  
Figure 2. Typical Connection Diagram ........................................................................................................ 9  
Figure 3. I²S/LJ Timing .............................................................................................................................. 15  
Figure 4. TDM Timing ............................................................................................................................... 16  
Figure 5. I²C Timing .................................................................................................................................. 17  
Figure 6. SPI Timing ................................................................................................................................. 18  
Figure 7. Crystal Oscillator Topology ........................................................................................................ 20  
Figure 8. Master/Slave Clock Flow ........................................................................................................... 21  
Figure 9. Master and Slave Clocking for a Multi-Channel Application ...................................................... 21  
Figure 10. I²S Format ................................................................................................................................ 22  
Figure 11. LJ Format ................................................................................................................................. 22  
Figure 12. TDM Format ............................................................................................................................. 23  
Figure 13. Master Mode Clock Dividers .................................................................................................... 24  
Figure 14. Slave Mode Auto-Detect Speed ............................................................................................... 24  
Figure 15. Recommended Analog Input Buffer ......................................................................................... 28  
Figure 16. SPI Format ............................................................................................................................... 30  
Figure 17. I²C Write Format ...................................................................................................................... 31  
Figure 18. I²C Read Format ...................................................................................................................... 31  
Figure 19. SSM Passband ........................................................................................................................ 36  
Figure 20. DSM Passband ........................................................................................................................ 36  
Figure 21. QSM Passband ........................................................................................................................ 36  
Figure 22. SSM Stopband ......................................................................................................................... 37  
Figure 23. DSM Stopband ......................................................................................................................... 37  
Figure 24. QSM Stopband ........................................................................................................................ 37  
Figure 25. SSM -1 dB Cutoff ..................................................................................................................... 38  
Figure 26. DSM -1 dB Cutoff .................................................................................................................... 38  
Figure 27. QSM -1 dB Cutoff ..................................................................................................................... 38  
4
DS626F4  
CS5366  
LIST OF TABLES  
Table 1. Power Supply Pin Definitions ...................................................................................................... 19  
Table 2. DIF1 and DIF0 Pin Settings ........................................................................................................ 23  
Table 3. M1 and M0 Settings .................................................................................................................... 23  
Table 4. Frequencies for 48 kHz Sample Rate using LJ/I²S ..................................................................... 25  
Table 5. Frequencies for 96 kHz Sample Rate using LJ/I²S ..................................................................... 25  
Table 6. Frequencies for 192 kHz Sample Rate using LJ/I²S ................................................................... 25  
Table 7. Frequencies for 48 kHz Sample Rate using TDM ....................................................................... 25  
Table 8. Frequencies for 48 kHz Sample Rate using TDM ....................................................................... 25  
Table 9. Frequencies for 96 kHz Sample Rate using TDM ....................................................................... 26  
Table 10. Frequencies for 96 kHz Sample Rate using TDM ..................................................................... 26  
Table 11. Frequencies for 192 kHz Sample Rate using TDM ................................................................... 26  
Table 12. Frequencies for 192 kHz Sample Rate using TDM ................................................................... 26  
DS626F4  
5
CS5366  
1. PIN DESCRIPTION  
48 47 46 45 44 43 42 41 40 39 38 37  
OVFL  
VLC  
AIN2+  
AIN2-  
36  
1
2
35  
34  
33  
32  
31  
CLKMODE  
VD  
GND  
3
VA  
4
GND  
REF_GND  
5
SDOUT3/TDM  
SDOUT1/TDM  
FILT+  
VQ  
6
CS5366  
7
30  
29  
28  
27  
26  
25  
GND  
VA  
8
GND  
VLS  
9
SDOUT2  
TSTO  
10  
11  
12  
GND  
AIN4+  
AIN4-  
SCLK  
13 14 15 16 17 18 19 20 21 22 23 24  
Figure 1. CS5366 Pinout  
6
DS626F4  
CS5366  
Pin Name  
Pin #  
Pin Description  
AIN2+, AIN2-  
AIN4+, AIN4-  
AIN3+, AIN3-  
AIN6+, AIN6-  
AIN5+, AIN5-  
AIN1+, AIN1-  
1,2  
11,12  
13,14 Differential Analog (Inputs) - Audio signals are presented differently to the delta sigma modula-  
43,44 tors via the AIN+/- pins.  
45,46  
47,48  
3,8  
10,15  
GND  
16,17 Ground (Input) - Ground reference. Must be connected to analog ground.  
18,19  
29,32  
VA  
4,9  
Analog Power (Input) - Positive power supply for the analog section  
Reference Ground (Input) - For the internal sampling circuits. Must be connected to analog  
ground.  
REF_GND  
5
FILT+  
VQ  
6
7
Positive Voltage Reference (Output) - Reference voltage for internal sampling circuits.  
Quiescent Voltage (Output) - Filter connection for the internal quiescent reference voltage.  
Crystal Oscillator Power (Input) - Also powers control logic to enable or disable oscillator cir-  
cuits.  
VX  
20  
XTI  
XTO  
21  
22  
Crystal Oscillator Connections (Input/Output) - I/O pins for an external crystal which may be  
used to generate MCLK.  
System Master Clock (Input/Output) - When a crystal is used, this pin acts as a buffered MCLK  
Source (Output). When the oscillator function is not used, this pin acts as an input for the system  
master clock. In this case, the XTI and XTO pins must be tied low.  
MCLK  
23  
Serial Audio Channel Clock (Input/Output)  
In I²S mode Serial Audio Channel Select. When low, the odd channels are selected.  
In LJ mode Serial Audio Channel Select. When high, the odd channels are selected.  
In TDM Mode a frame sync signal. When high, it marks the beginning of a new frame of serial  
audio samples. In Slave Mode, this pin acts as an input pin.  
LRCK/FS  
SCLK  
24  
25  
Main timing clock for the Serial Audio Interface (Input/Output) - During Master Mode, this pin  
acts as an output, and during Slave Mode it acts as an input pin.  
TSTO  
SDOUT2  
VLS  
26  
27  
28  
30  
31  
33  
35  
36  
41  
Test Out (Output) - Must be left unconnected.  
Serial Audio Data (Output) - Channels 3,4  
Serial Audio Interface Power - Positive power for the serial audio interface.  
Serial Audio Data (Output) - Channels 1,2, TDM.  
SDOUT1/TDM  
SDOUT3/TDM  
VD  
Serial Audio Data (Output) - Channels 5,6, TDM is complementary TDM data.  
Digital Power (Input) - Positive power supply for the digital section.  
Control Port Interface Power - Positive power for the control port interface.  
Overflow (Output, open drain) - Detects an overflow condition on both left and right channels.  
Reset (Input) - The device enters a low power mode when low.  
VLC  
OVFL  
RST  
Stand-Alone Mode  
CLKMODE (Input) - Setting this pin HIGH places a divide-by-1.5 circuit in the MCLK path to the  
core device circuitry.  
CLKMODE  
34  
DIF1  
DIF0  
37  
38  
DIF1, DIF0 (Input) - Sets the serial audio interface format.  
M1  
M0  
39  
40  
Mode Selection (Input) - Determines the operational mode of the device.  
MCLK Divider (Input) - Setting this pin HIGH places a divide-by-2 circuit in the MCLK path to the  
core device circuitry.  
MDIV  
42  
DS626F4  
7
CS5366  
Control Port Mode  
CLKMODE (Input) - This pin is ignored in Control Port Mode and the same functionality  
is obtained from the corresponding bit in the Global Control Register. Note: Should be  
connected to GND when using the part in Control Port Mode.  
CLKMODE  
34  
I²C Format, AD1 (Input) - Forms the device address input AD[1].  
SPI Format, CDIN (Input) - Becomes the input data pin.  
AD1/CDIN  
AD0/CS  
37  
38  
I²C Format, AD0 (Input) - Forms the device address input AD[0].  
SPI Format, CS (Input) - Acts as the active low chip select input.  
I²C Format, SCL (Input) - Serial clock for the serial control port. An external pull-up  
resistor is required for I²C control port operation.  
SPI Format, CCLK (Input) - Serial clock for the serial control port.  
SCL/CCLK  
SDA/CDOUT  
MDIV  
39  
40  
42  
I²C Format SDA (Input/Output) - Acts as an input/output data pin. An external pull-up  
resistor is required for I²C control port operation.  
SPI Format CDOUT (Output) - Acts as an output only data pin.  
MCLK Divider (Input) - This pin is ignored in Control Port Mode and the same function-  
ality is obtained from the corresponding bit in the Global Control Register.  
Note: Should be connected to GND when using the part in Control Port Mode.  
8
DS626F4  
CS5366  
2. TYPICAL CONNECTION DIAGRAM  
Resistor may only be used if  
VD is derived from VA. If used,  
do not drive any other logic  
from VD.  
+5V to 3.3V  
+
μ
F
1
+5V  
+
μ
μ
F
Ω
5.1  
F
1
0.01  
0.01 μF  
4,9  
VA  
33  
D
V
35  
6
+5V to 1.8V  
VLC  
FILT+  
+
μ
F
0.01  
μ
0.1μF  
0.1μF  
220  
F
5
7
REF_GND  
VQ  
39  
40  
36  
37  
38  
41  
MODE1/SCL/CCLK  
MODE0/SDA/CDOUT  
OVFL  
+
μ
1
F
8
GND  
Power Down  
and Mode  
Settings  
DIF1/AD1/CDIN  
DIF0/AD0/CS  
47  
48  
Channel 1 Analog  
Input Buffer  
RST  
AIN 1+  
42  
34  
MDIV  
1
AIN  
-
CLKMODE  
1
Channel 2 Analog  
Input Buffer  
AIN 2+  
28  
2
+5V to 1.8V  
VLS  
2
AIN  
-
μ
F
0.01  
13  
14  
11  
12  
Channel 3 Analog  
Input Buffer  
AIN 3+  
CS5366  
30  
27  
SDOUT1/TDM  
3
AIN  
-
A/D CONVERTER  
SDOUT2  
Audio Data  
Processor  
31  
26  
Channel 4 Analog  
Input Buffer  
AIN 4+  
SDOUT3/TDM  
RESERVED  
4
AIN  
-
24  
25  
23  
LRCK/FS  
45  
46  
43  
44  
Channel 5 Analog  
Input Buffer  
Timing Logic  
and Clock  
AIN 5+  
SCLK  
MCLK  
5
AIN  
-
Channel 6 Analog  
Input Buffer  
AIN 6+  
6
AIN  
-
20  
+5V  
VX  
21  
22  
XTI  
XTO  
GND  
3, 8, 10, 15, 16,  
17, 18, 19, 29, 32  
Figure 2. Typical Connection Diagram  
For analog buffer configurations, refer to Cirrus Application Note AN241. Also, a low-cost single-ended-to-differen-  
tial solution is provided on the Customer Evaluation Board.  
DS626F4  
9
CS5366  
3. CHARACTERISTICS AND SPECIFICATIONS  
RECOMMENDED OPERATING CONDITIONS  
GND = 0 V, all voltages with respect to 0 V.  
Parameter  
Symbol  
Min  
Typ  
Max  
Unit  
DC Power Supplies:  
Positive Analog  
Positive Crystal  
Positive Digital  
VA  
VX  
VD  
VLS  
VLC  
4.75  
4.75  
3.14  
1.711  
1.71  
5.0  
5.0  
3.3  
3.3  
3.3  
5.25  
V
Positive Serial Logic  
Positive Control Logic  
Ambient Operating Temperature  
(-CQZ)  
(-DQZ)  
TAC  
TAA  
-40  
-40  
-
-
85  
105  
°C  
1. TDM Quad-Speed Mode specified to operate correctly at VLS 3.14 V.  
ABSOLUTE RATINGS  
Operation beyond these limits may result in permanent damage to the device. Normal operation is not guaranteed  
at these extremes. Transient currents up to ±100 mA on the analog input pins will not cause SCR latch-up.  
Parameter  
Symbol  
Min  
Typ  
Max  
Units  
DC Power Supplies:  
Positive Analog  
Positive Crystal  
VA  
VX  
Positive Digital  
VD  
-0.3  
-
+6.0  
V
Positive Serial Logic  
Positive Control Logic  
VLS  
VLC  
Input Current  
Iin  
VIN  
VIND  
TA  
-10  
+10  
VA+0.3  
VL+0.3  
+125  
mA  
V
Analog Input Voltage  
Digital Input Voltage  
-0.3  
-
Ambient Operating Temperature (Power Applied)  
Storage Temperature  
-50  
-65  
°C  
Tstg  
+150  
SYSTEM CLOCKING  
Parameter  
Input Master Clock Frequency  
Input Master Clock Duty Cycle  
Symbol  
MCLK  
tclkhl  
Min  
0.512  
40  
Typ  
Max  
55.05  
60  
Unit  
MHz  
%
10  
DS626F4  
CS5366  
DC POWER  
MCLK = 12.288 MHz; Master Mode. GND = 0 V.  
Parameter  
Symbol  
Min  
Typ  
Max  
Unit  
Power Supply Current  
(Normal Operation)  
VA = 5 V  
VX = 5 V  
VD = 5 V  
IA  
IX  
ID  
ID  
IL  
-
-
-
-
-
-
76  
4
60  
37  
6
84  
8
66  
40  
8
mA  
mA  
mA  
mA  
mA  
mA  
VD = 3.3 V  
VLS, VLC = 5 V  
VLS, VLC = 3.3 V  
IL  
3
5
Power Supply Current  
(Power-Down) (Note 1)  
VA = 5 V  
VLS, VLC,VD = 5 V  
IA  
ID  
-
-
50  
500  
-
-
μA  
μA  
Power Consumption  
(Normal Operation)  
mW  
mW  
mW  
mW  
All Supplies = 5 V  
VA = 5 V, VD = VLS = VLC = 3.3 V  
-
-
-
-
-
-
730  
532  
2.75  
830  
609  
-
(Power-Down) (Note 1)  
1. Power-Down is defined as RST = LOW with all clocks and data lines held static at a valid logic level.  
LOGIC LEVELS  
Parameter  
Symbol  
VIH  
Min  
Typ  
Max  
Units  
High-Level Input Voltage  
Low-Level Input Voltage  
%VLS/VLC  
%VLS/VLC  
%VLS/VLC  
%VLS/VLC  
70  
-
VIL  
30  
-
-
%
High-Level Output Voltage at 100 μA load  
Low-Level Output Voltage at -100 μA load  
OVFL Current Sink  
VOH  
85  
-
VOL  
15  
-4  
-
mA  
Input Leakage Current  
logic pins only  
Iin  
-10  
10  
μA  
PSRR, VQ AND FILT+ CHARACTERISTICS  
MCLK = 12.288 MHz; Master Mode. Valid with the recommended capacitor values on FILT+ and VQ as shown in  
the “Typical Connection Diagram”.  
Parameter  
Symbol  
Min  
Typ  
Max  
Unit  
Power Supply Rejection Ratio at (1 kHz)  
PSRR  
-
65  
-
dB  
V
Q Nominal Voltage  
VA/2  
25  
10  
V
kΩ  
μA  
Output Impedance  
Maximum allowable DC current source/sink  
-
-
-
-
Filt+ Nominal Voltage  
Output Impedance  
Maximum allowable DC current source/sink  
VA  
4.4  
10  
V
kΩ  
μA  
DS626F4  
11  
CS5366  
ANALOG CHARACTERISTICS (COMMERCIAL)  
Test Conditions (unless otherwise specified). VA = 5 V, VD = VLS = VLC 3.3 V, and T = 25° C. Full-scale input  
A
sine wave. Measurement Bandwidth is 10 Hz to 20 kHz.  
Parameter  
Fs = 48 kHz  
Symbol  
Min  
Typ  
Max  
Unit  
Single-Speed Mode  
Dynamic Range  
A-weighted  
unweighted  
108  
105  
114  
111  
-
-
dB  
dB  
Total Harmonic Distortion + Noise  
referred to typical full scale  
-1 dB  
-20 dB  
-60 dB  
-105  
-91  
-51  
-99  
-
-45  
THD+N  
-
Double-Speed Mode  
Dynamic Range  
Fs = 96 kHz  
A-weighted  
unweighted  
108  
105  
-
114  
111  
108  
-
dB  
dB  
40 kHz bandwidth unweighted  
Total Harmonic Distortion + Noise  
referred to typical full scale  
-1 dB  
-20 dB  
-60 dB  
-1dB  
-105  
-91  
-51  
-99  
-
-45  
-
THD+N  
-
40 kHz bandwidth  
Fs = 192 kHz  
-102  
Quad-Speed Mode  
Dynamic Range  
A-weighted  
unweighted  
108  
105  
-
114  
111  
108  
-
dB  
dB  
40 kHz bandwidth unweighted  
Total Harmonic Distortion + Noise  
referred to typical full scale  
-1 dB  
-20 dB  
-60 dB  
-1dB  
-105  
-91  
-51  
-99  
-
-45  
-
THD+N  
-
-
40 kHz bandwidth  
-102  
Dynamic Performance for All Modes  
Interchannel Isolation  
DC Accuracy  
110  
-
dB  
Interchannel Gain Mismatch  
Gain Error  
-
-5  
-
0.1  
-
-
5
-
dB  
%
Gain Drift  
100  
ppm/°C  
Offset Error  
HPF enabled  
HPF disabled  
0
-
-
-
-
LSB  
100  
Analog Input Characteristics  
Full-scale Differential Input Voltage  
Input Impedance (Differential)  
Common Mode Rejection Ratio  
1.07*VA  
1.13*VA  
250  
1.19*VA  
Vpp  
kΩ  
-
-
-
-
CMRR  
82  
dB  
12  
DS626F4  
CS5366  
ANALOG PERFORMANCE (AUTOMOTIVE)  
Test Conditions (unless otherwise specified). VA = 5.25 to 4.75 V, VD = 5.25 to 3.14 V, VLS = VLC = 5.25 to 1.71 V  
and T = -40° to +85° C. Full-scale input sine wave. Measurement Bandwidth is 10 Hz to 20 kHz.  
A
Parameter  
Fs = 48 kHz  
Symbol  
Min  
Typ  
Max  
Unit  
Single-Speed Mode  
Dynamic Range  
A-weighted  
unweighted  
106  
103  
114  
111  
-
dB  
dB  
Total Harmonic Distortion + Noise  
referred to typical full scale  
-1 dB  
-20 dB  
-60 dB  
-105  
-91  
-51  
-97  
-
-45  
THD+N  
-
Double-Speed Mode  
Dynamic Range  
Fs = 96 kHz  
A-weighted  
unweighted  
106  
103  
-
114  
111  
108  
-
dB  
dB  
40 kHz bandwidth unweighted  
Total Harmonic Distortion + Noise  
referred to typical full scale  
-1 dB  
-20 dB  
-60 dB  
-1 dB  
-105  
-91  
-51  
-97  
-
-45  
-
THD+N  
-
40 kHz bandwidth  
Fs = 192 kHz  
-102  
Quad-Speed Mode  
Dynamic Range  
A-weighted  
unweighted  
106  
103  
-
114  
111  
108  
-
dB  
dB  
40 kHz bandwidth unweighted  
Total Harmonic Distortion + Noise  
referred to typical full scale  
-1 dB  
-20 dB  
-60 dB  
-1 dB  
-105  
-91  
-51  
-97  
-
-45  
-
THD+N  
-
-
40 kHz bandwidth  
-102  
Dynamic Performance for All Modes  
Interchannel Isolation  
DC Accuracy  
110  
-
dB  
Interchannel Gain Mismatch  
Gain Error  
-
-7  
-
0.1  
-
-
7
-
dB  
%
Gain Drift  
100  
ppm/°C  
Offset Error  
HPF enabled  
HPF disabled  
0
-
-
-
-
LSB  
100  
Analog Input Characteristics  
Full-scale Input Voltage  
1.02*VA  
-
1.13*VA  
250  
1.24*VA  
Vpp  
kΩ  
dB  
Input Impedance (Differential)  
Common Mode Rejection Ratio  
-
-
CMRR  
82  
DS626F4  
13  
CS5366  
DIGITAL FILTER CHARACTERISTICS  
Parameter  
Symbol  
Min  
Typ  
Max  
Unit  
Single-Speed Mode (2 kHz to 54 kHz sample rates)  
Passband (Note 1)  
(-0.1 dB)  
0
-0.035  
0.58  
-95  
0.47  
Fs  
dB  
Fs  
dB  
s
Passband Ripple  
0.035  
-
Stopband (Note 1)  
Stopband Attenuation  
-
Total Group Delay (Fs = Output Sample Rate)  
tgd  
tgd  
tgd  
-
12/Fs  
Double-Speed Mode (54 kHz to 108 kHz sample rates)  
Passband (Note 1)  
(-0.1 dB)  
0
-0.035  
0.68  
-92  
0.45  
Fs  
dB  
Fs  
dB  
s
Passband Ripple  
0.035  
-
Stopband (Note 1)  
Stopband Attenuation  
-
Total Group Delay (Fs = Output Sample Rate)  
-
9/Fs  
Quad-Speed Mode (108 kHz to 216 kHz sample rates)  
Passband (Note 1)  
(-0.1 dB)  
0
-0.035  
0.78  
-92  
0.24  
Fs  
dB  
Fs  
dB  
s
Passband Ripple  
0.035  
-
Stopband (Note 1)  
Stopband Attenuation  
-
Total Group Delay (Fs = Output Sample Rate)  
High-Pass Filter Characteristics  
Frequency Response (Note 2)  
-
5/Fs  
-3.0 dB  
-0.13 dB  
1
20  
-
-
-
-
Hz  
10  
Deg  
Phase Deviation (Note 2)  
Passband Ripple  
@ 20 Hz  
-
0
-
dB  
s
Filter Settling Time  
105/Fs  
Notes:  
1. The filter frequency response scales precisely with Fs.  
2. Response shown is for Fs equal to 48 kHz. Filter characteristics scale with Fs.  
OVERFLOW TIMEOUT  
Logic "0" = GND = 0 V; Logic "1" = VLS; C = 30 pF, timing threshold is 50% of VLS.  
L
Parameter  
Symbol  
Min  
Typ  
Max  
Unit  
(217-1)/Fs  
2972  
OVFL time-out on overrange condition  
-
-
ms  
Fs = 44.1 kHz  
683  
Fs = 192 kHz  
14  
DS626F4  
CS5366  
SERIAL AUDIO INTERFACE - I²S/LJ TIMING  
The serial audio port is a three-pin interface consisting of SCLK, LRCK and SDOUT.  
Logic "0" = GND = 0 V; Logic "1" = VLS; C = 20 pF, timing threshold is 50% of VLS.  
L
Parameter  
Symbol  
Min  
Typ  
Max  
Unit  
Sample Rates  
Single-Speed Mode  
Double-Speed Mode  
Quad-Speed Mode  
2
54  
108  
54  
108  
216  
-
-
kHz  
Master Mode  
SCLK Frequency  
SCLK Period  
-
64*Fs  
72.3  
40  
-
-
50  
33  
64*Fs  
-
60  
Hz  
ns  
%
1/(64*216 kHz)  
(CLKMODE = 0)(Note 2)  
(CLKMODE = 1)(Note 2)  
tPERIOD  
tHIGH  
tHIGH  
SCLK Duty Cycle (Note 1)  
28  
38  
%
LRCK setup  
LRCK hold  
before SCLK rising  
after SCLK rising  
tSETUP1  
tHOLD1  
20  
20  
-
-
-
-
ns  
ns  
SDOUT setup  
SDOUT hold  
before SCLK rising  
after SCLK rising (VLS = 1.8 V)  
after SCLK rising (VLS = 3.3 V)  
after SCLK rising (VLS = 5 V)  
tSETUP2  
tHOLD2  
tHOLD2  
tHOLD2  
10  
20  
10  
5
Slave Mode  
-
-
64*Fs  
-
-
65  
Hz  
ns  
%
SCLK Frequency (Note 3)  
SCLK Period  
SCLK Duty Cycle  
tPERIOD  
tHIGH  
72.3  
28  
-
-
1/(64*216 kHz)  
LRCK setup  
LRCK hold  
before SCLK rising  
after SCLK rising  
tSETUP1  
tHOLD1  
20  
20  
-
-
-
ns  
SDOUT setup  
before SCLK rising (VLS = 1.8 V)  
before SCLK rising (VLS = 3.3 V)  
before SCLK rising (VLS = 5 V)  
after SCLK rising (VLS = 1.8 V)  
after SCLK rising (VLS = 3.3 V)  
after SCLK rising (VLS = 5 V)  
tSETUP2  
tSETUP2  
tSETUP2  
tHOLD2  
tHOLD2  
tHOLD2  
4
10  
10  
20  
10  
5
-
ns  
SDOUT hold  
Notes:  
1. Duty cycle of generated SCLK depends on duty cycle of received MCLK as specified under “System  
Clocking” on page 10.  
2. CLKMODE functionality described in Section 4.6.3 "Master Mode Clock Dividers" on page 24.  
3. In Slave Mode, the SCLK/LRCK ratio can be set according to preference. However, chip performance  
is guaranteed only when using the ratios in Section 4.7 Master and Slave Clock Frequencies on page  
25.  
tPERIOD  
tHIGH  
SCLK  
LRCK  
tHOLD1  
tSETUP1  
channel  
channel  
tSETUP2  
tHOLD2  
SDOUT  
data  
data  
Figure 3. I²S/LJ Timing  
DS626F4  
15  
CS5366  
SERIAL AUDIO INTERFACE - TDM TIMING  
The serial audio port is a three-pin interface consisting of SCLK, LRCK and SDOUT.  
Logic "0" = GND = 0 V; Logic "1" = VLS; C = 20 pF, timing threshold is 50% of VLS.  
L
Parameter  
Symbol  
Min  
Typ  
Max  
Unit  
Sample Rates  
Single-Speed Mode  
Double-Speed Mode  
Quad-Speed Mode1  
-
-
-
2
54  
108  
-
-
-
54  
108  
216  
kHz  
kHz  
kHz  
Master Mode  
SCLK Frequency  
SCLK Period  
SCLK Duty Cycle (Note 2)  
256*Fs  
18  
40  
-
-
50  
33  
256*Fs  
Hz  
ns  
%
1/(256*216 kHz)  
(CLKMODE = 0)(Note 3)  
(CLKMODE = 1)(Note 3)  
tPERIOD  
tHIGH1  
tHIGH1  
-
60  
38  
28  
%
FS setup  
FS setup  
FS setup  
FS width  
before SCLK rising (Single-Speed Mode)  
before SCLK rising (Double-Speed Mode)  
before SCLK rising (Quad-Speed Mode)  
in SCLK cycles  
tSETUP1  
tSETUP1  
tSETUP1  
tHIGH2  
20  
18  
5
-
-
-
-
-
-
-
ns  
ns  
ns  
-
128  
128  
SDOUT setup  
SDOUT hold  
before SCLK rising  
after SCLK rising  
tSETUP2  
tHOLD2  
5
5
-
-
-
-
ns  
ns  
Slave Mode  
SCLK Frequency (Note 4)  
SCLK Period  
SCLK Duty Cycle  
-
18  
28  
256*Fs  
-
-
65  
Hz  
ns  
%
1/(256*216 kHz)  
tPERIOD  
tHIGH1  
-
-
FS setup  
FS setup  
FS setup  
FS width  
before SCLK rising (Single-Speed Mode)  
before SCLK rising (Double-Speed Mode)  
before SCLK rising (Quad-Speed Mode)  
in SCLK cycles  
tSETUP1  
tSETUP1  
tSETUP1  
tHIGH2  
20  
20  
10  
1
-
-
-
-
-
-
-
ns  
ns  
ns  
-
244  
SDOUT setup  
SDOUT hold  
before SCLK rising  
after SCLK rising  
tSETUP2  
tHOLD2  
5
5
-
-
-
-
ns  
ns  
Notes:  
1. TDM Quad-Speed Mode only specified to operate correctly at VLS 3.14 V.  
2. Duty cycle of generated SCLK depends on duty cycle of received MCLK as specified under “System  
Clocking” on page 10.  
3. CLKMODE functionality described in Section 4.6.3 "Master Mode Clock Dividers" on page 24.  
4. In Slave Mode, the SCLK/LRCK ratio can be set according to preference; chip performance is guaran-  
teed only when using the ratios in Section 4.7 Master and Slave Clock Frequencies on page 25.  
t PERIOD  
tHIGH1  
SCLK  
FS  
tHIGH2  
t SETUP1  
new frame  
tHOLD2  
t SETUP2  
SDOUT  
data  
data  
data  
Figure 4. TDM Timing  
16  
DS626F4  
CS5366  
SWITCHING SPECIFICATIONS - CONTROL PORT - I²C TIMING  
Inputs: Logic 0 = DGND, Logic 1 = VLC, SDA C = 30 pF  
L
Parameter  
SCL Clock Frequency  
Symbol  
fscl  
Min  
-
Max  
Unit  
kHz  
ns  
100  
RST Rising Edge to Start  
tirs  
600  
4.7  
4.0  
4.7  
4.0  
4.7  
0
Bus Free Time Between Transmissions  
Start Condition Hold Time (prior to first clock pulse)  
Clock Low time  
tbuf  
µs  
thdst  
tlow  
-
Clock High Time  
thigh  
tsust  
thdd  
µs  
Setup Time for Repeated Start Condition  
SDA Hold Time from SCL Falling  
SDA Setup time to SCL Rising  
Rise Time of SCL and SDA  
(Note 1)  
tsud  
trc  
600  
-
ns  
µs  
ns  
µs  
ns  
1
300  
-
Fall Time SCL and SDA  
tfc  
-
Setup Time for Stop Condition  
Acknowledge Delay from SCL Falling  
tsusp  
tack  
4.7  
300  
1000  
Notes:  
1. Data must be held for sufficient time to bridge the transition time, t , of SCL.  
fc  
RST  
t
irs  
Repe ated  
Stop  
Start  
Stop  
Start  
t
t
rd  
fd  
SDA  
S CL  
t
t
t
t
t
buf  
t
high  
hdst  
fc  
susp  
hdst  
lo w  
t
t
t
t
t
t
rc  
sust  
sud  
ack  
hdd  
Figure 5. I²C Timing  
DS626F4  
17  
CS5366  
SWITCHING SPECIFICATIONS - CONTROL PORT - SPI TIMING  
Inputs: Logic 0 = DGND, Logic 1 = VLC, CDOUT C = 30 pF  
L
Parameter  
Symbol  
Min  
0
Max  
Units  
CCLK Clock Frequency  
fsck  
tsrs  
tcss  
tcsh  
tscl  
tsch  
tdsu  
tdh  
tpd  
tr1  
6.0  
MHz  
RST Rising Edge to CS Falling  
CS Falling to CCLK Edge  
CS High Time Between Transmissions  
CCLK Low Time  
20  
20  
1.0  
66  
66  
40  
15  
ns  
μs  
-
CCLK High Time  
CDIN to CCLK Rising Setup Time  
CCLK Rising to DATA Hold Time  
CCLK Falling to CDOUT Stable  
Rise Time of CDOUT  
(Note 1)  
50  
25  
ns  
Fall Time of CDOUT  
tf1  
-
Rise Time of CCLK and CDIN  
Fall Time of CCLK and CDIN  
(Note 2)  
(Note 2)  
tr2  
100  
tf2  
Notes:  
1. Data must be held for sufficient time to bridge the transition time of CCLK.  
2. For f <1 MHz  
sck  
RST  
tsrs  
CS  
tcsh  
tcss  
tsch  
tscl  
tr2  
CCLK  
tf2  
tdh  
tdsu  
CDIN  
tpd  
CDOUT  
Figure 6. SPI Timing  
18  
DS626F4  
CS5366  
4. APPLICATIONS  
4.1  
Power  
CS5366 features five independent power pins that power various functional blocks within the device and  
allow for convenient interfacing to other devices. Table 1 shows what portion of the device is powered from  
each supply pin. Please refer to “Recommended Operating Conditions” on page 10 for the valid range of  
each power supply pin. The power supplied to each power pin can be independent of the power supplied to  
any other pin.  
Power Supply Pin  
Pin Name  
VA  
Pin Number  
Functional Block  
Analog Core  
4, 9  
20  
33  
VX  
Crystal Oscillator  
Digital Core  
VD  
VLS  
28  
35  
Serial Audio Interface  
Control Logic  
VLC  
Table 1. Power Supply Pin Definitions  
To meet full performance specifications, the CS5366 requires normal low-noise board layout. The “Typical  
Connection Diagram” on page 9 shows the recommended power arrangements, with the VA pins connected  
to a clean supply. VD, which powers the digital filter, may be run from the system logic supply, or it may be  
powered from the analog supply via a single-pole decoupling filter.  
Decoupling capacitors should be placed as near to the ADC as possible, with the lower value high-frequen-  
cy capacitors placed nearest to the device leads. Clocks should be kept away from the FILT+ and VQ pins  
in order to avoid unwanted coupling of these signals into the device. The FILT+ and VQ decoupling capac-  
itors must be positioned to minimize the electrical path to ground.  
The CDB5366 evaluation board demonstrates optimum layout for the device.  
4.2  
Control Port Mode and Stand-Alone Operation  
4.2.1 Stand-Alone Mode  
In Stand-Alone Mode, the CS5366 is programmed exclusively with multi-use configuration pins. This mode  
provides a set of commonly used features, which comprise a subset of the complete set of device features  
offered in Control Port Mode.  
To use the CS5366 in Stand-Alone Mode, the configuration pins must be held in a stable state, at valid logic  
levels, and RST must be asserted until the power supplies and clocks are stable and valid. More informa-  
tion on the reset function is available in Section 4.5 on page 22.  
4.2.2 Control Port Mode  
In Control Port Mode, all features of the CS5366 are available. Four multi-use configuration pins become  
software pins that support the I²C or SPI bus protocol. To initiate Control Port Mode, a controller that sup-  
ports I²C or SPI must be used to enable the internal register functionality. This is done by setting the CP-  
EN bit (Bit 7 of the Global Control Port Register). Once CP-EN is set, all of the device configuration pins  
are ignored, and the internal register settings determine the operating modes of the part. Figure 4.13 on  
page 30 provides detailed information about the I²C and SPI bus protocols.  
DS626F4  
19  
CS5366  
4.3  
Master Clock Source  
The CS5366 requires a Master Clock that can come from one of two sources: an on-chip crystal oscillator  
driver or an externally generated clock.  
4.3.1 On-Chip Crystal Oscillator Driver  
When using the on-board crystal oscillator driver, the XTI pin (pin 21) is the input for the Master Clock  
(MCLK) to the device. The XTO pin (pin 22) must not be used to drive anything other than the oscillator  
tank circuitry. When using the on-board crystal driver, the topology shown in Figure 7 must be used. The  
crystal oscillator manufacturer supplies recommended capacitor values. A buffered copy of the XTI input is  
available as an output on the MCLK pin (pin 23), which is level-controlled by VLS and may be used to syn-  
chronize other parts to the device.  
21  
XTI  
22  
XTO  
Figure 7. Crystal Oscillator Topology  
4.3.2 Externally Generated Master Clock  
If an external clock is used, the XTI and XTO pins must be grounded, and the MCLK pin becomes an input  
for the system master clock. The incoming MCLK should be at the logic level set by the user on the VLS  
supply pin.  
20  
DS626F4  
CS5366  
4.4  
Master and Slave Operation  
CS5366 operation depends on two clocks that are synchronously derived from MCLK: SCLK and LRCK/FS.  
See Section 4.5 on page 22 for a detailed description of SCLK and LRCK/FS.  
The CS5366 can operate as either clock master or clock slave with respect to SCLK and LRCK/FS. In Mas-  
ter Mode, the CS5366 derives SCLK and LRCK/FS synchronously from MCLK and outputs the derived  
clocks on the SCLK pin (pin 25) and the LRCK/FS pin (pin 24), respectively. In Slave Mode, the SCLK and  
LRCK/FS are inputs, and the input signals must be synchronously derived from MCLK by a separate device  
such as another CS5366 or a microcontroller. Figure 8 illustrates the clock flow of SCLK and LRCK/FS in  
both Master and Slave Modes.  
The Master/Slave operation is controlled through the settings of M1 and M0 pins in Stand-Alone Mode or  
by the M[1] and M[0] bits in the Global Mode Control Register in Control Port Mode. See Section 4.6 on page  
23 for more information regarding the configuration of M1 and M0 pins or M[1] and M[0] bits.  
SCLK  
SCLK  
ADC as  
clock  
master  
ADC as  
clock  
slave  
Controller  
Controller  
LRCK/FS  
LRCK/FS  
Figure 8. Master/Slave Clock Flow  
4.4.1 Synchronization of Multiple Devices  
To ensure synchronous sampling in applications where multiple ADCs are used, the MCLK and LRCK must  
be the same for all CS5366 devices in the system. If only one master clock source is needed, one solution  
is to place one CS5366 in Master Mode, and slave all of the other devices to the one master, as illustrated  
in Figure 9. If multiple master clock sources are needed, one solution is to supply all clocks from the same  
external source and time the CS5366 reset de-assertion with the falling edge of MCLK. This will ensure that  
all converters begin sampling on the same clock edge.  
SCLK & LRCK/FS  
Master  
ADC  
Slave1  
ADC  
Slave2  
ADC  
Slave3  
ADC  
Figure 9. Master and Slave Clocking for a Multi-Channel Application  
DS626F4  
21  
CS5366  
4.5  
Serial Audio Interface (SAI) Format  
The SAI port consists of two timing pins (SCLK, LRCK/FS) and four audio data output pins (SDOUT1/TDM,  
SDOUT2, SDOUT3/TDM and SDOUT4). The CS5366 output is serial data in I²S, Left-Justified (LJ), or Time  
Division Multiplexed (TDM) digital audio interface formats. These formats are available to the user in both  
Stand-Alone Mode and Control Port Mode.  
4.5.1 I²S and LJ Format  
The I²S and LJ formats are both two-channel protocols. During one LRCK period, two channels of data are  
transmitted, odd channels first, then even. The MSB is always clocked out first.  
In Slave Mode, the number of SCLK cycles per channel is fixed as described under “Serial Audio Interface  
- I²S/LJ Timing” on page 15. In Slave Mode, if more than 32 SCLK cycles per channel are received from a  
master controller, the CS5366 will fill the longer frame with trailing zeros. If fewer than 24 SCLK cycles per  
channel are received from a master, the CS5366 will truncate the serial data output to the number of SCLK  
cycles received. For a complete overview of serial audio interface formats, please refer to Cirrus Logic Ap-  
plication Note AN282.  
receiver latches data on rising edges of SCLK  
SCLK  
LRCK  
Even Channels 2,4, ...  
Odd Channels 1,3, ...  
SDOUT  
MSB  
LSB  
MSB  
LSB  
MSB  
...  
...  
Figure 10. I²S Format  
receiver latches data on rising edges of SCLK  
SCLK  
Even Channels 2,4, ...  
LRCK  
Odd Channels 1,3, ...  
SDOUT  
MSB  
LSB  
MSB  
LSB  
MSB  
...  
...  
Figure 11. LJ Format  
22  
DS626F4  
CS5366  
4.5.2 TDM Format  
In TDM Mode, all six channels of audio data are serially clocked out during a single Frame Sync (FS) cycle,  
as shown in Figure 12. The rising edge of FS signifies the start of a new TDM frame cycle. Each channel  
slot occupies 32 SCLK cycles, with the data left justified and with MSB first. TDM output data should be  
latched on the rising edge of SCLK within time specified under ‘Serial Audio Interface - TDM Timing” section  
on page 16. The TDM data output port resides on the SDOUT1 pin. The TDM output pin is complimentary  
TDM data. All SDOUT pins will remain active during TDM Mode. Refer to Section 4.11 “Optimizing Perfor-  
mance in TDM Mode” on page 29 for critical system design information.  
FS  
SCLK  
LSB MSB  
Channel 1  
32 clks  
LSB MSB  
Channel 2  
32 clks  
LSB MSB  
Channel 3  
32 clks  
LSB MSB  
Channel 4  
32 clks  
LSB MSB  
Channel 5  
32 clks  
LSB MSB  
Channel 6  
32 clks  
LSB  
TDM OUT  
32 clks  
32 clks  
Data  
MSB  
LSB  
Zeroes  
Figure 12. TDM Format  
4.5.3 Configuring Serial Audio Interface Format  
The serial audio interface format of the data is controlled by the configuration of the DIF1 and DIF0 pins in  
Stand-Alone Mode or by the DIF[1] and DIF[0] bits in the Global Mode Control Register in Control Port  
Mode, as shown in Table 2.  
DIF1 DIF0  
Mode  
Left-Justified  
I²S  
0
0
1
1
0
1
0
1
TDM  
Reserved  
Table 2. DIF1 and DIF0 Pin Settings  
4.6  
Speed Modes  
4.6.1 Sample Rate Ranges  
CS5366 supports sampling rates from 2 kHz to 21 kHz, divided into three ranges: 2 kHz - 54 kHz, 54 kHz -  
108 kHz, and 108 kHz - 216 kHz. These sampling speed modes are called Single-Speed Mode (SSM),  
Double-Speed Mode (DSM), and Quad-Speed Mode (QSM), respectively.  
4.6.2 Using M1 and M0 to Set Sampling Parameters  
The Master/Slave operation and the sample rate range are controlled through the settings of the M1 and  
M0 pins in Stand-Alone Mode, or by the M[1] and M[0] bits in the Global Mode Control Register in Control  
Port Mode, as shown in Table 3.  
M1  
0
M0  
0
Mode  
Frequency Range  
2 kHz - 54 kHz  
Single-Speed Master Mode (SSM)  
Double-Speed Master Mode (DSM)  
Quadruple-Speed Master Mode (QSM)  
Auto-Detected Speed Slave Mode  
0
1
54 kHz - 108 kHz  
108 kHz - 216 kHz  
2 kHz - 216 kHz  
1
0
1
1
Table 3. M1 and M0 Settings  
DS626F4  
23  
CS5366  
4.6.3 Master Mode Clock Dividers  
Figure 13 shows the configuration of the MCLK dividers and the sample rate dividers for Master Mode, in-  
cluding the significance of each MCLK divider pin (in Stand-Alone Mode) or bit (in Control Port Mode).  
SAMPLE RATE DIVIDERS  
Single  
Speed  
÷256  
00  
Double  
Speed  
LRCK/ FS  
÷128  
÷64  
01  
10  
MCLK DIVIDERS  
Quad  
Speed  
0/1  
0/1  
0/1  
÷1  
÷2  
÷1  
÷1  
÷2  
MCLK  
M1 M0  
00  
÷1.5  
Single  
Speed  
÷4  
÷2  
÷1  
pin  
bit  
MDIV  
CLKMODE  
CLKMODE  
n/a  
MDIV0  
Double  
Speed  
SCLK  
01  
10  
MDIV1  
Quad  
Speed  
Figure 13. Master Mode Clock Dividers  
4.6.4 Slave Mode Audio Clocking With Auto-Detect  
In Slave Mode, CS5366 auto-detects speed mode, which eliminates the need to configure M1 and M0 when  
changing among speed modes. The external MCLK is subject to clock dividers as set by the clock divider  
pins in Stand-Alone Mode or the clock divider bits in Control Port Mode. The CS5366 compares the divided-  
down, internal MCLK to the incoming LRCK/FS and sets the speed mode based on the MCLK/LRCK ratio  
as shown in Figure 14.  
MCLK DIVIDERS  
SPEED MODE  
Single-Speed  
256  
0/1  
0/1  
0/1  
÷1  
÷2  
Internal  
MCLK  
÷1  
÷1  
÷2  
External  
MCLK  
Double-Speed  
Quad-Speed  
÷LRCK  
128  
64  
÷1.5  
LRCK  
pin  
bit  
MDIV  
CLKMODE  
CLKMODE  
n/a  
MDIV0  
MDIV1  
Figure 14. Slave Mode Auto-Detect Speed  
24  
DS626F4  
CS5366  
4.7  
Master and Slave Clock Frequencies  
Tables 4 through 12 show the clock speeds for sample rates of 48 kHz, 96 kHz and 192 kHz. The  
MCLK/LRCK ratio should be kept at a constant value during each mode. In Master Mode, the device outputs  
the frequencies shown. In Slave Mode, the SCLK/LRCK ratio can be set according to design preference.  
However, device performance is guaranteed only when using the ratios shown in the tables.  
Control Port Mode only  
LJ/I²S MASTER OR SLAVE  
SSM Fs = 48 kHz  
MCLK Divider  
÷4  
49.152  
3.072  
1024  
64  
÷3  
36.864  
3.072  
768  
÷2  
24.576  
3.072  
512  
÷1.5  
18.384  
3.072  
384  
÷1  
12.288  
3.072  
256  
MCLK (MHz)  
SCLK (MHz)  
MCLK/LRCK Ratio  
SCLK/LRCK Ratio  
64  
64  
64  
64  
Table 4. Frequencies for 48 kHz Sample Rate using LJ/I²S  
LJ/I²S MASTER OR SLAVE  
DSM Fs = 96 kHz  
MCLK Divider  
÷4  
49.152  
6.144  
512  
÷3  
36.864  
6.144  
384  
÷2  
24.567  
6.144  
256  
÷1.5  
18.384  
6.144  
192  
÷1  
12.288  
6.144  
128  
MCLK (MHz)  
SCLK (MHz)  
MCLK/LRCK Ratio  
SCLK/LRCK Ratio  
64  
64  
64  
64  
64  
Table 5. Frequencies for 96 kHz Sample Rate using LJ/I²S  
LJ/I²S MASTER OR SLAVE  
QSM Fs = 192 kHz  
MCLK Divider  
÷4  
49.152  
12.288  
256  
÷3  
36.864  
12.288  
192  
÷2  
24  
÷1.5  
18.384  
12.288  
96  
÷1  
12.288  
12.288  
64  
MCLK (MHz)  
SCLK (MHz)  
12.288  
128  
64  
MCLK/LRCK Ratio  
SCLK/LRCK Ratio  
64  
64  
64  
64  
Table 6. Frequencies for 192 kHz Sample Rate using LJ/I²S  
TDM MASTER  
SSM Fs = 48 kHz  
MCLK Divider  
MCLK (MHz)  
SCLK (MHz)  
÷4  
÷3  
÷2  
÷1.5  
18.384  
12.288  
384  
÷1  
49.152  
12.288  
1024  
256  
36.864  
12.288  
768  
24.567  
12.288  
512  
12.288  
12.288  
256  
MCLK/FS Ratio  
SCLK/FS Ratio  
256  
256  
256  
256  
Table 7. Frequencies for 48 kHz Sample Rate using TDM  
TDM SLAVE  
SSM Fs = 48 kHz  
MCLK Divider  
MCLK (MHz)  
SCLK (MHz)  
÷4  
÷3  
÷2  
÷1.5  
18.384  
12.288  
384  
÷1  
49.152  
12.288  
1024  
256  
36.864  
12.288  
768  
24.567  
12.288  
512  
12.288  
12.288  
256  
MCLK/FS Ratio  
SCLK/FS Ratio  
256  
256  
256  
256  
Table 8. Frequencies for 48 kHz Sample Rate using TDM  
DS626F4  
25  
CS5366  
TDM MASTER  
MCLK Divider  
DSM Fs = 96 kHz  
÷4  
÷3  
÷2  
-
-
-
-
-
-
-
-
-
-
MCLK (MHz)  
SCLK (MHz)  
49.152  
24.576  
512  
36.864  
24.576  
384  
24.567  
24.576  
256  
MCLK/FS Ratio  
SCLK/FS Ratio  
256  
256  
256  
Table 9. Frequencies for 96 kHz Sample Rate using TDM  
TDM SLAVE  
DSM Fs = 96 kHz  
MCLK Divider  
MCLK (MHz)  
SCLK (MHz)  
÷4  
÷3  
÷2  
÷1.5  
18.384  
24.576  
192  
÷1  
49.152  
24.576  
512  
36.864  
24.576  
384  
24.567  
24.576  
256  
12.288  
24.576  
128  
MCLK/FS Ratio  
SCLK/FS Ratio  
256  
256  
256  
256  
256  
Table 10. Frequencies for 96 kHz Sample Rate using TDM  
TDM MASTER  
QSM Fs = 192 kHz  
MCLK Divider  
MCLK (MHz)  
SCLK (MHz)  
÷4  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
49.152  
49.152  
256  
MCLK/FS Ratio  
SCLK/FS Ratio  
256  
Table 11. Frequencies for 192 kHz Sample Rate using TDM  
TDM SLAVE  
QSM Fs = 192 kHz  
MCLK Divider  
MCLK (MHz)  
SCLK (MHz)  
÷4  
÷3  
÷2  
÷1.5  
18.384  
49.152  
96  
÷1  
12.288  
49.152  
64  
49.152  
49.152  
256  
36.864  
49.152  
192  
24.567  
49.152  
128  
MCLK/FS Ratio  
SCLK/FS Ratio  
256  
256  
256  
256  
256  
Table 12. Frequencies for 192 kHz Sample Rate using TDM  
26  
DS626F4  
CS5366  
4.8  
Reset  
The device should be held in reset until power is applied and all incoming clocks are stable and valid. Upon  
de-assertion of RST, the state of the configuration pins is latched, the state machine begins, and the device  
starts sending audio output data a maximum of 524288 MCLK cycles after the release of RST. When chang-  
ing between mode configurations in Stand-Alone Mode, including clock dividers, serial audio interface for-  
mat, master/slave, or speed modes, it is recommended to reset the device following the change by holding  
the RST pin low for a minimum of one MCLK cycle and then restoring the pin to a logic-high condition.  
4.8.1 Power-Down Mode  
The CS5366 features a Power-Down Mode in which power is temporarily withheld from the modulators, the  
crystal oscillator driver, the digital core, and the serial port. The user can access Power-Down Mode by  
holding the device in reset and holding all clock lines at a static, valid logic level (either logic-high or logic-  
low). “DC Power” on page 11 shows the power-saving associated with Power-Down Mode.  
4.9  
Overflow Detection  
4.9.1 Overflow in Stand-Alone Mode  
The CS5366 includes overflow detection on all input channels. In Stand-Alone Mode, this information is  
presented as open drain, active low on the OVFL pin. The pin will go to a logical low as soon as an over-  
range condition in any channel is detected. The data will remain low, then time-out as specified in Section  
"Overflow Timeout" on page 14. After the time-out, the OVFL pin will return to a logical high if there has not  
been any other over-range condition detected. Note that an over-range condition on any channel will restart  
the time-out period.  
4.9.2 Overflow in Control Port Mode  
In Control Port Mode, the Overflow Status Register interacts with the Overflow Mask Register to provide  
interrupt capability for each individual channel. See Section 5.4 "02h (OVFL) Overflow Status Register" on  
page 33 for details on these two registers.  
DS626F4  
27  
CS5366  
4.10 Analog Connections  
The analog modulator samples the input at half of the internal Master Clock frequency, or 6.144 MHz nom-  
inally. The digital filter will reject signals within the stopband of the filter. However, there is no rejection of  
input signals that are at (N X 6.144 MHz) the digital passband frequency, where n=0,1,2.... Refer to  
Figure 15, which shows the suggested filter that will attenuate any noise energy at 6.144 MHz in addition to  
providing the optimum source impedance for the modulators. The use of capacitors that have a large volt-  
age coefficient (such as general-purpose ceramics) must be avoided since these can degrade signal linear-  
ity. COG capacitors are recommended for this application. For additional configurations, refer to Cirrus  
Application Note AN241.  
634 Ω  
470 pF  
C O G  
-
91 Ω  
10 uF  
ADC AIN+  
AIN+  
100k  
+
Ω
10 k Ω  
10 k Ω  
C O G  
2700 pF  
VQ  
10 uF  
+
-
AIN-  
91 Ω  
ADC AIN-  
Ω
100k  
470 pF  
C O G  
634 Ω  
Figure 15. Recommended Analog Input Buffer  
28  
DS626F4  
CS5366  
4.11 Optimizing Performance in TDM Mode  
Noise Management is a design technique that is utilized in the majority of audio A/D converters. Noise man-  
agement is relatively simple conceptually. The goal of noise management is to interleave the on-chip digital  
activity with the analog sampling processes to ensure that the noise generated by the digital activity is min-  
imized (ideally non-existant) when the analog sampling occurs. Noise management, when implemented  
properly, minimizes the on-chip interference between the analog and digital sections of the device. This  
technique has proven to be very effective and has simplified the process of implementing an A/D converter  
into a systems design. The dominate source of interference (and most difficult to control) is the activity on  
the serial audio interface (SAI). However, noise management becomes more difficult to implement as audio  
sample rates increase simply due to the fact that there is less time between transitions on the SAI.  
The CS5366 A/D converter supports a multi-channel Time-Division-Multiplexed interface for Single, Double  
and Quad-Speed sampling modes. In Single-Speed Mode, sample rates below 50 kHz, the required fre-  
quencies of the audio serial ports are sufficiently low that it is possible to implement noise-management. In  
this mode, the performance of the devices are relatively immune to activity on the audio ports.  
However, in Double-Speed and Quad-Speed modes there is insufficient time to implement noise manage-  
ment due to the required frequencies of the audio ports. Therefore, analog performance, both dynamic  
range and THD+N, can be degraded if the serial port transitions occurr concurrently with the analog sam-  
pling. The magnitude of the interference is not only related to the timing of the transition but also the di/dt or  
transient currents associated with the activity on the serial ports. Even though there is insufficient time to  
properly implement noise management, the interference effects can be minimized by controlling the tran-  
sient currents required of the serial ports in Double- and Quad-Speed TDM Modes.  
In addition to standard mixed-signal design techniques, system performance can be maximized by following  
several guidelines during design.  
Operate the serial audio port at 3.3 V and not 5 V. The lower serial port voltage lowers transent  
currents.  
Operate the A/D converter as a system clock Slave. The serial clock and Left/Right clock become high-  
impedence inputs in this mode and do not generate significant transient currents.  
Place a buffer on the serial data output very near the A/D converter. Minimizing the stray capacitance  
of the printed circuit board trace and the loading presented by other devices on the serial data line will  
minimize the transient current.  
Place a resistor, near the converter, beween the A/D serial data output and the buffer. This resistor will  
reduce the instantaneous switching currents into the capacitive loads on the nets, resulting in a slower  
edge rate. The value of the resistor should be as high as possible without causing timing problems  
elsewhere in the system.  
4.12 DC Offset Control  
The CS5366 includes a dedicated high-pass filter for each channel to remove input DC offset at the system  
level. A DC level may result in audible “clicks” when switching between devices in a multi-channel system.  
In Stand-Alone Mode, all of the high-pass filters remain enabled. In Control Port Mode, the high-pass filters  
default to enabled, but may be controlled by writing to the HPF register. If any HPF bit is taken low, the re-  
spective high-pass filter is enabled, and it continuously subtracts a measure of the DC offset from the output  
of the decimation filter. If any HPF bit is taken high during device operation, the value of the DC offset reg-  
ister is frozen, and this DC offset will continue to be subtracted from the conversion result.  
DS626F4  
29  
CS5366  
4.13 Control Port Operation  
The Control Port is used to read and write the internal device registers. It supports two industry standard  
formats, I²C and SPI. The part is in I²C format by default. SPI Mode is selected if there is ever a high-to-low  
transition on the AD0/CS pin after the RST pin has been restored high.  
In Control Port Mode, all features of the CS5366 are available. Four multi-use configuration pins become  
software pins that support the I²C or SPI bus protocol. To initiate Control Port Mode, a controller that sup-  
ports I²C or SPI must be used to enable the internal register functionality. This is done by setting the  
CP-EN bit (Bit 7 of the Global Control Port Register). Once CP-EN is set, all of the device configuration pins  
are ignored, and the internal register settings determine the operating modes of the part.  
4.13.1 SPI Mode  
In SPI Mode, CS is the CS5366 chip select signal; CCLK is the control port bit clock (input into the CS5366  
from a controller); CDIN is the input data line from a controller; CDOUT is the output data line to a controller.  
Data is clocked in on the rising edge of CCLK and is supplied on the falling edge of CCLK.  
To write to a register, bring CS low. The first seven bits on CDIN form the chip address and must be  
1001111. The eighth bit is a read/write indicator (R/W), which should be low to write. The next eight bits  
form the Memory Address Pointer (MAP), which is set to the address of the register that is to be updated.  
The next eight bits are the data that will be placed into the register designated by the MAP. During writes,  
the CDOUT output stays in the Hi-Z state. It may be externally pulled high or low with a 47 kΩ resistor, if  
desired.  
There is a MAP auto-increment capability, which is enabled by the INCR bit in the MAP register. If INCR is  
a zero, the MAP will stay constant for successive read or writes. If INCR is set to a 1, the MAP will auto-  
increment after each byte is read or written, allowing block reads or writes of successive registers.  
To read a register, the MAP has to be set to the correct address by executing a partial write cycle that fin-  
ishes (CS high) immediately after the MAP byte. The MAP auto-increment bit (INCR) may be set or not, as  
desired. To begin a read, bring CS low, send out the chip address and set the read/write bit (R/W) high.  
The next falling edge of CCLK will clock out the MSB of the addressed register (CDOUT will leave the high  
impedance state). If the MAP auto-increment bit is set to 1, the data for successive registers will appear  
consecutively  
.
CS  
C C L K  
C H IP  
C H IP  
M A P  
DATA  
A D D R E S S  
ADDRESS  
1001111  
1001111  
LSB  
MSB  
b y te 1  
R/W  
R/W  
C D IN  
b y te n  
High Impedance  
LSB  
LSB  
MSB  
MSB  
C D O U T  
MAP = Memory Address Pointer, 8 bits, MSB first  
Figure 16. SPI Format  
30  
DS626F4  
CS5366  
4.13.2 I²C Mode  
In I²C Mode, SDA is a bidirectional data line. Data is clocked into and out of the part by the clock, SCL.  
There is no CS pin. Pins AD0 and AD1 form the two least-significant bits of the chip address and should  
be connected through a resistor to VLC or DGND, as desired. The state of the pins is latched when the  
CS5366 is being released from RST.  
A Start condition is defined as a falling transition of SDA while SCL is high. A Stop condition is a rising tran-  
sition of SDA while SCL is high. All other transitions of SDA occur while SCL is low. The first byte sent to  
the CS5366 after a Start condition consists of a 7-bit chip address field and a R/W bit (high for a read, low  
for a write). The upper five bits of the 7-bit address field are fixed at 10011. To communicate with a CS5366,  
the chip address field, which is the first byte sent to the CS5366, should match 10011 and be followed by  
the settings of the AD1 and AD0. The eighth bit of the address is the R/W bit. If the operation is a write, the  
next byte is the Memory Address Pointer (MAP), which selects the register to be read or written. If the op-  
eration is a read, the contents of the register pointed to by the MAP will be output. Setting the auto-incre-  
ment bit in MAP allows successive reads or writes of consecutive registers. Each byte is separated by an  
acknowledge bit. The ACK bit is output from the CS5366 after each input byte is read and is input to the  
CS5366 from the microcontroller after each transmitted byte.  
Since the read operation cannot set the MAP, an aborted write operation is used as a preamble. The write  
operation is aborted after the acknowledge for the MAP byte by sending a Stop condition. The following  
pseudocode illustrates an aborted write operation followed by a read operation.  
Send start condition.  
Send 10011xx0 (chip address & write operation).  
Receive acknowledge bit.  
Send MAP byte, auto increment off.  
Receive acknowledge bit.  
Send stop condition, aborting write.  
Send start condition.  
Send 10011xx1 (chip address & read operation).  
Receive acknowledge bit.  
Receive byte, contents of selected register.  
Send acknowledge bit.  
Send stop condition.  
26  
27 28  
0
1
2
3
4
5
6
7
0
8
9
10 11 12 13 14 15 16 17 18 19  
24 25  
SCL  
SDA  
CHIP ADDRESS (WRITE)  
AD1 AD0  
MAP BYTE  
DATA  
DATA +1  
DATA +n  
1
0
0
1
1
INCR  
6
5
4
3
2
1
0
7
6
1
0
7
6
1
0
7
6
1
0
ACK  
ACK  
ACK  
ACK  
STOP  
START  
Figure 17. I²C Write Format  
0
1
2
3
4
5
6
7
8
9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25  
26 27 28  
SCL  
STOP  
CHIP ADDRESS (WRITE)  
AD1 AD0 0  
MAP BYTE  
CHIP ADDRESS (READ)  
AD1 AD0 1  
DATA  
DATA +1 DATA + n  
1
0
0
1 1  
SDA  
INCR  
6
5
4
3 2 1 0  
1
0
0
1
1
7
0
7
0
7
0
ACK  
ACK  
START  
ACK  
ACK  
NO  
ACK  
START  
STOP  
Figure 18. I²C Read Format  
DS626F4  
31  
CS5366  
5. REGISTER MAP  
In Control Port Mode, the bits in these registers are used to control all of the programmable features of the ADC. All  
registers above 0Ah are RESERVED.  
5.1  
Register Quick Reference  
Adr  
00  
Name  
REVI  
7
6
5
4
3
2
1
0
CHIP-ID[3:0]  
CLKMODE  
REVISION[3:0]  
01  
GCTL  
OVFL  
OVFM  
HPF  
CP-EN  
MDIV[1:0]  
DIF[1:0]  
OVFL3  
MODE[1:0]  
02  
RESERVED RESERVED  
RESERVED RESERVED  
RESERVED RESERVED  
OVFL6  
OVFL5  
OVFM5  
HPF5  
-
OVFL4  
OVFM4  
HPF4  
-
OVFL2  
OVFM2  
HPF2  
-
OVFL1  
OVFM1  
HPF1  
-
03  
OVFM6  
OVFM3  
04  
HPF6  
HPF3  
05 RESERVED  
06 PDNE  
07 RESERVED  
08 MUTE  
09 RESERVED  
-
-
-
-
RESERVED  
PDN-BG  
PDN-OSC RESERVED  
PDN65  
-
PDN43  
-
PDN21  
-
-
-
-
-
-
MUTE4  
-
RESERVED RESERVED  
MUTE6  
-
MUTE5  
-
MUTE3  
-
MUTE2  
-
MUTE1  
-
-
-
0A  
SDEN  
RESERVED  
RESERVED  
SDEN3  
SDEN2  
SDEN1  
5.2  
00h (REVI) Chip ID Code & Revision Register  
R/W  
7
6
5
4
3
2
1
0
R
CHIP-ID[3:0]  
REVISION[3:0]  
Default: See description  
The Chip ID Code & Revision Register is used to store the ID and revision of the chip.  
Bits[7:4] contain the chip ID, where the CS5366 is represented with a value of 0x6.  
Bits[3:0] contain the revision of the chip, where revision A is represented as 0x0, revision B is represented  
as 0x1, etc.  
5.3  
01h (GCTL) Global Mode Control Register  
R/W  
7
6
5
4
3
2
1
0
R/W  
CP-EN  
CLKMODE  
MDIV[1:0]  
DIF[1:0]  
MODE[1:0]  
Default: 0x00  
The Global Mode Control Register is used to control the Master/Slave Speed modes, the serial audio data  
format and the Master clock dividers for all channels. It also contains a Control Port enable bit.  
Bit[7] CP-EN manages the Control Port Mode. Until this bit is asserted, all pins behave as if in Stand-Alone  
Mode. When this bit is asserted, all pins used in Stand-Alone Mode are ignored, and the corresponding reg-  
ister values become functional.  
Bit[6] CLKMODE Setting this bit puts the part in 384X mode (divides XTI by 1.5), and clearing the bit in-  
vokes 256X mode (divide XTI by 1.0 - pass through).  
32  
DS626F4  
CS5366  
Bits[5:4] MDIV[1:0] Each bit selects an XTI divider. When either bit is low, an XTI divide-by-1 function is  
selected. When either bit is HIGH, an XTI divide-by-2 function is selected. With both bits HIGH, XTI is divid-  
ed by 4.  
The table below shows the composite XTI division using both CLKMODE and MDIV[1:0].  
CLKMODE,MDIV[1],MDIV[0]  
DESCRIPTION  
Divide-by-1  
Divide-by-1.5  
Divide-by-2  
Divide-by-3  
Divide-by-4  
Reserved  
000  
100  
001 or 010  
101 or 110  
011  
111  
Bits[3:2] DIF[1:0] Determine which data format the serial audio interface is using to clock-out data.  
DIF[1:0]  
0x00 Left-Justified format  
0x01 I²S format  
0x02 TDM  
0x03 Reserved  
Bits[1:0] MODE[1:0] This bit field determines the device sample rate range and whether it is operating as  
an audio clocking Master or Slave.  
MODE[1:0]  
0x00 Single-Speed Mode Master  
0x01 Double-Speed Mode Master  
0x02 Quad-Speed Mode Master  
0x03 Slave Mode all speeds  
5.4  
02h (OVFL) Overflow Status Register  
R/W  
7
6
5
4
3
2
1
0
R
RESERVED RESERVED  
OVFL6  
OVFL5  
OVFL4  
OVFL3  
OVFL2  
OVFL1  
Default: 0xFF, no overflows have occurred.  
Note: This register interacts with Register 03h, the Overflow Mask Register.  
The Overflow Status Register is used to indicate an individual overflow in a channel. If an overflow condition  
on any channel is detected, the corresponding bit in this register is asserted (low) in addition to the open  
drain active low OVFL pin going low. Each overflow status bit is sticky and is cleared only when read, pro-  
viding full interrupt capability.  
5.5  
03h (OVFM) Overflow Mask Register  
R/W  
7
6
5
4
3
2
1
0
R/W  
RESERVED RESERVED  
OVFM6  
OVFM5  
OVFM4  
OVFM3  
OVFM2  
OVFM1  
Default: 0xFF, all overflow interrupts enabled.  
The Overflow Mask Register is used to allow or prevent individual channel overflow events from creating  
activity on the OVFL pin. When a particular bit is set low in the Mask register, the corresponding overflow  
bit in the Overflow Status register is prevented from causing any activity on the OVFL pin.  
DS626F4  
33  
CS5366  
5.6  
04h (HPF) High-Pass Filter Register  
R/W  
7
6
5
4
3
2
1
0
R/W  
RESERVED RESERVED  
HPF6  
HPF5  
HPF4  
HPF3  
HPF2  
HPF1  
Default: 0x00, all high-pass filters enabled.  
The High-Pass Filter Register is used to enable or disable a high-pass filter that exists for each channel.  
These filters are used to perform DC offset calibration, a procedure that is detailed in “DC Offset Control”  
on page 29.  
5.7  
05h Reserved  
R/W  
RESERVED  
7
-
6
-
5
-
4
-
3
-
2
-
1
-
0
-
5.8  
06h (PDN) Power Down Register  
R/W  
7
6
5
4
3
2
1
0
R/W  
RESERVED  
PDN-BG  
PDN-OSC RESERVED  
PDN65  
PDN43  
PDN21  
Default: 0x00 - everything powered up  
The Power Down Register is used as needed to reduce the chip’s power consumption.  
Bit[7] RESERVED  
Bit[6] RESERVED  
Bit[5] PDN-BG When set, this bit powers-down the bandgap reference.  
Bit[4] PDN-OSC controls power to the internal oscillator core. When asserted, the internal oscillator core is  
shut down, and no clock is supplied to the chip. If the chip is running off an externally supplied clock at the  
MCLK pin, it is also prevented from clocking the device internally.  
Bit[2:0] PDN When any bit is set, all clocks going to a channel pair are turned off, and the serial data outputs  
are forced to all zeroes.  
5.9  
07h Reserved  
R/W  
RESERVED  
7
-
6
-
5
-
4
-
3
-
2
-
1
-
0
-
5.10 08h (MUTE) Mute Control Register  
R/W  
7
6
5
4
3
2
1
0
R/W  
RESERVED RESERVED  
MUTE6  
MUTE5  
MUTE4  
MUTE3  
MUTE2  
MUTE1  
Default: 0x00, no channels are muted.  
The Mute Control Register is used to mute or unmute the serial audio data output of individual channels.  
When a bit is set, that channel’s serial data is muted by forcing the output to all zeroes.  
34  
DS626F4  
CS5366  
5.11 09h Reserved  
R/W  
7
6
5
4
3
2
1
0
RESERVED  
-
-
-
-
-
-
-
-
5.12 0Ah (SDEN) SDOUT Enable Control Register  
R/W  
7
6
5
4
3
2
1
0
R/W  
RESERVED  
RESERVED  
SDEN3  
SDEN2  
SDEN1  
Default: 0x00, all SDOUT pins enabled.  
The SDOUT Enable Control Register is used to tri-state the serial audio data output pins. Each bit, when  
set, tri-states the associated SDOUT pin.  
DS626F4  
35  
CS5366  
6. FILTER PLOTS  
0.08  
0.06  
0.04  
0.02  
0
−0.02  
−0.04  
−0.06  
−0.08  
−0.1  
0
0.05  
0.1  
0.15  
0.2  
0.25  
0.3  
Frequency (normalized to Fs)  
0.35  
0.4  
0.45  
0.5  
Figure 19. SSM Passband  
0.08  
0.06  
0.04  
0.02  
0
−0.02  
−0.04  
−0.06  
−0.08  
−0.1  
0
0.05  
0.1  
0.15  
0.2  
0.25  
0.3  
Frequency (normalized to Fs)  
0.35  
0.4  
0.45  
0.5  
Figure 20. DSM Passband  
0.1  
0.08  
0.06  
0.04  
0.02  
0
−0.02  
−0.04  
−0.06  
−0.08  
−0.1  
0
0.05  
0.1 0.15  
Frequency (normalized to Fs)  
0.2  
0.25  
Figure 21. QSM Passband  
36  
DS626F4  
CS5366  
0
−20  
−40  
−60  
−80  
−100  
−120  
−140  
0
0.1  
0.2  
0.3  
0.4  
0.5  
0.6  
Frequency (normalized to Fs)  
0.7  
0.8  
0.9  
1
Figure 22. SSM Stopband  
−20  
−40  
−60  
−80  
−100  
−120  
−140  
0
0.1  
0.2  
0.3  
0.4  
0.5  
0.6  
Frequency (normalized to Fs)  
0.7  
0.8  
0.9  
1
Figure 23. DSM Stopband  
0
−20  
−40  
−60  
−80  
−100  
−120  
0
0.1  
0.2  
0.3  
0.4  
0.5  
0.6  
Frequency (normalized to Fs)  
0.7  
0.8  
0.9  
1
Figure 24. QSM Stopband  
DS626F4  
37  
CS5366  
−0.2  
−0.4  
−0.6  
−0.8  
−1  
−1.2  
−1.4  
−1.6  
−1.8  
−2  
0.4  
0.42  
0.44  
0.46  
0.48  
0.5  
0.52  
Frequency (normalized to Fs)  
0.54  
0.56  
0.58  
0.6  
Figure 25. SSM -1 dB Cutoff  
−0.2  
−0.4  
−0.6  
−0.8  
−1  
−1.2  
−1.4  
−1.6  
−1.8  
−2  
0.4  
0.42  
0.44  
0.46  
0.48  
0.5  
0.52  
Frequency (normalized to Fs)  
0.54  
0.56  
0.58  
0.6  
Figure 26. DSM -1 dB Cutoff  
−0.2  
−0.4  
−0.6  
−0.8  
−1  
−1.2  
−1.4  
−1.6  
−1.8  
−2  
0.2  
0.22  
0.24  
0.26  
0.28  
0.3  
0.32  
Frequency (normalized to Fs)  
0.34  
0.36  
0.38  
0.4  
Figure 27. QSM -1 dB Cutoff  
38  
DS626F4  
CS5366  
7. PARAMETER DEFINITIONS  
Dynamic Range  
The ratio of the rms value of the signal to the rms sum of all other spectral components over the specified  
bandwidth. Dynamic Range is a signal-to-noise ratio measurement over the specified bandwidth made with  
a -60 dBFS signal. 60 dB is added to resulting measurement to refer the measurement to full scale. This  
technique ensures that the distortion components are below the noise level and do not affect the measure-  
ment. This measurement technique has been accepted by the Audio Engineering Society, AES17-199, and  
the Electronic Industries Association of Japan, EIAJ CP-307. Expressed in decibels. The dynamic range is  
specified with and without an A-weighting filter.  
Total Harmonic Distortion + Noise  
The ratio of the rms value of the signal to the rms sum of all other spectral components over the specified  
bandwidth (typically 10 Hz to 20 kHz), including distortion components. Expressed in decibels. Measured  
at -1 and -20 dBFS as suggested in AES17-1991 Annex A. Specified using an A-weighting filter.  
Frequency Response  
A measure of the amplitude response variation from 10 Hz to 20 kHz relative to the amplitude response at  
1 kHz. Units in decibels.  
Interchannel Isolation  
A measure of crosstalk between one channel and all remaining channels, measured for each channel at the  
converter's output with no signal to the input under test and a full-scale signal applied to all other channels.  
Units in decibels.  
Interchannel Gain Mismatch  
The gain difference between left and right channels. Units in decibels.  
Gain Error  
The deviation from the nominal full-scale analog output for a full-scale digital input.  
Gain Drift  
The change in gain value with temperature. Units in ppm/°C.  
Offset Error  
The deviation of the mid-scale transition (111...111 to 000...000) from the ideal. Units in mV.  
Intrachannel Phase Deviation  
The deviation from linear phase within a given channel.  
Interchannel Phase Deviation  
The difference in phase response between channels.  
DS626F4  
39  
CS5366  
8. PACKAGE DIMENSIONS  
48L LQFP PACKAGE DRAWING  
E
E1  
D1  
D
1
e
B
A
A1  
L
INCHES  
NOM  
MILLIMETERS  
NOM  
DIM  
MIN  
MAX  
MIN  
MAX  
A
A1  
B
D
D1  
E
E1  
e*  
L
---  
0.055  
0.004  
0.009  
0.354  
0.28  
0.354  
0.28  
0.020  
0.24  
0.063  
0.006  
0.011  
0.366  
0.280  
0.366  
0.280  
0.024  
0.030  
7.000°  
---  
1.40  
0.10  
0.22  
1.60  
0.15  
0.27  
9.30  
7.10  
9.30  
7.10  
0.60  
0.75  
7.00°  
0.002  
0.007  
0.343  
0.272  
0.343  
0.272  
0.016  
0.018  
0.000°  
0.05  
0.17  
8.70  
6.90  
8.70  
6.90  
0.40  
0.45  
0.00°  
9.0 BSC  
7.0 BSC  
9.0 BSC  
7.0 BSC  
0.50 BSC  
0.60  
4°  
4°  
* Nominal pin pitch is 0.50 mm  
Controlling dimension is mm. JEDEC Designation: MS026  
THERMAL CHARACTERISTICS  
Parameter  
Symbol  
Min  
Typ  
-
Max  
Unit  
Allowable Junction Temperature  
-
-
-
135  
°C  
θJA  
θJC  
48  
15  
-
-
Package Thermal Resistance  
°C/W  
40  
DS626F4  
CS5366  
9. ORDERING INFORMATION  
Product  
Description  
Package Pb-Free  
Grade  
Temp Range  
Container  
Order #  
Tray  
CS5366-CQZ  
Commercial -40°C to +85°C  
Automotive -40°C to +105°C  
114 dB, 192 kHz,  
CS5366 6-channel A/D  
Converter  
Tape & Reel CS5366-CQZR  
Tray CS5366-DQZ  
Tape & Reel CS5366-DQZR  
CDB5366  
48-pin  
YES  
LQFP  
CDB5366 Evaluation Board for CS5366  
10.REVISION HISTORY  
Revision  
Changes  
Updated the wording of pin 24, LRCK/FS, in the pin description table on page 7 to correctly reflect the  
high/low clocking state for odd-channel selection in I²S and LJ Modes.  
F2  
F3  
F4  
Corrected SCL/CCLK pin description (Pin 39) for "Control Port Mode" on page 8.  
Corrected Absolute Max temp for “Ambient Operating Temperature (Power Applied)” on page 10.  
DS626F4  
41  
CS5366  
Contacting Cirrus Logic Support  
For all product questions and inquiries, contact a Cirrus Logic Sales Representative.  
To find the one nearest you, go to www.cirrus.com.  
IMPORTANT NOTICE  
Cirrus Logic, Inc. and its subsidiaries ("Cirrus") believe that the information contained in this document is accurate and reliable. However, the information is subject  
to change without notice and is provided "AS IS" without warranty of any kind (express or implied). Customers are advised to obtain the latest version of relevant  
information to verify, before placing orders, that information being relied on is current and complete. All products are sold subject to the terms and conditions of sale  
supplied at the time of order acknowledgment, including those pertaining to warranty, indemnification, and limitation of liability. No responsibility is assumed by Cirrus  
for the use of this information, including use of this information as the basis for manufacture or sale of any items, or for infringement of patents or other rights of third  
parties. This document is the property of Cirrus and by furnishing this information, Cirrus grants no license, express or implied under any patents, mask work rights,  
copyrights, trademarks, trade secrets or other intellectual property rights. Cirrus owns the copyrights associated with the information contained herein and gives con-  
sent for copies to be made of the information only for use within your organization with respect to Cirrus integrated circuits or other products of Cirrus. This consent  
does not extend to other copying such as copying for general distribution, advertising or promotional purposes, or for creating any work for resale.  
CERTAIN APPLICATIONS USING SEMICONDUCTOR PRODUCTS MAY INVOLVE POTENTIAL RISKS OF DEATH, PERSONAL INJURY, OR SEVERE PROP-  
ERTY OR ENVIRONMENTAL DAMAGE (“CRITICAL APPLICATIONS”). CIRRUS PRODUCTS ARE NOT DESIGNED, AUTHORIZED OR WARRANTED FOR USE  
IN PRODUCTS SURGICALLY IMPLANTED INTO THE BODY, AUTOMOTIVE SAFETY OR SECURITY DEVICES, LIFE SUPPORT PRODUCTS OR OTHER CRIT-  
ICAL APPLICATIONS. INCLUSION OF CIRRUS PRODUCTS IN SUCH APPLICATIONS IS UNDERSTOOD TO BE FULLY AT THE CUSTOMER’S RISK AND  
CIRRUS DISCLAIMS AND MAKES NO WARRANTY, EXPRESS, STATUTORY OR IMPLIED, INCLUDING THE IMPLIED WARRANTIES OF MERCHANTABILITY  
AND FITNESS FOR PARTICULAR PURPOSE, WITH REGARD TO ANY CIRRUS PRODUCT THAT IS USED IN SUCH A MANNER. IF THE CUSTOMER OR  
CUSTOMER’S CUSTOMER USES OR PERMITS THE USE OF CIRRUS PRODUCTS IN CRITICAL APPLICATIONS, CUSTOMER AGREES, BY SUCH USE, TO  
FULLY INDEMNIFY CIRRUS, ITS OFFICERS, DIRECTORS, EMPLOYEES, DISTRIBUTORS AND OTHER AGENTS FROM ANY AND ALL LIABILITY, INCLUD-  
ING ATTORNEYS’ FEES AND COSTS, THAT MAY RESULT FROM OR ARISE IN CONNECTION WITH THESE USES.  
Cirrus Logic, Cirrus, and the Cirrus Logic logo designs are trademarks of Cirrus Logic, Inc. All other brand and product names in this document may be trademarks  
or service marks of their respective owners.  
I²C is a trademark of Philips Semiconductor.  
SPI is a trademark of Motorola, Inc.  
42  
DS626F4  

相关型号:

CS5368

114 dB, 192 kHz, 8-Channel A/D Converter
CIRRUS

CS5368-CQZ

114 dB, 192 kHz, 8-Channel A/D Converter
CIRRUS

CS5368-CQZR

114 dB, 192 kHz, 8-Channel A/D Converter
CIRRUS

CS5368-DQZ

114 dB, 192 kHz, 8-Channel A/D Converter
CIRRUS

CS5368-DQZR

114 dB, 192 kHz, 8-Channel A/D Converter
CIRRUS

CS5368_07

114 dB, 192 kHz, 8-Channel A/D Converter
CIRRUS

CS5368_08

114 dB, 192 kHz, 8-Channel A/D Converter
CIRRUS

CS5368_09

114 dB, 192 kHz, 8-Channel A/D Converter
CIRRUS

CS5371

LOW POWER HIGH PERFORMANCE MODULATORS
CIRRUS

CS5371-BS

LOW POWER HIGH PERFORMANCE MODULATORS
CIRRUS

CS5371-BSZ

Low-power, High-performance ΔΣ Modulators
CIRRUS

CS5371A

Low-power, High-performance Modulators
CIRRUS