WM8742 [CIRRUS]

24-bit 192 kHz DAC;
WM8742
型号: WM8742
厂家: CIRRUS LOGIC    CIRRUS LOGIC
描述:

24-bit 192 kHz DAC

文件: 总66页 (文件大小:2054K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
WM8742  
24-bit 192 kHz DAC with Advanced Digital Filtering  
DESCRIPTION  
FEATURES  
Advanced Ultra High Performance Multi-bit Sigma-Delta  
Architecture  
The WM8742 is a very high performance stereo DAC  
designed for audio applications such as professional  
recording systems, A/V receivers and high specification CD,  
DVD and home theatre systems. The device supports PCM  
data input word lengths from 16 to 32-bits and sampling  
rates up to 192kHz. The WM8742 also supports DSD bit-  
stream data format, in both direct DSD and PCM-converted  
DSD modes.  
126dB SNR (‘A’-weighted mono @ 48kHz)  
123dB SNR (‘A’-weighted stereo @ 48kHz)  
121dB SNR (non-weighted stereo @ 48kHz)  
-100dB THD @ 48kHz  
Differential analogue voltage outputs  
High tolerance to clock jitter  
PCM Mode  
The WM8742 includes fine resolution volume and soft mute  
control, digital de-emphasis and a range of advanced digital  
filter responses, followed by a digital interpolation filter,  
multi-bit sigma delta modulator and stereo DAC. The  
architecture optimises the linearity of the DAC and provides  
maximum insensitivity to clock jitter.  
Sampling frequency: 32kHz to 192kHz  
Input data word length support: 16 to 32-bit  
Supports all standard audio interface formats  
Selectable advanced digital filter responses  
Includes linear/minimum phase and range of  
tailored characteristics  
Enables low pre-ringing, minimal latency  
The digital filters include several selectable roll-off and  
performance characteristics. The user can select between  
standard sharp or slow roll-off responses. In addition, the  
WM8742 includes a selection of advanced digital filter  
characteristics including non-half band filters and minimum  
phase filters.  
Optional interface to industry standard external filters  
Digital volume control in 0.125dB steps with soft ramp  
and soft mute  
Anti-clipping mode to prevent distortion even with input  
signals recorded up to 0dB  
Selectable de-emphasis support  
Zero Flag output  
This flexibility provides  
a range of benefits, such as  
significantly reduced pre-ringing and minimal group delay.  
The internal digital filters can also be by-passed and the  
WM8742 used with an external digital filter.  
DSD Mode  
DSD bit-stream support for SACD applications  
Support for normal or phase modulated bit-streams  
Direct or PCM converted DSD paths (DSD Plus)  
DSD mute  
The WM8742 supports two connection schemes for audio  
DAC control. The 2/3 wire serial control interface provides  
access to all features. A range of features can also be  
accessed by hardware control interface.  
Hardware or software control modes:  
2 and 3 wire serial control interface support  
Pin compatible with WM8740 and WM8741  
The WM8742 is available in  
package, and is pin compatible with the WM8740 and  
WM8741.  
a convenient 28-SSOP  
4.5V to 5.5V analogue, 3.15V to 3.6V digital supply  
operation  
28-lead SSOP Package  
APPLICATIONS  
Professional audio systems  
CD, DVD, SACD audio  
Home theatre systems  
A/V receivers  
Rev 4.4  
JAN 2020  
Copyright Cirrus Logic, Inc., 20092020  
http://www.cirrus.com  
(All Rights Reserved)  
 
 
 
WM8742  
BLOCK DIAGRAM  
CONTROL INTERFACE  
PCM  
ATTENUATION /  
MUT E  
SIGMA DELTA  
MO DULATOR  
VMIDL  
PCM  
PCM DIGIT AL FILT ERS  
BCLK/DSD64CLK  
FSEL/DINR  
PCM  
ATTENUATION /  
MUT E  
SIGMA DELTA  
MO DULATOR  
VOUTLP  
DAC  
LEFT  
AUDIO  
INTERFACE  
DIN/DINL  
LRCLK/DSDL  
IW O/DOUT  
OSR/DSDR  
VOUTLN  
DSD  
ATTENUATION /  
MUT E  
DSD TO PCM  
CONVERTOR  
VOUTRP  
VOUTRN  
DAC  
RIGHT  
DSD  
VMIDR  
WM8742  
2
Rev 4.4  
 
WM8742  
TABLE OF CONTENTS  
DESCRIPTION................................................................................................................ 1  
FEATURES..................................................................................................................... 1  
APPLICATIONS.............................................................................................................. 1  
BLOCK DIAGRAM ......................................................................................................... 2  
TABLE OF CONTENTS.................................................................................................. 3  
PIN CONFIGURATION................................................................................................... 4  
ORDERING INFORMATION........................................................................................... 4  
PIN DESCRIPTION (SOFTWARE CONTROL MODE)................................................... 5  
PIN DESCRIPTION (HARDWARE CONTROL MODE).................................................. 7  
ABSOLUTE MAXIMUM RATINGS................................................................................. 9  
THERMAL PERFORMANCE.......................................................................................... 9  
RECOMMENDED OPERATING CONDITIONS............................................................ 10  
ELECTRICAL CHARACTERISTICS ............................................................................ 10  
MASTER CLOCK TIMING.......................................................................................................11  
PCM DIGITAL AUDIO INTERFACE TIMING...........................................................................12  
DSD AUDIO INTERFACE TIMING..........................................................................................13  
CONTROL INTERFACE TIMING 3-WIRE MODE................................................................14  
CONTROL INTERFACE TIMING 2-WIRE MODE................................................................15  
INTERNAL POWER ON RESET CIRCUIT..............................................................................16  
DEVICE DESCRIPTION ............................................................................................... 18  
INTRODUCTION .....................................................................................................................18  
CLOCKING SCHEMES ...........................................................................................................18  
CONTROL INTERFACE..........................................................................................................18  
SOFTWARE CONTROL INTERFACE.....................................................................................19  
DIGITAL AUDIO INTERFACE.................................................................................................21  
DSD MODE .............................................................................................................................27  
SOFTWARE CONTROL MODE..............................................................................................29  
HARDWARE CONTROL MODE..............................................................................................40  
OVERVIEW OF FUNCTIONS....................................................................................... 44  
REGISTER MAP........................................................................................................... 45  
DIGITAL FILTER CHARACTERISTICS ....................................................................... 50  
PCM MODE FILTER CHARACTERISTICS.............................................................................50  
8FS MODE FILTER CHARACTERISTICS ..............................................................................52  
DSD PLUS MODE FILTER CHARACTERISTICS...................................................................53  
PCM MODE FILTER RESPONSE...........................................................................................54  
8FS MODE FILTER RESPONSE............................................................................................59  
DSD PLUS MODE FILTER RESPONSE.................................................................................59  
DSD DIRECT MODE FILTER RESPONSE.............................................................................60  
DE-EMPHASIS FILTER RESPONSE......................................................................................62  
APPLICATIONS INFORMATION ................................................................................. 63  
PACKAGE DIMENSIONS............................................................................................. 64  
IMPORTANT NOTICE .................................................................................................. 65  
REVISION HISTORY .................................................................................................... 66  
Rev 4.4  
3
 
WM8742  
PIN CONFIGURATION  
LRCLK/DSDL  
DIN/DINL  
BCLK/DSD64CLK  
FSEL/DINR  
MCLK  
CSB/SADDR/I2S  
SCLK/DSD  
SDIN/DEEMPH  
MUTEB/SDOUT  
MODE/LRSEL  
IWO/DOUT  
OSR/DSDR  
ZFLAG  
1
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
15  
2
3
4
5
DIFFHW  
DGND  
6
7
DVDD  
8
AVDDR  
AVDDL  
9
AGNDR  
AGNDL  
10  
VMIDR  
VMIDL  
11  
12  
13  
14  
VOUTRP  
VOUTRN  
AGND  
VOUTLP  
VOUTLN  
AVDD  
ORDERING INFORMATION  
PEAK SOLDERING  
TEMPERATURE  
TEMPERATURE  
DEVICE  
RANGE  
PACKAGE  
28-lead SSOP  
(Pb-free)  
WM8742GEDS/V  
WM8742GEDS/RV  
-0to +70C  
-0to +70C  
260˚C  
260˚C  
28-lead SSOP  
(Pb-free, tape and reel)  
Note:  
Reel Quantity = 2,000  
4
Rev 4.4  
WM8742  
PIN DESCRIPTION (SOFTWARE CONTROL MODE)  
PIN  
NAME  
TYPE  
DESCRIPTION  
PCM MODE  
8FS PCM MODE  
DSD MODES  
Audio interface left/right  
clock input  
Audio interface left/right  
clock input  
DSD left audio data in  
1
2
3
4
LRCLK /  
DSDL  
Digital input  
Digital input  
Digital input  
Audio interface data input Audio interface left data  
input  
Unused  
DIN /  
DINL  
Audio interface bit clock  
input  
Audio interface bit clock  
input  
64fs system clock input  
Unused  
BCLK /  
DSD64CLK  
FSEL /  
DINR  
Unused  
Audio interface right data  
input  
Digital input  
Tri-level  
Master clock input  
Master clock input  
Unused  
5
6
MCLK  
Digital input  
Differential mono mode  
selection  
Differential mono mode  
selection  
Differential mono mode  
selection  
DIFFHW  
Digital input  
Internal pull-  
down  
0 = normal operation  
0 = normal operation  
0 = normal operation  
1 = differential mono  
mode  
1 = differential mono  
mode  
1 = differential mono  
mode  
Digital ground  
Digital ground  
Digital ground  
7
8
DGND  
DVDD  
Supply  
Supply  
Digital supply  
Digital supply  
Digital supply  
Right analogue positive  
reference  
Right analogue positive  
reference  
Right analogue positive  
reference  
9
AVDDR  
AGNDR  
VMIDR  
Analogue Input  
Analogue Input  
Right analogue negative  
reference  
Right analogue negative  
reference  
Right analogue negative  
reference  
10  
11  
Right analogue midrail  
decoupling pin  
Right analogue midrail  
decoupling pin  
Right analogue midrail  
decoupling pin  
Analogue  
Output  
Right DAC positive  
output  
Right DAC positive  
output  
Right DAC positive  
output  
12  
13  
VOUTRP  
VOUTRN  
Analogue  
Output  
Right DAC negative  
output  
Right DAC negative  
output  
Right DAC negative  
output  
Analogue  
Output  
Analogue ground  
Analogue ground  
Analogue ground  
14  
15  
16  
AGND  
AVDD  
Supply  
Analogue supply  
Analogue supply  
Analogue supply  
Supply  
Left DAC negative output  
Left DAC negative output  
Left DAC negative output  
VOUTLN  
Analogue  
Output  
Left DAC positive output  
Left DAC positive output  
Left DAC positive output  
17  
18  
VOUTLP  
VMIDL  
Analogue  
Output  
Left analogue midrail  
decoupling pin  
Left analogue midrail  
decoupling pin  
Left analogue midrail  
decoupling pin  
Analogue  
Output  
Left analogue negative  
reference  
Left analogue negative  
reference  
Left analogue negative  
reference  
19  
20  
21  
22  
AGNDL  
AVDDL  
Analogue Input  
Left analogue positive  
reference  
Left analogue positive  
reference  
Left analogue positive  
reference  
Analogue Input  
Digital Output  
Zero flag output  
Zero flag output  
Zero flag output  
ZFLAG  
Unused  
Unused  
DSD right audio data in  
OSR/DSDR  
Digital input  
Tri-level  
Buffered audio interface  
data output  
Unused  
Unused  
23  
IWO /  
Digital  
input/output  
DOUT  
Rev 4.4  
5
WM8742  
PIN  
NAME  
TYPE  
DESCRIPTION  
PCM MODE  
8FS PCM MODE  
DSD MODES  
When DIFFHW=0:  
0 = hardware mode  
When DIFFHW=0:  
0 = hardware mode  
When DIFFHW=0:  
0 = hardware mode  
24  
MODE /  
LRSEL  
Digital input,  
tri-level  
1 = 3-wire software mode 1 = 3-wire software mode 1 = 3-wire software mode  
Z = 2-wire software mode Z = 2-wire software mode Z = 2-wire software mode  
When DIFFHW=1:  
0 = left channel mono  
1 = right channel mono  
Softmute Control  
When DIFFHW=1:  
0 = left channel mono  
1 = right channel mono  
Softmute Control  
When DIFFHW=1:  
0 = left channel mono  
1 = right channel mono  
Softute Control  
25  
MUTEB /  
SDOUT  
Digital input or  
output:  
0 = mute active  
0 = mute active  
0 = mute active  
Internal pull-up  
1 = normal operation  
1 = normal operation  
1 = normal operation  
NOTE: In 3-wire mode  
only, this pin may be  
used as a buffered  
control interface data  
output  
NOTE: In DSD Direct  
mode this is an analogue  
mute  
Serial control interface  
data input  
Serial control interface  
data input  
Serial control interface  
data input  
26  
27  
28  
SDIN /  
DEEMPH  
SCLK /  
DSD  
Digital input  
Tri-level  
Serial control interface  
clock input  
Serial control interface  
clock input  
Serial control interface  
clock input  
Digital input  
3-wire mode: serial  
3-wire mode: serial  
3-wire mode: serial  
CSB /  
Digital input  
control interface latch  
control interface latch  
control interface latch  
SADDR /  
I2S  
2-wire mode: device  
address select  
2-wire mode: device  
address select  
2-wire mode: device  
address select  
Notes:  
1. Undefined inputs should be connected to DVDD or DGND  
2. Tri-level pins which require the ‘Z’ state to be selected should be left floating (open)  
6
Rev 4.4  
WM8742  
PIN DESCRIPTION (HARDWARE CONTROL MODE)  
PIN  
NAME  
TYPE  
DESCRIPTION  
PCM MODE  
DSD DIRECT MODE  
Audio interface left/right clock input  
Audio interface data input  
DSD left audio data in  
1
2
3
4
LRCLK /  
DSDL  
Digital input  
Digital input  
Digital input  
Unused  
DIN /  
DINL  
Audio interface bit clock input  
64fs system clock input  
Unused  
BCLK /  
DSD64CLK  
FSEL /  
DINR  
Selects between one of three digital  
filters see Table 50  
Digital input  
Tri-level  
Master clock input  
Unused  
5
6
MCLK  
Digital input  
Differential mono mode selection  
0 = normal operation  
Differential mono mode selection  
0 = normal operation  
DIFFHW  
Digital input  
Internal pull-  
down  
1 = differential mono mode  
Digital ground  
1 = differential mono mode  
Digital ground  
7
8
DGND  
DVDD  
Supply  
Digital supply  
Digital supply  
Supply  
Right analogue positive reference  
Right analogue negative reference  
Right analogue midrail decoupling pin  
Right analogue positive reference  
Right analogue negative reference  
Right analogue midrail decoupling pin  
9
AVDDR  
AGNDR  
VMIDR  
Analogue Input  
Analogue Input  
10  
11  
Analogue  
Output  
Right DAC positive output  
Right DAC negative output  
Right DAC positive output  
Right DAC negative output  
12  
13  
VOUTRP  
VOUTRN  
Analogue  
Output  
Analogue  
Output  
Analogue ground  
Analogue ground  
14  
15  
16  
AGND  
AVDD  
Supply  
Analogue supply  
Analogue supply  
Supply  
Left DAC negative output  
Left DAC negative output  
VOUTLN  
Analogue  
Output  
Left DAC positive output  
Left DAC positive output  
17  
18  
VOUTLP  
VMIDL  
Analogue  
Output  
Left analogue midrail decoupling pin  
Left analogue midrail decoupling pin  
Analogue  
Output  
Left analogue negative reference  
Left analogue positive reference  
Zero flag output  
Left analogue negative reference  
Left analogue positive reference  
Unused  
19  
20  
21  
22  
AGNDL  
AVDDL  
Analogue Input  
Analogue Input  
Digital Output  
ZFLAG  
Controls internal oversampling rate:  
0 = low rate  
DSD right audio data in  
OSR/DSDR  
Digital input  
Tri-level  
Z = medium rate  
1 = high rate  
Controls audio interface wordlength –  
Unused  
23  
IWO /  
Digital  
see Table 46  
input/output  
DOUT  
Rev 4.4  
7
WM8742  
PIN  
NAME  
TYPE  
DESCRIPTION  
PCM MODE  
When DIFFHW=0:  
DSD DIRECT MODE  
When DIFFHW=0:  
0 = hardware mode  
24  
MODE /  
LRSEL  
Digital input,  
tri-level  
0 = hardware mode  
1 = 3-wire software mode  
Z = 2-wire software mode  
When DIFFHW=1:  
1 = 3-wire software mode  
Z = 2-wire software mode  
When DIFFHW=1:  
0 = left channel mono  
1 = right channel mono  
Softmute Control  
0 = left channel mono  
1 = right channel mono  
Analogue Mute Control  
0 = mute active  
25  
26  
MUTEB /  
SDOUT  
Digital input or  
output:  
0 = mute active  
Internal pull-up  
1 = normal operation  
1 = normal operation  
De-emphasis Control  
0 = normal operation  
1 = de-emphasis applied  
Z = anti-clipping digital filter mode  
HW Mode Select:  
Unused  
SDIN /  
Digital input  
Tri-level  
DEEMPH  
HW Mode Select:  
0 = PCM  
27  
28  
SCLK /  
DSD  
Digital input  
Digital input  
0 = PCM  
1 = DSD Direct  
1 = DSD Direct  
Unused  
Controls audio interface format see  
Table 46  
CSB /  
SADDR /  
I2S  
Notes:  
1. Undefined inputs should be connected to DVDD or DGND  
2. Tri-level pins who require the ‘Z’ state to be selected should be left floating (open)  
8
Rev 4.4  
WM8742  
ABSOLUTE MAXIMUM RATINGS  
Absolute Maximum Ratings are stress ratings only. Permanent damage to the device may be caused by continuously operating at  
or beyond these limits. Device functional operating limits and guaranteed performance specifications are given under Electrical  
Characteristics at the test conditions specified.  
ESD Sensitive Device. This device is manufactured on a CMOS process. It is therefore generically susceptible  
to damage from excessive static voltages. Proper ESD precautions must be taken during handling and storage  
of this device.  
CONDITION  
MIN  
-0.3V  
MAX  
+4.5V  
Digital supply voltage, DVDD  
Analogue supply voltage, AVDD  
Voltage range digital inputs  
-0.3V  
+7V  
DGND - 0.3V  
AGND - 0.3V  
DVDD + 0.3V  
AVDD + 0.3V  
38.462MHz  
+70°C  
Voltage range analogue inputs  
Master Clock Frequency  
Operating temperature range, TA  
Storage temperature  
-0°C  
-65°C  
-55°C  
+150°C  
Ambient temperature (supplies applied)  
Pb free package body temperature (soldering 10 seconds)  
Pb free package body temperature (soldering 2 minutes)  
+125°C  
+260°C  
+183°C  
Notes:  
1. Analogue and digital grounds must always be within 0.3V of each other.  
THERMAL PERFORMANCE  
PARAMETER  
SYMBOL  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
Thermal resistance –  
θJC  
23.9  
°C/W  
junction to case  
Thermal resistance –  
θJA  
67.1  
°C/W  
junction to ambient  
Rev 4.4  
9
WM8742  
RECOMMENDED OPERATING CONDITIONS  
PARAMETER  
Digital supply range  
SYMBOL  
DVDD  
TEST CONDITIONS  
MIN  
3.15  
4.5  
TYP  
3.3  
5
MAX  
3.6  
UNIT  
V
Analogue supply range  
Ground  
AVDD  
5.5  
V
AGND, DGND  
0
V
Difference DGND to AGND  
Analogue operating current  
Digital operating current  
Analogue standby current  
-0.3  
0
+0.3  
V
IAVDD  
IDVDD  
AVDD = 5V  
DVDD = 3.3V  
AVDD = 5V  
55  
40  
45  
mA  
mA  
mA  
IAVDD (Standby)  
Clocks stopped  
DVDD = 3.3V  
Clocks stopped  
Digital standby current  
IDVDD (Standby)  
1.5  
mA  
ELECTRICAL CHARACTERISTICS  
TEST CONDITIONS  
AVDD = 5V, DVDD = 3.3V, AGND, DGND = 0V, TA = +25oC, 1kHz test signal, fs = 48kHz, MCLK = 512fs unless otherwise  
stated.  
PARAMETER  
SYMBOL  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
Digital Logic Levels  
Input LOW level  
VIL  
VIH  
0.3 x DVDD  
0.1 x DVDD  
V
V
V
V
Input HIGH level  
0.7 x DVDD  
0.9 x DVDD  
Output LOW level  
Output HIGH level  
DSD Input Characteristics  
DSD reference level  
VOL  
VOH  
IOL = 2mA  
IOH = 2mA  
DSD Direct or DSD Plus Mode  
0
dBDSD  
%
50  
DAC Performance  
Signal to Noise Ratio  
(Note 1)  
SNR  
A-weighted mono  
@ fs = 48kHz  
126  
123  
121  
118  
120  
125  
dB  
dB  
dB  
dB  
dB  
dB  
A-weighted stereo  
@ fs = 48kHz  
118  
A-weighted stereo  
@ fs = 96kHz  
A-weighted stereo  
@ fs = 192kHz  
Non-weighted stereo  
@ fs = 48kHz  
Dynamic Range  
(Note 2)  
DNR  
THD  
A=weighted,  
-60dB full scale input  
Mono 0dB @ fs = 48kHz  
Stereo 0dB @ fs = 48kHz  
Stereo 0dB @ fs = 96kHz  
Stereo 0dB @ fs = 192kHz  
1kHz  
Total Harmonic Distortion  
(Note 2)  
-100  
-100  
-100  
-100  
130  
0.1  
dB  
dB  
dB  
dB  
Channel Separation  
dB  
Channel Level Matching  
Channel Phase Deviation  
dB  
0.01  
-80  
Degree  
dB  
Power Supply Rejection  
Ratio  
PSRR  
100mVpp at 1kHz  
20Hz to 20kHz 100mVpp  
-67  
dB  
10  
Rev 4.4  
WM8742  
TEST CONDITIONS  
AVDD = 5V, DVDD = 3.3V, AGND, DGND = 0V, TA = +25oC, 1kHz test signal, fs = 48kHz, MCLK = 512fs unless otherwise  
stated.  
PARAMETER  
SYMBOL  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
Internal Analogue Filter  
Bandwidth  
-3dB  
474  
kHz  
dB  
Passband edge response  
Analogue Output Levels  
20kHz  
-0.0077  
PCM full scale differential  
output level  
VRMS  
VRMS  
VRMS  
kΩ  
Into 10kΩ load, 0dBFS input  
Into 10kΩ load, 0dBDSD input  
Into 10kΩ load, 0dBDSD input  
To midrail or AC coupled  
2
DSD Direct differential  
output level  
0.948  
0.991  
2
DSD Plus differential output  
level  
Minimum resistance load  
Maximum capacitance load  
Output DC level  
1
nF  
V
AVDD/2  
Reference Levels  
Potential divider resistance  
10  
kΩ  
AVDD to VMIDL/VMIDR and  
VMIDL/VMIDR to AGND  
Voltage at VMIDL/VMIDR  
AVDD/2  
V
Notes:  
1.  
Ratio of output level with 1kHz full scale input, to the output level with all zeros into the digital input, measured ‘A’ weighted  
over a 20Hz to 20kHz bandwidth.  
2. All performance measurements done with 20kHz low pass filter. Failure to use such a filter will result in higher THD and lower  
SNR and Dynamic Range readings than are found in the Electrical Characteristics. The low pass filter removes out of band  
noise; although it is not audible it may affect dynamic specification values.  
MASTER CLOCK TIMING  
tMCLKL  
VIH  
VIL  
MCLK  
tMCLKH  
tMCLKY  
Figure 1 Master Clock Timing Requirements  
Test Conditions  
AVDD = 5V, DVDD = 3.3V, AGND = 0V, DGND = 0V, TA = +25oC  
PARAMETER  
SYMBOL  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
Master Clock Timing Information  
MCLK Master clock pulse width high  
MCLK Master clock pulse width low  
MCLK Master clock cycle time  
MCLK Duty cycle  
tMCLKH  
tMCLKL  
tMCLKY  
10  
10  
ns  
ns  
ns  
27  
40:60  
60:40  
Table 1 MCLK Timing Requirements  
Rev 4.4  
11  
WM8742  
PCM DIGITAL AUDIO INTERFACE TIMING  
tBCH  
tBCL  
VIH  
VIL  
BCLK  
LRCLK  
DIN  
tBCY  
VIH  
VIL  
tLRSU  
tDS  
tLRH  
VIH  
VIL  
tDH  
Figure 2 Digital Audio Data Timing  
Test Conditions  
AVDD = 5V, DVDD = 3.3V, AGND = 0V, DGND = 0V, TA = +25oC, fs = 48kHz, MCLK = 256fs unless otherwise stated.  
PARAMETER  
SYMBOL  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
Audio Data Input Timing Information  
BCLK cycle time  
tBCY  
tBCH  
tBCL  
40  
16  
16  
8
ns  
ns  
ns  
ns  
BCLK pulse width high  
BCLK pulse width low  
LRCLK set-up time to BCLK  
rising edge  
tLRSU  
LRCLK hold time from  
BCLK rising edge  
tLRH  
tDS  
8
8
8
ns  
ns  
ns  
DIN set-up time to BCLK  
rising edge  
DIN hold time from BCLK  
rising edge  
tDH  
Table 2 Digital Audio Interface Timing Requirements  
12  
Rev 4.4  
WM8742  
DSD AUDIO INTERFACE TIMING  
tDH  
D[n-1]  
D[n]  
D[n+1]  
DSD[0:1]  
t64CY  
tDC  
t64L  
DSDCLK64  
t64H  
tDS  
Figure 3 DSD Audio Timing - Normal Mode  
D[n-1]  
D[n]  
D[n]  
D[n+1]  
DSD[0:1]  
t64CY  
tDC  
t64L  
DSDCLK64  
Figure 4 DSD Audio Timing - Phase Modulated Mode  
Test Conditions  
DVDD = 3.3V, GND = 0V, TA = +25oC, fs = 44.1kHz, DSDCLK64 = 64fs unless otherwise stated.  
PARAMETER  
SYMBOL  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
Audio Data Input Timing Information  
DSDCLK64 cycle time  
t64CY  
t64H  
t64L  
354.3  
ns  
ns  
ns  
ns  
DSDCLK64 pulse width high  
DSDCLK64 pulse width low  
140  
140  
20  
DSD[0:1] set-up time to  
DSDCLK64 rising edge  
tDSN  
DSD[0:1] hold time from  
DSDCLK64 rising edge  
tDHN  
tDC  
20  
ns  
ns  
Difference in edge timing of  
DSD[0:1] to DSDCLK64  
-10  
10  
Table 3 DSD Audio Interface Timing Requirements  
Rev 4.4  
13  
WM8742  
CONTROL INTERFACE TIMING 3-WIRE MODE  
tCSL  
tCSH  
VIH  
VIL  
CSB  
tSCY  
tSCL  
tCSS  
tSCH  
tSCS  
VIH  
VIL  
SCLK  
SDIN  
VIH  
VIL  
LSB  
tDSU  
tDHO  
Figure 5 Control Interface Timing - 3-Wire Serial Control Mode  
Test Conditions  
DVDD = 3.3V, GND = 0V, TA = +25oC, fs = 48kHz, MCLK = 256fs unless otherwise stated.  
PARAMETER  
SYMBOL  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
SCLK rising edge to LATCH  
rising edge  
tSCS  
40  
ns  
SCLK pulse cycle time  
SCLK pulse width low  
tSCY  
tSCL  
tSCH  
tDSU  
tDHO  
tCSL  
tCSH  
tCSS  
80  
32  
32  
20  
20  
20  
20  
20  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
SCLK pulse width high  
SDIN to SCLK set-up time  
SCLK to SDIN hold time  
LATCH pulse width low  
LATCH pulse width high  
LATCH rising to SCLK rising  
Table 4 Control Interface Timing 3-Wire Serial Control Mode  
14  
Rev 4.4  
WM8742  
CONTROL INTERFACE TIMING 2-WIRE MODE  
tRIS  
tFAL  
tCSS  
tDHO  
tSCH  
tSCL  
tCSE  
VIH  
VIL  
SCLK  
SDIN  
tHOL  
VIH  
VIL  
LSB  
tDSU  
Figure 6 Control Interface Timing - 2-Wire Serial Control Mode  
Test Conditions  
DVDD = 3.3V, DGND = 0V, TA = +25oC, Slave Mode, fs = 48kHz, MCLK = 256fs unless otherwise stated.  
PARAMETER  
SYMBOL  
MIN  
0
TYP  
MAX  
UNIT  
MHz  
ns  
SCLK Frequency  
5
SCLK Low Pulse-Width  
SCLK High Pulse-Width  
Hold Time (Start Condition)  
Setup Time (Start Condition)  
Data Setup Time  
tSCL  
tSCH  
tHOL  
tCSE  
tDSU  
tRIS  
80  
80  
us  
600  
600  
100  
ns  
ns  
ns  
SDIN, SCLK Rise Time  
SDIN, SCLK Fall Time  
Setup Time (Stop Condition)  
300  
300  
ns  
tFAL  
tCSS  
tDHO  
tPS  
ns  
600  
4
ns  
Data Hold Time  
900  
6
ns  
ns  
Max Pulse width of spikes that will be suppressed  
Table 5 Control Interface Timing 2-wire Serial Control Mode  
Rev 4.4  
15  
WM8742  
INTERNAL POWER ON RESET CIRCUIT  
The WM8742 includes two internal Power On Reset (POR) circuits which are used to reset the digital  
logic into a default state after power up and to allow the analogue circuits to power-up silently.  
The digital POR circuit is powered from DVDD. This circuit monitors DVDD and asserts the internal  
digital reset if DVDD are below the minimum DVDD threshold which will allow the digital logic to  
function.  
The analogue POR circuit is powered from AVDD. The circuit monitors AVDD, tri-stating the DAC  
outputs and isolating the internal reference resistor strings from AVDDL and AVDDR until there is  
sufficient AVDD voltage to allow the analogue DAC stages to function correctly.  
Vpor_hi  
AVDD  
Vpor_lo  
Vpord  
AGND  
VMIDL  
AGND  
HI  
INTERNAL  
ANALOGUE  
PORB  
LO  
POR  
Undefined  
Internal  
POR active  
No Power  
Device Ready  
Internal POR active  
Figure 7 AVDD Power up Sequence  
Test Conditions  
AVDD = 5V, AGND = 0V, TA = +25oC, TA_max = +125oC, TA_min = -25oC, AVDDmax = 5.5V, AVDDmin = 4.5V  
PARAMETER  
SYMBOL  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
Power Supply Input Timing Information  
AVDD level to POR rising  
edge (AVDD rising)  
Vpor_hi  
Vpor_lo  
Measured from AGND  
Measured from AGND  
2.00  
1.84  
V
V
AVDD level to POR falling  
edge (AVDD falling)  
Table 6 Analogue POR Timing  
16  
Rev 4.4  
 
WM8742  
Vpor_lo  
Vpor_hi  
DVDD  
DGND  
HI  
Vpord  
INTERNAL  
DIGITAL PORB  
LO  
No Power  
POR  
Undefined  
Internal  
POR active  
Internal POR active  
Device Ready  
Figure 8 DVDD Power up Sequence  
Test Conditions  
DVDD = 3.3V, DGND = 0V, TA = +25oC, TA_max = +125oC, TA_min = -25oC, DVDDmax = 3.6V, DVDDmin = 3.0V  
PARAMETER  
SYMBOL  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
Power Supply Input Timing Information  
DVDD level to POR rising  
edge (DVDD rising)  
Vpor_hi  
Vpor_lo  
Measured from DGND  
Measured from DGND  
1.86  
1.83  
V
V
DVDD level to POR falling  
edge (DVDD falling)  
Table 7 Digital POR Timing  
In a real application the designer is unlikely to have control of the relative power up sequence of  
AVDD and DVDD. The POR circuit ensures a reasonable delay between applying power to the  
device and Device Ready.  
Figure 7 and Figure 8 show typical power up scenarios in a real system. DVDD must be established  
before the device can be written to. Any writes to the device before device ready will be ignored.  
Note: DVDD must be established before the MCLK is started. This will ensure all synchronisation  
circuitry within the device is fully initialised and ready.  
AVDD must be established before the device will output any signal. Whilst the device will output  
signal as soon as the Internal Analogue PORB indicates device ready, normal operation is not  
possible until the VMID pin has reached the midrail voltage.  
Rev 4.4  
17  
 
WM8742  
DEVICE DESCRIPTION  
INTRODUCTION  
The WM8742 is an ultra high performance DAC designed for digital audio applications. Its range of  
features makes it ideally suited for use in professional recording environments, CD/DVD players, AV  
receivers and other high-end consumer audio equipment.  
The WM8742 is a complete differential stereo audio digital-to-analogue converter. The system  
includes a dithered digital interpolation filter, fine resolution volume control and digital de-emphasis,  
followed by a multi-bit sigma delta modulator and switched capacitor multi-bit stage with differential  
voltage outputs. The device supports both PCM and DSD digital audio input formats.  
The WM8742 includes a configurable digital audio interface support for a 3-wire and 2-wire serial  
control interface, and a hardware control interface. The software control interface may be  
asynchronous to the audio data interface; in which case control data will be re-synchronised to the  
audio processing internally. It is fully compatible with, and an ideal partner for, a range of industry  
standard microprocessors, controllers and DSPs.  
Uniquely, the WM8742 has a large range of high performance low latency advanced digital filters.  
The full range of filters is selectable in software mode, and a limited range of filters are available under  
hardware control. The filters allow users the flexibility to choose characteristics to match their group  
delay, phase and latency requirements.  
Operation using a master clock of 128fs, 192fs, 256fs, 384fs, 512fs or 768fs is supported. Sample  
rates (fs) from 32kHz to 192kHz are allowed, provided the appropriate master clock is input (see  
Table 11 for details).  
In normal PCM mode, the audio data interface supports right justified, left justified and I2S interface  
formats along with a highly flexible DSP serial port interface.  
There are two DSD modes. In DSD Direct mode, the datastream is subjected to the minimum  
possible processing steps between input and output. In DSD Plus mode, the datastream is converted  
to PCM and filtered to allow reduction of out of band components. This step also provides additional  
benefits in allowing access to other PCM features such as volume control and advanced digital  
filtering.  
The device is packaged in a small 28-lead SSOP.  
CLOCKING SCHEMES  
In a typical digital audio system there is only one central clock source producing a reference clock to  
which all audio data processing is synchronised. This clock is often referred to as the audio system’s  
Master Clock. The external master system clock can be applied directly through the MCLK input pin  
with no software configuration necessary for sample rate selection.  
MCLK is used to derive clocks for the DAC path in PCM mode. The DAC path consists of DAC  
sampling clock, DAC digital filter clock and DAC digital audio interface timing. In a system where  
there are a number of possible sources for the reference clock it is recommended that the clock  
source with the lowest jitter be used to optimise the performance of the DAC.  
CONTROL INTERFACE  
The WM8742 supports 2-wire and 3-wire serial control, and hardware control. Selection of control  
mode is made by controlling the state of the MODE pin.  
PIN  
NAME  
MODE/  
LRSEL  
DESCRIPTION  
24  
0 = Hardware control mode  
1 = 3-wire serial control mode  
Z = 2-wire serial control mode  
Table 8 Control Mode Configuration  
18  
Rev 4.4  
WM8742  
SOFTWARE CONTROL INTERFACE  
The software control interface may be operated using a 2-wire or 3-wire (SPI-compatible) serial  
interface. When operating under serial control, hardware configuration pins are ignored.  
Note: DIFFHW will override all other pins, forcing the device into hardware control mode and  
differential mono mode.  
3-WIRE (SPI COMPATIBLE) SERIAL CONTROL MODE  
Every rising edge of SCLK clocks in one bit of data on SDIN. A rising edge on CSB latches a  
complete control word consisting of 16 bits. The 3-wire interface protocol is shown in Figure 9.  
Figure 9 3-wire Serial Interface Protocol  
Notes:  
1. A[6:0] are Control Address Bits  
2. D[7:0] are Control Data Bits  
3. D[8] is always set to zero  
3-WIRE CONTROL INTERFACE DAISY CHAINING  
In daisy chaining mode, SDOUT (pin 25) outputs control data sampled on SDIN with a delay of 16  
SCLK cycles. This data signal can be used to control another WM8742 in a daisy chain circuit as  
shown in Figure 10.  
DAC #1  
DAC #2  
DAC #3  
Figure 10 Control Interface Daisy Chaining Setup  
To configure devices into daisy chain mode the CSB signal should be driven low while there is a  
register write to set register bit SDOUT=1. CSB should then be driven high, this sets the first device in  
daisy chain mode. CSB should then be driven low again while register bit SDOUT is set high. Setting  
CSB high again will cause the first register write to be output to the second device from the SDOUT  
pin, this sets the second device into daisy chain mode. This method must be repeated for the number  
Rev 4.4  
19  
 
 
WM8742  
of devices in the chain until they are all set into daisy chain mode. Figure 11 shows the protocol for  
configuring the first two devices in the daisy chain.  
CSB  
SCLK  
ADDR=0x08, DATA=0x022  
ADDR=0x08, DATA=0x022  
ADDR=0x7F, DATA=0x1FF  
ADDR=0x08, DATA=0x022  
DAC1 SDIN  
DAC1 SDOUT/  
DAC2 SDIN  
DAC1 configured into daisy chain mode  
DAC1 receives 16-bits of control data ready to  
echo on SDOUT. DAC1 does not act on control  
data as no rising CSB to latch data in  
DAC1 outputs previous 16-bits of control data on  
SDOUT and receives dummy write on SDIN  
DAC2 configured into daisy chain mode  
Figure 11 Initial Setup of Two WM8742 Devices into Control Interface Daisy Chain Mode  
To write to a single device in the chain a complete sequence needs to be written to all the devices.  
Devices that do not require a register change must also be written to. The user can choose to write  
either the same data as the previous write, or write all 1s for the register address and data. All 1s will  
result in writing to a non-existent register, address 7Fh, preserving the current register settings.  
Figure 12 shows an example of how to access three WM8742 devices (the devices have all previously  
been configured in daisy chain mode):  
CSB  
SCLK  
A6  
A5  
D1  
D0  
A6  
A6  
A5  
A5  
D1  
D1  
D0  
D0  
A6  
A6  
A6  
A5  
A5  
A5  
D1  
D1  
D1  
D0  
D0  
D0  
DAC1 SDIN  
DAC1 SDOUT/  
DAC2 SDIN  
DAC2 SDOUT/  
DAC3 SDIN  
CSB goes high  
DAC1 processes blue data  
DAC2 processes yellow data  
DAC3 processes pink data  
Figure 12 Daisy Chain Control Interface Example for Three WM8742 Devices  
To ensure that only valid data is written to the devices in daisy chain mode, a pull up resistor is used  
in SDOUT. When connected to the SDIN pin of the next device in the chain, this results in all ones  
being written to the control interface of that device until the correct daisy chain data is written and  
latched.  
Serial daisy chaining is available only when using 3-wire serial control mode. It is not available in 2-  
wire serial control mode or hardware control mode.  
REGISTER ADDRESS  
BIT  
LABEL  
DEFAULT  
DESCRIPTION  
3 wire Serial Interface Daisy Chaining  
0 = No Output  
R8  
Mode Control 2  
08h  
5
SDOUT  
0
1 = Output on pin 25.  
Table 9 Control Interface Daisy Chaining Selection  
20  
Rev 4.4  
 
 
WM8742  
2-WIRE SERIAL CONTROL MODE  
The WM8742 supports software control via a 2-wire serial bus. Many devices can be controlled by the  
same bus, and each device has a unique 7-bit address (this is not the same as the 7-bit address of  
each register in the WM8742).  
The WM8742 operates as a slave device on the 2-wire control bus. The controller indicates the start  
of data transfer with a high to low transition on SDIN while SCLK remains high. This indicates that a  
device address and data will follow. All devices on the 2-wire bus respond to the start condition and  
shift in the next eight bits on SDIN (7-bit address + Read/Write bit, MSB first). If the device address  
received matches the address of the WM8742 and the R/W bit is ‘0’, indicating a write, then the  
WM8742 responds by pulling SDIN low on the next clock pulse (ACK). If the address is not  
recognised or the R/W bit is ‘1’, the WM8742 returns to the idle condition and wait for a new start  
condition and valid address.  
Once the WM8742 has acknowledged a correct address, the controller sends the first byte of control  
data (B15 to B8, i.e. the WM8742 register address plus the first bit of register data). The WM8742  
then acknowledges the first data byte by pulling SDIN low for one clock pulse. The controller then  
sends the second byte of control data (B7 to B0, i.e. the remaining 8 bits of register data), and the  
WM8742 acknowledges again by pulling SDIN low.  
The transfer of data is complete when there is a low to high transition on SDIN while SCLK is high.  
After receiving a complete address and data sequence the WM8742 returns to the idle state and waits  
for another start condition. If a start or stop condition is detected out of sequence at any point during  
data transfer (i.e. SDIN changes while SCLK is high), the device reverts to the idle condition.  
SDI  
N
DEVICE ADDRESS RD / WR  
(7 BITS) BIT  
ACK  
(LOW)  
CONTROL BYTE 1  
(BITS 15 TO 8)  
ACK  
(LOW)  
ACK  
(LOW)  
CONTROL BYTE 2  
(BITS 7 TO 0)  
SCLK  
remaining 8 bits of  
register data  
START  
STOP  
register address and  
1st register data bit  
Figure 13 2-wire Serial Control Interface  
The WM8742 device address can be configured between two options. This is selected by the SADDR  
pin.  
PIN  
NAME  
DESCRIPTION  
28  
CSB/  
0 = 2-wire address 0011010  
SADDR/I2S 1 = 2-wire address 0011011  
Table 10 2-wire Serial Control Mode Address Selection  
DIGITAL AUDIO INTERFACE  
PCM MODE  
There are a number of valid PCM data input modes. Two channel and one channel differential mono  
modes can be selected by serial or hardware control. It is also possible to bypass the WM8742 digital  
filters and apply a signal at a rate 8fs (where fs is the sampling rate) directly to the switched capacitor  
stage.  
Rev 4.4  
21  
WM8742  
PCM DIGITAL AUDIO INTERFACE  
Audio data is applied to the DAC system via the Digital Audio Interface. Five popular interface  
formats are supported:  
Left Justified mode  
Right Justified mode  
I2S mode  
DSP mode A  
DSP mode B  
All five formats require the MSB to be transmitted first, and support word lengths of 16, 20, 24 and 32  
bits, with the exception that 32 bit data is not supported in right justified mode. DIN and LRCLK may  
be configured to be sampled on the rising or falling edge of BCLK by adjusting register bits LRP and  
BCP.  
In left justified, right justified and I2S audio interface modes, the digital audio interface receives data  
on the DIN input pin. Stereo audio data is time multiplexed on DIN, with LRCLK indicating whether  
the left or right channel is present. LRCLK is also used as a timing reference to indicate the beginning  
or end of the data words.  
The minimum number of BCLK periods per LRCLK period is two times the selected word length.  
LRCLK must be high for a period equal to the minimum number of BCLK periods, and low for a  
minimum of the same period. Any mark-to-space ratio on LRCLK is acceptable provided the above  
requirements are met.  
The WM8742 will automatically detect when data with a LRCLK period of exactly 32 BCLKs is  
received, and select 16-bit mode. This overrides any previously programmed word length. The  
operating word length will revert to a programmed value only if a LRCLK period other than 32 BCLKs  
is detected.  
In DSP mode A or DSP mode B, the data is time multiplexed onto DIN. LRCLK is used as a frame  
sync signal to identify the MSB of the first word. The minimum number of BCLKs per LRCLK period is  
two times the selected word length. Any mark to space ratio is acceptable on LRCLK provided the  
rising edge is correctly positioned.  
LEFT JUSTIFIED MODE  
In left justified mode, the MSB is sampled on the first rising edge of BCLK following a LRCLK  
transition. LRCLK is high during the left data word and low during the right data word.  
1/fs  
LEFT CHANNEL  
RIGHT CHANNEL  
LRCLK  
BCLK  
DIN  
1
2
3
n
1
2
3
n
n-2 n-1  
n-2 n-1  
MSB  
LSB  
MSB  
LSB  
Figure 14 Left Justified Mode Timing Diagram  
22  
Rev 4.4  
 
WM8742  
RIGHT JUSTIFIED MODE  
In right justified mode, the LSB is sampled on the rising edge of BCLK preceding a LRCLK transition.  
LRCLK is high during the left data word and low during the right data word.  
1/fs  
LEFT CHANNEL  
RIGHT CHANNEL  
LRCLK  
BCLK  
DIN  
1
2
3
n
1
2
3
n
n-2 n-1  
n-2 n-1  
MSB  
LSB  
MSB  
LSB  
Figure 15 Right Justified Mode Timing Diagram  
I2S MODE  
In I2S mode, the MSB is sampled on the second rising edge of BCLK following a LRCLK transition.  
LRCLK is low during the left data word and high during the right data word.  
1/fs  
LEFT CHANNEL  
RIGHT CHANNEL  
LRCLK  
BCLK  
1 BCLK  
1 BCLK  
DIN  
1
2
3
n
n-2 n-1  
1
2
3
n
n-2 n-1  
LSB  
LSB  
MSB  
MSB  
Figure 16 I2S Mode Timing Diagram  
Rev 4.4  
23  
 
 
WM8742  
DSP MODE A  
In DSP mode A, the first bit is sampled on the BCLK rising edge following the one that detects a low to  
high transition on LRCLK. No BCLK edges are allowed between the data words. The word order is  
DIN left, DIN right.  
1 BCLK  
1 BCLK  
1/fs  
LRCLK  
BCLK  
LEFT CHANNEL  
RIGHT CHANNEL  
NO VALID DATA  
DIN  
1
2
n
1
2
n
n-1  
n-1  
MSB  
LSB  
Input  
Word Length (IWL)  
Figure 17 DSP Mode A Timing Diagram  
DSP MODE B  
In DSP mode B, the first bit is sampled on the BCLK rising edge, which detects a low to high transition  
on LRCLK. No BCLK edges are allowed between the data words. The word order is DIN left, DIN  
right.  
1/fs  
LRCLK  
BCLK  
LEFT CHANNEL  
RIGHT CHANNEL  
NO VALID DATA  
DIN  
1
2
n
1
2
n
n-1  
1
n-1  
MSB  
LSB  
Input Word Length (IWL)  
Figure 18 DSP Mode B Timing Diagram  
24  
Rev 4.4  
WM8742  
PCM MODE SAMPLING RATES  
The WM8742 supports master clock rates of 128fs to 768fs, where fs is the audio sampling frequency  
(LRCLK), typically 32kHz, 44.1kHz, 48kHz, 88.2kHz, 96kHz, 176.4kHz or 192kHz.  
The WM8742 has a master clock detection circuit that automatically determines the relationship  
between the master clock frequency and the sampling rate. The master clock should be synchronised  
with LRCLK, although the WM8742 is tolerant of phase differences or jitter on this clock.  
SAMPLING  
RATE  
MASTER CLOCK (MCLK) FREQUENCY (MHZ)  
128fs  
192fs  
256fs  
384fs  
512fs  
768fs  
(LRCLK)  
32kHz  
Unavailable  
Unavailable  
Unavailable  
11.2896  
Unavailable  
Unavailable  
Unavailable  
16.9344  
8.192  
11.2896  
12.288  
22.5792  
24.576  
12.288  
16.9344  
18.432  
33.8688  
36.864  
16.384  
22.5792  
24.576  
24.576  
33.8688  
36.864  
44.1kHz  
48kHz  
88.2kHz  
96kHz  
Unavailable Unavailable  
Unavailable Unavailable  
12.288  
18.432  
176.4kHz  
192kHz  
22.5792  
33.8688  
Unavailable Unavailable Unavailable Unavailable  
Unavailable Unavailable Unavailable Unavailable  
24.576  
36.864  
Table 11 Typical Relationships Between Master Clock Frequency and Sampling Rate in normal  
PCM mode  
8FS MODE  
Operation in 8FS mode requires that audio data for left and right channels is input separately on two  
pins. DINR (pin 4) is the input for right channel data and DINL (pin 2) is the input for left channel data.  
Hardware control of the device is not available.  
The data can be input in two formats (left or right justified), selectable by register FMT[1:0], and two  
word lengths (20 or 24 bit), selectable by register IWL[1:0]. In both modes the data is clocked into the  
WM8742 MSB first.  
For left justified data the word start is identified by the falling edge of LRCLK. The data is clocked in  
on the next 20/24 BCLK rising edges. This format is compatible with industry-standard DSPs and  
decoders such as the PMD100.  
1/8fs  
1/8fs  
Sample 1  
Sample 2  
LRCLK  
BCLK  
1
2
2
3
3
n
1
2
2
3
3
n
n-2 n-1  
n-2 n-1  
DINL  
DINR  
MSB  
LSB  
MSB  
LSB  
1
n
1
n
n-2 n-1  
n-2 n-1  
MSB  
LSB  
MSB  
LSB  
Figure 19 8FS Mode Left Justified Timing Requirements  
For right justified mode, the data is justified to the rising edge of LRCLK and the data is clocked in on  
the preceding 20/24 BCLK rising edges before the LRCLK rising edge. This format is compatible with  
industry standard DSPs and decoders such as the DF1704 or SM5842.  
Rev 4.4  
25  
WM8742  
1/8fs  
1/8fs  
Sample 1  
Sample 2  
LRCLK  
BCLK  
DINL  
DINR  
1
2
2
3
3
n
1
2
2
3
3
n
n-2 n-1  
n-2 n-1  
n-2 n-1  
n-2 n-1  
MSB  
LSB  
MSB  
LSB  
1
n
1
n
MSB  
LSB  
MSB  
LSB  
Figure 20 8FS Mode Right Justified Timing Requirements  
In both modes the polarity of LRCLK can be switched using register bit LRP.  
8FS MODE SAMPLING RATES  
Since the data rate in 8FS mode is much faster than in standard PCM mode, there are restrictions on  
the MCLK rate that can be used. Specifically, only 512fs and 768fs modes are permitted restricting  
the sample rate to a maximum of 8x48kHz. The master clock should be synchronised with LRCLK,  
although the WM8742 is tolerant of phase differences or jitter on this clock.  
Unlike in normal PCM mode, the master clock detection circuit does not operate in 8FS mode. The  
rate must be manually programmed using the control interface.  
SAMPLING  
RATE  
LRCLK  
FREQUENCY  
(kHz)  
MASTER CLOCK (MCLK)  
FREQUENCY (MHz)  
8fs  
512fs  
768fs  
fs  
32kHz  
44.1kHz  
48kHz  
256  
352.8  
384  
16.384  
22.5792  
24.576  
24.576  
33.8688  
36.864  
Table 12 Typical Relationships Between Master Clock Frequency and Sampling Rate in 8FS  
Mode  
AUDIO INTERFACE DAISY CHAINING  
In daisy chain mode the DOUT pin outputs the audio data received on the DIN pin but delayed by two  
times the input word length. When this output is connected to the DIN pin of the next device in the  
chain, each WM8742 device will simultaneously sample different channel data in the same LRCLK  
period. Daisy chaining is only available in DSP audio interface mode and is limited by a maximum  
BCLK frequency of 24.576MHz.  
REGISTER ADDRESS  
BIT  
LABEL  
DEFAULT  
DESCRIPTION  
R8  
Mode Control 2  
08h  
Daisy Chaining Multiple devices –  
multichannel off one PCM feed.  
4
DOUT  
0
0 = No Output  
1 = Output on pin 23.  
Table 13 Daisy Chaining Audio Data Output Control  
26  
Rev 4.4  
 
WM8742  
The following diagram illustrates timing for a daisy chain with 2 WM8742 devices.  
Figure 21 Audio Interface Daisy Chaining Timing  
DSD MODE  
The WM8742 supports DSD input bitstreams at 64x the oversampling rate. The data is supplied at a  
rate of 64 bits per normal word clock. In DSD, no word clock is provided.  
The WM8742 supports two channels of bitstream or DSD audio. Data bitstreams and the 64fs clock  
are supplied to pins 1, 22 and 3 respectively. The MODESEL[1:0] register bits control whether the  
device operates in DSD direct, DSD plus or PCM modes.  
DSD DIRECT  
In DSD Direct mode the internal digital filters are bypassed, the input bitstream data is subjected to  
the minimal possible processing and is applied directly to the switched capacitor stage of the DAC  
system. Using this mode provides the purest possible representation of a DSD stream.  
It is normally desirable to use an external analogue post-DAC analogue filter to combine the  
differential outputs of the DAC and remove high frequency energy from the output. This is particularly  
important in the case of DSD operation due to the presence of high frequency energy which is a result  
of the aggressive high order noise shaping used in the creation of the modulated DSD datastream.  
DSD PLUS MODE  
In DSD Plus mode the DSD data can be filtered in a similar manner to the data in the PCM path. The  
DSD Plus filters are selected using register bits DSDFILT[1:0]. DSD Plus mode is not available under  
hardware control.  
Although DSD Plus mode requires that the bitstream is more heavily processed than DSD Direct, the  
advantage is that DSD Plus mode reduces the high frequency energy which is a result of the  
aggressive high order noise shaping used in the creation of the modulated DSD datastream. This  
means that a less aggressive, lower order, analogue filter can be used at the output. Furthermore the  
slew-rate requirements of the op-amps can be relaxed compared to DSD direct mode, due to the  
reduction in high frequency energy.  
Rev 4.4  
27  
WM8742  
DSD DIGITAL AUDIO INTERFACE  
DSD audio data is input to the WM8742 via the DSD digital audio interface. Two interface formats are  
supported:  
Uni-phase  
Bi-phase  
To use this interface apply left data on input pin 1 (LRCLK/DSDL) and pin 22 (OSR/DSDR). A DSD  
clock is also required, running at 64FS, and should be applied to pin 3 (BCLK/DSD64CLK).  
64/fs  
DSDCLK64  
DSDL  
DSDR  
L0  
L1  
L2  
L3  
R0  
R1  
R2  
R3  
Figure 22 Uni-phase DSD Mode Timing Diagram  
64/fs  
DSDCLK64  
DSDL  
DSDR  
L0  
L1  
L1  
L2  
L2  
L3  
R0  
R1  
R1  
R2  
R2  
R3  
Figure 23 Bi-phase DSD Mode Timing Diagram  
28  
Rev 4.4  
WM8742  
SOFTWARE CONTROL MODE  
Software control allows access to all features of the WM8742. Selection of control mode is achieved  
by configuring the state of MODE/LRSEL (pin 24):  
PIN  
NAME  
DESCRIPTION  
24  
MODE/  
LRSEL  
0 = Hardware control mode  
1 = 3-wire serial control mode  
Z = 2-wire serial control mode  
Table 14 Control Mode Configuration  
DSD AND PCM MODE SWITCHING  
The audio interface mode can be switched between DSD and PCM by writing MODESEL[1:0] in R7.  
It is recommended that the chip is forced into a MUTE state before dynamically switching modes.  
REGISTER ADDRESS  
BIT  
LABEL  
DEFAULT  
DESCRIPTION  
DSD/PCM mode select :  
00 = PCM mode  
R7  
Mode Control 1  
07h  
[1:0] MODESEL  
00  
01 = Direct DSD Operation  
10 = DSD plus mode  
11 = Unused  
Table 15 PCM/DSD Software Mode Selection  
PCM DIGITAL AUDIO INTERFACE CONTROL REGISTERS  
The PCM digital audio input format is configured by register bits FMT [1:0] and IWL[1:0]:  
REGISTER ADDRESS  
BIT  
LABEL  
DEFAULT  
DESCRIPTION  
R5  
Format Control  
05h  
Audio interface input word length  
select  
1:0  
IWL[1:0]  
10  
00 = 16-bit  
01 = 20-bit  
10 = 24-bit  
11 = 32-bit  
Audio interface input format select  
00 = Right justified  
01 = Left justified  
10 = I2S  
3:2  
FMT[1:0]  
10  
11 = DSP  
Table 16 Interface Format Controls  
Note:  
1. In all modes, the data is signed 2's complement. The WM8742 digital filters always input 24-bit  
data. If the interface is programmed into 32 bits, dither is applied according to Table 37 before  
truncation to the internal wordlength.  
Rev 4.4  
29  
WM8742  
LRCLK POLARITY  
In left justified, right justified or I2S modes, the LRP register bit controls the polarity of LRCLK. If this  
bit is set high, the expected polarity of LRCLK will be the opposite of that shown in Figure 14, Figure  
15 and Figure 16. If this feature is used as a means of swapping the left and right channels, a 1  
sample phase difference will be introduced.  
REGISTER ADDRESS  
BIT  
LABEL  
DEFAULT  
DESCRIPTION  
R5  
Format Control  
05h  
4
LRP  
0
LRCLK polarity select:  
0 = normal LRCLK polarity  
1 = inverted LRCLK polarity  
Table 17 LRCLK Polarity Control  
In DSP modes, the LRP register bit is used to select between DSP mode A and B (see Figure 17 and  
Figure 18).  
REGISTER ADDRESS  
BIT  
LABEL  
DEFAULT  
DESCRIPTION  
DSP format select:  
R5  
Format Control  
05h  
4
LRP  
0
0 = DSP mode A  
1 = DSP mode B  
Table 18 DSP Format Control  
BCLK / DSDCLK64 POLARITY  
In PCM mode, LRCLK and DIN are sampled on the rising edge of BCLK by default, and should ideally  
change on the falling edge. Data sources which change LRCLK and DIN on the rising edge of BCLK  
can be supported by setting the BCP register bit. Setting BCP to 1 inverts the polarity of BCLK to the  
inverse of that shown in Figure 14, Figure 15, Figure 16, Figure 17 and Figure 18.  
In DSD mode, DSDL and DSDR inputs are sampled a fixed delay after a falling 64fs clock edge.  
When BCP is set in DSD mode, DSDL and DSDR are sampled a fixed delay after a rising 64fs clock  
edge.  
REGISTER ADDRESS  
BIT  
LABEL  
DEFAULT  
DESCRIPTION  
BCLK / DSD64CLK polarity select:  
0 = normal polarity  
R5  
Format Control  
05h  
5
BCP  
0
1 = inverted polarity  
Table 19 BCLK Polarity Control  
OVERSAMPLING RATE CONTROL  
The user has control of the oversampling ratio of the WM8742, and can set to the device to operate in  
low, medium or high rate modes. For correct operation of the digital filtering and other processing on  
the WM8742, the user must ensure the correct value of OSR[1:0] is set at all times.  
REGISTER ADDRESS  
BIT  
LABEL  
DEFAULT  
DESCRIPTION  
Oversampling Rate Selection  
00 = Low rate (32/44.1/48kHz)  
01 = Medium rate (96kHz)  
10 = High rate (192kHz)  
11 = Unused  
R7  
Mode Control 1  
07h  
[6:5] OSR[1:0]  
00  
Table 20 Oversampling Rate Control  
30  
Rev 4.4  
 
WM8742  
MCLK/LRCLK RATIO CONTROL (NORMAL PCM MODE)  
The ratio of MCLK/LRCLK can be programmed directly or auto-detected.  
REGISTER ADDRESS  
BIT  
LABEL  
DEFAULT  
DESCRIPTION  
MCLK to LRCLK sampling rate ratio  
control (Normal PCM Mode):  
R7  
Mode Control 1  
07h  
[4:2]  
SR[3:0]  
000  
000 = auto detect sample rate  
001 = 128fs  
010 = 192fs  
011 = 256fs  
100 = 384fs  
101 = 512fs  
110 = 768fs  
111 = reserved  
Table 21 MCLK/LRCLK Ratio Control (Normal PCM Mode)  
8FS MODE  
8FS Mode allows the use of custom digital filters by bypassing the WM8742 internal digital filters.  
When MODE8X is set, the PCM data input to the WM8742 is applied only to the digital volume control  
and then the analogue section of the DAC system, bypassing the digital filters.  
REGISTER ADDRESS  
BIT  
LABEL  
DEFAULT  
DESCRIPTION  
8FS mode select:  
R7  
Format Control  
07h  
7
MODE8X  
0
0 = Normal operation  
1 = 8FS mode (digital filters  
bypassed)  
Table 22 8FS Mode Control  
MCLK/LRCLK RATIO CONTROL (8FS MODE)  
In 8FS mode the choice of clock ratios and sampling rates is limited see Table 12 for details.  
Autodetect of MCLK/LRCLK ratio is not available in 8FS mode and must be set manually by the user  
for correct operation.  
REGISTER ADDRESS  
BIT  
LABEL  
DEFAULT  
DESCRIPTION  
MCLK to LRCLK sampling rate ratio  
control (8FS Mode):  
R7  
Mode Control 1  
07h  
[4:2]  
SR[2:0]  
000  
000 = reserved  
001 = 512fs  
010 = 768fs  
011 to 111 = reserved  
Table 23 MCLK/LRCLK Ratio Control (8FS Mode)  
ATTENUATION CONTROL  
Each DAC channel can be attenuated digitally before being applied to the digital filter. Attenuation is  
set to 0dB by default but can be set between 0dB and -127.5dB in 0.125dB steps using the ten  
attenuation control bits LAT[4:0], LAT[9:5], RAT[4:0] and RAT[9:5].  
All attenuation registers are double latched allowing new values to be pre-latched to both channels  
before being updated synchronously. Setting the UPDATE bit on any attenuation write will cause all  
pre-latched values to be immediately applied to the DAC channels.  
Rev 4.4  
31  
WM8742  
REGISTER  
ADDRESS  
BITS  
LABEL  
DEFAULT  
DESCRIPTION  
R0  
LSBs of attenuation data for left channel in 0.125dB steps. See  
Table 25 for details.  
[4:0]  
LAT[4:0]  
00 (0dB)  
DACLLSB  
Attenuation  
00h  
5
Attenuation data load control for left channel.  
0 = Store LAT[4:0] value but don’t update  
UPDATE  
0
1 = Store LAT[4:0] and update attenuation on registers 0-3  
R1  
MSBs of attenuation data for left channel in 4dB steps. See Table  
25 for details.  
[4:0]  
5
LAT[9:5]  
UPDATE  
00 (0dB)  
0
DACLMSB  
Attenuation  
01h  
Attenuation data load control for left channel.  
0 = Store LAT[9:5] value but don’t update  
1 = Store LAT[9:5] and update attenuation on registers 0-3  
R2  
LSBs of attenuation data for right channel in 0.125dB steps. See  
Table 25 for details.  
[4:0]  
5
RAT[4:0]  
UPDATE  
00 (0dB)  
0
DACRLSB  
Attenuation  
Attenuation data load control for right channel.  
0 = Store RAT[4:0] value but don’t update  
02h  
1 = Store RAT[4:0] and update attenuation on registers 0-3  
R3  
MSBs of attenuation data for right channel in 4dB step. See Table  
25 for details.  
[4:0]  
5
RAT[9:5]  
UPDATE  
00 (0dB)  
0
DACRMSB  
Attenuation  
Attenuation data load control for right channel.  
0 = Store RAT[9:5] value but don’t update  
03h  
1 = Store RAT[9:5] and update attenuation on registers 0-3  
Table 24 Attenuation Control  
Note:  
1. The UPDATE bit is not latched. If UPDATE=0, the attenuation value will be written to the pre-latch but not applied to the  
relevant DAC. If UPDATE=1, all pre-latched values and the current value being written will be applied on the next input  
sample.  
DAC OUTPUT ATTENUATION  
Registers LAT[9:0] and RAT[9:0] control the left and right channel attenuation. Table 25 shows how  
the attenuation levels are configured by the 10-bit words.  
L/RAT[9:0]  
ATTENUATION LEVEL  
000(hex)  
0dB  
001(hex)  
-0.125dB  
:
:
:
:
:
:
3FE(hex)  
3FF(hex)  
-127.75dB  
-dB (mute)  
Table 25 Attenuation Control Levels  
ATTENUATION CONTROL MODE  
Setting the ATC register bit causes the left channel attenuation settings to be applied to both left and  
right channel DACs from the next audio input sample. No update to the attenuation registers is  
required for ATC to take effect. Right channels register settings are preserved regardless of the  
status of ATC.  
32  
Rev 4.4  
 
WM8742  
REGISTER ADDRESS  
BIT  
LABEL  
DEFAULT  
DESCRIPTION  
R4  
Volume Control  
04h  
2
ATC  
0
Attenuator Control Mode:  
0 = Right channels use Right  
attenuation  
1 = Right Channels use Left  
Attenuation  
Table 26 Attenuator Control Mode  
VOLUME RAMP MODE  
There are two ways to change the volume in the WM8742, controlled by VOL_RAMP. When  
VOL_RAMP=0, the volume changes in a single step from the current volume setting to the new  
volume when an update is applied to the gain control registers. When VOL_RAMP=1, the volume is  
automatically ramped from the current volume setting to the new volume setting when an update is  
applied to the volume control registers. The speed at which this happens is dependant on the sample  
rate as shown in Table 27 below:  
SAMPLE RATE (kHz)  
RAMP RATE (ms/dB)  
32  
44.1  
48  
1.000  
0.726  
0.667  
0.726  
0.667  
0.726  
0.667  
88.2  
96  
176.4  
196  
Table 27 Volume Ramp Rates  
REGISTER ADDRESS  
BIT  
LABEL  
VOL_  
DEFAULT  
DESCRIPTION  
R4  
Volume Control  
04h  
Volume ramp mode control:  
0
0
0 = Apply volume change in a single  
step.  
RAMP  
1 = Ramp between current volume  
setting and new volume setting.  
Table 28 Volume Ramp Control  
ANTI-CLIPPING DIGITAL ATTENUATION MODE  
Audio material is regularly recorded up to 0dB level and heavily compressed. This may cause clipping  
and occasional distortion when the digital media is applied to a DAC. In order to prevent this in the  
WM8742, an anti-clipping mode is provided, which attenuates the digital signal by 2dB as it is  
processed through the digital filters.  
REGISTER ADDRESS  
BIT  
LABEL  
DEFAULT  
DESCRIPTION  
Anti-clipping mode control:  
0 = Off, 0dB attenuation  
R4  
Volume Control  
04h  
1
ATT2DB  
0
1 = On, 2dB attenuation applied  
Table 29 Anti-Clipping Digital Attenuation Control  
Rev 4.4  
33  
 
WM8742  
DSD PLUS GAIN CONTROL  
The gain in the DSD Plus data path can be adjusted. The default setting provides a 1.4Vrms  
differential output level.  
REGISTER ADDRESS  
BIT  
LABEL  
DSD_  
GAIN  
DEFAULT  
DESCRIPTION  
R8  
Mode Control 2  
08h  
6
0
DSD Plus gain control:  
0 = Low gain, 1.4Vrms differential  
output level  
1 = High gain, 2.0Vrms differential  
output level  
Table 30 DSD Plus Gain Control  
MUTE MODES  
0.000  
0.020  
0.040  
0.060  
0.080  
0.100  
0.120  
0.140  
Time (s)  
Figure 24 Application and Release of Soft Mute  
Figure 24 shows the application and release of SOFTMUTE for a full amplitude sinusoid being played  
at 48kHz sampling rate. When SOFTMUTE (lower trace) is asserted, the WM8742 output (upper  
trace) begins to decay exponentially from the DC level of the last input sample. The output decays  
towards VMID in 1022x4/fs seconds. When SOFTMUTE is de-asserted, the signal gain will return to its  
previous value.  
REGISTER ADDRESS  
BIT  
LABEL  
DEFAULT  
DESCRIPTION  
Soft mute select  
R4  
PCM Control  
04h  
3
SOFTMUTE  
0
0 = Normal operation  
1 = Soft mute both channels  
Table 31 Soft Mute Control  
34  
Rev 4.4  
WM8742  
ZERO FLAG OUTPUT  
The WM8742 has one zero flag output pin, ZFLAG (pin 21). The zero flag feature is only valid for  
PCM data.  
The WM8742 asserts Logic 1 on the ZFLAG pin when a sequence of more than 1024 zeros is input to  
the chip. The default value is a logical AND of both left and right channels. Under software control,  
the user can also set the zero flag pin to respond to either the left channel OR the right channel.  
The zero flag pin can be used to control external muting circuits if required.  
REGISTER  
ADDRESS  
BIT  
LABEL  
DEFAULT  
DESCRIPTION  
Zero flag output:  
R4  
Volume Control  
04h  
6:5 ZEROFLR  
[1:0]  
00  
00 = Pin assigned to logical AND of  
LEFT and RIGHT channels  
01 = Pin assigned to LEFT channel  
10 = Pin assigned to RIGHT  
channel  
11 = ZFLAG disabled  
Table 32 Zero Flag Output  
ZFLAG FORCE HIGH CONTROL  
It is possible to force the ZFLAG pin to Logic 1 by setting ZFLAG_HI=1 in R7. This is useful in  
situations where an application processor may require manual control of an external mute circuit.  
Setting ZFLAG_HI=0 will allow the ZFLAG pin to function as defined by ZFLAGLR[1:0].  
REGISTER ADDRESS  
BIT  
LABEL  
DEFAULT  
DESCRIPTION  
ZFLAG Force High Control  
0 = Normal operation  
1 = Output Logic 1  
R6  
Mode Control 1  
06h  
7
ZFLAG_HI  
0
Table 33 ZFLAG Force High Control  
INFINITE ZERO DETECT  
The IZD register configures the operation of the WM8742 analogue mute in conjunction with the zero  
flag feature. Table 20 shows the interdependency of the MUTEB pin, the IZD register and the zero  
flag.  
REGISTER ADDRESS  
BIT  
LABEL  
DEFAULT  
DESCRIPTION  
IZD control of analogue mute:  
0 = Never analogue mute  
R4  
Volume Control  
04h  
4
IZD  
0
1 = Analogue mute when ZFLAG  
set  
Table 20 Infinite Zero Detect Control  
Rev 4.4  
35  
WM8742  
MUTEB  
ZFLAG  
ZEROFLR  
ZDET  
DINL  
DINR  
DAC  
SOFT ANA  
L&R  
L&R  
Infinite  
DSD Direct  
Zero  
Detect  
IZD  
Figure 25 Software Control Mode MUTEB and ZFLAG Configuration  
DE-EMPHASIS  
Setting the DEEMPH[1:0] register bits enables de-emphasis support in the WM8742 digital filters.  
There are three de-emphasis filters, one each for sampling rates of 32kHz, 44.1kHz and 48kHz.  
REGISTER ADDRESS  
BIT  
LABEL  
DEFAULT  
DESCRIPTION  
De-emphasis mode select:  
00 = De-emphasis Off  
R6  
Filter Control  
06h  
[6:5] DEEMPH  
[1:0]  
00  
01 = De-emphasis 32kHz  
10 = De-emphasis 44.1kHz  
11 = De-emphasis 48kHz  
Table 34 De-emphasis Control  
OUTPUT PHASE REVERSAL  
The REV register bit controls the phase of the output signal. Setting the REV bit causes the phase of  
the output signal to be inverted.  
Note: The REV bit can only be used in stereo mode. When in differential mono mode, the REV bit  
must remain set as 0.  
REGISTER ADDRESS  
BIT  
LABEL  
DEFAULT  
DESCRIPTION  
Analogue output phase control:  
0 = Normal  
R5  
Format Control  
05h  
6
REV  
0
1 = Inverted  
Table 35 Output Phase Control  
36  
Rev 4.4  
WM8742  
DIFFERENTIAL MONO MODE  
DIFF[1:0] sets the required differential output mode; normal stereo, reversed stereo, mono left or  
mono right, as shown in Table 36.  
REGISTER ADDRESS  
BIT  
LABEL  
DEFAULT  
DESCRIPTION  
00 = Stereo  
R8  
Mode Control 2  
08h  
[3:2] DIFF[1:0]  
00  
10 = Stereo reverse (left and right  
channels swapped)  
01 = Mono left differential outputs  
VOUTLP (17) is left channel.  
VOUTLN (16) is left channel  
inverted.  
VOUTRP (12) is left channel  
inverted.  
VOUTRN (13) is left channel.  
11 = Mono right differential outputs.  
VOUTLP (17) is right channel  
inverted.  
VOUTLN (16) is right channel.  
VOUTRP (12) is right channel.  
VOUTRN (13) is right channel  
inverted.  
Table 36 Differential Output Modes  
Using these controls a pair of WM8742 devices may be used to build a dual differential stereo  
implementation with higher performance and differential output.  
DITHER  
Dither is applied whenever internal truncation occurs. It is also used when a 32 bit input word is  
applied to the DAC prior to truncation to the internal wordlength. Three types of dither can be selected  
to allow the sound quality if the device to be optimised.  
TDF has a triangular probability density function and causes zero noise modulation i.e. the  
quantisation noise is invariant to the changes in the signal level. This mode is recommended and is  
selected by default.  
RPDF has a rectangular probability density function and may cause noise modulation.  
HPDF has a triangular probability density function with a high pass characteristic, which has a lower  
noise at low frequencies at the expense of raised noise levels at higher frequencies.  
Alternatively the dither can be disabled.  
REGISTER ADDRESS  
BIT  
LABEL  
DEFAULT  
DESCRIPTION  
Digital filter dither mode select:  
00 = dither off  
R8  
Mode Control 2  
08h  
[1:0] DITHER  
[1:0]  
10  
01 = RPDF dither applied in Digital  
filter  
10 = TPDF dither applied in Digital  
filter  
11 = HPDF dither applied in Digital  
filter  
Note: DITHER[1:0] applies only to the  
dither mode in the Digital filter.  
Table 37 Dither Control  
Rev 4.4  
37  
 
WM8742  
NORMAL PCM MODE DIGITAL FILTER SELECTION  
The WM8742 has a number of advanced digital filters that can be selected in all PCM operation  
modes (with the exception of 8FS mode).  
REGISTER ADDRESS  
BIT  
LABEL  
DEFAULT  
DESCRIPTION  
Selects FIR1 filter response  
000 = Response 1  
R6  
Filter Control  
06h  
[2:0]  
FIRSEL  
000  
001 = Response 2  
010 = Response 3  
011 = Response 4  
100 = Response 5  
Table 38 PCM Advanced Digital Filter Selection  
Five digital filters are available for selection in each of the three OSR modes (low, medium and high  
rate) as selected by the OSR bit described in Table 20. It is recommended that the device is muted  
before the filter response is changed to prevent noise as the filters are reset from appearing on the  
outputs. A summary of the filter characteristics is given in Table 39 below:  
OSR  
RESPONSE  
NOTES  
Low  
Linear phase half-band filter for backward compatibility  
Minimum phase ‘soft-knee’ filter  
Minimum phase half-band filter  
Linear phase apodising filter  
Minimum phase apodising filter  
Linear phase ‘soft-knee’ filter  
Minimum phase ‘soft-knee’ filter  
Linear phase ‘brickwall’ filter  
Minimum phase apodising filter  
Linear phase apodising filter  
Linear phase ‘soft-knee’ filter  
Minimum phase ‘soft-knee’ filter  
Linear phase ‘brickwall’ filter  
Minimum phase apodising filter  
Linear phase apodising filter  
1
2
3
4
5
1
2
3
4
5
1
2
3
4
5
Medium  
High  
Table 39 PCM Digital Filter Summary  
For full details of the filter characteristics available in normal PCM mode, please see Table 64 to Table  
66 and Figure 28 to Figure 57.  
8FS MODE DIGITAL FILTER  
In 8FS mode, the majority of the internal filters are bypassed. In this mode, the data is filtered using  
only the filter characteristic described by Table 67 and shown in Figure 58 and Figure 59.  
38  
Rev 4.4  
 
 
WM8742  
DSD PLUS FILTER SELECTION  
The WM8742 has a number of compensation filters that can be selected in DSD Plus mode.  
REGISTER ADDRESS  
BIT  
LABEL  
DEFAULT  
DESCRIPTION  
R6  
Filter Control  
06h  
Selects Compensation Filter  
response  
[4:3] DSDFILT  
[1:0]  
00  
00 = Response 1  
01 = Response 2  
10 = Response 3  
11 = Response 4  
Table 40 DSD Plus Digital Filter Selection  
It is recommended that the device is muted before the filter response is changed to prevent noise as  
the filters are reset from appearing on the outputs.  
Full details of these filters are described in Table 68 and Figure 60 to Figure 67.  
DSD DIRECT DIGITAL FILTERS  
The DSD Direct filters have been designed to provide the minimal of processing to the data with no  
decimation, re-quantisation or noise-shaping, in order to preserve the signal integrity as much as  
possible. As a result the filters have a wide bandwidth and a very gradual attenuation. It is  
recommended that whichever DSD Direct filter is chosen it is augmented by analogue post-DAC  
filtering in order to adhere to the Scarlet-Book SACD standard.  
There are a total of four DSD Direct filter responses available, controlled by two register bits as  
described in Table 41 below:  
REGISTER ADDRESS  
BIT  
LABEL  
DSD_NO_  
NOTCH  
DEFAULT  
DESCRIPTION  
DSD Direct 8fs Notch Filter  
0: Enable 8fs notch filter  
1: Disable 8fs notch filter  
DSD Direct Filter Gain  
0: High gain  
R32  
Additional Control 1  
20h  
0
0
1
DSD_  
1
LEVEL  
1: Low gain  
Table 41 DSD Direct Digital Filter Selection  
DSD MUTE CONTROL  
In DSD Direct mode, an analogue mute can be applied at the output of the DAC. This is controlled by  
register bit AMUTE.  
REGISTER ADDRESS  
BIT  
LABEL  
DEFAULT  
DESCRIPTION  
DSD Direct mute control:  
0 = mute off  
R4  
Volume Control  
04h  
7
AMUTE  
0
1 = mute on  
Table 42 DSD Analogue Mute Control  
Rev 4.4  
39  
 
WM8742  
POWER SAVING STANDBY CONTROL  
Setting the PWDN register bit immediately connects all outputs to VMID and resets the digital sections  
of the DAC system including the DLL, the audio interface and the DSP. Input data samples are not  
preserved, but all control register settings are maintained. When PWDN is cleared the WM8742 will  
repeat its power-on initialisation sequence.  
REGISTER ADDRESS  
BIT  
LABEL  
DEFAULT  
DESCRIPTION  
Power Down Mode Select:  
0 = Normal Mode  
R5  
Format Control  
05h  
7
PWDN  
0
1 = Power Down Mode  
Table 43 Powerdown Control  
HARDWARE CONTROL MODE  
When the MODE pin is held ‘low’ the WM8742 is set to hardware control mode and a limited feature  
set can be configured.  
PIN  
NAME  
MODE/  
LRSEL  
DESCRIPTION  
24  
0 = Hardware control mode  
1 = 3-wire serial control mode  
Z = 2-wire serial control mode  
Table 44 MODE/LRSEL Hardware Control Pin Function  
DSD AND PCM MODE SWITCHING  
The audio interface mode can be switched between DSD Direct and PCM by controlling the state of  
pin DSD. It is recommended that the chip is forced into a MUTE state before dynamically switching  
modes.  
PIN  
NAME  
SCLK/DSD 0 = PCM Mode  
1 = DSD Direct Mode  
DESCRIPTION  
27  
Table 45 SCLK/DSD Hardware Control Pin Function  
AUDIO INPUT FORMAT  
Under hardware control, it is possible to select between four different modes of operation for the PCM  
audio interface.  
PIN NUMBER  
NAME  
28  
23  
DESCRIPTION  
16-bit right justified  
24-bit right justified  
24-bit left justified  
24-bit I2S  
CSB/SADDR/I2S  
IWO/DOUT  
STATUS  
0
0
1
1
0
1
0
1
Table 46 CSB/SADDR/I2S and IWO/DOUT Hardware Control Pin Function  
40  
Rev 4.4  
WM8742  
OVERSAMPLING RATE CONTROL  
The user has control of the oversampling ratio of the WM8742, and can set to the device to operate in  
low, medium or high rate modes. For optimum operation of the digital filtering and other processing  
on the WM8742 in PCM hardware mode, the user must ensure the correct value of OSR is set at all  
times. Table 47 shows the correct settings:  
PIN  
NAME  
DESCRIPTION  
22  
Oversampling Rate Selection  
0 = Low rate (32/44.1/48kHz)  
Z = Medium rate (88.2/96kHz)  
1 = High rate (176.4/192kHz)  
OSR/DSDR  
Table 47 OSR/DSDR Hardware Control Pin Function  
MUTE PIN  
A soft mute can be applied to the WM8742 in the digital domain in all PCM. A logic low on the  
MUTEB pin will cause the attenuation to ramp to infinite attenuation at a rate of 1022x(4/fs). Setting  
MUTEB high will return the signal gain to its previous value. Figure 26 shows the soft mute  
characteristic.  
In DSD Direct mode the MUTEB pin controls the analogue mute in the DAC. This analogue mute is a  
‘hard’ mute and is applied and released as soon as the MUTEB pin is toggled.  
PIN  
NAME  
MUTEB/  
SDOUT  
DESCRIPTION  
Mute control  
25  
0 = Mute on (no output)  
1 = Mute off (normal operation  
Table 48 MUTEB Hardware Control Pin Function  
0
0.02  
0.04  
0.06  
0.08  
0.1  
0.12  
0.14  
Time (s)  
Figure 26 Hardware Control Mode Soft Mute Characteristic  
Rev 4.4  
41  
 
 
WM8742  
ZERO FLAG  
In hardware control mode the ZFLAG pin asserts when 1024 consecutive zero samples are applied to  
the left and right channels of the WM8742 when in PCM mode. In DSD mode, the ZFLAG has no  
function.  
In hardware mode there is no access to the infinite zero detect and so there is no automute function.  
If this functionality is required, software mode must be used. Figure 27 shows the MUTEB and  
ZFLAG configuration.  
MUTEB  
ZFLAG  
ZDET  
DINL  
DINR  
DAC  
SOFT ANA  
L&R  
L&R  
DSD Direct  
Figure 27 Hardware Control Mode MUTEB and ZFLAG Configuration  
DE-EMPHASIS CONTROL AND ANTI-CLIPPING MODE  
In hardware control mode, de-emphasis is supported with a maximum error of +1.5dB at a sampling  
rate of 44.1kHz.  
Audio material is regularly recorded up to 0dB level and heavily compressed. This causes clipping  
and distortion when the digital media is applied to a DAC. In order to prevent this in the WM8742, an  
anti-clipping mode is provided, which attenuates the digital signal by 2dB as it is processed through  
the digital filters.  
Under hardware control de-emphasis and the anti-clipping mode are only available when using PCM  
mode.  
PIN  
NAME  
SDIN/  
DESCRIPTION  
Deemphasis Control  
26  
DEEMPH  
0 = De-emphasis off  
1 = De-emphasis on  
Z = Digital filter anti-clipping mode  
Table 49 DEEMPH Hardware Control Pin Function  
42  
Rev 4.4  
 
WM8742  
DIGITAL FILTER SELECTION  
The WM8742 includes a wide range of digital filters. A limited set of these can be selected in  
hardware control mode as listed in Table 50. Full details of each digital filter response can be found in  
section PCM Digital Filter Selection, from page 38.  
PIN  
NAME  
FSEL/  
DINR  
DESCRIPTION  
4
Digital filter selection  
(32/44.1/48kHz):  
0 = Response 1  
1 = Response 5  
Z = Response 4  
Digital filter selection (88.2/96kHz  
and 176.4/192kHz):  
0 = Response 1  
1 = Response 3  
Z = Response 2  
Table 50 FSEL/DINR Hardware Control Pin Function  
There is no choice of digital filters in DSD Direct mode only the very minimal filtering described in  
Figure 72 and Figure 73 is available.  
DIFFERENTIAL MONO MODE  
If DIFFHW (pin 6) is held to Logic 1, hardware controlled differential mono mode is selected. This  
overrides any other control pin or register bit. Differential mono mode allows the user to build a dual  
differential stereo DAC implementation with higher performance and differential output. DIFFHW is  
used in conjunction with MODE/LRSEL (pin 24) to define a ‘left’ or ‘right’ DAC as shown in Table 51.  
PIN NUMBER  
NAME  
6
24  
DESCRIPTION  
DIFFHW  
MODE/LRSEL  
0
0
0
1
0
Z
1
0
Hardware control (stereo)  
2-wire Software Control  
3-wire software control)  
Mono Left differential outputs  
VOUTLP = left channel  
VOUTLN = left channel inverted  
VOUTRP = left channel inverted  
VOUTRN = left channel  
Mono right differential outputs  
VOUTLP = right channel inverted  
VOUTLN = right channel  
1
1
VOUTRP = right channel  
VOUTRN = right channel inverted  
Table 51 DIFFHW and MODE/LRSEL Hardware Control Pin Functions  
Differential mono mode is available for all PCM hardware controlled modes and DSD Direct hardware  
mode.  
Rev 4.4  
43  
 
 
WM8742  
OVERVIEW OF FUNCTIONS  
The WM8742 has many modes of operation, and certain restrictions on what functions are available in  
which modes. Table 52 gives an overview of the functions available in hardware and software control  
modes across all modes of operation:  
SOFTWARE MODE  
HARDWARE MODE  
FUNCTION  
NORMAL  
PCM  
8FS  
DSD  
DSD  
DIRECT  
NORMAL  
PCM  
DSD  
DIRECT  
MODE  
PLUS  
Selectable Digital Filters  
Deemphasis Support  
Adjustable DSP Dither  
Differential Mono Mode  
Digital Softmute  
5
4
4
3
Analogue Mute  
Zero Detect (ZFLAG)  
Automute Function  
Anti-Clipping Mode  
Digital Attenuation  
Powerdown Mode  
Audio Interface Daisy Chain  
3-wire Software Interface  
Daisy Chain  
Table 52 Comparison of Functions Available across Operating Modes  
= function available  
= function not available  
44  
Rev 4.4  
 
WM8742  
REGISTER MAP  
Reg  
Name  
Addr  
Bit 8  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
Default  
DACLLSB  
0
0
0
UPDATELL  
LAT[4:0]  
0
00h  
0x000  
0x000  
0x000  
0x000  
0x000  
0x00A  
0x000  
0x000  
0x002  
0x000  
0x000  
Attenuation  
DACLMSB  
Attenuation  
0
0
0
0
0
0
0
0
0
0
0
0
0
UPDATELM  
UPDATERL  
UPDATERM  
LAT[9:5]  
RAT[4:0]  
RAT[9:5]  
ATC  
1
2
01h  
02h  
03h  
04h  
05h  
06h  
07h  
08h  
09h  
20h  
DACRLSB  
Attenuation  
DACRMSB  
Attenuation  
0
3
SOFT  
MUTE  
AMUTE  
PWDN  
ZFLAG_HI  
MODE8X  
0
ZEROFLR[1:0]  
IZD  
ATT2DB VOL_RAMP  
IWL[1:0]  
4
Volume Control  
Format Control  
Filter Control  
REV  
BCP  
LRP  
FMT[1:0]  
5
DEEMPH[1:0]  
DSDFILT[1:0]  
FIRSEL[2:0]  
6
OSR[1:0]  
SR[2:0]  
MODESEL[1:0]  
DITHER[1:0]  
7
Mode Control 1  
Mode Control 2  
Software Reset  
DSD_  
GAIN  
SDOUT  
DOUT  
RESET  
0
DIFF[1:0]  
8
9
Additional  
Control 1  
DSD_  
DSD_NO  
_NOTCH  
0
0
0
0
0
0
32  
LEVEL  
Rev 4.4  
45  
WM8742  
REGISTER  
ADDRESS  
R0  
BITS  
NAME  
DEFAULT  
DESCRIPTION  
LSBs of attenuation data for left channel in 0.125dB steps. See Table  
25 for details.  
[4:0]  
5
LAT[4:0]  
UPDATE  
00 (0dB)  
0
DACLLSB  
Attenuation  
00h  
Attenuation data load control for left channel.  
0 = Store LAT[4:0] value but don’t update  
1 = Store LAT[4:0] and update attenuation on registers 0-3  
Table 53 R0 DACL LSB Attenuation Control Register  
REGISTER  
ADDRESS  
R1  
BITS  
NAME  
DEFAULT  
DESCRIPTION  
MSBs of attenuation data for left channel in 4dB steps. See Table 25  
for details.  
[4:0]  
5
LAT[9:5]  
UPDATE  
00 (0dB)  
0
DACLMSB  
Attenuation  
01h  
Attenuation data load control for left channel.  
0 = Store LAT[9:5] value but don’t update  
1 = Store LAT[9:5] and update attenuation on registers 0-3  
Table 54 R1 DACL MSB Attenuation Control Register  
REGISTER  
ADDRESS  
R2  
BITS  
NAME  
DEFAULT  
DESCRIPTION  
LSBs of attenuation data for right channel in 0.125dB steps. See  
Table 25 for details.  
[4:0]  
5
RAT[4:0]  
UPDATE  
00 (0dB)  
0
DACRLSB  
Attenuation  
Attenuation data load control for right channel.  
0 = Store RAT[4:0] value but don’t update  
02h  
1 = Store RAT[4:0] and update attenuation on registers 0-3  
Table 55 R2 DACR LSB Attenuation Control Register  
REGISTER  
ADDRESS  
R3  
BITS  
NAME  
DEFAULT  
DESCRIPTION  
MSBs of attenuation data for right channel in 4dB step. See Table 25  
for details.  
[4:0]  
5
RAT[9:5]  
UPDATE  
00 (0dB)  
0
DACRMSB  
Attenuation  
Attenuation data load control for right channel.  
0 = Store RAT[9:5] value but don’t update  
03h  
1 = Store RAT[9:5] and update attenuation on registers 0-3  
Table 56 R3 DACR MSB Attenuation Control Register  
46  
Rev 4.4  
WM8742  
REGISTER  
ADDRESS  
R4  
BITS  
NAME  
DEFAULT  
DESCRIPTION  
Ramps volume from existing attenuation setting to new setting when  
UPDATE applied.  
0
VOL_RAMP  
0
Volume  
Control  
0: Step volume change  
04h  
1: Ramp volume change  
Anti-clipping mode control. Attenuates PCM gain path by 2 dB:  
0: 0dB gain  
1
2
ATT2DB  
ATC  
0
0
1: -2dB gain  
Attenuator Control Mode:  
0 = Right channels use Right attenuation  
1 = Right Channels use Left Attenuation  
Soft mute select  
3
SOFTMUTE  
IZD  
0
0: Normal Operation  
1: Soft mute both channels  
Enables infinite zero detect (detects 1024 zeros on input):  
0 = Disable infinite zero detect  
1 = Enable infinite zero detect  
Zero flag output:  
4
0
6:5  
ZEROFLR  
[1:0]  
00  
00 = Pin assigned to logical AND of LEFT and RIGHT channels  
01 = Pin assigned to LEFT channel  
10 = Pin assigned to RIGHT channel  
11 = ZFLAG disabled  
Applies analogue mute in DSD mode  
0 = Normal operation  
7
AMUTE  
0
1 = Analogue mute applied  
Table 57 R4 Volume Control Register  
REGISTER  
ADDRESS  
R5  
BITS  
NAME  
DEFAULT  
DESCRIPTION  
Audio interface input word length.  
00 = 16-bit  
[1:0]  
IWL[1:0]  
10  
Format  
Control  
01 = 20-bit  
05h  
10 = 24-bit  
11 = 32-bit  
Audio data format select.  
00 = right justified mode  
01 = left justified mode  
10 = I2S mode  
[3:2]  
FMT[1:0]  
10  
11 = DSP mode  
Polarity select for LRCLK/DSP mode select.  
0 = normal LRCLK polarity/DSP mode A  
1 = inverted LRCLK polarity/DSP mode B  
BCLK / DSD64CLK polarity select:  
0 = normal polarity  
4
5
6
7
LRP  
BCP  
0
0
0
0
1 = inverted polarity  
REV  
Analogue output phase control:  
0 = Normal  
1 = Inverted  
Power Down Mode Select:  
0 = Normal Mode  
PWDN  
1 = Power Down Mode  
Table 58 R5 Format Control Register  
Rev 4.4  
47  
WM8742  
REGISTER  
ADDRESS  
R6  
BITS  
NAME  
DEFAULT  
DESCRIPTION  
Select advanced digital filter response:  
000 = Response 1  
[2:0]  
FIRSEL  
000  
Filter Control  
06h  
001 = Response 2  
010 = Response 3  
011 = Response 4  
100 = Response 5  
Select DSD compensation filter response:  
00 = Response 1  
[4:3]  
[6:5]  
7
DSDFILT  
00  
00  
0
01 = Response 2  
10 = Response 3  
11 = Response 4  
De-emphasis mode select:  
00 = De-emphasis Off  
01 = De-emphasis 32kHz  
10 = De-emphasis 44.1kHz  
11 = De-emphasis 48kHz  
ZFLAG Force High Control  
0 = Normal operation  
1 = Output Logic 1  
DEEMPH  
[1:0]  
ZFLAG_HI  
Table 59 R6 Filter Control Register  
REGISTER  
ADDRESS  
R7  
BITS  
NAME  
DEFAULT  
DESCRIPTION  
DSD/PCM mode select.  
00 = PCM mode  
[1:0]  
MODESEL  
[1:0]  
00  
Mode Control 1  
07h  
01 = DSD Direct mode  
10 = DSD Plus mode  
11 = Unused  
MCLK to LRCLK sampling rate ratio control:  
000 = auto detect sample rate  
001 = 128fs  
[4:2]  
SR[3:0]  
000  
010 = 192fs  
011 = 256fs  
100 = 384fs  
101 = 512fs  
110 = 768fs  
Selects low, medium or high sample rate mode for filter selection  
(equivalent to OSR pin functionality in Hardware Mode)  
[6:5]  
OSR[1:0]  
MODE8X  
00  
00 = Low rate (32/44.1/48kHz)  
01 = Medium rate (96kHz)  
10 = High rate (192kHz)  
11 = Unused  
8FS mode select:  
7
0
0 = Normal operation  
1 = 8FS mode (digital filters bypassed)  
Table 60 R7 Mode Control Register 1  
48  
Rev 4.4  
WM8742  
REGISTER  
ADDRESS  
R8  
BITS  
NAME  
DEFAULT  
DESCRIPTION  
ALU dither mode select:  
[1:0] DITHER[1:0]  
10  
00 = dither off  
Mode Control 2  
08h  
01 = RPDF dither applied in ALU  
10 = TPDF dither applied in ALU  
11 = HPDF dither applied in ALU  
Note: DITHER[1:0] applies only to the dither mode in the ALU.  
00 = Stereo  
[3:2]  
DIFF[1:0]  
00  
10 = Stereo reverse (left and right channels swapped)  
01 = Mono left differential outputs  
VOUTLP is left channel.  
VOUTLN is left channel inverted.  
VOUTRP is left channel inverted.  
VOUTRN is left channel.  
11 = Mono right differential outputs.  
VOUTLP is right channel inverted.  
VOUTLN is right channel.  
VOUTRP is right channel.  
VOUTRN is right channel inverted.  
Daisychaining Mode. Audio data output control:  
0 = No audio data daisychaining  
1 = Audio data output on pin 23  
4
5
6
DOUT  
SDOUT  
0
0
0
Daisychaining Mode. Control data output control:  
0 = No control data daisychaining  
1 = Control data output on pin 25  
DSD Plus gain control:  
DSD_GAIN  
0 = Low gain, 1.4Vrms differential output level  
1 = High gain, 2.0Vrms differential output level  
Table 61 R8 Mode Control Register 2  
REGISTER  
ADDRESS  
R9  
BITS  
NAME  
DEFAULT  
DESCRIPTION  
Software reset. Writing to the register resets the entire chip, including  
the register map.  
[7:0]  
RESET  
00000000  
Software reset  
09h  
Table 62 R9 Software Reset Control Register  
REGISTER  
ADDRESS  
R32  
BITS  
NAME  
DEFAULT  
DESCRIPTION  
DSD Direct 8fs Notch Filter  
0: Enable 8fs notch filter  
1: Disable 8fs notch filter  
0
DSD_NO_  
NOTCH  
0
Additional  
Control 1  
20h  
DSD Direct Filter Gain  
0: High Gain  
1
DSD_LEVEL  
1
1: Low Gain  
Table 63 R32 Additional Control 1  
Rev 4.4  
49  
WM8742  
DIGITAL FILTER CHARACTERISTICS  
PCM MODE FILTER CHARACTERISTICS  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
Low Rate (32/44.1/48kHz) PCM Filter Response 1  
0.000057dB  
0.454fs  
Passband  
0.000057  
dB  
Passband Ripple  
Stopband  
0.546fs  
-111.8  
dB  
dB  
fs  
Stopband Attenuation  
Attenuation at fs/2  
Group Delay  
-6.02  
43  
Low Rate (32/44.1/48kHz) PCM Filter Response 2  
0.000036 dB  
0.408fs  
Passband  
0.000036  
dB  
Passband Ripple  
Stopband  
0.522fs  
-111.1  
dB  
dB  
fs  
Stopband Attenuation  
Attenuation at fs/2  
Group Delay  
Fs/2  
-28.07  
8
Low Rate (32/44.1/48kHz) PCM Filter Response 3  
0.000058 dB  
0.454fs  
Passband  
0.000058  
dB  
Passband Ripple  
Stopband  
0.546fs  
-110.3  
dB  
dB  
fs  
Stopband Attenuation  
Attenuation at fs/2  
Group Delay  
Fs/2  
-6.43  
7
Low Rate (32/44.1/48kHz) PCM Filter Response 4  
0.000066 dB  
0.417fs  
Passband  
0.000066  
dB  
Passband Ripple  
Stopband  
0.500fs  
-110.4  
dB  
dB  
fs  
Stopband Attenuation  
Attenuation at fs/2  
Group Delay  
Fs/2  
-116.19  
47  
Low Rate (32/44.1/48kHz) PCM Filter Response 5  
0.000041 dB  
0.417fs  
Passband  
0.000041  
dB  
Passband Ripple  
Stopband  
0.500fs  
-111.8  
dB  
dB  
fs  
Stopband Attenuation  
Attenuation at fs/2  
Group Delay  
Fs/2  
-112.45  
8
Table 64 Low Rate PCM Filter Characteristics  
50  
Rev 4.4  
WM8742  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
Medium Rate (88.2/96kHz) PCM Filter Response 1  
0.000021 dB  
0.208fs  
Passband  
0.000021  
dB  
Passband Ripple  
Stopband  
0.500fs  
-120.3  
dB  
dB  
fs  
Stopband Attenuation  
Attenuation at fs/2  
Group Delay  
Fs/2  
-120.41  
17  
Medium Rate (88.2/96kHz) PCM Filter Response 2  
0.000014 dB  
0.208fs  
Passband  
0.000014  
dB  
Passband Ripple  
Stopband  
0.500fs  
-120.8  
dB  
dB  
fs  
Stopband Attenuation  
Attenuation at fs/2  
Group Delay  
Fs/2  
-127.96  
9
Medium Rate (88.2/96kHz) PCM Filter Response 3  
0.000048 dB  
0.417fs  
Passband  
0.000048  
dB  
Passband Ripple  
Stopband  
0.500fs  
-115.5  
dB  
dB  
fs  
Stopband Attenuation  
Attenuation at fs/2  
Group Delay  
Fs/2  
-116.89  
48  
Medium Rate (88.2/96kHz) PCM Filter Response 4  
0.000021 dB  
0.208fs  
Passband  
0.000021  
dB  
Passband Ripple  
Stopband  
0.458fs  
-120.0  
dB  
dB  
fs  
Stopband Attenuation  
Attenuation at fs/2  
Group Delay  
Fs/2  
-126.82  
9
Medium Rate (88.2/96kHz) PCM Filter Response 5  
0.000023 dB  
0.208fs  
Passband  
0.000023  
dB  
Passband Ripple  
Stopband  
0.458fs  
-122.5  
dB  
dB  
fs  
Stopband Attenuation  
Attenuation at fs/2  
Group Delay  
Fs/2  
-130.52  
8
Table 65 Medium Rate PCM Filter Characteristics  
Rev 4.4  
51  
WM8742  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
High Rate (176.4/192kHz) PCM Filter Response 1  
0.000010 dB  
0.104fs  
Passband  
0.000010  
dB  
Passband Ripple  
Stopband  
0.500fs  
-120.0  
dB  
dB  
fs  
Stopband Attenuation  
Attenuation at fs/2  
Group Delay  
Fs/2  
-127.5  
10  
High Rate (176.4/192kHz) PCM Filter Response 2  
0.000031 dB  
0.104fs  
Passband  
0.000031  
dB  
Passband Ripple  
Stopband  
0.500fs  
-120.0  
dB  
dB  
fs  
Stopband Attenuation  
Attenuation at fs/2  
Group Delay  
Fs/2  
-124.93  
4
High Rate (176.4/192kHz) PCM Filter Response 3  
0.000873 dB  
0.400fs  
Passband  
0.000873  
dB  
Passband Ripple  
Stopband  
0.500fs  
-110.1  
dB  
dB  
fs  
Stopband Attenuation  
Attenuation at fs/2  
Group Delay  
Fs/2  
-112.67  
31  
High Rate (176.4/192kHz) PCM Filter Response 4  
0.000015 dB  
0.104fs  
Passband  
0.000015  
dB  
Passband Ripple  
Stopband  
0.400fs  
-120.0  
dB  
dB  
fs  
Stopband Attenuation  
Attenuation at fs/2  
Group Delay  
Fs/2  
-120.58  
6
High Rate (176.4/192kHz) PCM Filter Response 5  
0.000001 dB  
0.104fs  
Passband  
0.000001  
dB  
Passband Ripple  
Stopband  
0.400fs  
-122.8  
dB  
dB  
fs  
Stopband Attenuation  
Attenuation at fs/2  
Group Delay  
Fs/2  
-128.58  
18  
Table 66 High Rate PCM Filter Characteristics  
8FS MODE FILTER CHARACTERISTICS  
PARAMETER  
8FS Mode Filter  
Passband  
TEST CONDITIONS  
0.000021 dB  
-3dB point  
MIN  
TYP  
MAX  
UNIT  
0.455  
fs  
dB  
kHz  
fs  
0.000021  
Passband Ripple  
Filter Cut-off  
121.13  
5
Group Delay  
Table 67 8FS Mode Filter Characteristics  
52  
Rev 4.4  
WM8742  
DSD PLUS MODE FILTER CHARACTERISTICS  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
DSD Plus Filter Response 1  
0.020423 dB  
22.48  
kHz  
dB  
Passband  
0.020423  
Passband Ripple  
Stopband  
127.69  
-38.51  
kHz  
dB  
Stopband Attenuation  
Filter Cut-off  
-3dB point  
58.91  
71  
kHz  
fs  
Group Delay  
DSD Plus Filter Response 2  
0.011308dB  
23.04  
kHz  
dB  
Passband  
0.011308  
Passband Ripple  
Stopband  
120.41  
-44.52  
kHz  
dB  
Stopband Attenuation  
Filter Cut-off  
-3dB point  
49.83  
127  
kHz  
fs  
Group Delay  
DSD Plus Filter Response 3  
0.019762 dB  
27.35  
kHz  
dB  
Passband  
0.019762  
Passband Ripple  
Stopband  
70.14  
kHz  
dB  
-26.28  
Stopband Attenuation  
Filter Cut-off  
-3dB point  
49.74  
46  
kHz  
Fs  
Group Delay  
DSD Plus Filter Response 4  
0.004140 dB  
20.24  
kHz  
dB  
Passband  
0.004140  
Passband Ripple  
Stopband  
70.03  
kHz  
dB  
-48.05  
Stopband Attenuation  
Filter Cut-off  
-3dB point  
49.78  
127  
kHz  
fs  
Group Delay  
Table 68 DSD Plus Filter Characteristics  
Rev 4.4  
53  
WM8742  
PCM MODE FILTER RESPONSE  
0.1  
0.08  
0.06  
0.04  
0.02  
0
0
-50  
-100  
-150  
-200  
-0.02  
-0.04  
-0.06  
-0.08  
-0.1  
0
0.5  
1
1.5  
2
2.5  
3
3.5  
4
0
0.1  
0.2  
0.3  
0.4  
0.5  
Frequency (fs)  
Frequency (fs)  
Figure 28 Low Rate PCM Filter 1 Frequency Response  
Figure 29 Low Rate PCM Filter 1 Ripple  
0.1  
0.08  
0.06  
0.04  
0.02  
0
0
-50  
-100  
-150  
-200  
-0.02  
-0.04  
-0.06  
-0.08  
-0.1  
0
0.1  
0.2  
0.3  
0.4  
0.5  
0
0.5  
1
1.5  
2
2.5  
3
3.5  
4
Frequency (fs)  
Frequency (fs)  
Figure 30 Low Rate PCM Filter 2 Frequency Response  
Figure 31 Low Rate PCM Filter 2 Ripple  
0.1  
0.08  
0.06  
0.04  
0.02  
0
0
-50  
-100  
-150  
-200  
-0.02  
-0.04  
-0.06  
-0.08  
-0.1  
0
0.1  
0.2  
0.3  
0.4  
0.5  
0
0.5  
1
1.5  
2
2.5  
3
3.5  
4
Frequency (fs)  
Frequency (fs)  
Figure 32 Low Rate PCM Filter 3 Frequency Response  
Figure 33 Low Rate PCM Filter 3 Ripple  
54  
Rev 4.4  
WM8742  
0.1  
0.08  
0.06  
0.04  
0.02  
0
0
-50  
-100  
-150  
-200  
-0.02  
-0.04  
-0.06  
-0.08  
-0.1  
0
0.1  
0.2  
0.3  
0.4  
0.4  
0.2  
0.5  
0
0.5  
1
1.5  
2
2.5  
3
3.5  
4
4
2
Frequency (fs)  
Frequency (fs)  
Figure 34 Low Rate PCM Filter 4 Frequency Response  
Figure 35 Low Rate PCM Filter 4 Ripple  
0.1  
0.08  
0.06  
0.04  
0.02  
0
0
-50  
-100  
-150  
-200  
-0.02  
-0.04  
-0.06  
-0.08  
-0.1  
0
0.1  
0.2  
0.3  
0.5  
0
0.5  
1
1.5  
2
2.5  
3
3.5  
Frequency (fs)  
Frequency (fs)  
Figure 36 Low Rate PCM Filter 5 Frequency Response  
Figure 37 Low Rate PCM Filter 5 Ripple  
0.1  
0.08  
0.06  
0.04  
0.02  
0
0
-50  
-100  
-150  
-200  
-0.02  
-0.04  
-0.06  
-0.08  
-0.1  
0
0.05  
0.1  
0.15  
0.25  
0
0.5  
1
1.5  
Frequency (fs)  
Frequency (fs)  
Figure 38 Medium Rate PCM Filter 1 Frequency Response  
Figure 39 Medium Rate PCM Filter 1 Ripple  
Rev 4.4  
55  
WM8742  
0.1  
0.08  
0.06  
0.04  
0.02  
0
0
-50  
-100  
-150  
-200  
-0.02  
-0.04  
-0.06  
-0.08  
-0.1  
0
0.05  
0.1  
0.15  
0.2  
0.2  
0.2  
0.25  
0
0.5  
1
1.5  
2
2
2
Frequency (fs)  
Frequency (fs)  
Figure 40 Medium Rate PCM Filter 2 Frequency Response  
Figure 41 Medium Rate PCM Filter 2 Ripple  
0.1  
0.08  
0.06  
0.04  
0.02  
0
0
-50  
-100  
-150  
-200  
-0.02  
-0.04  
-0.06  
-0.08  
-0.1  
0
0.05  
0.1  
0.15  
0.25  
0
0.5  
1
1.5  
Frequency (fs)  
Frequency (fs)  
Figure 42 Medium Rate PCM Filter 3 Frequency Response  
Figure 43 Medium Rate PCM Filter 3 Ripple  
0.1  
0.08  
0.06  
0.04  
0.02  
0
0
-50  
-100  
-150  
-200  
-0.02  
-0.04  
-0.06  
-0.08  
-0.1  
0
0.05  
0.1  
0.15  
0.25  
0
0.5  
1
1.5  
Frequency (fs)  
Frequency (fs)  
Figure 44 Medium Rate PCM Filter 4 Frequency Response  
Figure 45 Medium Rate PCM Filter 4 Ripple  
56  
Rev 4.4  
WM8742  
0.1  
0.08  
0.06  
0.04  
0.02  
0
0
-50  
-100  
-150  
-200  
-0.02  
-0.04  
-0.06  
-0.08  
-0.1  
0
0.05  
0.1  
0.15  
0.2  
0.25  
0.15  
0.15  
0
0.5  
1
1.5  
2
1
1
Frequency (fs)  
Frequency (fs)  
Figure 46 Medium Rate PCM Filter 5 Frequency Response  
Figure 47 Medium Rate PCM Filter 5 Ripple  
0.1  
0.08  
0.06  
0.04  
0.02  
0
0
-50  
-100  
-150  
-200  
-0.02  
-0.04  
-0.06  
-0.08  
-0.1  
0
0.025  
0.05  
0.075  
0.1  
0.125  
0
0.2  
0.4  
0.6  
0.8  
Frequency (fs)  
Frequency (fs)  
Figure 48 High Rate PCM Filter 1 Frequency Response  
Figure 49 High Rate PCM Filter 1 Ripple  
0.1  
0.08  
0.06  
0.04  
0.02  
0
0
-50  
-100  
-150  
-200  
-0.02  
-0.04  
-0.06  
-0.08  
-0.1  
0
0.025  
0.05  
0.075  
0.1  
0.125  
0
0.2  
0.4  
0.6  
0.8  
Frequency (fs)  
Frequency (fs)  
Figure 50 High Rate PCM Filter 2 Frequency Response  
Figure 51 High Rate PCM Filter 2 Ripple  
Rev 4.4  
57  
WM8742  
0.1  
0.08  
0.06  
0.04  
0.02  
0
0
-50  
-100  
-150  
-200  
-0.02  
-0.04  
-0.06  
-0.08  
-0.1  
0
0.025  
0.05  
0.075  
Frequency (fs)  
0.1  
0.1  
0.1  
0.125  
0.125  
0.125  
0.15  
0
0.2  
0.4  
0.6  
0.8  
1
1
1
Frequency (fs)  
Figure 52 High Rate PCM Filter 3 Frequency Response  
Figure 53 High Rate PCM Filter 3 Ripple  
0.1  
0.08  
0.06  
0.04  
0.02  
0
0
-50  
-100  
-150  
-200  
-0.02  
-0.04  
-0.06  
-0.08  
-0.1  
0
0.025  
0.05  
0.075  
Frequency (fs)  
0.15  
0
0.2  
0.4  
0.6  
0.8  
Frequency (fs)  
Figure 54 High Rate PCM Filter 4 Frequency Response  
Figure 55 High Rate PCM Filter 4 Ripple  
0.1  
0.08  
0.06  
0.04  
0.02  
0
0
-50  
-100  
-150  
-200  
-0.02  
-0.04  
-0.06  
-0.08  
-0.1  
0
0.025  
0.05  
0.075  
0.15  
0
0.2  
0.4  
0.6  
0.8  
Frequency (fs)  
Frequency (fs)  
Figure 56 High Rate PCM Filter 5 Frequency Response  
Figure 57 High Rate PCM Filter 5 Ripple  
58  
Rev 4.4  
WM8742  
8FS MODE FILTER RESPONSE  
0.1  
0.08  
0.06  
0.04  
0.02  
0
0
-50  
-100  
-150  
-200  
-0.02  
-0.04  
-0.06  
-0.08  
-0.1  
0
0.1  
0.2  
0.3  
0.4  
0.5  
0
0.5  
1
1.5  
2
2.5  
3
3.5  
4
Frequency (fs)  
Frequency (fs)  
Figure 58 8FS Mode Filter Frequency Response  
Figure 59 8FS Mode Filter Ripple  
DSD PLUS MODE FILTER RESPONSE  
15  
10  
5
0
-20  
-40  
0
-60  
-5  
-80  
-10  
-15  
-100  
0
5
10  
15  
20  
25  
0
50  
100  
150  
200  
Frequency (kHz)  
Frequency (kHz)  
Figure 60 DSD Plus Mode Filter 1 Frequency Response  
Figure 61 DSD Plus Mode Filter 1 Ripple  
15  
10  
5
0
-20  
-40  
0
-60  
-5  
-80  
-10  
-15  
-100  
0
5
10  
15  
20  
25  
0
50  
100  
150  
200  
Frequency (kHz)  
Frequency (kHz)  
Figure 62 DSD Plus Mode Filter 2 Frequency Response  
Figure 63 DSD Plus Mode Filter 2 Ripple  
Rev 4.4  
59  
WM8742  
15  
10  
5
0
-20  
-40  
0
-60  
-5  
-80  
-10  
-15  
-100  
0
5
10  
15  
20  
25  
0
50  
100  
150  
200  
Frequency (kHz)  
Frequency (kHz)  
Figure 64 DSD Plus Mode Filter 3 Frequency Response  
Figure 65 DSD Plus Mode Filter 3 Ripple  
15  
10  
5
0
-20  
-40  
0
-60  
-5  
-80  
-10  
-15  
-100  
0
5
10  
15  
20  
25  
0
50  
100  
150  
200  
Frequency (kHz)  
Frequency (kHz)  
Figure 66 DSD Plus Mode Filter 4 Frequency Response  
Figure 67 DSD Plus Mode Filter 4 Ripple  
DSD DIRECT MODE FILTER RESPONSE  
15  
10  
5
0
-20  
-40  
0
-60  
-5  
-80  
-10  
-15  
-100  
0
5
10  
15  
20  
25  
0
50  
100  
150  
200  
250  
300  
350  
400  
Frequency (kHz)  
Frequency (kHz)  
Figure 69 DSD Direct Mode Standard Low Gain Filter Ripple  
(Normalised)  
Figure 68 DSD Direct Mode Standard Low Gain Filter  
Frequency Response  
60  
Rev 4.4  
WM8742  
25  
20  
15  
10  
5
0
-20  
-40  
0
-5  
-60  
-10  
-15  
-20  
-25  
-80  
-100  
0
5
10  
15  
20  
25  
0
50  
100  
150  
200  
250  
300  
350  
400  
400  
400  
Frequency (kHz)  
Frequency (kHz)  
Figure 70 DSD Direct Mode Standard High Gain Filter  
Frequency Response  
Figure 71 DSD Direct Mode Standard High Gain Filter Ripple  
(Normalised)  
15  
10  
5
0
-20  
-40  
0
-60  
-5  
-80  
-10  
-15  
-100  
0
5
10  
15  
20  
25  
0
50  
100  
150  
200  
250  
300  
350  
Frequency (kHz)  
Frequency (kHz)  
Figure 73 DSD Direct Mode 8fs Notch Low Gain Filter Ripple  
(Normalised)  
Figure 72 DSD Direct Mode 8fs Notch Low Gain Filter  
Frequency Response  
20  
15  
10  
5
0
-20  
-40  
0
-5  
-60  
-10  
-15  
-20  
-80  
-100  
0
5
10  
15  
20  
25  
0
50  
100  
150  
200  
250  
300  
350  
Frequency (kHz)  
Frequency (kHz)  
Figure 74 DSD Direct Mode 8fs Notch High Gain Filter  
Frequency Response  
Figure 75 DSD Direct Mode 8fs Notch High Gain Filter Ripple  
(Normalised)  
Rev 4.4  
61  
WM8742  
DE-EMPHASIS FILTER RESPONSE  
0.0  
-2.0  
0.4  
0.3  
0.2  
0.1  
-4.0  
0.0  
-6.0  
-0.1  
-0.2  
-0.3  
-0.4  
-8.0  
-10.0  
0
5000  
10000  
15000  
20000  
0
5000  
10000  
15000  
15000  
15000  
20000  
20000  
20000  
Frequency (Hz)  
Frequency (Hz)  
Figure 76 De-emphasis Frequency Response (32kHz)  
Figure 77 De-emphasis Error (32kHz)  
0.0  
-2.0  
0.4  
0.3  
0.2  
0.1  
-4.0  
0.0  
-6.0  
-0.1  
-0.2  
-0.3  
-0.4  
-8.0  
-10.0  
0
5000  
10000  
15000  
20000  
0
5000  
10000  
Frequency (Hz)  
Frequency (Hz)  
Figure 78 De-emphasis Fequency Response (44.1kHz)  
Figure 79 De-emphasis Error (44.1kHz)  
0.0  
-2.0  
0.4  
0.3  
0.2  
0.1  
-4.0  
0.0  
-6.0  
-0.1  
-0.2  
-0.3  
-0.4  
-8.0  
-10.0  
0
5000  
10000  
15000  
20000  
0
5000  
10000  
Frequency (Hz)  
Frequency (Hz)  
Figure 80 De-emphasis Frequency Response (48kHz)  
Figure 81 De-emphasis Error (48kHz)  
62  
Rev 4.4  
WM8742  
APPLICATIONS INFORMATION  
Figure 82 External Components  
Figure 83 External Filter Components  
Rev 4.4  
63  
WM8742  
PACKAGE DIMENSIONS  
DS: 28 PIN SSOP (10.2 x 5.3 x 1.75 mm)  
DM007.E  
b
e
28  
15  
E1  
E
GAUGE  
PLANE  
14  
1
D
0.25  
L
c
A1  
L1  
A A2  
-C-  
0.10 C  
SEATING PLANE  
Dimensions  
(mm)  
NOM  
-----  
Symbols  
MIN  
-----  
MAX  
A
A1  
A2  
b
c
D
e
E
E1  
L
2.0  
0.25  
1.85  
0.38  
0.25  
10.50  
0.05  
1.65  
0.22  
0.09  
9.90  
-----  
1.75  
0.30  
-----  
10.20  
0.65 BSC  
7.80  
7.40  
5.00  
0.55  
8.20  
5.60  
0.95  
5.30  
0.75  
L1  
1.25 REF  
0o  
4o  
8o  
JEDEC.95, MO-150  
REF:  
NOTES:  
A. ALL LINEAR DIMENSIONS ARE IN MILLIMETERS.  
B. THIS DRAWING IS SUBJECT TO CHANGE WITHOUT NOTICE.  
C. BODY DIMENSIONS DO NOT INCLUDE MOLD FLASH OR PROTRUSION, NOT TO EXCEED 0.20MM.  
D. MEETS JEDEC.95 MO-150, VARIATION = AH. REFER TO THIS SPECIFICATION FOR FURTHER DETAILS.  
64  
Rev 4.4  
WM8742  
IMPORTANT NOTICE  
Contacting Cirrus Logic Support  
For all product questions and inquiries, contact a Cirrus Logic Sales Representative.  
To find one nearest you, go to www.cirrus.com.  
For the purposes of our terms and conditions of sale, "Preliminary" or "Advanced" datasheets are non-final datasheets that include  
but are not limited to datasheets marked as “Target”, “Advance”, “Product Preview”, “Preliminary Technical Data” and/or “Pre-  
production.” Products provided with any such datasheet are therefore subject to relevant terms and conditions associated with  
"Preliminary" or "Advanced" designations. The products and services of Cirrus Logic International (UK) Limited; Cirrus Logic, Inc.;  
and other companies in the Cirrus Logic group (collectively either “Cirrus Logic” or “Cirrus”) are sold subject to Cirrus Logic’s terms  
and conditions of sale supplied at the time of order acknowledgment, including those pertaining to warranty, indemnification, and  
limitation of liability. Software is provided pursuant to applicable license terms. Cirrus Logic reserves the right to make changes to its  
products and specifications or to discontinue any product or service. Customers should therefore obtain the latest version of relevant  
information from Cirrus Logic to verify that the information is current and complete. Testing and other quality control techniques are  
utilized to the extent Cirrus Logic deems necessary. Specific testing of all parameters of each device is not necessarily performed. In  
order to minimize risks associated with customer applications, the customer must use adequate design and operating safeguards to  
minimize inherent or procedural hazards. Cirrus Logic is not liable for applications assistance or customer product design. The  
customer is solely responsible for its product design, including the specific manner in which it uses Cirrus Logic components, and  
certain uses or product designs may require an intellectual property license from a third party. Features and operations described  
herein are for illustrative purposes only and do not constitute a suggestion or instruction to adopt a particular product design or a  
particular mode of operation for a Cirrus Logic component.  
CERTAIN APPLICATIONS USING SEMICONDUCTOR PRODUCTS MAY INVOLVE POTENTIAL RISKS OF DEATH, PERSONAL  
INJURY, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE (“CRITICAL APPLICATIONS”). CIRRUS LOGIC PRODUCTS  
ARE NOT DESIGNED, AUTHORIZED OR WARRANTED FOR USE IN PRODUCTS SURGICALLY IMPLANTED INTO THE BODY,  
AUTOMOTIVE SAFETY OR SECURITY DEVICES, NUCLEAR SYSTEMS, LIFE SUPPORT PRODUCTS OR OTHER CRITICAL  
APPLICATIONS. INCLUSION OF CIRRUS LOGIC PRODUCTS IN SUCH APPLICATIONS IS UNDERSTOOD TO BE FULLY AT  
THE CUSTOMER’S RISK AND CIRRUS LOGIC DISCLAIMS AND MAKES NO WARRANTY, EXPRESS, STATUTORY OR  
IMPLIED, INCLUDING THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR PARTICULAR PURPOSE,  
WITH REGARD TO ANY CIRRUS LOGIC PRODUCT THAT IS USED IN SUCH A MANNER. IF THE CUSTOMER OR  
CUSTOMER’S CUSTOMER USES OR PERMITS THE USE OF CIRRUS LOGIC PRODUCTS IN CRITICAL APPLICATIONS,  
CUSTOMER AGREES, BY SUCH USE, TO FULLY INDEMNIFY CIRRUS LOGIC, ITS OFFICERS, DIRECTORS, EMPLOYEES,  
DISTRIBUTORS AND OTHER AGENTS FROM ANY AND ALL LIABILITY, INCLUDING ATTORNEYS’ FEES AND COSTS, THAT  
MAY RESULT FROM OR ARISE IN CONNECTION WITH THESE USES.  
This document is the property of Cirrus Logic, and you may not use this document in connection with any legal analysis concerning  
Cirrus Logic products described herein. No license to any technology or intellectual property right of Cirrus Logic or any third party is  
granted herein, including but not limited to any patent right, copyright, mask work right, or other intellectual property rights. Any  
provision or publication of any third party’s products or services does not constitute Cirrus Logic’s approval, license, warranty or  
endorsement thereof. Cirrus Logic gives consent for copies to be made of the information contained herein only for use within your  
organization with respect to Cirrus Logic integrated circuits or other products of Cirrus Logic, and only if the reproduction is without  
alteration and is accompanied by all associated copyright, proprietary and other notices and conditions (including this notice). This  
consent does not extend to other copying such as copying for general distribution, advertising or promotional purposes, or for  
creating any work for resale. This document and its information is provided “AS IS” without warranty of any kind (express or implied).  
All statutory warranties and conditions are excluded to the fullest extent possible. No responsibility is assumed by Cirrus Logic for  
the use of information herein, including use of this information as the basis for manufacture or sale of any items, or for infringement  
of patents or other rights of third parties. Cirrus Logic, Cirrus, the Cirrus Logic logo design, and SoundClear are among the  
trademarks of Cirrus Logic. Other brand and product names may be trademarks or service marks of their respective owners.  
Copyright © 20092020 Cirrus Logic, Inc. All rights reserved.  
Rev 4.4  
65  
WM8742  
REVISION HISTORY  
DATE  
REV  
DESCRIPTION OF CHANGES  
CHANGED BY  
Digital supply operation changed from 3.0V to 3.6V to 3.15 to 3.6V  
14/02/13  
4.3  
JMacD  
Operating temp changed from -40oC to +85oC to 0oC to +70oC  
14/02/13  
17/01/20  
4.3  
4.4  
JMacD  
PH  
Ordering Information and Absolute Maximum Ratings updated MSL information  
removed  
66  
Rev 4.4  

相关型号:

WM8742GEDS/RV

D/A Converter,
CIRRUS

WM8742GEDS/V

D/A Converter,
CIRRUS

WM8746

24BIT 192KHZ 6 CHANNEL DAC WITH VOLUME CONTROL
WOLFSON

WM8746EDS

24BIT 192KHZ 6 CHANNEL DAC WITH VOLUME CONTROL
WOLFSON

WM8746EDS/R

D/A Converter, 6 Func, PDSO28
CIRRUS

WM8746SEDS

24-bit, 192kHz 6-Channel DAC with Volume Control
WOLFSON

WM8746SEDS/R

24-bit, 192kHz 6-Channel DAC with Volume Control
WOLFSON

WM8746_06

24-bit, 192kHz 6-Channel DAC with Volume Control
WOLFSON

WM8750-EV1M

Evaluation Board User Handbook
WOLFSON

WM8750BL

Stereo CODEC for Portable Audio Applications
WOLFSON

WM8750BLGEFL

Stereo CODEC for Portable Audio Applications
WOLFSON

WM8750BLGEFL/R

Stereo CODEC for Portable Audio Applications
WOLFSON