CS5530-ISZ [CIRRUS]

24-bit ADC with Ultra-low-noise Amplifier; 24位ADC,具有超低噪声放大器
CS5530-ISZ
型号: CS5530-ISZ
厂家: CIRRUS LOGIC    CIRRUS LOGIC
描述:

24-bit ADC with Ultra-low-noise Amplifier
24位ADC,具有超低噪声放大器

放大器
文件: 总36页 (文件大小:266K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
CS5530  
24-bit ADC with Ultra-low-noise Amplifier  
Features & Description  
General Description  
The CS5530 is a highly integrated ΔΣ Analog-to-Digital  
Converter (ADC) which uses charge-balance techniques  
to achieve 24-bit performance. The ADC is optimized for  
measuring low-level unipolar or bipolar signals in weigh  
scale, process control, scientific, and medical  
applications.  
Chopper-stabilized Instrumentation  
Amplifier, 64X  
• 12 nV/Hz @ 0.1 Hz (No 1/f noise)  
• 1200 pA Input Current  
Digital Gain Scaling up to 40x  
To accommodate these applications, the ADC includes  
a very-low-noise, chopper-stabilized instrumentation  
amplifier (12 nV/Hz @ 0.1 Hz) with a gain of 64X. This  
device also includes a fourth-order ΔΣ modulator fol-  
lowed by a digital filter which provides twenty selectable  
output word rates of 6.25, 7.5, 12.5, 15, 25, 30, 50, 60, 100,  
120, 200, 240, 400, 480, 800, 960, 1600, 1920, 3200, and  
3840 Sps (MCLK = 4.9152 MHz).  
Delta-sigma Analog-to-digital Converter  
• Linearity Error: 0.0015% FS  
• Noise Free Resolution: Up to 19 bits  
Scalable V  
Input: Up to Analog Supply  
REF  
Simple Three-wire Serial Interface  
• SPI™ and Microwire™ Compatible  
• Schmitt-trigger on Serial Clock (SCLK)  
To ease communication between the ADC and a micro-  
controller, the converter includes a simple three-wire se-  
rial interface which is SPI and Microwire compatible with  
a Schmitt-trigger input on the serial clock (SCLK).  
Onboard Offset and Gain Calibration  
Registers  
Selectable Word Rates: 6.25 to 3,840 Sps  
Selectable 50 or 60 Hz Rejection  
Power Supply Configurations  
High dynamic range, programmable output rates, and  
flexible power supply options make this device an ideal  
solution for weigh scale and process control  
applications.  
• VA+ = +5 V; VA- = 0 V; VD+ = +3 V to +5 V  
• VA+ = +2.5 V; VA- = -2.5 V; VD+ = +3 V to +5 V  
• VA+ = +3 V; VA- = -3 V; VD+ = +3 V  
ORDERING INFORMATION  
See page 35.  
VA+ C1  
C2  
VREF+  
VREF-  
VD+  
CS  
DIFFERENTIAL  
TH  
AIN1+  
AIN1-  
PROGRAMMABLE  
SINC FIR FILTER  
4
ORDER ΔΣ  
64X  
SDI  
SERIAL  
MODULATOR  
INTERFACE  
SDO  
SCLK  
CLOCK  
GENERATOR  
CALIBRATION  
SRAM/CONTROL  
LOGIC  
LATCH  
VA-  
A0  
A1  
OSC1  
OSC2  
DGND  
NOV ‘09  
DS742F3  
Copyright Cirrus Logic, Inc. 2009  
http://www.cirrus.com  
(All Rights Reserved)  
CS5530  
TABLE OF CONTENTS  
1. CHARACTERISTICS AND SPECIFICATIONS ................................................................. 4  
ANALOG CHARACTERISTICS................................................................................ 4  
TYPICAL NOISE-FREE RESOLUTION (BITS)........................................................ 6  
5 V DIGITAL CHARACTERISTICS .......................................................................... 7  
3 V DIGITAL CHARACTERISTICS .......................................................................... 7  
DYNAMIC CHARACTERISTICS .............................................................................. 8  
ABSOLUTE MAXIMUM RATINGS ........................................................................... 8  
SWITCHING CHARACTERISTICS .......................................................................... 9  
2. GENERAL DESCRIPTION .............................................................................................. 11  
2.1. Analog Input ........................................................................................................... 11  
2.1.1. Analog Input Span .......................................................................................... 12  
2.1.2. Voltage Noise Density Performance ........................................................... 12  
2.1.3. No Offset DAC ............................................................................................ 12  
2.2. Overview of ADC Register Structure and Operating Modes .................................. 12  
2.2.1. System Initialization .................................................................................... 12  
2.2.2. Command Register Descriptions ................................................................ 14  
2.2.3. Serial Port Interface .................................................................................... 16  
2.2.4. Reading/Writing On-Chip Registers ............................................................ 17  
2.3. Configuration Register ........................................................................................... 17  
2.3.1. Power Consumption ................................................................................... 17  
2.3.2. System Reset Sequence ............................................................................ 17  
2.3.3. Input Short .................................................................................................. 17  
2.3.4. Voltage Reference Select .......................................................................... 17  
2.3.5. Output Latch Pins ....................................................................................... 18  
2.3.6. Filter Rate Select ........................................................................................ 18  
2.3.7. Word Rate Select ........................................................................................ 18  
2.3.8. Unipolar/Bipolar Select ............................................................................... 18  
2.3.9. Open Circuit Detect .................................................................................... 18  
2.3.10. Configuration Register Description ........................................................... 19  
2.4. Calibration .............................................................................................................. 21  
2.4.1. Calibration Registers .................................................................................. 21  
2.4.2. Gain Register ............................................................................................. 21  
2.4.3. Offset Register ........................................................................................... 21  
2.4.4. Performing Calibrations .............................................................................. 22  
2.4.5. System Calibration ...................................................................................... 22  
2.4.6. Calibration Tips ........................................................................................... 22  
2.4.7. Limitations in Calibration Range ................................................................. 23  
2.5. Performing Conversions ........................................................................................ 23  
2.5.1. Single Conversion Mode ............................................................................. 23  
2.5.2. Continuous Conversion Mode .................................................................... 24  
2.6. Using Multiple ADCs Synchronously ..................................................................... 25  
2.7. Conversion Output Coding .................................................................................... 25  
2.7.1. Conversion Data Output Descriptions ........................................................ 26  
2.8. Digital Filter ............................................................................................................ 27  
2.9. Clock Generator ..................................................................................................... 28  
2.10. Power Supply Arrangements ................................................................................. 28  
2.11. Getting Started ....................................................................................................... 31  
2.12. PCB Layout ............................................................................................................ 31  
3. PIN DESCRIPTIONS ...................................................................................................... 32  
Clock Generator ......................................................................................................32  
Control Pins and Serial Data I/O .............................................................................32  
Measurement and Reference Inputs ......................................................................33  
Power Supply Connections .....................................................................................33  
4. SPECIFICATION DEFINITIONS ..................................................................................... 33  
5. PACKAGE DRAWINGS .................................................................................................. 34  
6. ORDERING INFORMATION .......................................................................................... 35  
7. ENVIRONMENTAL, MANUFACTURING, & HANDLING INFORMATION .................... 35  
2
DS742F3  
CS5530  
LIST OF FIGURES  
Figure 1. SDI Write Timing (Not to Scale)...............................................................................10  
Figure 2. SDO Read Timing (Not to Scale).............................................................................10  
Figure 3. Front End Configuration...........................................................................................11  
Figure 4. Input Model for AIN+ and AIN- Pins.........................................................................11  
Figure 5. Measured Voltage Noise Density.............................................................................12  
Figure 5. Measured Voltage Noise Density.............................................................................12  
Figure 6. CS5530 Register Diagram.......................................................................................13  
Figure 7. Command and Data Word Timing ...........................................................................16  
Figure 8. Input Reference Model when VRS = 1 ....................................................................18  
Figure 9. Input Reference Model when VRS = 0 ....................................................................18  
Figure 10. System Calibration of Offset ..................................................................................22  
Figure 11. System Calibration of Gain ....................................................................................22  
Figure 12. Synchronizing Multiple ADCs.................................................................................25  
Figure 13. Digital Filter Response (Word Rate = 60 Sps).......................................................27  
Figure 14. 120 Sps Filter Magnitude Plot to 120 Hz ...............................................................27  
Figure 15. 120 Sps Filter Phase Plot to 120 Hz......................................................................27  
Figure 16. Z-Transforms of Digital Filters................................................................................27  
Figure 17. On-chip Oscillator Model........................................................................................28  
Figure 18. CS5530 Configured with a Single +5 V Supply .....................................................29  
Figure 19. CS5530 Configured with ±2.5 V Analog Supplies..................................................29  
Figure 20. CS5530 Configured with ±3 V Analog Supplies.....................................................30  
LIST OF TABLES  
Table 1. Conversion Timing for Single Mode..........................................................................24  
Table 2. Conversion Timing for Continuous Mode..................................................................24  
Table 3. Output Coding...........................................................................................................25  
DS742F3  
3
CS5530  
1. CHARACTERISTICS AND SPECIFICATIONS  
ANALOG CHARCTERISTICS  
(VA+, VD+ = 5 V ±5%; VREF+ = 5 V; VA-, VREF-, DGND = 0 V; MCLK = 4.9152 MHz;  
OWR (Output Word Rate) = 60 Sps; Bipolar Mode)  
(See Notes 1 and 2.)  
CS5530-CS  
Parameter  
Min  
Typ  
Max  
Unit  
Accuracy  
Linearity Error  
No Missing Codes  
Bipolar Offset  
-
24  
-
0.0015  
0.003  
-
%FS  
Bits  
-
16  
±32  
LSB  
LSB  
24  
24  
Unipolar Offset  
-
32  
64  
Offset Drift  
(Notes 3 and 4)  
(Note 4)  
-
-
-
-
10  
8
-
nV/°C  
ppm  
Bipolar full-scale Error  
Unipolar full-scale Error  
full-scale Drift  
31  
62  
-
16  
2
ppm  
ppm/°C  
Notes: 1. Applies after system calibration at any temperature within -40 °C to +85 °C.  
2. Specifications guaranteed by design, characterization, and/or test. LSB is 24 bits.  
3. This specification applies to the device only and does not include any effects by external parasitic  
thermocouples.  
4. Drift over specified temperature range after calibration at power-up at 25 °C.  
4
DS742F3  
CS5530  
ANALOG CHARACTERISTICS (Continued)  
(See Notes 1 and 2.)  
Parameter  
Min  
Typ  
Max  
Unit  
Analog Input  
Common Mode + Signal on AIN+ or AIN-  
CVF Current on AIN+ or AIN-  
Input Current Noise  
Bipolar/Unipolar Mode (VA-) + 1.6  
-
(VA+) - 1.6  
V
pA  
-
-
1200  
1
-
-
-
pA/Hz  
nA  
Open Circuit Detect Current  
100  
300  
Common Mode Rejection  
DC  
50, 60 Hz  
-
-
130  
120  
-
-
dB  
dB  
Input Capacitance  
Voltage Reference Input  
Range  
-
10  
-
pF  
(VREF+) - (VREF-)  
1
-
2.5 (VA+)-(VA-)  
V
CVF Current  
(Note 5, 6)  
50  
-
nA  
Common Mode Rejection  
DC  
50, 60 Hz  
-
-
120  
120  
-
-
dB  
dB  
Input Capacitance  
11  
-
22  
pF  
System Calibration Specifications  
Full-scale Calibration Range  
Offset Calibration Range  
Offset Calibration Range  
Bipolar/Unipolar Mode  
Bipolar Mode  
3
-
-
-
110  
100  
90  
%FS  
%FS  
%FS  
-100  
-90  
Unipolar Mode  
Notes: 5. See the section of the data sheet which discusses input models.  
6. Input current on VREF+ or VREF- may increase to 250 nA if operated within 50 mV of VA+ or VA-. This  
is due to the rough charge buffer being saturated under these conditions.  
DS742F3  
5
CS5530  
ANALOG CHARACTERISTICS (Continued)  
(See Notes 1 and 2.)  
CS5530-CS  
Typ  
Max  
Parameter  
Min  
Unit  
Power Supplies  
DC Power Supply Currents (Normal Mode)  
I
I
I
-
-
6
0.6  
8
1.0  
mA  
mA  
A+, A-  
D+  
Power Consumption  
Normal Mode  
Standby  
Sleep  
(Note 7)  
(Note 8)  
-
-
-
35  
5
500  
45  
-
-
mW  
mW  
µW  
Power Supply Rejection  
DC Positive Supplies  
DC Negative Supply  
-
-
115  
115  
-
-
dB  
dB  
7. All outputs unloaded. All input CMOS levels.  
8. Tested with 100 mV change on VA+ or VA-.  
TYPICAL NOISE-FREE RESOLUTION (BITS) (See Notes 9 and 10)  
Noise (nV  
)
Output Word Rate (Sps) -3 dB Filter Frequency (Hz)  
Noise-free Bits  
rms  
7.5  
15  
1.94  
3.88  
7.75  
15.5  
31  
19  
19  
18  
18  
17  
16  
16  
15  
15  
13  
17  
24  
30  
34  
60  
48  
120  
240  
480  
960  
1,920  
3,840  
68  
62  
115  
163  
229  
344  
1390  
122  
230  
390  
780  
9. Noise Free Resolution listed is for Bipolar operation, and is calculated as LOG((Input Span)/(6.6xRMS  
Noise))/LOG(2) rounded to the nearest bit. For Unipolar operation, the input span is 1/2 as large, so one  
bit is lost. The input span is calculated in the analog input span section of the data sheet. The Noise  
Free Resolution table is computed with a value of 1.0 in the gain register. Values other than 1.0 will  
scale the noise, and change the Noise Free Resolution accordingly.  
10. “Noise Free Resolution” is not the same as “Effective Resolution”. Effective Resolution is based on the  
RMS noise value, while Noise Free Resolution is based on a peak-to-peak noise value specified as 6.6  
times the RMS noise value. Effective Resolution is calculated as LOG((Input Span)/(RMS  
Noise))/LOG(2).  
Specifications are subject to change without notice.  
6
DS742F3  
CS5530  
5 V DIGITAL CHARACTERISTICS  
(VA+, VD+ = 5 V ±5%; VA-, DGND = 0 V; See Notes 2 and 11.)  
Parameter  
High-Level Input Voltage  
Symbol  
Min  
Typ  
Max  
Unit  
All Pins Except SCLK  
SCLK  
V
0.6 VD+  
(VD+) - 0.45  
-
-
VD+  
VD+  
V
IH  
Low-Level Input Voltage  
High-Level Output Voltage  
All Pins Except SCLK  
SCLK  
V
0.0  
0.0  
-
0.8  
0.6  
V
V
IL  
A0 and A1, I = -1.0 mA  
V
(VA+) - 1.0  
(VD+) - 1.0  
-
-
out  
OH  
SDO, I = -5.0 mA  
out  
Low-Level Output Voltage  
A0 and A1, I = 1.0 mA  
V
I
-
-
(VA-) + 0.4  
0.4  
V
out  
OL  
SDO, I = 5.0 mA  
out  
Input Leakage Current  
-
-
-
±1  
-
±10  
±10  
-
µA  
µA  
pF  
in  
SDO 3-State Leakage Current  
Digital Output Pin Capacitance  
I
OZ  
C
9
out  
3 V DIGITAL CHARACTERISTICS  
(T = 25 °C; VA+ = 5V ±5%; VD+ = 3.0V±10%; VA-, DGND = 0V; See Notes 2 and 11.)  
A
Parameter  
High-Level Input Voltage  
Symbol  
Min  
Typ  
Max  
Unit  
All Pins Except SCLK  
SCLK  
V
0.6 VD+  
(VD+) - 0.45  
-
VD+  
VD+  
V
IH  
Low-Level Input Voltage  
High-Level Output Voltage  
All Pins Except SCLK  
SCLK  
V
0.0  
0.0  
-
-
0.8  
0.6  
V
V
IL  
A0 and A1, I = -1.0 mA  
V
(VA+) - 1.0  
(VD+) - 1.0  
-
out  
OH  
SDO, I = -5.0 mA  
out  
Low-Level Output Voltage  
A0 and A1, I = 1.0 mA  
V
-
-
(VA-) + 0.4  
0.4  
V
out  
OL  
SDO, I = 5.0 mA  
out  
Input Leakage Current  
I
-
-
-
±1  
-
±10  
±10  
-
µA  
µA  
pF  
in  
SDO 3-State Leakage Current  
Digital Output Pin Capacitance  
I
OZ  
C
9
out  
11. All measurements performed under static conditions.  
DS742F3  
7
CS5530  
DYNAMIC CHARACTERISTICS  
Parameter  
Symbol  
Ratio  
Unit  
Modulator Sampling Rate  
f
MCLK/16  
Sps  
s
Filter Settling Time to 1/2 LSB (full-scale Step Input)  
Single Conversion mode (Notes 12, 13, and 14)  
Continuous Conversion mode, OWR < 3200 Sps  
Continuous Conversion mode, OWR 3200 Sps  
t
t
t
1/OWR  
s
s
s
s
s
s
SC  
5/OWR  
+ 3/OWR  
sinc5  
5/OWR  
5
5
12. The ADCs use a Sinc filter for the 3200 Sps and 3840 Sps output word rate (OWR) and a Sinc filter  
3
followed by a Sinc filter for the other OWRs. OWR  
(FRS = 0) word rate associated with the Sinc filter.  
refers to the 3200 Sps (FRS = 1) or 3840 Sps  
sinc5  
5
13. The single conversion mode only outputs fully settled conversions. See Table 1 for more details about  
single conversion mode timing. OWR is used here to designate the different conversion time  
SC  
associated with single conversions.  
14. The continuous conversion mode outputs every conversion. This means that the filter’s settling time  
with a full-scale step input in the continuous conversion mode is dictated by the OWR.  
ABSOLUTE MAXIMUM RATINGS  
(DGND = 0 V; See Note 15.)  
Parameter  
Symbol  
Min  
Typ  
Max  
Unit  
DC Power Supplies  
(Notes 16 and 17)  
Positive Digital  
Positive Analog  
Negative Analog  
VD+  
VA+  
VA-  
-0.3  
-0.3  
+0.3  
-
-
-
+6.0  
+6.0  
-3.75  
V
V
V
Input Current, Any Pin Except Supplies (Notes 18 and 19)  
Output Current  
I
-
-
-
-
-
-
±10  
±25  
500  
mA  
mA  
mW  
IN  
I
OUT  
Power Dissipation  
(Note 20)  
PDN  
Analog Input Voltage  
VREF pins  
AIN Pins  
V
V
(VA-) -0.3  
(VA-) -0.3  
-
-
(VA+) + 0.3  
(VA+) + 0.3  
V
V
INR  
INA  
Digital Input Voltage  
V
-0.3  
-40  
-65  
-
-
-
(VD+) + 0.3  
V
IND  
Ambient Operating Temperature  
Storage Temperature  
T
85  
°C  
°C  
A
T
150  
stg  
Notes: 15. All voltages with respect to ground.  
16. VA+ and VA- must satisfy {(VA+) - (VA-)} +6.6 V.  
17. VD+ and VA- must satisfy {(VD+) - (VA-)} +7.5 V.  
18. Applies to all pins including continuous overvoltage conditions at the analog input (AIN) pins.  
19. Transient current of up to 100 mA will not cause SCR latch-up. Maximum input current for a power  
supply pin is ±50 mA.  
20. Total power dissipation, including all input currents and output currents.  
WARNING: Operation at or beyond these limits may result in permanent damage to the device.  
Normal operation is not guaranteed at these extremes.  
8
DS742F3  
CS5530  
SWITCHING CHARACTERISTICS  
(VA+ = 2.5 V or 5 V ±5%; VA- = -2.5V±5% or 0 V; VD+ = 3.0 V ±10% or 5 V ±5%;DGND = 0 V; Levels: Logic 0 = 0  
V, Logic 1 = VD+; C = 50 pF; See Figures 1 and 2.)  
L
Parameter  
Symbol  
Min  
Typ  
Max  
Unit  
Master Clock Frequency  
(Note 21)  
MCLK  
External Clock or Crystal Oscillator  
1
4.9152  
-
5
MHz  
%
Master Clock Duty Cycle  
Rise Times  
40  
60  
(Note 22)  
Any Digital Input Except SCLK  
SCLK  
t
rise  
-
-
-
-
-
50  
1.0  
100  
-
µs  
µs  
ns  
Any Digital Output  
Fall Times  
(Note 22)  
Any Digital Input Except SCLK  
SCLK  
t
fall  
-
-
-
-
-
50  
1.0  
100  
-
µs  
µs  
ns  
Any Digital Output  
Start-up  
Oscillator Start-up Time  
XTAL = 4.9152 MHz (Note 23)  
t
-
20  
-
ms  
ost  
Serial Port Timing  
Serial Clock Frequency  
Serial Clock  
SCLK  
0
-
2
MHz  
Pulse Width High  
Pulse Width Low  
t
t
250  
250  
-
-
-
-
ns  
ns  
1
2
SDI Write Timing  
CS Enable to Valid Latch Clock  
Data Set-up Time prior to SCLK rising  
Data Hold Time After SCLK Rising  
SCLK Falling Prior to CS Disable  
t
t
t
t
50  
50  
-
-
-
-
-
-
-
-
ns  
ns  
ns  
ns  
3
4
5
6
100  
100  
SDO Read Timing  
CS to Data Valid  
t
t
t
-
-
-
-
-
-
150  
150  
150  
ns  
ns  
ns  
7
8
9
SCLK Falling to New Data Bit  
CS Rising to SDO Hi-Z  
Notes: 21. Device parameters are specified with a 4.9152 MHz clock.  
22. Specified using 10% and 90% points on waveform of interest. Output loaded with 50 pF.  
23. Oscillator start-up time varies with crystal parameters. This specification does not apply when using an  
external clock source.  
DS742F3  
9
CS5530  
C S  
t3  
SD I  
M SB  
M SB -1  
LSB  
t4  
t5  
t1  
t6  
SC LK  
t2  
Figure 1. SDI Write Timing (Not to Scale)  
C S  
t7  
t9  
S D O  
M S B  
M SB -1  
LSB  
t8  
t2  
SC LK  
t1  
Figure 2. SDO Read Timing (Not to Scale)  
10  
DS742F3  
CS5530  
2. GENERAL DESCRIPTION  
The CS5530 is a ΔΣ Analog-to-Digital Converter  
The amplifier is chopper-stabilized and operates with  
(ADC) which uses charge-balance techniques to a chop clock frequency of MCLK/128. The CVF  
achieve 24-bit performance. The ADC is optimized (sampling) current into the instrumentation amplifier  
for measuring low-level unipolar or bipolar signals  
is typically 1200 pA over  
-40°C to +85°C  
in weigh scale, process control, scientific, and med- (MCLK=4.9152 MHz). The common-mode plus sig-  
ical applications.  
nal range of the instrumentation amplifier is (VA-) +  
1.6 V to (VA+) - 1.6 V.  
To accommodate these applications, the ADC in-  
cludes a very-low-noise, chopper-stabilized instru-  
mentation amplifier (12 nV/Hz @ 0.1 Hz) with a  
gain of 64X. This ADC also includes a fourth-order  
ΔΣ modulator followed by a digital filter which pro-  
vides twenty selectable output word rates of 6.25,  
7.5, 12.5, 15, 25, 30, 50, 60, 100, 120, 200, 240, 400,  
480, 800, 960, 1600, 1920, 3200, and 3840 samples  
per second (MCLK = 4.9152 MHz).  
Figure 4 illustrates the input model for the 64X am-  
plifier.  
AIN  
= 3 .9 pF  
C
V
8 mV  
os  
i = fV C  
n
os  
MCLK  
128  
f =  
To ease communication between the ADCs and a  
micro-controller, the converters include a simple  
three-wire serial interface which is SPI and Mi-  
crowire compatible with a Schmitt-trigger input on  
the serial clock (SCLK).  
Figure 4. Input Model for AIN+ and AIN- Pins  
Note:  
The C = 3.9 pF capacitor is for input current  
modeling only. For physical input capacitance  
see ‘Input Capacitance’ specification under  
Analog Characteristics.  
2.1 Analog Input  
Figure 3 illustrates a block diagram of the CS5530.  
The front end includes a chopper-stabilized instru-  
mentation amplifier with a gain of 64X.  
VREF+ VREF-  
X1 X1  
1000 Ω  
Differential  
5
Programmable  
Sinc  
AIN+  
AIN-  
C1 PIN  
C2 PIN  
th  
4
Order  
ΔΣ  
3
Serial  
Port  
22 nF  
64x  
Sinc  
Digital  
Digital Filter  
Filter  
Modulator  
Ω
1000  
Figure 3. Front End Configuration  
DS742F3  
11  
CS5530  
2.1.1 Analog Input Span  
2.2 Overview of ADC Register Structure  
and Operating Modes  
The full-scale input signal that the converter can dig-  
itize is a function of the reference voltage connected  
between the VREF+ and VREF- pins. The full-scale  
input span of the converter is  
((VREF+) (VREF-))/(64Y), where 64 is the gain  
of the amplifier and Y is 2 for VRS = 0, or Y is 1 for  
VRS = 1. VRS is the Voltage Reference Select bit,  
and must be set according to the differential voltage  
applied to the VREF+ and VREF- pins on the part.  
See section 2.3.4 for more details.  
The CS5530 ADC has an on-chip controller, which  
includes a number of user-accessible registers. The  
registers are used to hold offset and gain calibration  
results, configure the chip's operating modes, hold  
conversion instructions, and to store conversion  
data words. Figure 6 depicts a block diagram of the  
on-chip controller’s internal registers.  
The converter has 32-bit registers to function as the  
offset and the gain calibration registers. These reg-  
isters hold calibration results. The contents of these  
registers can be read or written by the user. This al-  
lows calibration data to be off-loaded into an exter-  
nal EEPROM. The user can also manipulate the  
contents of these registers to modify the offset or  
the gain slope of the converter.  
With a 2.5 V reference, the full-scale biploar input  
range is equal to ±2.5/64, or about ±39 mV. Note  
that these input ranges assume the calibration regis-  
ters are set to their default values (i.e. Gain = 1.0 and  
Offset = 0.0). The gain setting in the Gain Register  
can be altered to map the digital codes of the con-  
verter to set full scales from 1 mV to 40 mV.  
The converter includes a 32-bit configuration reg-  
ister which is used for setting options such as the  
power down modes, resetting the converter, short-  
ing the analog input, enabling logic outputs, and  
other user options.  
2.1.2 Voltage Noise Density Performance  
Figure 5 illustrates the measured voltage noise den-  
sity versus frequency from 0.025 Hz to 10 Hz. The  
device was powered with ±2.5 V supplies, using  
30 Sps OWR, bipolar mode, and with the input  
short bit enabled.  
The following pages document how to initialize the  
converter and perform offset and gain calibrations.  
Each of the bits of the configuration register is de-  
scribed. Also the Command Register Quick Refer-  
ence can be used to decode all valid commands (the  
first 8-bits into the serial port).  
1000  
100  
10  
2.2.1 System Initialization  
The CS5530 provide no power-on-reset function.  
To initialize the ADC, the user must perform a soft-  
ware reset via the configuration register. Before  
accessing the configuration register, the user must  
insure serial port synchronization by using the Se-  
rial Port Initialization sequence. This sequence re-  
sets the serial port to the command mode and is  
accomplished by transmitting at least 15 SYNC1  
command bytes (0xFF hexadecimal), followed by  
one SYNC0 command (0xFE hexadecimal). Note  
that this sequence can be initiated at anytime to  
reinitialize the serial port. To complete the system  
1
0.025  
0.10  
1.00  
Frequency (Hz)  
10.00  
Figure 5. Measured Voltage Noise Density, 64x  
2.1.3 No Offset DAC  
An offset DAC was not included in the CS5530 be-  
cause the high dynamic range of the converter  
eliminates the need for one. The offset register can  
be manipulated by the user to mimic the function of  
a DAC if desired.  
12  
DS742F3  
CS5530  
initialization sequence, the user must also perform  
Completing the reset cycle initializes the on-chip  
a system reset sequence which is as follows: Write registers to the following states:  
a logic 1 into the RS bit of the configuration regis-  
Configuration Register:  
Offset Register:  
00000000(H)  
ter. This will reset the calibration registers and  
other logic (but not the serial port). A valid reset  
will set the RV bit in the configuration register to a  
logic 1. After writing the RS bit to a logic 1, wait  
8 master clock cycles, then write the RS bit back to  
logic 0. Note that the other bits in the configura-  
tion register cannot be written on this write cycle  
as they are being held in reset until RS is set back  
to logic 0. While this involves writing an entire  
word into the configuration register to casue the  
RS bit to go to logic 0, the RV bit is a read only bit,  
therefore a write to the configuration register will  
not overwrite the RV bit. After clearing the RS bit  
back to logic 0, read the configuration register to  
check the state of the RV bit as this indicates that a  
valid reset occurred. Reading the configuration  
register clears the RV bit back to logic 0.  
00000000(H)  
01000000(H)  
Gain Register  
After the configuration register has been read to  
clear the RV bit, the register can then be written to  
set the other function bits or other registers can be  
written or read.  
Once the system initialization or reset is complet-  
ed, the on-chip controller is initialized into com-  
mand mode where it waits for a valid command  
(the first 8-bits written into the serial port are shift-  
ed into the command register). Once a valid com-  
mand is received and decoded, the byte instructs  
the converter to either acquire data from or transfer  
data to an internal register, or perform a conversion  
or a calibration. The Command Register Descrip-  
tions section lists all valid commands.  
Conversion Data  
Register (1 x 32)  
Data (1 x 32)  
Gain Register (1 x 32)  
Gain (1 x 32)  
Offset Register (1 x 32)  
Offset (1 x 32)  
CS  
SDI  
SDO  
SCLK  
Serial  
Interface  
Configuration Register (1 x 32)  
Power Save Select  
Reset System  
Input Short  
Command  
Register (1 × 8)  
Voltage Reference Select  
Output Latch  
Filter Rate Select  
Word Rate  
Unipolar/Bipolar  
Open Circuit Detect  
Figure 6. CS5530 Register Diagram  
DS742F3  
13  
CS5530  
2.2.2 Command Register Descriptions  
READ/WRITE OFFSET REGISTER  
D7(MSB)  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
0
0
0
0
R/W  
0
0
1
R/W (Read/Write)  
0
1
Write offset register.  
Read offset register.  
READ/WRITE GAIN REGISTER  
D7(MSB)  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
0
0
0
0
R/W  
0
1
0
R/W (Read/Write)  
0
1
Write gain register.  
Read gain register.  
READ/WRITE CONFIGURATION REGISTER  
D7(MSB)  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
0
0
0
0
R/W  
0
1
1
Function:  
These commands are used to read from or write to the configuration register.  
R/W (Read/Write)  
0
1
Write configuration register.  
Read configuration register.  
PERFORM CONVERSION  
D7(MSB)  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
1
MC  
0
0
0
0
0
0
MC (Multiple Conversions)  
0
1
Perform a single conversion.  
Perform continuous conversions.  
PERFORM SYSTEM OFFSET CALIBRATION  
D7(MSB)  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
1
0
0
0
0
1
0
1
PERFORM SYSTEM GAIN CALIBRATION  
D7(MSB)  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
1
0
0
0
0
1
1
0
SYNC1  
D7(MSB)  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
1
1
1
1
1
1
1
1
Function:  
Part of the serial port re-initialization sequence.  
14  
DS742F3  
CS5530  
SYNC0  
D7(MSB)  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
1
1
1
1
1
1
1
0
Function:  
End of the serial port re-initialization sequence.  
NULL  
D7(MSB)  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
0
0
0
0
0
0
0
0
Function:  
This command is used to clear a port flag and keep the converter in the continuous conversion mode.  
DS742F3  
15  
CS5530  
2.2.3 Serial Port Interface  
The CS5530’s serial interface consists of four con-  
trol lines: CS, SDI, SDO, SCLK. Figure 7 details  
the command and data word timing.  
SCLK, Serial Clock, is the serial bit-clock which  
controls the shifting of data to or from the ADC’s  
serial port. The CS pin must be held low (logic 0)  
before SCLK transitions can be recognized by the  
port logic. To accommodate optoisolators SCLK is  
designed with a Schmitt-trigger input to allow an  
optoisolator with slower rise and fall times to di-  
rectly drive the pin. Additionally, SDO is capable  
of sinking or sourcing up to 5 mA to directly drive  
CS, Chip Select, is the control line which enables  
access to the serial port. If the CS pin is tied low,  
the port can function as a three wire interface.  
SDI, Serial Data In, is the data signal used to trans-  
fer data to the converters.  
SDO, Serial Data Out, is the data signal used to an optoisolator LED. SDO will have less than a 400  
transfer output data from the converters. The SDO mV loss in the drive voltage when sinking or sourc-  
output will be held at high impedance any time CS ing 5 mA.  
is at logic 1.  
CS  
SCLK  
LSB  
MSB  
SDI  
Command Time  
8 SCLKs  
Data Time 32 SCLKs  
Write Cycle  
CS  
SCLK  
SDI  
Command Time  
8 SCLKs  
LSB  
MSB  
SDO  
Data Time 32 SCLKs  
Read Cycle  
CS  
SCLK  
SDI  
t *  
d
MCLK /OWR  
Clock Cycles  
Command Time  
8 SCLKs  
MSB  
LSB  
SDO  
8 SCLKs Clear SDO Flag  
Data Time 32 SCLKs  
Data Conversion Cycle  
* td is the time it takes the ADC to perform a conversion. See the Single  
Conversion and Continuous Conversion sections of the data sheet for more  
details about conversion timing.  
Figure 7. Command and Data Word Timing  
16  
DS742F3  
CS5530  
2.2.4 Reading/Writing On-Chip Registers  
both set to logic 1, the sleep mode is entered reduc-  
ing the consumed power to around 500 μW. Since  
this sleep mode disables the oscillator, approxi-  
mately a 20 ms oscillator start-up delay period is  
required before returning to the normal mode. If an  
external clock is used, there will be no delay.  
The CS5530’s offset, gain, and configuration regis-  
ters are readable and writable while the conversion  
data register is read only.  
As shown in Figure 7, to write to a particular regis-  
ter the user must transmit the appropriate write  
command and then follow that command by 32 bits  
of data. For example, to write 0x80000000 (hexa-  
decimal) to the gain register, the user would first  
transmit the command byte 0x02 (hexadecimal)  
followed by the data 0x80000000 (hexadecimal).  
Similarly, to read a particular register the user must  
transmit the appropriate read command and then  
acquire the 32 bits of data. Once a register is written  
to or read from, the serial port returns to the com-  
mand mode.  
2.3.2 System Reset Sequence  
The reset system (RS) bit permits the user to per-  
form a system reset. A system reset can be initiated  
at any time by writing a logic 1 to the RS bit in the  
configuration register. After the RS bit has been  
set, the internal logic of the chip will be initialized  
to a reset state. The reset valid (RV) bit is set indi-  
cating that the internal logic was properly reset.  
The RV bit is cleared after the configuration regis-  
ter is read. The on-chip registers are initialized to  
the following default states:  
2.3 Configuration Register  
To ease the architectural design and simplify the  
serial interface, the configuration register is thirty-  
two bits long, however, only fifteen of the thirty  
two bits are used. The following sections detail the  
bits in the configuration register.  
Configuration Register:  
Offset Register:  
00000000(H)  
00000000(H)  
01000000(H)  
Gain Register  
After reset, the RS bit should be written back to  
logic 0 to complete the reset cycle. The ADC will  
return to the command mode where it waits for a  
valid command. Also, the RS bit is the only bit in  
the configuration register that can be set when ini-  
tiating a reset (i.e. a second write command is need-  
ed to set other bits in the Configuration Register  
after the RS bit has been cleared).  
2.3.1 Power Consumption  
The CS5530 accommodates three power consump-  
tion modes: normal, standby, and sleep. The default  
mode, “normal mode”, is entered after power is ap-  
plied. In this mode, the CS5530 typically consumes  
35 mW. The other two modes are referred to as the  
power save modes. They power down most of the  
analog portion of the chip and stop filter convolu-  
tions. The power save modes are entered whenever  
the power down (PDW) bit of the configuration  
register is set to logic 1. The particular power save  
mode entered depends on state of the PSS (Power  
Save Select) bit. If PSS is logic 0, the converter en-  
ters the standby mode reducing the power con-  
sumption to 4 mW. The standby mode leaves the  
oscillator and the on-chip bias generator for the an-  
alog portion of the chip active. This allows the con-  
verter to quickly return to the normal mode once  
PDW is set back to a logic 0. If PSS and PDW are  
2.3.3 Input Short  
The input short bit allows the user to internally  
ground the inputs of the ADC. This is a useful func-  
tion because it allows the user to easily test the  
grounded input performance of the ADC and elim-  
inate the noise effects due to the external system  
components.  
2.3.4 Voltage Reference Select  
The voltage reference select (VRS) bit selects the  
size of the sampling capacitor used to sample the  
voltage reference. The bit should be set based upon  
DS742F3  
17  
CS5530  
φ
Fine  
φ
Fine  
1
1
φ
Coarse  
φ
2
Coarse  
2
VREF  
VREF  
C = 7 pF  
C = 14pF  
= fV  
V
16 mV  
C
os  
= fV  
V
8 mV  
os  
os  
i
i
C
n
os  
n
MCLK  
16  
MCLK  
16  
f =  
f =  
VRS = 1; 1 V VREF 2.5 V  
VRS = 0; 2.5 V < VREF VA+  
Figure 8. Input Reference Model when VRS = 1  
Figure 9. Input Reference Model when VRS = 0  
2.3.6 Filter Rate Select  
the magnitude of the reference voltage to achieve  
optimal performance. Figures 8 and 9 model the ef-  
fects on the reference’s input impedance and input  
current for each VRS setting. As the models show,  
the reference includes a coarse/fine charge buffer  
which reduces the dynamic current demand of the  
external reference.  
The Filter Rate Select bit (FRS) modifies the output  
word rates of the converter to allow either 50 Hz or  
60 Hz rejection when operating from a 4.9152  
MHz crystal. If FRS is cleared to logic 0, the word  
rates and corresponding filter characteristics can be  
selected using the Configuration Register. Rates  
can be 7.5, 15, 30, 60, 120, 240, 480, 960, 1920, or  
3840 Sps when using a 4.9152 MHz clock. If FRS  
is set to logic 1, the word rates and corresponding  
filter characteristics scale by a factor of 5/6, mak-  
ing the selectable word rates 6.25, 12.5, 25, 50,  
100, 200, 400, 800, 1600, and 3200 Sps when using  
a 4.9152 MHz clock. When using other clock fre-  
quencies, these selectable word rates will scale lin-  
early with the clock frequency that is used.  
The reference’s input buffer is designed to accom-  
modate rail-to-rail (common-mode plus signal) in-  
put voltages. The differential voltage between the  
VREF+ and VREF- can be any voltage from 1.0 V  
up to the analog supply (depending on how VRS is  
configured), however, the VREF+ cannot go above  
VA+ and the VREF- pin can not go below VA-.  
Note that the power supplies to the chip should be  
established before the reference voltage.  
2.3.5 Output Latch Pins  
2.3.7 Word Rate Select  
The A1-A0 pins of the ADC mimic the D24-D23  
bits of the configuration register. A1-A0 can be  
used to control external multiplexers and other log-  
ic functions outside the converter. The A1-A0 out-  
puts can sink or source at least 1 mA, but it is  
recommended to limit drive currents to less than  
20 μA to reduce self-heating of the chip. These out-  
puts are powered from VA+ and VA-. Their output  
voltage will be limited to the VA+ voltage for a  
logic 1 and VA- for a logic 0. Note that if the latch  
bits are used to modify the analog input signal the  
user should delay performing a conversion until he  
knows the effects of the A0/A1 bits are fully set-  
tled.  
The Word Rate Select bits (WR3-WR0) allow slec-  
tion of the output word rate of the converter as de-  
picted in the Configuration Register Descriptions.  
The word rate chosen by the WR3-WR0 bits is  
modified by the setting of the FRS bit as presented  
in the previous paragraph.  
2.3.8 Unipolar/Bipolar Select  
The UP/BP Select bit sets the converter to measure  
either a unipolar or bipolar input span.  
2.3.9 Open Circuit Detect  
When the OCD bit is set it activates a current  
source as a means to test for open thermocouples.  
18  
DS742F3  
CS5530  
2.3.10 Configuration Register Description  
D31(MSB) D30  
D29  
RS  
D13  
D28  
RV  
D12  
D27  
IS  
D11  
D26  
NU  
D10  
D25  
VRS  
D9  
D24  
A1  
D8  
D23  
A0  
D7  
D22  
NU  
D6  
D21  
NU  
D5  
D20  
NU  
D4  
D19  
FRS  
D3  
D18  
NU  
D2  
D17  
NU  
D1  
D16  
NU  
D0  
PSS  
D15  
NU  
PDW  
D14  
WR3 WR2 WR1 WR0 UP/BP OCD  
NU  
NU  
NU  
NU  
NU  
NU  
NU  
NU  
NU  
PSS (Power Save Select)[31]  
0
1
Standby Mode (Oscillator active, allows quick power-up).  
Sleep Mode (Oscillator inactive).  
PDW (Power Down Mode)[30]  
0
1
Normal Mode  
Activate the power save select mode.  
RS (Reset System)[29]  
0
1
Normal Operation.  
Activate a Reset cycle. See System Reset Sequence in the datasheet text.  
RV (Reset Valid)[28]  
0
1
Normal Operation  
System was reset. This bit is read only. Bit is cleared to logic zero after the configuration register is read.  
IS (Input Short)[27]  
0
1
Normal Input  
All signal input pairs for each channel are disconnected from the pins and shorted internally.  
NU (Not Used)[26]  
0
Must always be logic 0. Reserved for future upgrades.  
VRS (Voltage Reference Select)[25]  
0
1
2.5 V < VREF [(VA+) - (VA-)]  
1 V VREF 2.5V  
A1-A0 (Output Latch bits)[24:23]  
The latch bits (A1 and A0) will be set to the logic state of these bits when the Configuration register is written.  
Note that these logic outputs are powered from VA+ and VA-.  
00  
01  
10  
11  
A1 = 0, A0 = 0  
A1 = 0, A0 = 1  
A1 = 1, A0 = 0  
A1 = 1, A0 = 1  
NU (Not Used)[22:20]  
0
Must always be logic 0. Reserved for future upgrades.  
Filter Rate Select, FRS[19]  
0
1
Use the default output word rates.  
Scale all output word rates and their corresponding filter characteristics by a factor of 5/6.  
NU (Not Used)[18:15]  
Must always be logic 0. Reserved for future upgrades.  
0
DS742F3  
19  
CS5530  
WR3-WR0 (Word Rate) [14:11]  
The listed Word Rates are for continuous conversion mode using a 4.9152 MHz clock. All word rates will  
scale linearly with the clock frequency used. The very first conversion using continuous conversion mode  
will last longer, as will conversions done with the single conversion mode. See the section on Performing  
Conversions and Tables 1 and 2 for more details.  
Bit  
WR (FRS = 0)  
120 Sps  
60 Sps  
WR (FRS = 1)  
100 Sps  
50 Sps  
0000  
0001  
0010  
0011  
0100  
1000  
1001  
1010  
1011  
1100  
30 Sps  
25 Sps  
15 Sps  
12.5 Sps  
6.25 Sps  
3200 Sps  
1600 Sps  
800 Sps  
400 Sps  
200 Sps  
7.5 Sps  
3840 Sps  
1920 Sps  
960 Sps  
480 Sps  
240 Sps  
All other combinations are not used.  
U/B (Unipolar / Bipolar) [10]  
0
1
Select Bipolar mode.  
Select Unipolar mode.  
OCD (Open Circuit Detect Bit) [9]  
When set, this bit activates a 300 nA current source on the input channel (AIN+) selected by the channel  
select bits. Note that the 300nA current source is rated at 25°C. This feature is particularly useful in ther-  
mocouple applications when the user wants to drive a suspected open thermocouple lead to a supply rail.  
0
1
Normal mode.  
Activate current source.  
NU (Not Used) [8:0]  
Must always be logic 0. Reserved for future upgrades.  
0
20  
DS742F3  
CS5530  
2.4 Calibration  
the unipolar span, gain register = 1.000...000 deci-  
mal). The MSB in the offset register determines if  
the offset to be trimmed is positive or negative (0  
positive, 1 negative). Note that the magnitude of  
the offset that is trimmed from the input is mapped  
through the gain register. The converter can typi-  
cally trim ±100 percent of the input span. As shown  
in the Gain Register section, the gain register spans  
Calibration is used to set the zero and gain slope of  
the ADC’s transfer function. The CS5530 provides  
system calibration.  
Note:  
After the ADC is reset, it is functional and can  
perform measurements without being  
calibrated (remember that the VRS bit in the  
configuration register must be properly  
configured). If the converter is operated  
without calibraton, the converter will utilize  
the initialized values of the on-chip registers  
(Offset = 0.0; Gain = 1.0) to calculate output  
words. Any initial offset and gain errors in the  
internal circuitry of the chip will remain.  
-24  
from 0 to (64 - 2 ). The decimal equivalent mean-  
ing of the gain register is  
29  
5
4
3
–24  
(– 24 + i)  
D = b  
2
+ b  
2
+ b  
2
+ + b  
2
) =  
b
2
D29  
D28  
D27  
D0  
Di  
i = 0  
2.4.1 Calibration Registers  
where the binary numbers have a value of either  
zero or one (b is the binary value of bit D29).  
While gain register settings of up to 64 - 2 are  
available, the gain register should never be set to  
values above 40.  
The CS5530 converter has an offset register that is  
used to set the zero point of the converter’s transfer  
function. As shown in Offset Register section, one  
LSB in the offset register is 1.835007966 X 2  
proportion of the input span (bipolar span is 2 times  
D29  
-24  
-24  
2.4.2 Gain Register  
Decimal Point  
MSB D30  
D29  
25  
D28  
24  
D27  
23  
D26  
22  
D25  
21  
D24  
20  
D23  
2-1  
D22  
2-2  
D21  
2-3  
D20  
2-4  
D19  
2-5  
D18  
2-6  
D17  
2-7  
D16  
2-8  
NU  
NU  
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
D15  
D14  
D13  
D12  
D11  
D10  
D9  
D8  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
LSB  
2-9  
2-10  
2-11  
2-12  
2-13  
2-14  
2-15  
2-16  
2-17  
2-18  
2-19  
2-20  
2-21  
222  
2-23  
2-24  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
-24  
The gain register span is from 0 to (64-2 ). After Reset D24 is 1, all other bits are ‘0’.  
2.4.3 Offset Register  
MSB D30  
D29  
D28  
D27  
D26  
D25  
D24  
D23  
D22  
D21  
D20  
D19  
D18  
D17  
D16  
2-2  
2-3  
2-4  
2-5  
2-6  
2-7  
2-8  
2-9  
2-10  
2-11  
2-12  
2-13  
2-14  
2-15  
2-16  
Sign  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
D15  
D14  
D13  
D12  
D11  
D10  
D9  
D8  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
LSB  
2-17  
2-18  
2-19  
2-20  
2-21  
2-22  
2-23  
2-24  
NU  
NU  
NU  
NU  
NU  
NU  
NU  
NU  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
-24  
One LSB represents 1.835007966 X 2 proportion of the input span (bipolar span is 2 times unipolar span).  
Offset and data word bits align by MSB. After reset, all bits are ‘0’.  
The offset register is stored as a 32-bit, two’s complement number, where the last 8 bits are all 0.  
DS742F3  
21  
CS5530  
2.4.4 Performing Calibrations  
represent ground and full-scale. When a system off-  
set calibration is performed, a ground referenced sig-  
nal must be applied to the converter. Figure 10  
illustrates system offset calibration.  
To perform a calibration, the user must send a com-  
mand byte with its MSB=1, and the appropriate  
calibration bits (CC2-CC0) set to choose the type  
of calibration to be performed. The calibration will  
be performed using the filter rate, and siganl span  
(unipolar or bipolar) as set in the configuration reg-  
ister. The length of time it takes to do a calibration  
is slightly less than the amount of time it takes to do  
a single conversion (see Table 1 for single conver-  
sion timing). Offset calibration takes 608 clock cy-  
cles less than a single conversion when FRS = 0,  
and 729 clock cycles less when FRS = 1. Gain cal-  
ibration takes 128 clock cycles less than a single  
conversion when FRS = 0, and 153 clock cycles  
less when FRS = 1.  
As shown in Figure 11, the user must input a signal  
representing the positive full-scale point to perform  
a system gain calibration. In either case, the cali-  
bration signals must be within the specified calibra-  
tion limits for each specific calibration step (refer  
to the System Calibration Specifications).  
2.4.6 Calibration Tips  
Calibration steps are performed at the output word  
rate selected by the WR3-WR0 bits of the configu-  
ration register. To minimize the effects of peak-to-  
peak noise on the accuracy of calibration the con-  
verter should be calibrated using the slowest word  
rate that is acceptable. It is recommended that  
word rates of 240 Sps and higher not be used for  
calibration.) To minimize digital noise near the de-  
vice, the user should wait for each calibration step  
to be completed before reading or writing to the se-  
rial port. Reading the calibration registers and aver-  
aging multiple calibrations together can produce a  
more accurate calibration result. Note that access-  
ing the ADC’s serial port before a calibration has  
finished may result in the loss of synchronization  
between the microcontroller and the ADC, and may  
prematurely halt the calibration cycle.  
Once a calibration cycle is complete, SDO falls and  
the results are automatically stored in either the  
gain or offset register. SDO will remain low until  
the next command word is begun. If additional cal-  
ibrations are performed while referencing the same  
calibration registers, the last calibration results will  
replace the effects from the previous calibration.  
Only one calibration is performed with each com-  
mand byte.  
2.4.5 System Calibration  
For the system calibration functions, the user must  
supply the converter input calibration signals which  
Figure 11. System Calibration of Gain  
Figure 10. System Calibration of Offset  
22  
DS742F3  
CS5530  
For maximum accuracy, calibrations should be per-  
formed for both offset and gain.  
FSCR, margin is again incorporated to accommo-  
date the intrinsic gain error.  
When the device is used without calibration, the  
uncalibrated gain accuracy is about ±1 percent.  
Note that the gain from the offset register to the  
output is 1.83007966 decimal, not 1. If a user wants  
to adjust the calibration coefficients externally,  
they will need to divide the information to be writ-  
ten to the offset register by the scale factor of  
1.83007966. (This discussion assumes that the gain  
register is 1.000...000 decimal. The offset register  
is also multiplied by the gain register before being  
applied to the output conversion words).  
2.5 Performing Conversions  
The CS5530 offers two distinctly different conver-  
sion modes. The paragraphs that follow detail the  
differences in the conversion modes.  
2.5.1 Single Conversion Mode  
When the user transmits the perform single conver-  
sion command, a single, fully settled conversion is  
performed using the word rate and polarity selec-  
tions set in the configuration register. Once the  
command byte is transmitted, the serial port enters  
data mode where it waits until the conversion is  
complete. When the conversion data is available,  
SDO falls to logic 0 to act as a flag to indicate that  
the data is available. Forty SCLKs are then needed  
to read the conversion data word. The first 8  
SCLKs are used to clear the SDO flag. During the  
first 8 SCLKs, SDI must be logic 0. The last 32  
SCLKs are needed to read the conversion result.  
Note that the user is forced to read the conversion  
in single conversion mode as the serial port will re-  
main in data mode until SCLK transitions 40 times.  
After reading the data, the serial port returns to the  
command mode, where it waits for a new command  
to be issued. The single conversion mode will take  
longer than conversions performed in the continu-  
ous conversion mode. The number of clock cycles  
a single conversion takes for each Output Word  
Rate (OWR) setting is listed in Table 1. The ± 8  
(FRS = 0) or ± 10 (FRS = 1) clock ambiguity is due  
to internal synchronization between the SCLK in-  
put and the oscillator.  
2.4.7 Limitations in Calibration Range  
System calibration can be limited by signal head-  
room in the analog signal path inside the chip as  
discussed under the Analog Input section of this  
data sheet. For gain calibration, the full-scale input  
signal can be reduced to 3% of the nominal full-  
scale value. At this point, the gain register is ap-  
proximately equal to 33.33 (decimal). While the  
gain register can hold numbers all the way up to  
-24  
64 - 2 , gain register settings above a decimal  
value of 40 should not be used. With the convert-  
er’s intrinsic gain error, this minimum full-scale in-  
put signal may be higher or lower. In defining the  
minimum full-scale Calibration Range (FSCR) un-  
der Analog Characteristics, margin is retained to  
accommodate the intrinsic gain error. Inversely, the  
input full-scale signal can be increased to a point in  
which the modulator reaches its 1’s density limit of  
86 percent, which under nominal conditions occurs  
when the full-scale input signal is 1.1 times the  
nominal full-scale value. With the chip’s intrinsic  
gain error, this maximum full-scale input signal  
maybe higher or lower. In defining the maximum  
Note:  
In the single conversion mode, more than one  
conversion is actually performed, but only the  
final, fully settled result is output to the  
conversion data register.  
DS742F3  
23  
CS5530  
SCLKs are required to clock out the last conversion  
before the converter returns to command mode.  
The number of clock cycles a continuous conver-  
sion takes for each Output Word Setting is listed in  
Table 2. The first conversion from the part in con-  
tinuous conversion mode will be longer than the  
following conversions due to start-up overhead.  
The ± 8 (FRS = 0) or ± 10 (FRS = 1) clock ambigu-  
ity is due to internal synchronization between the  
SCLK input and the oscillator.  
Table 1. Conversion Timing for Single Mode  
Clock Cycles  
(WR3-WR0)  
FRS = 0  
171448 ± 8  
335288 ± 8  
662968 ± 8  
1318328 ± 8  
2629048 ± 8  
7592 ± 8  
FRS = 1  
205738 ± 10  
402346 ± 10  
795562 ± 10  
1581994 ± 10  
3154858 ± 10  
9110 ± 10  
0000  
0001  
0010  
0011  
0100  
1000  
1001  
1010  
1011  
1100  
17848 ± 8  
28088 ± 8  
48568 ± 8  
89528 ± 8  
21418 ± 10  
33706 ± 10  
58282 ± 10  
107434 ± 10  
Note:  
When changing channels, or after performing  
calibrations and/or single conversions, the  
user must ignore the first three (for OWRs  
less than 3200 Sps, MCLK = 4.9152 MHz) or  
first five (for OWR 3200 Sps) conversions in  
continuous conversion mode, as residual  
filter coefficients must be flushed from the  
filter before accurate conversions are  
performed.  
2.5.2 Continuous Conversion Mode  
When the user transmits the perform continuous  
conversion command, the converter begins contin-  
uous conversions using the word rate and polarity  
selections set in the configuration register. Once  
the command byte is transmitted, the serial port en-  
ters data mode where it waits until a conversion is  
complete. After the conversion is done, SDO falls  
to logic 0 to act as a flag to indicate that the data is  
available. Forty SCLKs are then needed to read the  
conversion. The first 8 SCLKs are used to clear the  
SDO flag. The last 32 SCLKs are needed to read  
the conversion result. If ‘00000000’ is provided to  
SDI during the first 8 SCLKs when the SDO flag is  
cleared, the converter remains in this conversion  
mode and continues to convert using the same word  
rate and polarity information. In continuous con-  
version mode, not every conversion word needs to  
be read. The user needs only to read the conversion  
words required for the application as SDO rises and  
falls to indicate the availability of new conversion  
data. Note that if a conversion is not read before the  
next conversion data becomes available, it will be  
lost and replaced by the new conversion data. To  
exit this conversion mode, the user must provide  
‘11111111’ to the SDI pin during the first 8 SCLKs  
after SDO falls. If the user decides to exit, 32  
Table 2. Conversion Timing for Continuous Mode  
FRS (WR3-WR0) Clock Cycles Clock Cycles  
(First Conversion) (All Other  
Conversions)  
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
0000  
0001  
0010  
0011  
0100  
1000  
1001  
1010  
1011  
1100  
0000  
0001  
0010  
0011  
0100  
1000  
1001  
1010  
1011  
1100  
89528 ± 8  
171448 ± 8  
335288 ± 8  
662968 ± 8  
1318328 ± 8  
2472 ± 8  
40960  
81920  
163840  
327680  
655360  
1280  
12728 ± 8  
2560  
17848 ± 8  
5120  
28088 ± 8  
10240  
20480  
49152  
98304  
196608  
393216  
786432  
1536  
48568 ± 8  
107434 ± 10  
205738 ± 10  
402346 ± 10  
795562 ± 10  
1581994 ± 10  
2966 ± 10  
15274 ± 10  
21418 ± 10  
33706 ± 10  
58282 ± 10  
3072  
6144  
12288  
24576  
24  
DS742F3  
CS5530  
2.6 Using Multiple ADCs Synchronously  
CS5530  
SDO  
Some applications require synchronous data out-  
puts from multiple ADCs converting different ana-  
log channels. Multiple CS5530 devices can be  
synchronized in a single system by using the fol-  
lowing guidelines:  
SDI  
SCLK  
CS  
OSC2  
μC  
1) All of the ADCs in the system must be operated  
from the same oscillator source.  
CS5530  
SDO  
SDI  
SCLK  
CS  
2) All of the ADCs in the system must share com-  
mon SCLK and SDI lines.  
OSC2  
3) A software reset must be performed at the same  
time for all of the ADCs after system power-up (by  
selecting all of the ADCs using their respective CS  
pins, and writing the reset sequence to all parts, us-  
ing SDI and SCLK).  
CLOCK  
SOURCE  
Figure 12. Synchronizing Multiple ADCs  
The CS5530 output data conversions in binary for-  
mat when operating in unipolar mode and in two's  
complement when operating in bipolar mode. Ta-  
ble 3 shows the code mapping for both unipolar and  
bipolar modes. VFS in the tables refers to the posi-  
tive full-scale voltage range of the converter in the  
specified gain range, and -VFS refers to the nega-  
tive full-scale voltage range of the converter. The  
total differential input range (between AIN+ and  
AIN-) is from 0 to VFS in unipolar mode, and from  
-VFS to VFS in bipolar mode.  
4) A start conversion command must be sent to all  
of the ADCs in the system at the same time. The ±  
8 clock cycles of ambiguity for the first conversion  
(or for a single conversion) will be the same for all  
ADCs, provided that they were all reset at the same  
time.  
5) Conversions can be obtained by monitoring  
SDO on only one ADC, (bring CS high for all but  
one part) and reading the data out of each part indi-  
vidually, before the next conversion data words are  
ready.  
Table 3. Output Coding  
An example of a synchronous system using two  
CS5530 devices is shown in Figure 12.  
Unipolar Input Offset  
Voltage Binary  
Bipolar Input  
Voltage  
Two's  
Complement  
>(VFS-1.5 LSB) FFFFFF >(VFS-1.5 LSB)  
7FFFFF  
2.7 Conversion Output Coding  
VFS-1.5 LSB FFFFFF  
7FFFFF  
------  
7FFFFE  
The CS5530 outputs 24-bit data conversion words.  
To read a conversion word the user must read the  
conversion data register. The conversion data reg-  
ister is 32 bits long and outputs the conversions  
MSB first. The last byte of the conversion data reg-  
ister contains an overflow flag bit. The overrange  
flag (OF) monitors to determine if a valid conver-  
sion was performed.  
------  
FFFFFE  
VFS-1.5 LSB  
-0.5 LSB  
VFS/2-0.5 LSB 800000  
000000  
------  
FFFFFF  
------  
7FFFFF  
+0.5 LSB  
000001  
------  
800001  
------  
800000  
-VFS+0.5 LSB  
000000  
<(+0.5 LSB)  
000000 <(-VFS+0.5 LSB)  
800000  
DS742F3  
25  
CS5530  
2.7.1 Conversion Data Output Descriptions  
CS5530 (24-BIT CONVERSIONS)  
D31(MSB) D30  
D29  
21  
D13  
5
D28  
20  
D12  
4
D27  
19  
D11  
3
D26  
18  
D10  
2
D25  
17  
D9  
1
D24  
16  
D8  
D23  
15  
D7  
0
D22  
14  
D6  
0
D21  
13  
D5  
0
D20  
12  
D4  
0
D19  
11  
D3  
0
D18  
10  
D2  
OF  
D17  
9
D1  
0
D16  
8
D0  
0
MSB  
D15  
7
22  
D14  
6
LSB  
Conversion Data Bits [31:8]  
These bits depict the latest output conversion.  
OF (Over-range Flag Bit) [2]  
0
1
Bit is clear when over-range condition has not occurred.  
Bit is set when input signal is more positive than the positive full-scale, more negative than zero (unipolar  
mode) or when the input is more negative than the negative full-scale (bipolar mode).  
Other Bits [7:3], [1:0]  
These bits are masked logic zero.  
26  
DS742F3  
CS5530  
2.8 Digital Filter  
The CS5530 has a linear phase digital filter which except for the 3200 Sps and 3840 Sps (MCLK =  
is programmed to achieve a range of output word 4.9152 MHz) rate. The Z-transforms of the two fil-  
3
rates (OWRs) as stated in the Configuration Regis-  
ter Description section. The ADC uses a Sinc dig-  
ters are shown in Figure 16. For the Sinc filter,  
“D” is the programmable decimation ratio, which is  
equal to 3840/OWR when FRS = 0 and 3200/OWR  
when FRS = 1.  
5
ital filter to output word rates at 3200 Sps and 3840  
Sps (MCLK = 4.9152 MHz). Other output word  
5
rates are achieved by using the Sinc filter followed  
The converter’s digital filters scale with MCLK.  
For example, with an output word rate of 120 Sps,  
the filter’s corner frequency is at 31 Hz. If MCLK  
is increased to 5.0 MHz, the OWR increases by  
1.0175 percent and the filter’s corner frequency  
moves to 31.54 Hz. Note that the converter is not  
specified to run at MCLK clock frequencies greater  
than 5 MHz.  
3
by a Sinc filter with a programmable decimation  
rate.Figure 13 shows the magnitude response of the  
60 Sps filter, while Figures 14 and 15 show the  
magnitude and phase response of the filter at 120  
3
Sps. The Sinc is active for all output word rates  
0
FRS = 0  
-40  
-80  
180  
90  
-120  
0
0
60  
120  
180  
240  
300  
-90  
-180  
Frequency (Hz)  
Figure 13. Digital Filter Response (Word Rate = 60 Sps)  
0
60  
90  
120  
30  
0
Frequency (Hz)  
Figure 15. 120 Sps Filter Phase Plot to 120 Hz  
Flatness  
Frequency  
dB  
2
-0.01  
-0.05  
-0.11  
-0.19  
-0.30  
-0.43  
-0.59  
-0.77  
-1.09  
-3.13  
-40  
-80  
4
6
8
5
3
2
3
(1 – z–80  
)
)
(1 – z–16  
)
(1 – z–4  
)
)
(1 – z–2  
)
10  
12  
14  
16  
19  
32  
Sinc5  
=
×
×
×
------------------------- ------------------------- ----------------------- -----------------------  
5
3
2
3
(1 – z–16  
(1 – z–4  
)
(1 – z–2  
(1 – z–1  
)
-120  
3
(1 – zD  
)
Sinc3 = ------------------------  
3
(1 – z–1  
)
0
40  
Frequency (Hz)  
Figure 14. 120 Sps Filter Magnitude Plot to 120 Hz  
80  
120  
3
Note:  
See the text regarding the Sinc filter’s  
decimation ratio “D”.  
Figure 16. Z-Transforms of Digital Filters  
DS742F3  
27  
CS5530  
2.9 Clock Generator  
The CS5530 includes an on-chip inverting amplifi- The CS5530 is designed to operate from single or  
er which can be connected with an external crystal dual analog supplies and a single digital supply.  
2.10 Power Supply Arrangements  
to provide the master clock for the chip. Figure 17 The following power supply connections are possi-  
illustrates the on-chip oscillator. It includes loading ble:  
capacitors and a feedback resistor to form a Pierce  
oscillator configuration. The chips are designed to  
operate using a 4.9152 MHz crystal; however, oth-  
VA+ = +5 V; VA- = 0 V; VD+ = +3 V to +5 V  
VA+ = +2.5 V; VA- = -2.5 V; VD+ = +3 V to +5 V  
er crystals with frequencies between 1 MHz to 5 VA+ = +3 V; VA- = -3 V; VD+ = +3 V  
MHz can be used. One lead of the crystal should be  
A VA+ supply of +2.5 V, +3.0 V, or +5.0 V should  
connected to OSC1 and the other to OSC2. Lead  
be maintained at ±5% tolerance. A VA- supply of  
lengths should be minimized to reduce stray capac-  
-2.5 V or -3.0 V should be maintained at ±5% tol-  
itance. Note that while using the on-chip oscillator,  
erance. VD+ can extend from +2.7 V to +5.5 V  
neither OSC1 or OSC2 is capable of directly driv-  
with the additional restriction that [(VD+) - (VA-)  
ing any off chip logic. When the on-chip oscillator  
< 7.5 V].  
is used, the voltage on OSC2 is typically 1/2 V  
Figure 18 illustrates the CS5530 connected with a  
peak-to-peak. This signal is not compatible with  
single +5.0 V supply to measure differential inputs  
external logic unless additional external circuitry is  
relative to a common mode of 2.5 V. Figure 19 il-  
added. The OSC2 output should be used if the on-  
lustrates the CS5530 connected with ±2.5 V bipolar  
chip oscillator output is used to drive other circuit-  
analog supplies and a +3 V to +5 V digital supply  
ry.  
to measure ground referenced bipolar signals. Fig-  
The designer can use an external CMOS compati-  
ures 20 illustrates the CS5532 connected with ±3 V  
ble oscillator to drive OSC2 with a 1 MHz to 5  
analog supplies and a +3 V digital supply to mea-  
MHz clock for the ADC. The external clock into  
sure ground referenced bipolar signals.  
OSC2 must overdrive the 60 microampere output  
of the on-chip amplifier. This will not harm the on-  
chip circuitry. In this scheme, OSC1 should be left  
unconnected.  
1 MΩ  
~
~60 μA  
VTH  
-
MCLK  
+
20 pF  
20 pF  
OSC2  
OSC1  
NOTE: 20 pF capacitors are on chip and  
should not be added externally.  
Figure 17. On-chip Oscillator Model  
28  
DS742F3  
CS5530  
Ω
10  
+5 V  
Analog  
Supply  
0.1 µF  
0.1 µF  
5
15  
VD+  
VA+  
Optional  
Clock  
Source  
9
OSC2  
18  
VREF+  
17  
3
VREF-  
C1  
4.9152 MHz  
10  
OSC1  
22 nF  
-
+
CS5530  
4
C2  
14  
13  
CS  
SDI  
1
2
20  
AIN1+  
AIN1-  
NC  
NC  
A0  
Serial  
Data  
Interface  
12  
11  
SDO  
SCLK  
19  
7
8
A1  
VA -  
DGND  
16  
6
Figure 18. CS5530 Configured with a Single +5 V Supply  
+2.5 V  
Analog  
Supply  
+3 V ~ +5 V  
Digital  
0.1 µF  
18  
0.1 µF  
Supply  
5
15  
VD+  
VA+  
Optional  
Clock  
Source  
9
1
OSC2  
VREF+  
17  
3
VREF-  
C1  
4.9152 MHz  
0
OSC1  
22 nF  
-
+
CS5530  
4
C2  
14  
13  
CS  
SDI  
1
2
20  
AIN1+  
AIN1-  
NC  
NC  
A0  
Serial  
Data  
Interface  
12  
11  
SDO  
SCLK  
19  
7
8
A1  
VA -  
DGND  
16  
6
-2.5 V  
Analog  
Supply  
Figure 19. CS5530 Configured with ±2.5 V Analog Supplies  
DS742F3  
29  
CS5530  
Ω
10  
+3 V  
Analog  
Supply  
0.1 µF  
0.1 µF  
5
15  
VD+  
VA+  
Optional  
Clock  
9
18  
OSC2  
VREF+  
Source  
4.9152 MHz  
17  
3
VREF-  
C1  
10  
OSC1  
22 nF  
-
+
CS5530  
4
C2  
14  
13  
CS  
SDI  
1
2
20  
AIN1+  
AIN1-  
NC  
NC  
A0  
Serial  
Data  
Interface  
12  
11  
SDO  
SCLK  
19  
7
8
A1  
VA -  
DGND  
16  
6
-3 V  
Analog  
Supply  
Figure 20. CS5530 Configured with ±3 V Analog Supplies  
30  
DS742F3  
CS5530  
2.11 Getting Started  
This A/D converter has several features. From a  
Sequence). After the converter is properly reset,  
software programmer’s prospective, what should the configuration register bits should be configured  
be done first? To begin, a 4.9152 MHz or 4.096 as appropriate, for example, the voltage reference  
MHz crystal takes approximately 20 ms to start. To selection, word rate, signal polarity(unipolar or bi-  
accommodate for this, it is recommended that a polar) should be configured.  
software delay of approximately 20 ms be inserted  
Calibrations or conversions can then be performed  
before the start of the processor’s ADC initializa-  
as appropriate.  
tion code. Next, since the CS5530 does not provide  
2.12 PCB Layout  
a power-on-reset function, the user must first ini-  
tialize the ADC to a known state. This is accom-  
plished by resetting the ADC’s serial port with the  
Serial Port Initialization sequence. This sequence  
resets the serial port to the command mode and is  
accomplished by transmitting 15 SYNC1 com-  
mand bytes (0xFF hexadecimal), followed by one  
SYNC0 command (0xFE hexadecimal). Once the  
serial port of the ADC is in the command mode, the  
user must reset all the internal logic by performing  
a system reset sequence (see 2.3.2 System Reset  
For optimal performance, the CS5530 should be  
placed entirely over an analog ground plane. All  
grounded pins on the ADC, including the DGND  
pin, should be connected to the analog ground  
plane that runs beneath the chip. In a split-plane  
system, place the analog-digital plane split imme-  
diately adjacent to the digital portion of the chip.  
DS742F3  
31  
CS5530  
3. PIN DESCRIPTIONS  
1
2
3
4
5
6
7
8
9
10  
20  
19  
18  
17  
16  
15  
14  
13  
12  
11  
DIFFERENTIAL ANALOG INPUT  
DIFFERENTIAL ANALOG INPUT  
AMPLIFIER CAPACITOR CONNECT  
AMPLIFIER CAPACITOR CONNECT  
POSITIVE ANALOG POWER  
AIN1+  
AIN1-  
C1  
NC  
NC  
CS5530  
VREF+  
VREF-  
DGND  
VD+  
VOLTAGE REFERENCE INPUT  
C2  
VOLTAGE REFERENCE INPUT  
DIGITAL GROUND  
VA+  
VA-  
POSITIVE DIGITAL POWER  
NEGATIVE ANALOG POWER  
LOGIC OUTPUT (ANALOG)  
A0  
CS  
CHIP SELECT  
LOGIC OUTPUT (ANALOG)  
MASTER CLOCK  
A1  
SDI  
SERIAL DATA INPUT  
SERIAL DATA OUT  
OSC2  
SDO  
SCLK  
MASTER CLOCK  
OSC1  
SERIAL CLOCK INPUT  
Clock Generator  
OSC1; OSC2 – Master Clock  
An inverting amplifier inside the chip is connected between these pins and can be used with a  
crystal to provide the master clock for the device. Alternatively, an external (CMOS compatible)  
clock (powered relative to VD+) can be supplied into the OSC2 pin to provide the master clock  
for the device.  
Control Pins and Serial Data I/O  
CS – Chip Select  
When active low, the port will recognize SCLK. When high the SDO pin will output a high  
impedance state. CS should be changed when SCLK = 0.  
SDI – Serial Data Input  
SDI is the input pin of the serial input port. Data will be input at a rate determined by SCLK.  
SDO – Serial Data Output  
SDO is the serial data output. It will output a high impedance state if CS = 1.  
SCLK – Serial Clock Input  
A clock signal on this pin determines the input/output rate of the data for the SDI/SDO pins  
respectively. This input is a Schmitt trigger to allow for slow rise time signals. The SCLK pin  
will recognize clocks only when CS is low.  
A0 – Logic Output (Analog), A1 – Logic Output (Analog)  
The logic states of A1-A0 mimic the A1-A0 bits in the Configuration Register. Logic  
Output 0 = VA-, and Logic Output 1 = VA+.  
32  
DS742F3  
CS5530  
Measurement and Reference Inputs  
AIN1+, AIN1- – Differential Analog Input  
Differential input pins into the device.  
VREF+, VREF- – Voltage Reference Input  
Fully differential inputs which establish the voltage reference for the on-chip modulator.  
C1, C2 – Amplifier Capacitor Inputs  
Connections for the instrumentation amplifier’s capacitor.  
Power Supply Connections  
VA+ – Positive Analog Power  
Positive analog supply voltage.  
VD+ – Positive Digital Power  
Positive digital supply voltage (nominally +3.0 V or +5 V).  
VA- – Negative Analog Power  
Negative analog supply voltage.  
DGND – Digital Ground  
Digital Ground.  
4. SPECIFICATION DEFINITIONS  
Linearity Error  
The deviation of a code from a straight line which connects the two endpoints of the ADC  
transfer function. One endpoint is located 1/2 LSB below the first code transition and the other  
endpoint is located 1/2 LSB beyond the code transition to all ones. Units in percent of full-  
scale.  
Differential Nonlinearity  
The deviation of a code's width from the ideal width. Units in LSBs.  
Full-scale Error  
The deviation of the last code transition from the ideal [{(VREF+) - (VREF-)} - 3/2 LSB]. Units  
are in LSBs.  
Unipolar Offset  
The deviation of the first code transition from the ideal (1/2 LSB above the voltage on the AIN-  
pin.). When in unipolar mode (U/B bit = 1). Units are in LSBs.  
Bipolar Offset  
The deviation of the mid-scale transition (111...111 to 000...000) from the ideal (1/2 LSB below  
the voltage on the AIN- pin). When in bipolar mode (U/B bit = 0). Units are in LSBs.  
DS742F3  
33  
CS5530  
5. PACKAGE DRAWINGS  
20 PIN SSOP PACKAGE DRAWING  
N
D
E11  
A2  
A
E
A1  
b2  
SIDE VIEW  
e
L
END VIEW  
SEATING  
PLANE  
1
2 3  
TOP VIEW  
NOTE  
INCHES  
MILLIMETERS  
MIN MAX  
DIM  
MIN  
MAX  
A
A1  
A2  
b
D
E
E1  
e
L
--  
0.084  
0.010  
0.074  
0.015  
0.295  
0.323  
0.220  
0.027  
0.040  
8°  
--  
2.13  
0.25  
1.88  
0.38  
7.50  
8.20  
5.60  
0.69  
1.03  
8°  
0.002  
0.064  
0.009  
0.272  
0.291  
0.197  
0.024  
0.025  
0°  
0.05  
1.62  
0.22  
6.90  
7.40  
5.00  
0.61  
0.63  
0°  
2,3  
1
1
Notes: 1. “D” and “E1” are reference datums and do not included mold flash or protrusions, but do include mold  
mismatch and are measured at the parting line, mold flash or protrusions shall not exceed 0.20 mm per  
side.  
2. Dimension “b” does not include dambar protrusion/intrusion. Allowable dambar protrusion shall be  
0.13 mm total in excess of “b” dimension at maximum material condition. Dambar intrusion shall not  
reduce dimension “b” by more than 0.07 mm at least material condition.  
3. These dimensions apply to the flat section of the lead between 0.10 and 0.25 mm from lead tips.  
34  
DS742F3  
CS5530  
6. ORDERING INFORMATION  
Model Number  
CS5530-IS  
Bits  
24  
Channels Linearity Error (Max) Temperature Range  
Package  
1
1
0.003%  
0.003%  
-40°C to +85°C  
-40°C to +85°C  
20-pin 0.2" Plastic SSOP  
CS5530-ISZ  
24  
20-pin 0.2" Plastic SSOP, Lead Free  
7. ENVIRONMENTAL, MANUFACTURING, & HANDLING INFORMATION  
Model Number  
CS5530-IS  
Peak Reflow Temp  
240 °C  
MSL Rating  
Max Floor Life  
365 Days  
2
3
CS5530-ISZ  
260 °C  
7 Days  
DS742F3  
35  
CS5530  
Revision History  
REVISION  
DATE  
CHANGES  
A1  
A2  
A3  
A4  
F1  
F2  
F3  
OCT 2006  
NOV 2006  
NOV 2006  
NOV 2006  
JAN 2007  
MAY 2009  
NOV 2009  
Advance Release  
Updated power consumption values.  
Updated noise density plot.  
Updated temperature range specification.  
Corrected input current on p1 to 1200 pA. Changed temp range to -40 to +85.  
Increased input current noise spec. to 1.0 pA / Hz.  
Minor correction to Figure 4. Input Model for AIN+ and AIN- Pins (page 11).  
Contacting Cirrus Logic Support  
For all product questions and inquiries contact a Cirrus Logic Sales Representative.  
To find the one nearest to you go to www.cirrus.com  
IMPORTANT NOTICE  
Cirrus Logic, Inc. and its subsidiaries (“Cirrus”) believe that the information contained in this document is accurate and reliable. However, the information is subject  
to change without notice and is provided “AS IS” without warranty of any kind (express or implied). Customers are advised to obtain the latest version of relevant  
information to verify, before placing orders, that information being relied on is current and complete. All products are sold subject to the terms and conditions of sale  
supplied at the time of order acknowledgment, including those pertaining to warranty, indemnification, and limitation of liability. No responsibility is assumed by Cirrus  
for the use of this information, including use of this information as the basis for manufacture or sale of any items, or for infringement of patents or other rights of third  
parties. This document is the property of Cirrus and by furnishing this information, Cirrus grants no license, express or implied under any patents, mask work rights,  
copyrights, trademarks, trade secrets or other intellectual property rights. Cirrus owns the copyrights associated with the information contained herein and gives  
consent for copies to be made of the information only for use within your organization with respect to Cirrus integrated circuits or other products of Cirrus. This  
consent does not extend to other copying such as copying for general distribution, advertising or promotional purposes, or for creating any work for resale.  
CERTAIN APPLICATIONS USING SEMICONDUCTOR PRODUCTS MAY INVOLVE POTENTIAL RISKS OF DEATH, PERSONAL INJURY, OR SEVERE PROP-  
ERTY OR ENVIRONMENTAL DAMAGE (“CRITICAL APPLICATIONS”). CIRRUS PRODUCTS ARE NOT DESIGNED, AUTHORIZED OR WARRANTED FOR USE  
IN PRODUCTS SURGICALLY IMPLANTED INTO THE BODY, AUTOMOTIVE SAFETY OR SECURITY DEVICES, LIFE SUPPORT PRODUCTS OR OTHER  
CRITICAL APPLICATIONS. INCLUSION OF CIRRUS PRODUCTS IN SUCH APPLICATIONS IS UNDERSTOOD TO BE FULLY AT THE CUSTOMER'S RISK  
AND CIRRUS DISCLAIMS AND MAKES NO WARRANTY, EXPRESS, STATUTORY OR IMPLIED, INCLUDING THE IMPLIED WARRANTIES OF MERCHANT-  
ABILITY AND FITNESS FOR PARTICULAR PURPOSE, WITH REGARD TO ANY CIRRUS PRODUCT THAT IS USED IN SUCH A MANNER. IF THE CUSTOMER  
OR CUSTOMER'S CUSTOMER USES OR PERMITS THE USE OF CIRRUS PRODUCTS IN CRITICAL APPLICATIONS, CUSTOMER AGREES, BY SUCH USE,  
TO FULLY INDEMNIFY CIRRUS, ITS OFFICERS, DIRECTORS, EMPLOYEES, DISTRIBUTORS AND OTHER AGENTS FROM ANY AND ALL LIABILITY, IN-  
CLUDING ATTORNEYS' FEES AND COSTS, THAT MAY RESULT FROM OR ARISE IN CONNECTION WITH THESE USES.  
Cirrus Logic, Cirrus, and the Cirrus Logic logo designs are trademarks of Cirrus Logic, Inc. All other brand and product names in this document may be trademarks  
or service marks of their respective owners.  
SPI is a trademark of Motorola, Inc.  
Microwire is a trademark of National Semiconductor Corporation.  
36  
DS742F3  

相关型号:

CS5530A

AMD Geode CS5530A Companion Device
AMD

CS5530A

Geode CS5530A I/O Companion Multi-Function South Bridge
NSC

CS5530A-UCE

AMD Geode CS5530A Companion Device
AMD

CS5530_0911

24-bit ADC with Ultra-low-noise Amplifier
CIRRUS

CS5531

16 BIT AND 24 BIT ADCS WITH ULTRA LOW NOISE PGIA
CIRRUS

CS5531-AS

16 BIT AND 24 BIT ADCS WITH ULTRA LOW NOISE PGIA
CIRRUS

CS5531-AS-R

暂无描述
CIRRUS

CS5531-ASZ

16-bit and 24-bit ADCs with Ultra-low-noise PGIA
CIRRUS

CS5531-ASZ-R

ADC, Delta-Sigma, 16-Bit, 1 Func, 2 Channel, Serial Access, PDSO20, 0.200 INCH, LEAD FREE, PLASTIC, SSOP-20
CIRRUS

CS5531_08

16-bit and 24-bit ADCs with Ultra-low-noise PGIA
CIRRUS

CS5532

16 BIT AND 24 BIT ADCS WITH ULTRA LOW NOISE PGIA
CIRRUS

CS5532-AS

16 BIT AND 24 BIT ADCS WITH ULTRA LOW NOISE PGIA
CIRRUS