WM9714L [CIRRUS]

AC’97 Audio Codec;
WM9714L
型号: WM9714L
厂家: CIRRUS LOGIC    CIRRUS LOGIC
描述:

AC’97 Audio Codec

文件: 总120页 (文件大小:2369K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
WM9714L  
AC’97 Audio Codec  
DESCRIPTION  
FEATURES  
AC’97 Rev 2.2 compatible stereo CODEC  
The WM9714L is  
designed for mobile computing and communications.  
a highly integrated input/output device  
- DAC SNR 94dB, THD 85dB  
- ADC SNR 87dB, THD 86dB  
The chip is architected for dual CODEC operation, supporting hi-  
fi stereo CODEC functions via the AC link interface, and  
additionally supporting voice CODEC functions via a PCM type  
Synchronous Serial Port (SSP). A third, auxiliary DAC is  
provided which may be used to support generation of  
supervisory tones, or ring-tones at different sample rates to the  
main CODEC.  
- Variable Rate Audio, supports all WinCE sample rates  
- Tone Control, Bass Boost and 3D Enhancement  
On-chip 45mW headphone driver  
On-chip 400mW mono or stereo speaker drivers  
Stereo, mono or differential microphone input  
- Automatic Level Control (ALC)  
- Mic insert and mic button press detection  
Auxiliary mono DAC (ring tone or DC level generation)  
Seamless interface to wireless chipset  
Additional PCM/I2S interface to support voice CODEC  
PLL derived audio clocks.  
Supports input clock ranging from 2.048MHz to 78.6MHz  
1.8V to 3.6V supplies (digital down to 1.62V, speaker up to  
4.2V)  
The device can connect directly to mono or stereo microphones,  
stereo headphones and  
a stereo speaker, reducing total  
component count in the system. Cap-less connections to the  
headphones, speakers, and earpiece may be used, saving cost  
and board area. Additionally, multiple analogue input and output  
pins are provided for seamless integration with analogue  
connected wireless communication devices.  
7x7mm 48-lead QFN package  
All device functions are accessed and controlled through a  
single AC-Link interface compliant with the AC’97 standard. The  
24.576 MHz master clock can be input directly or generated  
internally from a 13MHz (or other frequency) clock by an on-chip  
PLL. The PLL supports a wide range of input clock from  
2.048MHz to 78.6MHz.  
APPLICATIONS  
Smartphones  
Personal Digital Assistants (PDA)  
Handheld and Tablet Computers  
The WM9714L operates at supply voltages from 1.8V to 3.6V.  
Each section of the chip can be powered down under software  
control to save power. The device is available in a small  
leadless 7x7mm QFN package, ideal for use in hand-held  
portable systems.  
BLOCK DIAGRAM  
AGND2  
AGND3  
AVDD  
AVDD2  
DGND1  
DGND2  
DCVDD  
DBVDD  
SPKGND  
SPKVDD  
HPGND  
POR  
HPVDD  
AGND CAP2  
VREF  
AVDD  
DCVDD  
rb  
VREF  
WM9714L  
50K  
50K  
RESETB  
(pin 11)  
MICBIAS  
MIC1  
MICCM  
MONO  
HPL  
DIFFERENTIAL  
STEREO or  
MONO MICS  
ADC  
L
DAC  
L
INPUT PGAs  
TONE /  
BASS  
BOOST  
Ear Speaker  
32R  
Hands-free  
32R  
MIC2A/COMP1/AUX1  
MIC2B/COMP2/AUX2  
LINEL  
ALC /  
NOISE  
GATE  
RECORD  
SELECT  
HP  
16/32R  
ADC  
R
DAC  
R
3D  
LINER  
HEADPHONE  
MIXER  
RECORD  
VOLUME  
MONOIN  
HPR  
-
PCBEEP  
SPEAKER  
MIXER  
SPKL  
SPKVDD / 3  
AUX4/GPIO8/  
(SPDIF)  
AUX  
ADC  
AUX  
DAC  
ADCSEL  
MONO  
MIXER  
SPKR  
OUT3  
Stereo  
Speaker (R)  
8R  
Stereo  
Speaker (L)  
8R  
DEAD  
BAT  
-
VOICE  
DAC  
+
PCM/I2S  
INTERFACE  
VREF /  
AUX4  
+
- LOW  
BAT  
AC'97  
INTERRUPT  
LOGIC  
PLL  
INTERFACE  
OUT4  
Rev 4.0  
DEC ‘16  
Copyright Cirrus Logic, Inc., 20102016  
http://www.cirrus.com  
(All Rights Reserved)  
 
 
 
 
WM9714L  
TABLE OF CONTENTS  
DESCRIPTION................................................................................................................ 1  
FEATURES..................................................................................................................... 1  
APPLICATIONS.............................................................................................................. 1  
BLOCK DIAGRAM ......................................................................................................... 1  
TABLE OF CONTENTS.................................................................................................. 2  
PIN CONFIGURATION................................................................................................... 4  
ORDERING INFORMATION........................................................................................... 4  
PIN DESCRIPTION......................................................................................................... 4  
ABSOLUTE MAXIMUM RATINGS................................................................................. 6  
RECOMMENDED OPERATING CONDITIONS.............................................................. 6  
ELECTRICAL CHARACTERISTICS .............................................................................. 7  
AUDIO OUTPUTS......................................................................................................................7  
AUDIO INPUTS..........................................................................................................................8  
AUXILIARY MONO DAC (AUXDAC)..........................................................................................8  
PCM VOICE DAC (VXDAC).......................................................................................................8  
AUXILIARY ADC........................................................................................................................9  
COMPARATORS .......................................................................................................................9  
REFERENCE VOLTAGES.........................................................................................................9  
DIGITAL INTERFACE CHARACTERISTICS ...........................................................................10  
POWER CONSUMPTION............................................................................................. 10  
SIGNAL TIMING REQUIREMENTS ............................................................................. 11  
AC97 INTERFACE TIMING......................................................................................................11  
PCM AUDIO INTERFACE TIMING SLAVE MODE...............................................................15  
PCM AUDIO INTERFACE TIMING MASTER MODE............................................................16  
DEVICE DESCRIPTION ............................................................................................... 17  
INTRODUCTION......................................................................................................................17  
AUDIO PATHS OVERVIEW.....................................................................................................18  
CLOCK GENERATION ............................................................................................................19  
CLOCK DIVISION MODES ......................................................................................................19  
PLL MODE ...............................................................................................................................21  
DIGITAL INTERFACES............................................................................................................24  
AC97 INTERFACE...................................................................................................................25  
PCM INTERFACE....................................................................................................................25  
AUDIO ADCS ............................................................................................................... 31  
STEREO ADC..........................................................................................................................31  
RECORD SELECTOR..............................................................................................................32  
RECORD GAIN........................................................................................................................33  
AUTOMATIC LEVEL CONTROL..............................................................................................34  
AUDIO DACS ............................................................................................................... 38  
STEREO DAC..........................................................................................................................38  
VOICE DAC..............................................................................................................................40  
AUXILIARY DAC......................................................................................................................41  
VARIABLE RATE AUDIO / SAMPLE RATE CONVERSION ....................................... 43  
AUDIO INPUTS............................................................................................................. 44  
LINE INPUT..............................................................................................................................44  
MICROPHONE INPUT.............................................................................................................44  
MONOIN INPUT.......................................................................................................................49  
PCBEEP INPUT.......................................................................................................................50  
DIFFERENTIAL MONO INPUT................................................................................................51  
2
Rev 4.0  
 
WM9714L  
AUDIO MIXERS............................................................................................................ 52  
MIXER OVERVIEW..................................................................................................................52  
HEADPHONE MIXERS............................................................................................................52  
SPEAKER MIXER ....................................................................................................................52  
MONO MIXER..........................................................................................................................53  
MIXER OUTPUT INVERTERS.................................................................................................53  
ANALOGUE AUDIO OUTPUTS ................................................................................... 54  
HEADPHONE OUTPUTS HPL AND HPR ............................................................................54  
MONO OUTPUT.......................................................................................................................55  
SPEAKER OUTPUTS SPKL AND SPKR..............................................................................56  
AUXILIARY OUTPUTS OUT3 AND OUT4............................................................................57  
THERMAL SENSOR ................................................................................................................59  
JACK INSERTION AND AUTO-SWITCHING ..........................................................................59  
DIGITAL AUDIO (S/PDIF) OUTPUT............................................................................. 63  
AUXILIARY ADC .......................................................................................................... 64  
ADDITIONAL FEATURES............................................................................................ 69  
BATTERY ALARM AND ANALOGUE COMPARATORS.........................................................69  
GPIO AND INTERRUPT CONTROL........................................................................................72  
POWER MANAGEMENT.............................................................................................. 76  
INTRODUCTION......................................................................................................................76  
AC97 CONTROL REGISTER...................................................................................................76  
EXTENDED POWERDOWN REGISTERS ..............................................................................77  
ADDITIONAL POWER MANAGEMENT...................................................................................79  
POWER-ON RESET (POR) .....................................................................................................79  
REGISTER MAP........................................................................................................... 80  
REGISTER BITS BY ADDRESS..............................................................................................81  
APPLICATIONS INFORMATION ............................................................................... 110  
RECOMMENDED EXTERNAL COMPONENTS....................................................................110  
LINE OUTPUT........................................................................................................................111  
AC-COUPLED HEADPHONE OUTPUT ................................................................................111  
DC-COUPLED (CAPLESS) HEADPHONE OUTPUT ............................................................112  
BTL LOUDSPEAKER OUTPUT .............................................................................................112  
COMBINED HEADSET / BTL EAR SPEAKER ......................................................................113  
COMBINED HEADSET / SINGLE-ENDED EAR SPEAKER..................................................113  
JACK INSERT DETECTION ..................................................................................................114  
HOOKSWITCH DETECTION.................................................................................................114  
TYPICAL OUTPUT CONFIGURATIONS ...............................................................................115  
PACKAGE DIMENSIONS........................................................................................... 118  
IMPORTANT NOTICE ................................................................................................ 119  
REVISION HISTORY .................................................................................................. 120  
Rev 4.0  
3
WM9714L  
PIN CONFIGURATION  
48 47 46 45 44 43 42 41 40 39 38 37  
DBVDD  
MCLKA  
1
2
3
4
5
6
7
8
9
36 SPKR  
35 SPKL  
MCLKB / GPIO6 / (ADA /  
MASK)  
34 SPKGND  
33 OUT4  
DGND1  
SDATAOUT  
BITCLK  
32 CAP2  
31 MONO  
WM9714L  
DGND2  
30 MIC2B / COMP2 / AUX2  
29 MIC2A / COMP1 / AUX1  
28 MICBIAS  
27 VREF  
SDATAIN  
DCVDD  
SYNC 10  
RESETB / GPIO7 11  
26 AGND  
AUX4 / GPIO8 / (SPDIF /  
12  
25 AVDD  
MICBIAS)  
13 14 15 16 17 18 19 20 21 22 23 24  
ORDERING INFORMATION  
TEMPERATURE  
MOISTURE SENSITIVITY  
LEVEL  
PEAK SOLDERING  
TEMPERATURE  
DEVICE  
RANGE  
PACKAGE  
48-lead QFN  
(Pb-free)  
WM9714CLGEFL/V  
WM9714CLGEFL/RV  
-25 to +85oC  
-25 to +85oC  
MSL3  
MSL3  
260oC  
260oC  
48-lead QFN  
(Pb-free, tape and reel)  
Note:  
Reel quantity = 2,200  
PIN DESCRIPTION  
PIN  
1
NAME  
DBVDD  
TYPE  
DESCRIPTION  
Digital I/O Buffer Supply  
Master Clock A Input  
Supply  
Digital Input  
Digital In/Out  
Supply  
2
MCLKA  
Master Clock B Input / GPIO6 / (ADA output / MASK input)  
Digital Ground (return path for both DCVDD and DBVDD)  
Serial Data Output from Controller / Input to WM9714L  
Serial Interface Clock Output to Controller  
3
MCLKB / GPIO6 / (ADA / MASK)  
DGND1  
4
5
SDATAOUT  
Digital Input  
Digital Output  
6
BITCLK  
4
Rev 4.0  
WM9714L  
PIN  
7
NAME  
DGND2  
TYPE  
Supply  
DESCRIPTION  
Digital Ground (return path for both DCVDD and DBVDD)  
Serial Data Input to Controller / Output from WM9714L  
Digital Core Supply  
8
SDATAIN  
DCVDD  
Digital Output  
Supply  
9
Serial Interface Synchronisation Pulse from Controller  
10  
11  
SYNC  
Digital Input  
Digital In / Out  
Reset (asynchronous, active Low, resets all registers to their  
default) / GPIO7  
RESETB / GPIO7  
Auxiliary ADC input / GPIO8 / (S/PDIF digital audio output)  
Analogue Supply  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
AUX4 / GPIO8 / (S/PDIF)  
Analogue In / Out  
Supply  
AVDD2  
Do not connect  
NC  
Analogue Input  
Analogue Input  
Analogue Input  
Analogue Input  
Supply  
Do not connect  
NC  
Do not connect  
NC  
Do not connect  
NC  
Analogue Ground  
AGND3  
Line Input to analogue audio mixers, typically used for beeps  
Mono Input (RX)  
PCBEEP  
Analogue Input  
Analogue Input  
Analogue Input  
Analogue Input  
Analogue Input  
Analogue Input  
Supply  
MONOIN  
Microphone preamp A input 1  
MIC1  
Microphone common mode input  
MICCM  
Left Line Input  
LINEL  
Right Line Input  
LINER  
Analogue Supply (audio DACs, ADCs, PGAs, mic amps, mixers)  
Analogue Ground  
AVDD  
AGND  
Supply  
Internal Reference Voltage (buffered CAP2)  
Bias Voltage for Microphones (buffered CAP2 1.8)  
Microphone preamp A input 2 / COMP1 input / Auxiliary ADC input  
Microphone preamp B input / COMP2 input / Auxiliary ADC input  
Mono output driver (line or headphone)  
Internal Reference Voltage (normally AVDD/2, if not overdriven)  
Auxiliary output driver (speaker, line or headphone)  
Speaker ground (feeds output buffers on pins 33, 35, 36 and 37)  
Left speaker driver (speaker, line or headphone)  
Right speaker driver (speaker, line or headphone)  
Auxiliary output driver (speaker, line or headphone)  
Speaker supply (feeds output buffers on pins 33, 35, 36 and 37)  
Headphone left driver (line or headphone)  
Headphone ground (feeds output buffers on pins 39 and 41)  
Headphone right driver (line or headphone)  
Analogue ground, chip substrate  
VREF  
Analogue Output  
Analogue Output  
Analogue Input  
Analogue Input  
Analogue output  
Analogue In / Out  
Analogue Output  
Supply  
MICBIAS  
MIC2A / COMP1 / AUX1  
MIC2B / COMP2 / AUX2  
MONO  
CAP2  
OUT4  
SPKGND  
SPKL  
Analogue Output  
Analogue Output  
Analogue Output  
Supply  
SPKR  
OUT3  
SPKVDD  
HPL  
Analogue Output  
Supply  
HPGND  
HPR  
Analogue Output  
Supply  
AGND2  
Headphone supply (feeds output buffers on pins 39 and 41)  
GPIO Pin 1 / PCM interface clock  
HPVDD  
Supply  
GPIO1 / PCMCLK  
GPIO2 / IRQ  
GPIO3 / PCMFS  
GPIO4 / ADA / MASK / PCMDAC  
Digital In / Out  
Digital In / Out  
Digital In / Out  
Digital In / Out  
GPIO Pin 2 / IRQ (Interrupt Request) output  
GPIO Pin 3 / PCM frame signal  
GPIO Pin 4 / ADA (ADC data available) output or Mask input /  
PCM input (DAC) data  
GPIO Pin 5 / S/PDIF digital audio output / PCM output (ADC) data  
Die Paddle (Note 1)  
48  
49  
GPIO5 / S/PDIF / PCMADC  
GND_PADDLE  
Digital In / Out  
Notes:  
1. It is recommended that the GND_PADDLE is connected to analogue ground. Refer to Recommended External Components”  
and “Package Dimensionsfor further information.  
Rev 4.0  
5
WM9714L  
ABSOLUTE MAXIMUM RATINGS  
Absolute Maximum Ratings are stress ratings only. Permanent damage to the device may be caused by continuously operating at  
or beyond these limits. Device functional operating limits and guaranteed performance specifications are given under Electrical  
Characteristics at the test conditions specified.  
ESD Sensitive Device. This device is manufactured on a CMOS process. It is therefore generically susceptible to  
damage from excessive static voltages. Proper ESD precautions must be taken during handling and storage of  
this device.  
Cirrus Logic tests its package types according to IPC/JEDEC J-STD-020B for Moisture Sensitivity to determine acceptable storage  
conditions prior to surface mount assembly. These levels are:  
MSL1 = unlimited floor life at <30C / 85% Relative Humidity. Not normally stored in moisture barrier bag.  
MSL2 = out of bag storage for 1 year at <30C / 60% Relative Humidity. Supplied in moisture barrier bag.  
MSL3 = out of bag storage for 168 hours at <30C / 60% Relative Humidity. Supplied in moisture barrier bag.  
The Moisture Sensitivity Level for each package type is specified in Ordering Information.  
CONDITION  
Digital supply voltages (DCVDD, DBVDD)  
Analogue supply voltages (AVDD, AVDD2, HPVDD)  
Speaker supply voltage (SPKVDD)  
Voltage range digital inputs  
MIN  
-0.3V  
MAX  
+3.63V  
-0.3V  
+3.63V  
-0.3V  
+4.2V  
DGND -0.3V  
AGND -0.3V  
-25oC  
DBVDD +0.3V  
AVDD +0.3V  
+85oC  
Voltage range analogue inputs  
Operating temperature range, TA  
RECOMMENDED OPERATING CONDITIONS  
TEST  
CONDITIONS  
PARAMETER  
SYMBOL  
MIN  
TYP  
MAX  
UNIT  
Digital input/output buffer supply range  
Digital core supply range  
DBVDD  
DCVDD  
1.71  
1.71  
1.8  
3.3  
1.8  
3.3  
3.6  
3.6  
3.6  
V
V
V
Analogue supply range  
AVDD, AVDD2,  
HPVDD  
Speaker supply range  
Digital ground  
SPKVDD  
1.8  
3.3  
0
4.2  
V
V
V
DGND1, DGND2  
Analogue ground  
AGND, AGND3,  
0
HPGND, SPKGND  
Difference AGND to DGND  
Note 1  
-0.3  
0
+0.3  
V
Note:  
1. AGND is normally the same as DGND1/DGND2  
2. DCVDD <= DBVDD and DCVDD <= AVDD  
3. DCVDD should be >=2V when using the PLL  
6
Rev 4.0  
WM9714L  
ELECTRICAL CHARACTERISTICS  
AUDIO OUTPUTS  
Test Conditions  
DBVDD=3.3V, DCVDD = 3.3V, AVDD=HPVDD=SPKVDD =3.3V, TA = +25oC, 1kHz signal, fs = 48kHz, 24-bit audio data unless  
otherwise stated.  
PARAMETER  
SYMBOL  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
DAC to Line-Out (HPL/R, SPKL/R or MONO with 10k/ 50pF load)  
Full-scale output (0dBFS)  
AVDD = 3.3V, PGA gains  
set to 0dB  
1
V rms  
dB  
Signal to Noise Ratio  
(A-weighted)  
SNR  
85  
94  
Total Harmonic Distortion  
Power Supply Rejection  
THD  
-3dB output  
-85  
50  
-74  
dB  
dB  
PSRR  
100mV, 20Hz to 20kHz  
signal on AVDD  
Speaker Output (SPKL/SPKR with 8bridge tied load, INV=1)  
Output Power at 1% THD  
Abs. max output power  
Total Harmonic Distortion  
PO  
THD = 1%  
400  
500  
-66  
mW (rms)  
POmax  
THD  
mW (rms)  
PO = 200mW  
dB  
%
0.05  
90  
Signal to Noise Ratio  
(A-weighted)  
SNR  
dB  
Stereo Speaker Output (SPKL/OUT4 and SPKR/OUT3 with 8bridge tied load, INV=1)  
Output Power at 1% THD  
Abs. max output power  
Total Harmonic Distortion  
PO  
THD = 1%  
400  
500  
-66  
mW (rms)  
POmax  
THD  
mW (rms)  
PO = 200mW  
dB  
%
0.05  
90  
Signal to Noise Ratio  
(A-weighted)  
SNR  
dB  
Headphone Output (HPL/R, OUT3/4 or SPKL/SPKR with 16or 32load)  
Output Power per channel  
Total Harmonic Distortion  
PO  
Output power is very closely correlated with THD; see below.  
THD  
PO=10mW, RL=16  
-80  
-80  
-78  
-79  
90  
dB  
dB  
PO=10mW, RL=32  
PO=20mW, RL=16  
PO=20mW, RL=32  
Signal to Noise Ratio  
(A-weighted)  
SNR  
Note:  
1. All THD values are valid for the output power level quoted above for example, at HPVDD=3.3V and RL=16, THD is 80dB  
when output power is 10mW. Higher output power is possible, but will result in deterioration in THD.  
Rev 4.0  
7
WM9714L  
AUDIO INPUTS  
Test Conditions  
DBVDD=3.3V, DCVDD = 3.3V, AVDD = 3.3V, TA = +25oC, 1kHz signal, fs = 48kHz, 24-bit audio data unless otherwise stated.  
PARAMETER  
SYMBOL  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
LINEL/R, MIC1/2A/2B, MONOIN and PCBEEP pins  
Full Scale Input Signal Level  
(0dBFS)  
VINFS  
AVDD = 3.3V  
AVDD = 1.8V  
1.0  
0.545  
0.5  
Vrms  
differential input mode  
(MS = 01) AVDD = 3.3V  
differential input mode  
(MS = 01) AVDD = 1.8V  
0.273  
Input Resistance  
Input Capacitance  
RIN  
0dB PGA gain  
12dB PGA gain  
25.6  
10.4  
32  
13  
5
38.4  
15.6  
k  
pF  
dB  
Line input to ADC (LINEL, LINER, MONOIN)  
Signal to Noise Ratio  
(A-weighted)  
SNR  
80  
87  
Total Harmonic Distortion  
Power Supply Rejection  
THD  
-3dBFS input  
-86  
50  
-80  
dB  
dB  
PSRR  
20Hz to 20kHz  
Microphone input to ADC (MIC1/2A/2B pins)  
Signal to Noise Ratio  
(A-weighted)  
SNR  
20dB boost enabled  
20dB boost enabled  
80  
dB  
dB  
Total Harmonic Distortion  
THD  
-80  
AUXILIARY MONO DAC (AUXDAC)  
Test Conditions  
DBVDD=3.3V, DCVDD = 3.3V, AVDD = 3.3V, TA = +25oC, 1kHz signal, fs = 8kHz, 24-bit audio data unless otherwise stated.  
PARAMETER  
Resolution  
SYMBOL  
TEST CONDITIONS  
MIN  
TYP  
12  
MAX  
UNIT  
bits  
Full scale output voltage  
Signal to Noise Ratio  
(A-weighted)  
AVDD=3.3V  
1
Vrms  
dB  
SNR  
THD  
TBD  
Total Harmonic Distortion  
TBD  
dB  
PCM VOICE DAC (VXDAC)  
Test Conditions  
DBVDD=3.3V, DCVDD = 3.3V, AVDD = 3.3V, TA = +25oC, 1kHz signal, fs = 8kHz, 24-bit audio data unless otherwise stated.  
PARAMETER  
Resolution  
SYMBOL  
TEST CONDITIONS  
MIN  
TYP  
16  
8
MAX  
UNIT  
bits  
Sample rates  
16  
Ks/s  
Vrms  
dB  
Full scale output voltage  
Signal to Noise Ratio  
(A-weighted)  
AVDD=3.3V  
1
SNR  
THD  
80  
Total Harmonic Distortion  
74  
dB  
8
Rev 4.0  
WM9714L  
AUXILIARY ADC  
Test Conditions  
DBVDD = 3.3V, DCVDD = 3.3V, AVDD = 3.3V, TA = +25oC, unless otherwise stated.  
PARAMETER  
SYMBOL  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
Input Pins AUX4, COMP1/AUX1, COMP2/AUX2  
Input Voltage  
AGND  
AVDD  
V
Input leakage current  
AUX pin not selected as  
AUX ADC input  
<10  
nA  
ADC Resolution  
12  
bits  
LSB  
LSB  
LSB  
LSB  
dB  
Differential Non-Linearity Error  
Integral Non-Linearity Error  
Offset Error  
DNL  
INL  
0.25  
1  
2  
4  
6  
Gain Error  
Power Supply Rejection  
Channel-to-channel isolation  
Throughput Rate  
PSRR  
50  
80  
dB  
DEL = 1111  
48  
6
kHz  
(zero settling time)  
MCLK = 24.576MHz  
Settling Time (programmable)  
0
ms  
COMPARATORS  
Test Conditions  
DBVDD = 3.3V, DCVDD = 3.3V, AVDD = 3.3V, TA = +25oC, unless otherwise stated.  
PARAMETER  
SYMBOL  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
COMP1/AUX1 and COMP2/AUX2 (pins 29, 30 when not used as mic inputs)  
Input Voltage  
AGND  
AVDD  
V
Input leakage current  
pin not selected as AUX  
ADC input  
<10  
nA  
Comparator Input Offset  
(COMP1, COMP2 only)  
COMP2 delay (COMP2 only)  
-50  
0
+50  
mV  
s
MCLK = 24.576MHz  
10.9  
REFERENCE VOLTAGES  
Test Conditions  
DBVDD=3.3V, DCVDD = 3.3V, AVDD = 3.3V, TA = +25oC, 1kHz signal, fs = 48kHz, 24-bit audio data unless otherwise stated.  
PARAMETER  
Audio ADCs, DACs, Mixers  
Reference Input/Output  
Buffered Reference Output  
Microphone Bias  
SYMBOL  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
CAP2 pin  
VREF pin  
1.63  
1.64  
1.65  
1.65  
1.66  
1.67  
V
V
Bias Voltage  
VMICBIAS  
IMICBIAS  
Vn  
2.92  
2.97  
15  
3.00  
3
V
Bias Current Source  
Output Noise Voltage  
mA  
1K to 20kHz  
nV/Hz  
Rev 4.0  
9
WM9714L  
DIGITAL INTERFACE CHARACTERISTICS  
Test Conditions  
DBVDD = 3.3V, DCVDD = 3.3V, TA = +25oC, unless otherwise stated.  
PARAMETER  
SYMBOL  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
Digital Logic Levels (all digital input or output pins) CMOS Levels  
Input HIGH level  
VIH  
VIL  
DBVDD0.7  
DBVDD0.9  
V
V
Input LOW level  
DBVDD0.3  
DBVDD0.1  
Output HIGH level  
VOH  
VOL  
source current = 2mA  
sink current = 2mA  
Output LOW level  
Clock Frequency  
Master clock (MCLKA pin)  
AC’97 bit clock (BIT_CLK pin)  
AC’97 sync pulse (SYNC pin)  
24.576  
12.288  
48  
MHz  
MHz  
kHz  
Note:  
1. All audio and non-audio sample rates and other timing scales proportionately with the master clock.  
2. For signal timing on the AC-Link, please refer to the AC’97 specification (Revision 2.2)  
POWER CONSUMPTION  
The power consumption of the WM9714L depends on the following factors:  
Supply voltages: Reducing the supply voltages also reduces digital supply currents, end therefore results in significant  
power savings especially in the digital sections of the WM9714L.  
Operating mode: Significant power savings can be achieved by always disabling parts of the WM9714L that are not used  
(e.g. audio ADC, DAC, AUXADC).  
Sample rates: Running at lower sample rates will reduce power consumption significantly. The figures below are for 48kHz  
(unless otherwise specified), but in many scenarios it is not necessary to run at this frequency, e.g. 8kHz PCM voice call  
scenario uses only 11.4mW (see below).  
MODE DESCRIPTION  
AVDD  
DCVDD  
DBVDD  
Total  
Power  
(mW)  
Supply  
Current  
Supply  
Current  
Supply  
Current  
V / mA  
V / mA  
V / mA  
Off (lowest possible power)  
3.3 0.01 3.3  
3.3 0.014 3.3  
2.8 2.37 2.8  
0
3.3 0.005 0.05  
3.3 0.005 0.06  
2.8 0.006 11.4  
Clocks stopped. This is the default configuration after power-up.  
LPS (Low Power Standby)  
0
VREF maintained using 1MOhm string  
PCM Voice call (fs=8kHz)  
1.7  
Record from mono microphone  
3.3 3.644 3.3 10.973 3.3 2.974 58.05  
3.3 3.733 3.3 9.720 3.3 2.789 53.60  
3.3 4.801 3.3 10.504 3.3 2.814 59.79  
Stereo DAC Playback (AC link to headphone)  
Stereo DAC Playback (AC link to headphone)  
PLL running with 13MHz input to MCLKB  
Maximum Power - everything on  
3.3 13.656 3.3 15.472 3.3 2.938 105.82  
Table 1 Supply Current Consumption  
Notes:  
1. Unless otherwise specified, all figures are at TA = +25C, audio sample rate fs = 48kHz, with zero signal (quiescent), and  
voltage references settled.  
2. The power dissipated in headphones and speakers is not included in the above table.  
10  
Rev 4.0  
WM9714L  
SIGNAL TIMING REQUIREMENTS  
AC97 INTERFACE TIMING  
CLOCK SPECIFICATIONS  
tCLK_HIGH  
tCLK_LOW  
BITCLK  
tCLK_PERIOD  
tSYNC_HIGH  
tSYNC_LOW  
SYNC  
tSYNC_PERIOD  
Figure 1 Clock Specifications (50pF External Load)  
Test Conditions  
DBVDD = 3.3V, DCVDD = 3.3V, DGND1 = DGND2 = 0V, TA = -25C to +85C, unless otherwise  
stated.  
PARAMETER  
BITCLK frequency  
SYMBOL  
MIN  
TYP  
12.288  
81.4  
MAX  
UNIT  
MHz  
ns  
BITCLK period  
tCLK_PERIOD  
BITCLK output jitter  
BITCLK high pulse width (Note 1)  
BITCLK low pulse width (Note 1)  
SYNC frequency  
750  
45  
ps  
tCLK_HIGH  
tCLK_LOW  
36  
36  
40.7  
40.7  
48  
ns  
45  
ns  
kHz  
s  
SYNC period  
tSYNC_PERIOD  
tSYNC_HIGH  
tSYNC_LOW  
20.8  
1.3  
SYNC high pulse width  
SYNC low pulse width  
Note:  
s  
19.5  
s  
1. Worst case duty cycle restricted to 45/55  
Rev 4.0  
11  
 
WM9714L  
DATA SETUP AND HOLD  
tSETUP  
tCO  
VIH  
BITCL  
K
VIL  
SDATAOUT  
VOH  
SDATAIN  
SYN  
VOL  
C
tHOLD  
Figure 2 Data Setup and Hold (50pF External Load)  
Note:  
Setup and hold times for SDATAIN are with respect to the AC’97 controller, not the WM9713L.  
Test Conditions  
DBVDD = 3.3V, DCVDD = 3.3V, DGND1 = DGND2 = 0V, TA = -25C to +85C, unless otherwise  
stated.  
PARAMETER  
SYMBOL  
tSETUP  
tHOLD  
MIN  
10  
TYP  
MAX  
UNIT  
ns  
Setup to falling edge of BITCLK  
Hold from falling edge of BITCLK  
10  
ns  
Output valid delay from rising edge of  
BITCLK  
tCO  
15  
ns  
12  
Rev 4.0  
WM9714L  
SIGNAL RISE AND FALL TIMES  
triseCLK  
tfallCLK  
BITCLK  
triseSYNC  
tfallSYNC  
SYNC  
triseDIN  
tfallDIN  
SDATAIN  
triseDOUT  
tfallDOUT  
SDATAOUT  
Figure 3 Signal Rise and Fall Times (50pF External Load)  
Test Conditions  
DBVDD = 3.3V, DCVDD = 3.3V, DGND1 = DGND2 = 0V, TA = -25C to +85C, unless otherwise  
stated.  
PARAMETER  
BITCLK rise time  
SYMBOL  
triseCLK  
tfallCLK  
MIN  
2
TYP  
MAX  
UNIT  
ns  
6
6
6
6
6
6
6
6
BITCLK fall time  
2
ns  
SYNC rise time  
triseSYNC  
tfallSYNC  
triseDIN  
ns  
SYNC fall time  
ns  
SDATAIN rise time  
SDATAIN fall time  
SDATAOUT rise time  
SDATAOUT fall time  
2
2
ns  
tfallDIN  
ns  
triseDOUT  
tfallDOUT  
ns  
ns  
AC-LINK POWERDOWN  
SLOT 1 SLOT 2  
SYNC  
BITCLK  
WRITE  
DATA PR4  
DON'T  
CARE  
TO 0X20  
SDATAOUT  
tS2_PDOWN  
SDATAIN  
Figure 4 AC-Link Powerdown Timing  
AC-Link powerdown occurs when PR4 (register 26h, bit 12) is set (see Power Management).  
PARAMETER  
SYMBOL  
MIN  
TYP  
MAX  
UNIT  
End of Slot 2 to BITCLK and SDATAIN  
low  
tS2_PDOWN  
1.0  
s  
Rev 4.0  
13  
WM9714L  
COLD RESET (ASYNCHRONOUS RESETS REGISTER SETTINGS)  
tRST_LOW  
RESETB  
Figure 5 Cold Reset Timing  
Note:  
For correct operation SDATAOUT and SYNC must be held LOW for entire RESETB active low period  
otherwise the device may enter test mode. See AC'97 specification and Application Note WAN 0104  
for further details.  
PARAMETER  
SYMBOL  
MIN  
TYP  
MAX  
UNIT  
RESETB active low pulse width  
tRST_LOW  
1.0  
s  
WARM RESET (ASYNCHRONOUS PRESERVES REGISTER SETTINGS)  
tSYNC_HIGH  
tSYNC2CLK  
SYNC  
BIT_CLK  
Figure 6 Warm Reset Timing  
PARAMETER  
SYMBOL  
tSYNC_HIGH  
tRST2CLK  
MIN  
TYP  
MAX  
UNIT  
s  
SYNC active high pulse width  
1.3  
SYNC inactive to BITCLK startup  
delay  
162.4  
ns  
14  
Rev 4.0  
 
WM9714L  
PCM AUDIO INTERFACE TIMING SLAVE MODE  
tCLKH  
tCLKL  
PCMCLK  
tCLKY  
PCMFS  
tFSSU  
tDS  
tFSH  
PCMDAC  
tDD  
tDH  
PCMADC  
Figure 7 Digital Audio Data Timing Slave Mode  
Test Conditions  
DBVDD = 3.3V, DCVDD = 3.3V, DGND1 = DGND2 = 0V, TA = -25C to +85C, unless otherwise stated.  
PARAMETER  
SYMBOL  
MIN  
TYP  
MAX  
UNIT  
Audio Data Input Timing Information  
PCMCLK cycle time  
tPCMY  
tPCMH  
tPCML  
tFSSU  
tFSH  
tDS  
50  
20  
20  
10  
10  
10  
10  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
PCMCLK pulse width high  
PCMCLK pulse width low  
PCMFS set-up time to PCMCLK rising edge  
PCMFS hold time from PCMCLK rising edge  
PCMDAC set-up time from PCMCLK rising edge  
PCMDAC hold time from PCMCLK rising edge  
PCMADC propagation delay from PCMCLK falling edge  
tDH  
tDD  
10  
Note:  
1. PCMCLK period should always be greater than or equal to Voice CLK period.  
Rev 4.0  
15  
WM9714L  
PCM AUDIO INTERFACE TIMING MASTER MODE  
PCMCLK  
(Output)  
tDL  
PCMFS  
(Output)  
tDDA  
PCMADC  
PCMDAC  
tDST  
tDHT  
Figure 8 Digital Audio Data Timing Master Mode (see Control Interface)  
Test Conditions  
DBVDD = 3.3V, DCVDD = 3.3V, DGND1 = DGND2 = 0V, TA = -25C to +85C, unless otherwise stated.  
PARAMETER  
SYMBOL  
MIN  
TYP  
MAX  
UNIT  
Audio Data Input Timing Information  
PCMFS propagation delay from PCMCLK falling edge  
PCMADC propagation delay from PCMCLK falling edge  
PCMDAC setup time to PCMCLK rising edge  
PCMDAC hold time from PCMCLK rising edge  
tDL  
10  
10  
ns  
ns  
ns  
ns  
tDDA  
tDST  
tDHT  
10  
10  
16  
Rev 4.0  
WM9714L  
DEVICE DESCRIPTION  
INTRODUCTION  
The WM9714L is a largely pin-compatible upgrade to WM9712, with a PCM voice CODEC added.  
This CODEC is interfaced via a PCM type audio interface which makes use of GPIO pins for  
connection.  
It is designed to meet the mixed-signal requirements of portable and wireless smartphone systems. It  
includes audio recording and playback, battery monitoring, auxiliary ADC and GPIO functions, all  
controlled through a single 5-wire AC-Link interface. Additionally, PCM voice CODEC functions are  
supported through provision of an additional voice DAC and a PCM audio serial interface.  
A PLL is included to allow unrelated reference clocks to be used for generation of the AC link system  
clock. Typically 13MHz or 2.048MHz clock sources might be used as a reference.  
SOFTWARE SUPPORT  
The basic audio features of the WM9714L are software compatible with standard AC’97 device  
drivers. However, to better support additional functions, Cirrus Logic supplies custom device drivers  
for selected CPUs and operating systems. Please contact your local Cirrus Logic representative for  
more information.  
AC’97 COMPATIBILITY  
The WM9714L uses an AC’97 interface to communicate with a microprocessor or controller. The  
audio and GPIO functions are largely compliant with AC’97 Revision 2.2. The following differences  
from the AC’97 standard are noted:  
Pinout: The function of some pins has been changed to support device specific features.  
The PHONE and PCBEEP pins have been moved to different locations on the device  
package.  
Package: The default package for the WM9714L is a 77mm leadless QFN package.  
Audio mixing: The WM9714L handles all the audio functions of a smartphone, including  
audio playback, voice recording, phone calls, phone call recording, ring tones, as well as  
simultaneous use of these features. The AC’97 mixer architecture does not fully support  
this. The WM9714L therefore uses a modified AC’97 mixer architecture with three separate  
mixers.  
Tone Control, Bass Boost and 3D Enhancement: These functions are implemented in the  
digital domain and therefore affect only signals being played through the audio DACs, not all  
output signals as stipulated in AC’97.  
Some other functions are additional to AC’97:  
On-chip BTL loudspeaker driver for mono or stereo speakers  
On-chip BTL driver for ear speaker (phone receiver)  
Auxiliary mono DAC for ring tones, system alerts etc.  
Auxiliary ADC Inputs  
2 Analogue Comparators for Battery Alarm  
Programmable Filter Characteristics for Tone Control and 3D Enhancement  
PCM interface to additional Voice DAC and existing audio ADCs  
PLL to create AC’97 system clock from unrelated reference clock input  
PCM CODEC  
The PCM voice CODEC functions typically required by mobile telephony devices are provided by an  
extra voice DAC on the WM9714L, which is interfaced via a standard PCM type data interface, which  
is constructed through optional use of 4 of the GPIO pins on WM9714L. The audio output data from  
one or both of the audio ADCs can also be output over this PCM interface, allowing a full voice  
CODEC function to be implemented. This PCM interface supports sample rates from 8 to 48ks/s using  
the standard AC’97 master clock.  
Rev 4.0  
17  
WM9714L  
AUDIO PATHS OVERVIEW  
Note: all PGAs and summers are inverting  
0Ch:12-8  
40h:7  
(Loopback)  
00000  
11111  
=
+12dB  
=
-34.5dB  
Tone and 3D  
1Eh 20h  
40h:13 (3DE)  
AC'97 Link  
ADC Left  
18 Bit DACL  
slot 3  
DACL  
/
/
LINEL  
MONOIN  
PCBEEP  
MICA  
0Ah:12-8  
00000 +12dB  
11111 -34.5dB  
6dB -> -15dB  
6dB -> -15dB  
6dB -> -15dB  
6dB -> -15dB  
6dB -> -15dB  
6dB -> -15dB  
6dB -> -15dB  
=
=
Headphone  
Mixer  
L
04h:12-8  
00000  
11111  
=
0dB  
LINEL  
=
-46.5dB  
10h:4-0  
MICB  
HPMIXL  
08h:12-8  
00000 +12dB  
11111 -34.5dB  
HPL  
=
RECMUXL  
RECMUXR  
AUXDAC  
VXDAC  
=
Vmid  
Zero-cross  
detect  
MONOIN  
04h:14 (ZC)  
04h:15 (MUTE)  
02h:12-8  
16 Bit PCM  
VXDAC  
PCM Link  
00000  
11111  
=
0dB  
HPMIXL  
SPKMIX  
INV1  
=
-46.5dB  
SPKL  
DACL  
DACR  
Zero-cross  
detect  
Vmid  
LINEL  
02h:14 (ZC)  
02h:15 (MUTE)  
LINER  
MONO  
Mixer  
6dB -> -15dB  
PCBEEP  
MICA  
08h:4-0  
00000  
11111  
=
0dB  
0dB  
0dB  
0dB  
0dB  
/
/
/
/
20dB  
20dB  
20dB  
20dB  
10h:7+5  
=
-46.5dB  
MONOMIX  
INV1  
MICB  
MONO  
PCBEEP  
RECMUXL  
RECMUXR  
AUXDAC  
VXDAC  
Zero-cross  
detect  
0Eh:12-8  
00000 +12dB  
11111 -34.5dB  
Vmid  
=
=
08h:6 (ZC)  
08h:7 (MUTE)  
6dB -> -15dB  
6dB -> -15dB  
06h:4-0  
00000  
11111  
=
0dB  
=
-46.5dB  
INV1  
OUT3  
OUT4  
12h:14 (GRL=0)  
12h:11:8  
Vmid  
Zero-cross  
detect  
0000  
1111  
=
=
0db  
+22.5dB  
12h:14 (GRL=1)  
12h:13-8  
06h:6 (ZC)  
06h:7 (MUTE)  
14h:6  
11111  
00000  
=
=
+30dB  
-17.25dB  
0
=
0dB  
Sent to Both  
1
=
20dB  
18 Bit ADC  
Variable Slot  
5C:1-0 (ASS)  
5C:3 (HPF)  
06h:12-8  
PCM Link  
00000  
11111  
=
0dB  
AC'97 Link  
=
-46.5dB  
INV2  
5C:4 (ADCO)  
ALC:5Ch/60h/62h  
Vmid  
Zero-cross  
detect  
06h:14 (ZC)  
06h:15 (MUTE)  
0Ch:4-0  
40h:7  
(Loopback)  
00000  
11111  
=
+12dB  
=
-34.5dB  
Tone and 3D  
1Eh 20h  
40h:13 (3DE)  
AC'97 Link  
ADC Right  
18 Bit DACR  
slot 3  
DACR  
/
/
LINER  
MONOIN  
PCBEEP  
MICA  
0Ah:4-0  
00000 +12dB  
11111 -34.5dB  
6dB -> -15dB  
6dB -> -15dB  
6dB -> -15dB  
6dB -> -15dB  
6dB -> -15dB  
6dB -> -15dB  
6dB -> -15dB  
=
=
Headphone  
Mixer  
R
04h:4-0  
00000 0dB  
11111 -46.5dB  
=
LINER  
=
MICB  
10h:4-0  
HPMIXR  
HPR  
RECMUXL  
RECMUXR  
AUXDAC  
VXDAC  
Vmid  
Zero-cross  
detect  
04h:6 (ZC)  
04h:7 (MUTE)  
Vmid  
Vmid  
Vmid  
12 Bit Resistor  
string DAC  
2Eh/64h  
02h:4-0  
AC'97 Link  
00000  
11111  
=
0dB  
HPMIXR  
SPKMIX  
INV2  
=
-46.5dB  
MIC1  
MIC2A  
MIC2B  
MICCM  
22h:  
13-12  
22h:11-10  
SPKR  
00  
11  
=
=
+12dB  
+30dB  
LINEL  
LINER  
Zero-cross  
detect  
Vmid  
DACL  
Speaker  
Mixer  
02h:6 (ZC)  
02h:7 (MUTE)  
DACR  
MONOIN  
PCBEEP  
AUXDAC  
VXDAC  
08h:14  
22h:9-8  
0Eh:4-0  
00000 +12dB  
11111 -34.5dB  
00  
11  
=
=
+12dB  
+30dB  
6dB -> -15dB  
6dB -> -15dB  
6dB -> -15dB  
=
=
12h:6 (GRR=0)  
12h:3:0  
0000  
1111  
=
=
0db  
+22.5dB  
12h:6 (GRR=1)  
12h:5-0  
14h:6  
11111  
00000  
=
=
+30dB  
-17.25dB  
0
=
0dB  
Sent to Both  
1
=
20dB  
18 Bit ADC  
Variable Slot  
5C:1-0 (ASS)  
5C:3 (HPF)  
PCM Link  
AC'97 Link  
5C:4 (ADCO)  
ALC:5Ch/60h/62h  
PR Bit Code  
PR0 - Audio ADCs & record mux  
PR1 - Stereo DAC  
VMICBIAS  
PR2 - Input PGAs & mixers  
PR3 - Refs, input PGAs, mixers & output PGAs  
PR6 - Output PGAs  
Note: PR bits are active low - i.e. 0 = "ON"; 1 = "OFF"  
=> Enable when { (PR0 || PR2) && PR3 } are low  
VREF  
AVDD AGND  
CAP  
Figure 9 Audio Paths Overview  
18  
Rev 4.0  
WM9714L  
CLOCK GENERATION  
WM9714L supports clocking from 2 separate sources, which can be selected via the AC’97 interface:  
External clock input MCLKA  
External clock input MCLKB  
The source clock is divided to appropriate frequencies in order to run the AC’97 interface, PCM  
interface, voice DAC and Hi-fi DSP by means of a programmable divider block. Clock rates may be  
changed during operation via the AC’97 link in order to support alternative modes, for example low  
power mode when voice data is being transmitted only. A PLL is present to add flexibility in selection  
of input clock frequencies, typical choices being 2.048MHz, 4.096MHz or 13MHz.  
INITIALISING THE AC’97 LINK  
By default, the AC’97 link is disabled and therefore will not be running after power on or a COLD reset  
event. Before any register map configuration can begin, it is necessary to start the AC’97 link. This is  
achieved by sending a WARM reset to the CODEC as defined in Figure 6.  
Default mode on power-up also assumes a clock will be present on MCLKA with the PLL powered  
down. After a WARM reset the CODEC will start the AC’97 link using MCLKA as a reference. This  
enables data to be clocked via the AC’97 link to define the desired clock divider mode and whether  
PLL needs to be activated.  
Note: MCLKA can be any available frequency.  
When muxing between MCLKA and MCLKB both clocks must be active for at least two clock cycles  
after the switching event.  
CLOCK DIVISION MODES  
Figure 10 shows the clocking strategy for WM9714L. Clocking is controlled by CLK_MUX, CLK_SRC  
and S[6:0].  
CLKAX2, CLKBX2 clock doublers on inputs MCLKA and MCLKB.  
CLK_MUX - selects between MCLKA and MCLKB.  
CLK_SRC selects between external or PLL derived clock reference.  
S[3:0] sets the voice DAC clock rate and PCM interface clock when in master mode  
(division ratio 1 to 16 available).  
S[6:4] - sets the hi-fi clocking rate (division ratio 1 to 8 available).  
The registers used to set these switches can be accessed from register address 44h (see Table 3).  
If a mode change requires switching from an external clock to a PLL generated clock then it is  
recommended to set the clock division ratios required for the PLL clock scheme prior to switching  
between clocks. This option is accommodated by means of two sets of registers. SPLL[6:0] is used to  
set the divide ratio of the clock when in PLL mode and SEXT[6:0] is used to divide the clock when it is  
derived from an external source. If the PLL is selected (CLK_SRC = 0), S[6:0] = SPLL[6:0]. SPLL[6:0] is  
defined in register 46h (see Table 4) and is written to using the page address mode. More details on  
page address mode for controlling the PLL are found on page 24. Register 46h also contains a  
number of separate control bits relating to the PLL’s function. If an external clock is selected  
(CLK_SRC = 1) S[6:0] = SEXT[6:0]. SEXT[6:0] is defined in register address 44h. Writing to registers 44h  
and 46h enables pre-programming of the required clock mode before the PLL output is selected.  
Rev 4.0  
19  
WM9714L  
data bus  
clock  
PCMCLK  
AC-Link  
MCLKA  
MCLKB  
BCLK  
CLKAX2  
CLKBX2  
x2 x2  
0 MUX1  
CLK_MUX  
SYSCLK  
0
PCM  
AC'97  
PLL  
1
AC97 CLK  
DIV 2  
SEXT[3:0] /  
SPLL[3:0] /  
SEXT[6:4] /  
SPLL[6:4] /  
PENDIV  
[2:0]  
DIV 1-16  
DIV 1-8  
DIV 1-16  
HIFI CLK  
VOICE DAC  
CLOCK  
AUX ADC  
HIFI DSP  
L/R ADCs  
L/R DACs  
AUX DAC  
VOICE DAC  
WM9714L  
Figure 10 Clocking Architecture for WM9714L  
INTERNAL CLOCK FREQUENCIES  
The internal clock frequencies are defined as follows (refer to Figure 10):  
AC97 CLK nominally 24.576MHz, used to generate AC97 BITCLK at 12.288MHz.  
HIFI CLK for hi-fi playback at 48ks/s HIFI CLK = 24.576MHz. See Table 2 for voice only  
playback.  
Voice DAC CLK see Table 2 for sample rate vs clock frequency.  
SAMPLE RATE  
VOICE DAC CLK  
FREQUENCY  
HIFI CLK  
FREQUENCY  
8ks/s voice and hi-fi  
2.048MHz  
2.048MHz  
4.096MHz  
4.096MHz  
8.192MHz  
12.288MHz  
24.576MHz  
4.096MHz  
24.576MHz  
8.192MHz  
24.576MHz  
24.576MHz  
8ks/s voice only (power save)  
16ks/s voice and hi-fi  
16ks/s voice only (power save)  
32ks/s voice and hi-fi  
48ks/s voice and hi-fi  
Table 2 Clock Division Mode Table  
20  
Rev 4.0  
 
 
WM9714L  
AUXADC  
The clock for the AUXADC nominally runs at 768kHz and is derived from BITCLK. The divisor for the  
clock generator is set by PENDIV. This enables the AUXADC clock frequency to be set according to  
power consumption and conversion rate considerations.  
Clock mode and division ratios are controlled by register 44h as shown in Table 3.  
REGISTER  
ADDRESS  
BIT  
LABEL  
DEFAULT  
DESCRIPTION  
44h  
14:12  
SEXT[6:4]  
000 (div 1)  
Defines clock division ratio for Hi-fi:  
DSP, ADCs and DACs  
000: f  
001: f/2  
...  
111: f/8  
11:8  
SEXT[3:0]  
0000 (div 1)  
Defines clock division ratio for PCM  
interface and voice DAC in external clock  
mode only:  
0000: f  
0001: f/2  
1111: f/16  
7
CLKSRC  
PENDIV  
1 (ext clk)  
Selects between PLL clock and External  
clock  
0: PLL clock  
1: external clock  
Sets AUXADC clock divisor  
000: f/16  
5:3  
000 (div 16)  
001: f/12  
010: f/8  
011: f/6  
100: f/4  
101: f/3  
110: f/2  
111: f  
2
1
0
CLKBX2  
CLKAX2  
CLKMUX  
0 (Off)  
Clock doubler for MCLKB  
Clock doubler for MCLKA  
0 (Off)  
0 (MCLKA)  
Selects between MCLKA and MCLKB  
(N.B. On power-up clock must be present  
on MCLKA and must be active for 2 clock  
cycles after switching to MCLKB)  
0: SYSCLK=MCLKA  
1: SYSCLK=MCLKB  
Table 3 Clock Muxing and Division Control  
PLL MODE  
The PLL operation is controlled by register 46h (see Table 4) and has two modes of operation:  
Integer N  
Fractional N  
The PLL has been optimized for nominal input clock (PLL_IN) frequencies in the range 8.192MHz –  
19.661MHz (LF=0) and 2.048MHz 4.9152MHz (LF=1). Through use of a clock divider (div by 2 / 4)  
on the input to the PLL frequencies up to 78.6MHz can be accommodated. The input clock divider is  
enabled by DIVSEL (0=Off) and the division ratio is set by DIVCTL (0=div2, 1=div4).  
Rev 4.0  
21  
 
WM9714L  
DIVSEL  
CLK_OUT  
PLL_OUT  
PLL_IN  
DIV  
4/2/1  
DIV 4  
MCLK  
PLL  
98.304MHz  
DIVCTL  
N[3:0]  
DIV4/1  
DIV N  
LF  
SDM  
SDM  
K[21:0]  
WM9714L PLL  
Figure 11 PLL Architecture  
REGISTER  
ADDRESS  
BIT  
LABEL  
N[3:0]  
DEFAULT  
DESCRIPTION  
46h  
15:12  
0000  
PLL N Divide Control  
0000 = Divide by 1  
0001 = Divide by 1  
0010 = Divide by 2  
1111 = Divide by 15  
Note: must be set between 05h and 0Ch for  
integer N mode  
11  
10  
LF  
0 = off  
0 = off  
PLL Low Frequency Input Control  
1 = Low frequency mode (input clock <  
8.192MHz)  
0 = Normal mode  
46h  
46h  
SDM  
PLL SDM Enable Control  
1 = Enable SDM (required for fractional N  
mode)  
0 = Disable SDM  
9
8
DIVSEL  
DIVCTL  
0 = off  
PLL Input Clock Division Control  
0 = Divide by 1  
1 = Divide according to DIVCTL  
PLL Input Clock Division Value Control  
0 = Divide by 2  
0
1 = Divide by 4  
46h  
46h  
6:4  
3:0  
PGADDR  
PGDATA  
000  
Pager Address  
Pager address bits to access programming  
of K[21:0] and SPLL[6:0]  
0000  
Pager Data  
Pager data bits  
Table 4 PLL Clock Control  
22  
Rev 4.0  
WM9714L  
INTEGER N MODE  
The nominal output frequency of the PLL (PLL_OUT) is 98.304MHz which is divided by 4 to achieve a  
nominal system clock of 24.576MHz.  
The integer division ratio (N) is determined by: FPLL_out / FPLL_IN , and is set by N[3:0] and must be in the  
range 5 to 12 for integer N operation (0101 = div by 5, 1100 = div by 12). Note that setting LF=1  
enables a further division by 4 required for input frequencies in the range 2.048MHz 4.096MHz.  
Integer N mode is selected by setting SDM=0.  
FRACTIONAL N MODE  
Fractional N mode provides a divide resolution of 1/222 and is set by K[21:0] (register 46h, see  
section). The relationship between the required division X, the fractional division K[21:0] and the  
integer division N[3:0] is:  
K 222  
X N  
where 0 < (X N) < 1 and K is rounded to the nearest whole number.  
For example, if the PLL_IN clock is 13MHz and the desired PLL_OUT clock is 98.304MHz then the  
desired division, X, is 7.5618. So N[3:0] will be 7h and K[21:0] will be 23F488h to produce the desired  
98.304MHz clock (see Table 5).  
INPUT CLOCK (PLL_IN)  
DESIRED  
PLL  
OUTPUT  
(PLL_OUT)  
DIVISION  
REQUIRED  
(X)  
FRACTIONAL  
DIVISION (K)  
INTEGER  
DIVISION (N)  
48  
24  
0
0
12x4*  
6x4*  
2.048MHz  
4.096MHz  
98.304MHz  
98.304MHz  
8
0
8
7
7
12.288MHz  
98.304MHz  
98.304MHz  
98.304MHz  
7.5618  
7.2818  
0.5618  
0.2818  
13MHz  
27MHz (13.5MHz)**  
*Divide by 4 enabled in PLL feedback path for low frequency inputs. (LF = 1)  
**Divide by 2 enabled at PLL input for frequencies > 14.4MHz > 38MHz (DIVSEL = 1, DIVCTL = 0)  
Table 5 PLL Modes of Operation  
Rev 4.0  
23  
 
WM9714L  
PLL REGISTER PAGE ADDRESS MAPPING  
The clock division control bits SPLL[6:0] and the PLL fractional N division bits are accessed through  
register 46h using a sub-page address system. The 3-bit pager address allows 8 blocks of 4-bit data  
words to be accessed whilst the register address is set to 46h. This means that when register address  
46h is selected a further 7 cycles of programming are required to set all of the page data bits. Control  
bit allocation for these page addresses is described in Table 6.  
PAGE  
BIT  
LABEL  
DEFAULT  
DESCRIPTION  
ADDRESS  
111  
31:28  
27:24  
SPLL[6:4]  
SPLL[3:0]  
0h  
0h  
Clock division control bus SPLL[6:0]. Clock  
divider reads this control word if PLL is  
enabled. Bits [6:4] and [3:0] have the same  
functionality as 44h [14:12] and [11:8]  
respectively  
110  
101  
23:22  
21:20  
19:16  
15:12  
11:8  
7:4  
Reserved  
K[21:0]  
0h  
0h  
0h  
0h  
0h  
0h  
0h  
Reserved bits  
Sigma Delta Modulator control word for  
fractional N division. Division resolution is  
1/222  
100  
011  
010  
001  
000  
3:0  
SPLL[3:0]  
Table 6 Pager Control Bit Allocation  
Powerdown for the PLL and internal clocks is via registers 26h and 3Ch (see Table 7).  
REGISTER  
ADDRESS  
BIT  
13  
LABEL  
PR5  
DEFAULT  
DESCRIPTION  
26h  
1 (Off)  
Internal Clock Disable Control  
1 = Disabled  
0 = Enabled  
3Ch  
9
PLL  
1 (Off)  
PLL Disable Control  
1 = Disabled  
0 = Enabled  
N.B. both PR5 and PLL must be asserted low before PLL is enabled  
Table 7 PLL Powerdown Control  
DIGITAL INTERFACES  
The WM9714L has two interfaces, a data and control AC’97 interface and a data only PCM interface.  
The AC’97 interface is available through dedicated pins (SDATAOUT, SDATAIN, SYNC, BITCLK and  
RESETB) and is the sole control interface with access to all data streams on the device except for the  
Voice DAC. The PCM interface is available through the GPIO pins (PCMCLK, PCMFS, PCMDAC and  
PCMADC) and provides access to the Voice DAC. It can also transmit the data from the Stereo ADC.  
This can be useful, for example, to allow both sides of a phone conversation to be recorded by mixing  
the transmit and receive paths on one of the ADC channels and transmitting it over the PCM interface.  
24  
Rev 4.0  
 
 
WM9714L  
AC97 INTERFACE  
INTERFACE PROTOCOL  
The WM9714L uses an AC’97 interface for both data transfer and control. The AC-Link has 5 wires:  
SDATAIN (pin 8) carries data from the WM9714L to the controller  
SDATAOUT (pin 5) carries data from the controller to the WM9714L  
BITCLK (pin 6) is a clock, derived from either MCLKA or MCLKB inputs and supplied to the  
controller.  
SYNC is a synchronization signal generated by the controller and passed to the WM9714L  
RESETB resets the WM9714L to its default state  
AC-LINK  
SYNC  
BITCLK  
SDATAIN  
SDATAOUT  
RESETB  
CONTROLLER  
e.g. CPU  
ANALOGUE  
INPUTS /  
OUTPUTS  
WM9714L  
Figure 12 AC-Link Interface (typical case with BITCLK generated by the AC97 CODEC)  
The SDATAIN and SDATAOUT signals each carry 13 time-division multiplexed data streams (slots 0  
to 12). A complete sequence of slots 0 to 12 is referred to as an AC-Link frame, and contains a total of  
256 bits. The frame rate is 48kHz. This makes it possible to simultaneously transmit and receive  
multiple data streams (e.g. audio, AUXADC, control) at sample rates up to 48kHz.  
Detailed information can be found in the AC’97 (Revision 2.2) specification, which can be obtained at  
www.intel.com/design/chipsets/audio/  
Note:  
SDATAOUT and SYNC must be held low when RESETB is applied. These signals must be held low  
for the entire duration of the RESETB pulse and especially during the low-to-high transition of  
RESETB. If SDATAOUT or SYNC is high during reset, the WM9714L may enter test modes.  
Information relating to this operation is available in the AC'97 specification and in Application Note  
WAN 0104.  
PCM INTERFACE  
OPERATION  
WM9714L can implement a PCM voice CODEC function using the dedicated VXDAC and either one  
or both of the existing hi-fi ADC’s. In PCM CODEC mode, VXDAC input and ADC output are  
interfaced via a PCM style port via GPIO pins.  
This interface can support one ADC channel, or stereo/dual ADC channels if required, (two channels  
of data are sent per PCM frame as back to back words).  
In voice-only mode, the AC link is used only for control information, not audio data. Therefore it will  
generally be shut down (PR4=1), except when control data must be sent.  
The PCM interface makes use of 4 of the GPIO interface pins, for clock, frame, and data in/out. If the  
PCM CODEC function is not enabled then the GPIO pins may be used for other functions.  
Rev 4.0  
25  
 
WM9714L  
INTERFACE PROTOCOL  
The WM9714L PCM audio interface is used for the input of data to the Voice DAC and the output of  
data from the Stereo ADC. When enabled, the PCM audio interface uses four GPIO pins:  
GPIO1/PCMCLK: Bit clock  
GPIO3/PCMFS: Frame Sync  
GPIO4/PCMDAC: Voice DAC data input  
GPIO5/PCMADC: Stereo ADC data output  
Depending on the mode of operation (see PCM Interface Modes), at least one of these four pins  
must be set up as an output by writing to register 4Ch (see Table 57). When not enabled the GPIOs  
may be used for other functions on the WM9714L.  
PCM INTERFACE MODES  
The WM9714L PCM audio interface may be configured in one of four modes:  
Disabled Mode: The WM9714L disables and tri-states all PCM interface pins. Any clock  
input is ignored and ADC/DAC data is not transferred.  
Slave Mode: The WM9714L accepts PCMCLK and PCMFS as inputs from an external  
source.  
Master Mode: The WM9714L generates PCMCLK and PCMFS as outputs.  
Partial Master Mode: The WM9714L generates PCMCLK as an output, and accepts PCMFS  
as an external input.  
PCM AUDIO DATA FORMATS  
Four different audio data formats are supported:  
DSP mode  
Left justified  
Right justified  
I2S  
All four of these modes are MSB first. They are described below. Refer to Signal Timing  
Requirementsfor timing information.  
Note:  
PCMCLK and PCMFS must be synchronized with the BITCLK from the AC’97 interface.  
The PCM Interface may be configured for Mono mode, where only one channel of ADC data is output.  
In this mode the interface should be configured for DSP mode. A short or long frame sync is  
supported and the MSB is available on either the 1st (mode B) or 2nd (mode A) rising edge of VXCLK.  
Note that when operating in stereo mode the mono Voice DAC always uses the left channel data as  
its input.  
26  
Rev 4.0  
 
 
WM9714L  
1/fs  
1 PCMCLK  
PCMFS  
PCMCLK  
PCMADC/  
PCMDAC  
1
2
3
n
n-2 n-1  
MSB  
LSB  
Input Word Length (WL)  
Figure 13 PCM Interface Mono Mode (mode A, FSP=0)  
1/fs  
1 PCMCLK  
PCMFS  
PCMCLK  
PCMADC/  
1
2
3
n
n-2 n-1  
PCMDAC  
MSB  
LSB  
Input Word Length (WL)  
Figure 14 PCM Interface Mono Mode (mode B, FSP=1)  
In DSP mode, the left channel MSB is available on either the 1st (mode B) or 2nd (mode A) rising  
edge of PCMCLK (selectable by FSP) following a rising edge of PCMFS. Right channel data  
immediately follows left channel data. Depending on word length, PCMCLK frequency and sample  
rate, there may be unused PCMCLK cycles between the LSB of the right channel data and the next  
sample.  
1/fs  
1 BCLK / VXCLK  
PCMFS  
PCMCLK  
RIGHT CHANNEL  
LEFT CHANNEL  
PCMADC/  
PCMDAC  
1
2
3
n
1
2
3
n
n-2 n-1  
n-2 n-1  
MSB  
LSB  
Input Word Length (WL)  
Figure 7 DSP Mode Audio Interface (mode A, FSP=0)  
Rev 4.0  
27  
WM9714L  
1/fs  
1 BCLK / VXCLK  
PCMFS  
PCMCLK  
RIGHT CHANNEL  
LEFT CHANNEL  
PCMADC/  
PCMDAC  
1
2
3
n
1
2
3
n
n-2 n-1  
n-2 n-1  
MSB  
LSB  
Input Word Length (WL)  
Figure 15 DSP Mode Audio Interface (mode B, FSP=1)  
In Left Justified mode, the MSB is available on the first rising edge of PCMCLK following a PCMFS  
transition. The other bits up to the LSB are then transmitted in order. Depending on word length,  
PCMCLK frequency and sample rate, there may be unused PCMCLK cycles before each PCMFS  
transition.  
1/fs  
LEFT CHANNEL  
RIGHT CHANNEL  
PCMFS  
PCMCLK  
PCMADC/  
PCMDAC  
1
2
3
n
n-2 n-1  
1
2
3
n
n-2 n-1  
MSB  
LSB  
MSB  
LSB  
Figure 16 Left Justified Audio Interface (assuming n-bit word length)  
In Right Justified mode, the LSB is available on the last rising edge of PCMCLK before a PCMFS  
transition. All other bits are transmitted before (MSB first). Depending on word length, PCMCLK  
frequency and sample rate, there may be unused PCMCLK cycles after each PCMFS transition.  
1/fs  
LEFT CHANNEL  
RIGHT CHANNEL  
PCMFS  
PCMCLK  
PCMADC /  
PCMDAC  
1
2
3
n
1
2
3
n
n-2 n-1  
n-2 n-1  
MSB  
LSB  
MSB  
LSB  
Figure 17 Right Justified Audio Interface (assuming n-bit word length)  
28  
Rev 4.0  
WM9714L  
In I2S mode, the MSB is available on the second rising edge of PCMCLK following a PCMFS  
transition. The other bits up to the LSB are then transmitted in order. Depending on word length,  
PCMCLK frequency and sample rate, there may be unused PCMCLK cycles between the LSB of one  
sample and the MSB of the next.  
1/fs  
LEFT CHANNEL  
RIGHT CHANNEL  
PCMFS  
PCMCLK  
1 BCLK  
1 BCLK  
PCMADC/  
PCMDAC  
1
2
3
n
1
2
3
n
n-2 n-1  
n-2 n-1  
LSB  
LSB  
MSB  
MSB  
Figure 18 I2S Justified Audio Interface (assuming n-bit word length)  
CONTROL  
The register bits controlling PCM audio format, word length and operating modes are summarised  
below. CTRL must be set to override the normal use of the PCM interface pins as GPIOs, MODE must  
be set to specify master/slave modes.  
REGISTER  
ADDRESS  
BIT  
15  
LABEL  
CTRL  
DEFAULT  
DESCRIPTION  
36h  
0
GPIO Pin Configuration Control  
PCM  
0 = GPIO pins as GPIOs  
Control  
1 = GPIO pins configured as PCM interface  
and controlled by this register  
14:13  
MODE  
10  
PCM Interface Mode Control  
00 = PCM interface disabled [PCMCLK tri-  
stated, PCMFS tri-stated]  
01 = PCM interface in slave mode [PCMCLK  
as input, PCMFS as input]  
10 = PCM interface in master mode [PCMCLK  
as output, PCMFS as output]  
11 = PCM interface in partial master mode  
[PCMCLK as output, PCMFS as input]  
11:9  
DIV  
010  
PCMCLK Rate Control  
000 = Voice DAC clock  
001 = Voice DAC clock / 2  
010 = Voice DAC clock / 4  
011 = Voice DAC clock / 8  
100 = Voice DAC clock / 16  
All other values are reserved  
Voice DAC Oversampling Rate Control  
0: 128 x fs  
8
7
6
VDACOSR  
CP  
1
0
0
1: 64 x fs  
PCMCLK Polarity Control  
0 = Normal  
1 = Inverted  
FSP  
FMT = 00, 01 or 10  
FMT = 11  
PCMFS Polarity  
Control  
DSP Mode Control  
0 = Normal  
1 = Inverted  
0 = DSP Mode A  
1 = DSP Mode B  
Rev 4.0  
29  
WM9714L  
REGISTER  
ADDRESS  
BIT  
5:4  
LABEL  
SEL  
DEFAULT  
DESCRIPTION  
10  
PCM ADC Output Channel Control  
00 = Normal stereo  
01 = Reverse stereo  
10 = Output left ADC data only  
11 = Output right ADC data only  
PCM Data Word Length Control  
00 = 16-bit  
3:2  
1:0  
WL  
00  
11  
01 = 20-bit  
10 = 24-bit  
11 = 32-bit (not supported when FMT=00)  
PCM Data Format Control  
00 = Right justified  
FMT  
01 = Left justified  
10 = I2S  
11 = DSP mode  
Table 8 PCM CODEC Control  
Note: Right justified does not support 32-bit data.  
30  
Rev 4.0  
WM9714L  
AUDIO ADCS  
STEREO ADC  
The WM9714L has a stereo sigma-delta ADC to digitize audio signals. The ADC achieves high quality  
audio recording at low power consumption. The ADC sample rate can be controlled by writing to a  
control register (see Variable Rate Audio / Sample Rate Conversion). It is independent of the DAC  
sample rate.  
To save power, the left and right ADCs can be separately switched off using the Powerdown bits  
ADCL and ADCR (register 3Ch, bits 5:4), whereas PR0 disables both ADCs (see Power  
Management). If only one ADC is running, the same ADC data appears on both the left and right AC-  
Link slots.  
The output from the ADC can be sent over either the AC link as usual, or output via the PCM interface  
which may be configured on the GPIO pins.  
HIGH PASS FILTER  
The WM9714L audio ADC incorporates a digital high pass filter that eliminates any DC bias from the  
ADC output data. The filter is enabled by default. For DC measurements, it can be disabled by writing  
a ‘1’ to the HPF bit (register 5Ch, bit 3).  
This high pass filter corner frequency can be selected to have different values in WM9714L, to suit  
applications such as voice where a higher cutoff frequency is required.  
REGISTER  
ADDRESS  
BIT  
LABEL  
HPF  
DEFAULT  
DESCRIPTION  
5Ch  
3
0
ADC HPF Disable Control  
0 = HPF enabled (for audio)  
1 = HPF disabled (for DC measurements)  
HPF Cut-Off Control  
5Ah  
5:4  
HPMODE  
00  
00 = 7Hz @ fs=48kHz  
01 = 82Hz @ fs=16kHz  
10 = 82Hz @ fs=8kHz  
11 = 170Hz @ fs=8kHz  
Note: the filter corner frequency is proportional to the sample rate.  
Table 9 Controlling the ADC High-pass Filter  
ADC SLOT MAPPING  
By default, the output of the left audio ADC appears on slot 3 of the SDATAIN signal (pin 8), and the  
right ADC data appears on slot 4. However, the ADC output data can also be sent to other slots, by  
setting the ASS (ADC slot select) control bits as shown below.  
REGISTER  
ADDRESS  
BIT  
1:0  
LABEL  
DEFAULT  
DESCRIPTION  
5Ch  
ASS  
00  
ADC Data Slot Mapping Control  
Left Data  
Additional  
Functions  
(2)  
Right Data  
Slot 4  
00 =  
01 =  
10 =  
11 =  
Slot 3  
Slot 7  
Slot 6  
Slot 10  
Slot 8  
Slot 9  
Slot 11  
Table 10 ADC Slot Mapping  
Rev 4.0  
31  
 
WM9714L  
RECORD SELECTOR  
The record selector determines which input signals are routed into the audio ADC. The left and right  
channels can be selected independently. This is useful for recording a phone call: one channel can be  
used for the RX signal and the other for the TX signal, so that both sides of the conversation are  
digitized.  
REGISTER  
ADDRESS  
BIT  
LABEL  
DEFAULT  
DESCRIPTION  
14h  
6
RECBST  
0
ADC Record Boost Control  
1 = +20dB  
Record  
Routing /  
Mux Select  
0 = 0dB  
Note: RECBST gain is in addition to the  
microphone pre-amps (MPABST and  
MPBBST bits) and record gain (GRL and  
GRR / GRL bits).  
5:3  
RECSL  
000  
Left Record Mux Source Control  
000 = MICA (pre-PGA)  
001 = MICB (pre-PGA)  
010 = LINEL (pre-PGA)  
011 = MONOIN (pre-PGA)  
100 = HPMIXL  
101 = SPKMIC  
110 = MONOMIX  
111 = Reserved  
2:0  
RECSR  
000  
Right Record Mux Source Control  
000 = MICA (pre-PGA)  
001 = MICB (pre-PGA)  
010 = LINEL (pre-PGA)  
011 = MONOIN (pre-PGA)  
100 = HPMIXL  
101 = SPKMIC  
110 = MONOMIX  
111 = Reserved  
Table 11 Audio Record Selector  
32  
Rev 4.0  
WM9714L  
RECORD GAIN  
The amplitude of the signal that enters the audio ADC is controlled by the Record PGA  
(Programmable Gain Amplifier). The PGA gain can be programmed either by writing to the Record  
Gain register, or by the Automatic Level Control (ALC) circuit (see page 34). If the ALC is enabled,  
any writes to the Record Gain register have no effect.  
Two different gain ranges can be implemented: the standard gain range defined in the AC’97  
standard, or an extended gain range with smaller gain steps. The ALC circuit always uses the  
extended gain range, as this has been found to result in better sound quality.  
REGISTER  
ADDRESS  
BIT  
15  
LABEL  
RMU  
DEFAULT  
DESCRIPTION  
12h  
1
Audio ADC Input Mute Control  
1 = Mute  
Record Gain  
0 = No mute  
Note: This control applies to both channels  
Left ADC PGA Gain Range Control  
1 = Extended  
14  
GRL  
0
0 = Standard  
13:8  
RECVOLL  
000000  
Left ADC Recording Volume Control  
Standard (GRL=0)  
XX0000: 0dB  
Extended (GRL=1)  
000000: -17.25dB  
000001: -16.5dB  
… (0.75dB steps)  
111111: +30dB  
XX0001: +1.5dB  
… (1.5dB steps)  
XX1111: +22.5dB  
7
ZC  
0
0
ADC PGA Zero Cross Control  
1 = Zero cross enabled (volume changes  
when signal is zero or after time-out)  
0 = Zero cross disabled (volume changes  
immediately)  
6
GRR  
Right ADC PGA Gain Range Control  
1 = Extended  
0 = Standard  
5:0  
RECVOLR 000000  
Right ADC Recording Volume Control  
Standard (GRR=0)  
XX0000: 0dB  
Extended (GRR=1)  
000000: -17.25dB  
000001: -16.5dB  
… (0.75dB steps)  
111111: +30dB  
XX0001: +1.5dB  
… (1.5dB steps)  
XX1111: +22.5dB  
Table 12 Record Gain Register  
The output of the Record PGA can also be mixed into the phone and/or headphone outputs (see  
Audio Mixers). This makes it possible to use the ALC function for the microphone signal in a  
smartphone application.  
Rev 4.0  
33  
 
WM9714L  
REGISTER  
ADDRESS  
BIT  
LABEL  
R2H  
DEFAULT  
DESCRIPTION  
14h  
15:14  
11 (mute)  
Record Mux to Headphone Mixer Path  
Control  
Record  
Routing  
00 = stereo  
01 = left ADC only  
10 = right ADC only  
11=mute left and right  
13:11  
10:9  
R2HVOL  
R2M  
010 (0dB)  
11 (mute)  
Record Mux to Headphone Mixer Path  
Volume Control  
000 = +6dB  
… (+3dB steps)  
111 = -15dB  
Record Mux to Mono Mixer Path Control  
00 = stereo  
01 = left record mux only  
10 = right record mux only  
11 = mute left and right  
8
R2MBST  
0 (OFF)  
Record Mux to Headphone Mixer Boost  
Control  
1 = +20dB  
0 = 0dB  
Table 13 Record PGA Routing Control  
AUTOMATIC LEVEL CONTROL  
The WM9714L has an automatic level control that aims to keep a constant recording volume  
irrespective of the input signal level. This is achieved by continuously adjusting the PGA gain so that  
the signal level at the ADC input remains constant. A digital peak detector monitors the ADC output  
and changes the PGA gain if necessary.  
input  
signal  
PGA  
gain  
signal  
after  
ALC  
ALC  
target  
level  
hold decay  
time time  
attack  
time  
Figure 19 ALC Operation  
The ALC function is enabled using the ALCSEL control bits. When enabled, the recording volume can  
be programmed between 6dB and 28.5dB (relative to ADC full scale) using the ALCL register bits.  
HLD, DCY and ATK control the hold, decay and attack times, respectively.  
34  
Rev 4.0  
 
WM9714L  
HOLD TIME  
Hold time is the time delay between the peak level detected being below target and the PGA gain  
beginning to ramp up. It can be programmed in power-of-two (2n) steps, e.g. 2.67ms, 5.33ms,  
10.67ms etc. up to 43.7s. Alternatively, the hold time can also be set to zero. The hold time only  
applies to gain ramp-up, there is no delay before ramping the gain down when the signal level is  
above target.  
DECAY (GAIN RAMP-UP) TIME  
Decay time is the time that it takes for the PGA gain to ramp up across 90% of its range (e.g. from  
15B up to 27.75dB). The time it takes for the recording level to return to its target value therefore  
depends on both the decay time and on the gain adjustment required. If the gain adjustment is small,  
it will be shorter than the decay time. The decay time can be programmed in power-of-two (2n) steps,  
from 24ms, 48ms, 96ms, etc. to 24.58s.  
ATTACK (GAIN RAMP-DOWN) TIME  
Attack time is the time that it takes for the PGA gain to ramp down across 90% of its range (e.g. from  
27.75dB down to 15B gain). The time it takes for the recording level to return to its target value  
therefore depends on both the attack time and on the gain adjustment required. If the gain adjustment  
is small, it will be shorter than the attack time. The attack time can be programmed in power-of-two  
(2n) steps, from 6ms, 12ms, 24ms, etc. to 6.14s.  
When operating in stereo, the peak detector takes the maximum of left and right channel peak values,  
and any new gain setting is applied to both left and right PGAs, so that the stereo image is preserved.  
However, the ALC function can also be enabled on one channel only. In this case, only one PGA is  
controlled by the ALC mechanism, while the other channel runs independently with its PGA gain set  
through the control register.  
When one ADC channel is unused, the peak detector disregards that channel. The ALC function can  
also operate when the two ADC outputs are mixed to mono in the digital domain, but not if they are  
mixed to mono in the analogue domain, before entering the ADCs.  
Rev 4.0  
35  
WM9714L  
REGISTER  
ADDRESS  
BIT  
LABEL  
ALCSEL  
DEFAULT  
DESCRIPTION  
62h  
15:14  
00  
ALC function select  
ALC / Noise  
Gate Control  
(OFF)  
00 = ALC off (PGA gain set by register)  
01 = Right channel only  
10 = Left channel only  
11 = Stereo (PGA registers unused)  
PGA gain limit for ALC  
111 = +30dB  
13:11  
MAXGAIN  
111  
(+30dB)  
110 = +24dB  
….(6dB steps)  
001 = -6dB  
000 = -12dB  
10:9  
ZCTIMEOUT  
11  
Programmable zero cross timeout (delay  
for 12.288MHz BITCLK):  
11: 2^17 * tbitclk (10.67 ms)  
10: 2^16 * tbitclk (5.33 ms)  
01: 2^15 * tbitclk (2.67 ms)  
00: 2^14 * tbitclk (1.33 ms)  
60h  
15:12  
ALCL  
1011  
ALC target sets signal level at ADC  
input  
ALC Control  
(-12dB)  
0000 = -28.5dB FS  
0001 = -27.0dB FS  
… (1.5dB steps)  
1110 = -7.5dB FS  
1111 = -6dB FS  
11:8  
HLD  
DCY  
ATK  
0000  
ALC hold time before gain is increased.  
0000 = 0ms  
(0ms)  
0001 = 2.67ms  
0010 = 5.33ms  
… (time doubles with every step)  
1111 = 43.691s  
7:4  
0011  
ALC decay (gain ramp-up) time  
0000 = 24ms  
(192ms)  
0001 = 48ms  
0010 = 96ms  
… (time doubles with every step)  
1010 or higher = 24.58s  
ALC attack (gain ramp-down) time  
0000 = 6ms  
3:0  
0010  
(24ms)  
0001 = 12ms  
0010 = 24ms  
… (time doubles with every step)  
1010 or higher = 6.14s  
Table 14 ALC Control  
MAXIMUM GAIN  
The MAXGAIN register sets the maximum gain value that the PGA can be set to whilst under the  
control of the ALC. This has no effect on the PGA when ALC is not enabled.  
36  
Rev 4.0  
WM9714L  
PEAK LIMITER  
To prevent clipping when a large signal occurs just after a period of quiet, the ALC circuit includes a  
limiter function. If the ADC input signal exceeds 87.5% of full scale (1.16dB), the PGA gain is ramped  
down at the maximum attack rate (as when ATK = 0000), until the signal level falls below 87.5% of full  
scale. This function is automatically enabled whenever the ALC is enabled.  
(Note: If ATK = 0000, then the limiter makes no difference to the operation of the ALC. It is designed  
to prevent clipping when long attack times are used).  
NOISE GATE  
When the signal is very quiet and consists mainly of noise, the ALC function may cause “noise  
pumping”, i.e. loud hissing noise during silence periods. The WM9714L has a noise gate function that  
prevents noise pumping by comparing the signal level at the input pins (i.e. before the record PGA)  
against a noise gate threshold, NGTH. Provided that the noise gate function is enabled (NGAT = 1),  
the noise gate cuts in when:  
Signal level at ADC [dB] < NGTH [dB] + PGA gain [dB] + Mic Boost gain [dB]  
This is equivalent to:  
Signal level at input pin [dB] < NGTH [dB]  
The PGA gain is then held constant (preventing it from ramping up as it normally would when the  
signal is quiet). If the NGG bit is set, the ADC output is also muted when the noise gate cuts in.  
Table 15 summarises the noise gate control register. The NGTH control bits set the noise gate  
threshold with respect to the ADC full-scale range. The threshold is adjusted in 1.5dB steps. Levels at  
the extremes of the range may cause inappropriate operation, so care should be taken with setup of  
the function. Note that the noise gate only works in conjunction with the ALC function, and always  
operates on the same channel(s) as the ALC (left, right, both, or none).  
REGISTER  
ADDRESS  
BIT  
LABEL  
NGAT  
DEFAULT  
DESCRIPTION  
62h  
7
5
0
Noise gate function enable  
1 = enable  
ALC / Noise  
Gate Control  
0 = disable  
NGG  
0
Noise gate type  
0 = PGA gain held constant  
1 = mute ADC output  
Noise gate threshold  
00000: -76.5dBFS  
00001: -75dBFS  
4:0  
NGTH(4:0) 00000  
… 1.5 dB steps  
11110: -31.5dBFS  
11111: -30dBFS  
Table 15 Noise Gate Control  
Rev 4.0  
37  
 
WM9714L  
AUDIO DACS  
STEREO DAC  
The WM9714L has a stereo sigma-delta DAC that achieves high quality audio playback at low power  
consumption. Digital tone control, adaptive bass boost and 3-D enhancement functions operate on the  
digital audio data before it is passed to the stereo DAC. (Contrary to the AC’97 specification, they  
have no effect on analogue input signals or signals played through the auxiliary DAC. Nevertheless,  
the ID2 and ID5 bits in the reset register, 00h, are set to ‘1’ to indicate that the WM9714L supports  
tone control and bass boost.)  
The DAC output has a PGA for volume control. The DAC sample rate can be controlled by writing to a  
control register (see Variable Rate Audio / Sample Rate Conversion). It is independent of the ADC  
sample rate.  
When not in use the DACs can be separately powered down using the Powerdown register bits DACL  
and DACR (register 3Ch, bits [7:6]).  
STEREO DAC VOLUME  
The volume of the DAC output signal is controlled by a PGA (Programmable Gain Amplifier). Each  
DAC can be mixed into the headphone, speaker and mono mixer paths (see Audio Mixers)  
controlled by register 0Ch.  
Each DAC-to-mixer path has an independent mute bit. When all DAC-to-mixer paths are muted the  
DAC PGA is muted automatically.  
When not in use the DAC PGAs can be powered down using the Powerdown register bits DACL and  
DACR (register 3Ch, bits [7:6]).  
REGISTER  
ADDRESS  
BIT  
15  
LABEL  
D2H  
DEFAULT  
DESCRIPTION  
0Ch  
1
DAC to Headphone Mixer Mute Control  
1 = Mute  
DAC  
Volume  
0 = No mute  
14  
D2S  
D2M  
1
1
DAC to Speaker Mixer Mute Control  
1 = Mute  
0 = No mute  
13  
DAC to Mono Mixer Mute Control  
1 = Mute  
0 = No mute  
12:8  
DACL  
VOL  
01000  
(0dB)  
Left DAC to Mixers Volume Control  
00000 = +12dB  
… (1.5dB steps)  
11111 = -34.5dB  
4:0  
DACR  
VOL  
01000  
(0dB)  
Right DAC to Mixers Volume Control  
00000 = +12dB  
… (1.5dB steps)  
11111 = -34.5dB  
5Ch  
15  
7
AMUTE  
AMEN  
0
0
DAC Automute Status (Read-Only)  
0 = DAC not muted  
1 = DAC auto-muted  
DAC Automute Control  
0 = Disabled  
Additional  
Functions  
(2)  
1 = Enabled (DAC automatically muted when  
digital input is zero)  
Table 16 Stereo DAC Volume Control  
38  
Rev 4.0  
 
WM9714L  
TONE CONTROL / BASS BOOST  
The WM9714L provides separate controls for bass and treble with programmable gains and filter  
characteristics. This function operates on digital audio data before it is passed to the audio DACs.  
Bass control can take two different forms:  
Linear bass control: bass signals are amplified or attenuated by a user programmable gain.  
This is independent of signal volume, and very high bass gains on loud signals may lead to  
signal clipping.  
Adaptive bass boost: The bass volume is amplified by a variable gain. When the bass  
volume is low, it is boosted more than when the bass volume is high. This method is  
recommended because it prevents clipping, and usually sounds more pleasant to the  
human ear.  
Treble control applies a user programmable gain, without any adaptive boost function.  
Treble, linear bass and 3D enhancement can all produce signals that exceed full-scale. In order to  
avoid limiting under these conditions, it is recommended to set the DAT bit to attenuate the digital  
input signal by 6dB. The gain at the outputs should be increased by 6dB to compensate for the  
attenuation. Cut-only tone adjustment (i.e. bass and treble gains 0) and adaptive bass boost cannot  
produce signals above full-scale and therefore do not require the DAT bit to be set.  
REGISTER  
ADDRESS  
BIT  
15  
LABEL  
BB  
DEFAULT  
DESCRIPTION  
20h  
0
Bass Mode Control  
DAC Tone  
Control  
0 = Linear bass control  
1 = Adaptive bass boost  
12  
BC  
0
Bass Cut-off Frequency Control  
0 = Low (130Hz at 48kHz sampling)  
1 = High (200Hz at 48kHz sampling)  
Bass Intensity Control  
11:8  
BASS  
1111 (off)  
BB=0  
BB=0  
0000 = +9dB  
0001 = +9dB  
… (1.5dB steps)  
0111 = 0dB  
0000 = +9dB  
0001 = +9dB  
… (1.5dB steps)  
0111 = 0dB  
… (1.5dB steps)  
1011-1110 = -6dB  
1111 = Bypass (off)  
… (1.5dB steps)  
1011-1110 = -6dB  
1111 = Bypass (off)  
6
DAT  
TC  
0
Pre-DAC Attenuation Control  
0 = 0dB  
1 = -6dB  
4
0
Treble Cut-off Frequency Control  
0 = High (8kHz at 48kHz sampling)  
1 = Low (4kHz at 48kHz sampling)  
Treble Intensity Control  
0000 = +9dB  
3:0  
TRBL  
1111 (off)  
0001 = +9dB  
… (1.5dB steps)  
0111 = 0dB  
… (1.5dB steps)  
1011-1110 = -6dB  
1111 = Bypass (off)  
Table 17 DAC Tone Control  
Note:  
1. All cut-off frequencies change proportionally with the DAC sample rate.  
Rev 4.0  
39  
WM9714L  
3D STEREO ENHANCEMENT  
The 3D stereo enhancement function artificially increases the separation between the left and right  
channels by amplifying the (L-R) difference signal in the frequency range where the human ear is  
sensitive to directionality. The programmable 3D depth setting controls the degree of stereo  
expansion introduced by the function. Additionally, the upper and lower limits of the frequency range  
used for 3D enhancement can be selected using the 3DFILT control bits.  
REGISTER  
ADDRESS  
BIT  
13  
LABEL  
3DE  
DEFAULT  
DESCRIPTION  
40h  
0
3D Enhancement Control  
1 = Enabled  
(disabled)  
General  
Purpose  
0 = Disabled  
1Eh  
5
3DLC  
0
3D Lower Cut-off Frequency Control  
1 = High (500Hz at 48kHz sampling)  
0 = Low (200Hz at 48kHz sampling)  
3D Upper Cut-off Frequency Control  
1 = Low (1.5kHz at 48kHz sampling)  
0 = High (2.2kHz at 48kHz sampling)  
3D Depth Control  
DAC 3D  
Control  
4
3DUC  
0
3:0  
3DDEPTH  
0000  
0000 = 0%  
… (6.67% steps)  
1111 = 100%  
Table 18 Stereo Enhancement Control  
Note:  
1. All cut-off frequencies change proportionally with the DAC sample rate.  
VOICE DAC  
VXDAC is a 16-bit mono DAC intended for playback of Rx voice signals input via the PCM interface.  
Performance has been optimised for operating at 8ks/s or 16ks/s. The VXDAC will function at other  
sample rates up to 48ks/s, but this is not recommended.  
The analogue output of VXDAC is routed directly into the output mixers. The signal gain into each  
mixer can be adjusted at the mixer inputs using control register 18h.  
When not in use the VXDAC can be powered down using the Powerdown register bit VXDAC (register  
3Ch, bit 12).  
40  
Rev 4.0  
WM9714L  
REGISTER  
ADDRESS  
BIT  
12  
LABEL  
DEFAULT  
DESCRIPTION  
3Ch  
VXDAC  
1
VXDAC Disable Control  
1 = Disabled  
Powerdown (1)  
0 = Enabled  
18h  
15  
V2H  
1
VXDAC to Headphone Mixer Mute  
Control  
VXDAC Output  
Control  
1 = Mute  
0 = No mute  
14:12  
V2HVOL  
010  
VXDAC to Headphone Mixer Volume  
Control  
(0dB)  
000 = +6dB  
… (+3dB steps)  
111 = -15dB  
11  
V2S  
1
VXDAC to Speaker Mixer Mute  
Control  
1 = Mute  
0 = No mute  
10:8  
V2SVOL  
010  
VXDAC to Speaker Mixer Volume  
Control  
(0dB)  
000 = +6dB  
… (+3dB steps)  
111 = -15dB  
7
V2M  
1
VXDAC to Mono Mixer Mute Control  
1 = Mute  
0 = No mute  
6:4  
V2MVOL  
010  
VXDAC to Mono Mixer Volume  
Control  
(0dB)  
000 = +6dB  
… (+3dB steps)  
111 = -15dB  
Table 19 VXDAC Control  
AUXILIARY DAC  
AUXDAC is a simple 12-bit mono DAC. It can be used to generate DC signals (with the numeric input  
written into a control register), or AC signals such as telephone-quality ring tones or system beeps  
(with the input signal supplied through an AC-Link slot). In AC mode (XSLE = 1), the input data is  
binary offset coded; in DC mode (XSLE = 0), there is no offset.  
The analogue output of AUXDAC is routed directly into the output mixers. The signal gain into each  
mixer can be adjusted at the mixer inputs using control register 12h. In slot mode (XSLE = 1), the  
AUXDAC also supports variable sample rates (See Variable Rate Audio / Sample Rate Conversion).  
When not in use the auxiliary DAC can be powered down using the Powerdown register bit AUXDAC  
(register 3Ch, bit 11).  
Rev 4.0  
41  
 
WM9714L  
REGISTER  
ADDRESS  
BIT  
11  
LABEL  
DEFAULT  
DESCRIPTION  
3Ch  
AUXDAC  
0
AUXDAC Disable Control  
1 = Disabled  
Powerdown (1)  
0 = Enabled  
64h  
15  
XSLE  
0
AUXDAC Input Select Control  
AUXDAC Input  
Control  
0 = From AUXDACVAL[11:0] (for DC  
signals)  
1 = From AC-Link (for AC signals)  
AUXDAC Input Control (XSLE=1)  
000 = Slot 5, bits 8-19  
001 = Slot 6, bits 8-19  
010 = Slot 7, bits 8-19  
011 = Slot 8, bits 8-19  
100 = Slot 9, bits 8-19  
101 = Slot 10, bits 8-19  
110 = Slot 11, bits 8-19  
111 = Reserved  
14:12  
AUXDAC  
SLT  
000  
11:0  
15  
AUXDAC  
VAL  
000h  
1
AUXDAC Input Control (XSLE=0)  
000h = Minimum  
FFFh = Full scale  
1Ah  
A2H  
AUXDAC to Headphone Mixer Mute  
Control  
AUXDAC Output  
Control  
1 = Mute  
0 = No mute  
14:12  
A2HVOL  
010  
AUXDAC to Headphone Mixer  
Volume Control  
(0dB)  
000 = +6dB  
… (+3dB steps)  
111 = -15dB  
11  
A2S  
1
AUXDAC to Speaker Mixer Mute  
Control  
1 = Mute  
0 = No mute  
10:8  
A2SVOL  
010  
AUXDAC to Speaker Mixer Volume  
Control  
(0dB)  
000 = +6dB  
… (+3dB steps)  
111 = -15dB  
7
A2M  
1
AUXDAC to Mono Mixer Mute  
Control  
1 = Mute  
0 = No mute  
6:4  
A2MVOL  
010  
AUXDAC to Mono Mixer Volume  
Control  
(0dB)  
000 = +6dB  
… (+3dB steps)  
111 = -15dB  
Table 20 AUXDAC Control  
42  
Rev 4.0  
WM9714L  
VARIABLE RATE AUDIO / SAMPLE RATE CONVERSION  
By using an AC’97 Rev2.2 compliant audio interface, the WM9714L can record and playback at all  
commonly used audio sample rates, and offer full split-rate support (i.e. the DAC, ADC and AUXDAC  
sample rates are completely independent of each other any combination is possible).  
The default sample rate is 48kHz. If the VRA bit in register 2Ah is set, then other sample rates can be  
selected by writing to registers 2Ch, 32h and 2Eh. The AC-Link continues to run at 48k frames per  
second irrespective of the sample rate selected. However, if the sample rate is less than 48kHz, then  
some frames do not carry an audio sample.  
REGISTER  
ADDRESS  
BIT  
LABEL  
DEFAULT  
DESCRIPTION  
2Ah  
0
VRA  
0 (OFF)  
Variable Rate Audio Control  
Extended  
Audio  
Stat/Ctrl  
1 = Enable VRA  
0 = Disable VRA (ADC and DAC run at  
48kHz)  
Note: When VRA=1, sample rates are  
controlled by 2Ch, 2Eh and 32h  
2Ch  
15:0  
DACSR  
BB80h  
Stereo DAC Sample Rate Control  
1F40h = 8kHz  
Audio DAC  
(48kHz)  
Sample Rate  
2B11h = 11.025kHz  
2EE0h = 12kHz  
3E80h = 16kHz  
5622h = 22.05kHz  
5DC0h = 24kHz  
7D00h = 32kHz  
AC44h = 44.1kHz  
BB80h = 48kHz  
Any other value defaults to the nearest  
supported sample rate  
32h  
15:0  
15:0  
ADCSR  
BB80h  
Stereo ADC Sample Rate Control  
Audio ADC  
Sample Rate  
(48kHz)  
Values as DACSR  
2Eh  
AUXDA  
CSR  
BB80h  
(48kHz)  
AUXDAC Sample Rate Control  
AUXDAC  
Values as DACSR  
Sample Rate  
Table 21 Audio Sample Rate Control  
Note:  
Changing the ADC and / or DAC sample rate will only be effective if the ADCs and DACs are enabled  
and powered up before the sample rate is changed. This is done by setting the relevant bits in  
registers 26h and 3Ch, as well as the VRA bit in register 2Ah.  
The process is as follows:  
1. Enable and power up ADCs and or DACs in registers 26h and 3Ch.  
2. Enable VRA bit in 2Ah, bit 0.  
3. Change the sample rate in the respective register.  
Rev 4.0  
43  
WM9714L  
AUDIO INPUTS  
LINE INPUT  
The following sections give an overview of the analogue audio input pins and their function. See  
Applications Information” for more information on recommended external components.  
The LINEL and LINER inputs are designed to record line level signals, and/or to mix into one of the  
analogue outputs.  
Both pins are directly connected to the record selector. The record PGA adjusts the recording volume,  
controlled by register 12h or by the ALC function.  
For analogue mixing, the line input signals pass through a separate PGA, controlled by register 0Ah.  
The signals can be mixed into the headphone, speaker and mono mixer paths (see Audio Mixers).  
Each LINE-to-mixer path has an independent mute bit. When all LINE-to-mixer paths are muted the  
line PGA is muted automatically. When the line inputs are not used, the line PGA can be switched off  
to save power (see Power Management).  
LINEL and LINER are biased internally to the reference voltage VREF. Whenever the inputs are  
muted or the device placed into standby mode, the inputs remain biased to VREF using special anti-  
thump circuitry to suppress any audible clicks when changing inputs.  
REGISTER  
ADDRESS  
BIT  
15  
LABEL  
L2H  
DEFAULT  
DESCRIPTION  
0Ah  
1
LINE to Headphone Mixer Mute Control  
1 = Mute  
0 = No mute  
14  
L2S  
L2M  
1
1
LINE to Speaker Mixer Mute Control  
1 = Mute  
0 = No mute  
13  
LINE to Mono Mixer Mute Control  
1 = Mute  
0 = No mute  
12:8  
LINEL  
VOL  
01000  
(0dB)  
LINEL to Mixers Volume Control  
00000 = +12dB  
… (1.5dB steps)  
11111 = -34.5dB  
4:0  
LINER  
VOL  
01000  
(0dB)  
LINER to Mixers Volume Control  
00000 = +12dB  
… (1.5dB steps)  
11111 = -34.5dB  
Table 22 Line Input Control  
Additionally, line inputs can be used as single-ended microphone inputs through the record mux to  
provide a click-less ALC function by bypassing offset introduced through the microphone pre-amps.  
Note that the line inputs to the mixers should all be deselected if this is input configuration is used.  
MICROPHONE INPUT  
MICROPHONE PRE-AMPS  
There are two microphone pre-amplifiers, MPA and MPB, which can be configured in a variety of ways  
to accommodate up to 3 selectable differential microphone inputs or 2 differential microphone inputs  
operating simultaneously for stereo or noise cancellation. The microphone input circuit is shown in  
Figure 20.  
44  
Rev 4.0  
 
WM9714L  
Vmid  
Vmid  
Vmid  
MIC1  
MIC2A  
MIC2B  
MICCM  
22h:11-10  
00 = +12dB  
11 = +30dB  
22h:  
13-12  
MICA  
MICB  
22h:9-8  
00 = +12dB  
11 = +30dB  
Figure 20 Microphone Input Circuit  
The input pins used for the microphones are MIC1, MICCM, MIC2A and MIC2B. Note that input pins  
MIC2A and MIC2B are multi-function inputs and must be configured for use as microphone inputs  
when required. This is achieved using MICCMPSEL[1:0] in register 22h (see Table 23). The input to  
microphone pre-amp A can be selected from any of the three microphone inputs MIC1, MIC2A and  
MIC2B using MPASEL[1:0]. Each pre-amp has independent boost control from +12dB to +30dB in  
four steps. This is controlled by MPABST[1:0] and MPBBST[1:0].  
When not in use each microphone pre-amp can be powered down using the Powerdown register bits  
MPA and MPB (register 3Eh, bits [1:0]). If disabled, the inputs are tied to Vmid (for MIC2A and MIC2B,  
this only applies if they are selected as microphone inputs otherwise, they are left floating).  
REGISTER  
ADDRESS  
BIT  
LABEL  
DEFAULT  
DESCRIPTION  
22h  
15:14  
MICCMPSEL 00  
MIC2A/MIC2B Pin Function Control  
00 = MIC2A and MIC2B are mic inputs  
01 = MIC2A mic input only  
10 = MIC2B mic input only  
11 = MIC2A and MIC2B are not mic inputs  
MPA Pre-Amp Source Control  
00 = MIC1  
13:12  
11:10  
9:8  
MPASEL  
MPABST  
MPBBST  
00  
00  
00  
01 = MIC2A  
10 = MIC2B  
11 = Reserved  
MPA Pre-Amp Volume Control  
00 = +12dB  
01 = +18dB  
10 = +24dB  
11 = +30dB  
MPB Pre-Amp Volume Control  
As MPABST  
Table 23 Microphone Pre-amp Control  
SINGLE MIC OPERATION  
Up to three microphones can be connected in a single-ended configuration. Any one of the three MICs  
can be selected as the input to MPA using MPASEL[1:0] (Register 22h, bits 13:12). Only the  
microphone on MIC2B can be selected to MPB. Note that MPABST always sets the gain for the  
selected MPA input microphone. If MIC2B is the selected input for MPA it is recommended that MPB  
is disabled.  
Rev 4.0  
45  
 
WM9714L  
DUAL MIC OPERATION  
Up to two microphones can be connected in a dual differential configuration. This is suitable for stereo  
microphone or noise cancellation applications. Mic1 is connected between the MIC2A and MICCM  
inputs and mic2 is connected between the MIC2B and MICCM inputs as shown in Figure 21.  
Additionally, another microphone can be supported on MIC1 selected through the MPA input mux.  
Note that the microphones can be connected in a single-ended configuration.  
WM9714L  
Vmi  
d
+
MICBIAS  
-
R
R
MIC2A  
MICCM  
MIC2B  
Vmi  
d
MPAEN  
-
MPA  
MIC  
1
MICA  
+
R
MIC  
2
+
MPB  
MICB  
-
MPBEN  
Vmi  
d
Figure 21 Dual Microphone Configuration  
MICROPHONE BIASING CIRCUIT  
The MICBIAS output provides a low noise reference voltage suitable for biasing electret type  
microphones and the associated external resistor biasing network. Refer to Applications Information”  
for recommended external components. The MICBIAS voltage can be altered via MBVOL in register  
22h. When MBVOL=0, MICBIAS=0.9*AVDD and when MBVOL=1, MICBIAS=0.75*AVDD.  
The microphone bias is driven to a dedicated MICBIAS pin 28 and is enabled by MPOP1EN in  
register 22h. It can also be configured to drive out on GPIO8 pin 12 enabled by MPOP2EN in register  
22h.  
When not in use the microphone bias can be powered down using the Powerdown register bit  
MICBIAS (register 3Eh, bit 14).  
46  
Rev 4.0  
 
WM9714L  
REGISTER  
ADDRESS  
BIT  
LABEL  
DEFAULT  
DESCRIPTION  
22h  
7
MBOP2EN  
0 (Off)  
MICBIAS Output 2 Enable Control  
1 = Enable MICBIAS output on GPIO8 (pin  
12)  
0 = Disable MICBIAS output on GPIO8 (pin  
12)  
6
5
MBOP1EN  
MBVOL  
1 (On)  
MICBIAS Output 1 Enable Control  
1 = Enable MICBIAS output on MICBIAS  
(pin 28)  
0 = Disable MICBIAS output on MICBIAS  
(pin 28)  
0
MICBIAS Output Voltage Control  
1 = 0.75 x AVDD  
0 = 0.9 x AVDD  
Table 24 Microphone Bias Voltage Control  
The internal MICBIAS circuitry is shown in Figure 22. Note that the maximum source current capability  
for MICBIAS is 3mA. The external biasing resistors therefore must be large enough to limit the  
MICBIAS current to 3mA.  
CAP2  
MICBIAS  
= 1.8 x CAP2  
= 0.9 X AVDD  
WM9714L  
AGND  
Figure 22 Microphone Bias Schematic  
MICBIAS CURRENT DETECT  
The WM9714L includes a microphone bias current detect circuit with programmable thresholds for the  
microphone bias current, above which an interrupt will be triggered. There are two separate interrupt  
bits, MICDET to e.g. distinguish between one or two microphones connected to the WM9714L, and  
MICSHT to detect a shorted microphone (mic button press). The microphone current detect threshold  
is set by MCDTHR[2:0], for MICDET, and MCDSCTHR[1:0] for MICSHT. Thresholds for each code  
are shown in Table 25  
When not in use the microphone bias current detect circuit can be powered down using the  
Powerdown register bit MCD (register 3Eh, bit 15).  
See the GPIO and Interrupt Controller sections for details on the interrupt and status readback for  
these MICBIAS current detection features.  
Rev 4.0  
47  
WM9714L  
REGISTER  
ADDRESS  
BIT  
4:2  
LABEL  
DEFAULT  
DESCRIPTION  
22h  
MCDTHR  
000  
Mic Detect Threshold Control  
000 = 100µA  
… (100µA steps)  
111 = 800µA  
Note: These values are for 3.3V supply and  
scale with supply voltage (AVDD).  
1:0  
MCDSCTR 00  
Mic Detect Short Circuit Threshold  
Control  
00 = 600µA  
01 = 1200uA  
10 = 1800uA  
11 = 2400µA  
Note: These values are for 3.3V supply and  
scale with supply voltage (AVDD).  
Table 25 Microphone Current Detect Control  
MICROPHONE PGAS  
The microphone pre-amps MPA and MPB drive into two microphone PGAs whose gain is controlled  
by register 0Eh. The PGA signals can be routed into the headphone mixers and the mono mixer, but  
not the speaker mixer (to prevent forming a feedback loop) controlled by register 10h. If the PGA  
signals are not selected as an input to any of the mixers, the outputs of the PGAs are muted  
automatically.  
When not in use the microphone PGAs can be powered down using the Powerdown register bits MA  
and MB (register 3Eh, bits [3:2]).  
REGISTER  
ADDRESS  
BIT  
LABEL  
DEFAULT  
DESCRIPTION  
0Eh  
12:8  
MICAVOL  
01000  
(0dB)  
MICA PGA Volume Control  
00000 = +12dB  
Mic PGA  
Volume  
… (1.5dB steps)  
11111 = -34.5dB  
4:0  
MICBVOL  
01000  
(0dB)  
MICB PGA Volume Control  
00000 = +12dB  
… (1.5dB steps)  
11111 = -34.5dB  
Table 26 Microphone PGA Volume Control  
48  
Rev 4.0  
WM9714L  
REGISTER  
ADDRESS  
BIT  
LABEL  
MA2M  
DEFAULT  
DESCRIPTION  
10h  
7
6
5
1
MICA to Mono Mixer Mute Control  
1 = Mute  
MIC Routing  
0 = No mute  
MB2M  
1
MICB to Mono Mixer Mute Control  
1 = Mute  
0 = No mute  
MIC2MBST  
MIC2H  
0
MIC to Mono Mixer Boost Control  
1 = +20dB  
0 = 0dB  
4:3  
2:0  
11  
MIC to Headphone Mixer Path Control  
00 = stereo  
01 = MICA only  
10 = MICB only  
11 = mute MICA and MICB  
MIC2HVOL 010  
(0dB)  
MIC to Headphone Mixer Path Volume  
Control  
000 = +6dB  
… (+3dB steps)  
111 = -15dB  
Table 27 Microphone PGA Routing Control  
MONOIN INPUT  
Pin 20 (MONOIN) is a mono input designed to connect to the receive path of a telephony device. The  
pin connects directly to the record selector for phone call recording (Note: to record both sides of a  
phone call, one ADC channel should record the MONOIN signal while the other channel records the  
MIC signal). The record PGA adjusts the recording volume, and is controlled by register 12h or by the  
ALC function (see Record Gain” and “Automatic Level Control).  
REGISTER  
ADDRESS  
BIT  
LABEL  
R2H  
DEFAULT  
DESCRIPTION  
14h  
15:14  
11 (mute)  
Record Mux to Headphone Mixer Path  
Control  
Record  
Routing  
00 = stereo  
01 = left record mux only  
10 = right rec mux only  
11=mute left and right  
13:11  
10:9  
R2HVOL  
R2M  
010 (0dB)  
11 (mute)  
Record Mux to Headphone Mixer Path  
Volume Control  
000 = +6dB  
… (+3dB steps)  
111 = -15dB  
Record Mux to Mono Mixer Path Control  
00 = stereo  
01 = left record mux only  
10 = right record mux only  
11 = mute left and right  
8
R2MBST  
0 (0dB)  
Record Mux to Headphone Mixer Boost  
Control  
1 = +20dB  
0 = 0dB  
Table 28 Record PGA Routing Control  
Rev 4.0  
49  
WM9714L  
To listen to the MONOIN signal, the signal passes through a separate PGA, controlled by register  
08h. The signal can be routed into the headphone mixer (for normal phone call operation) and/or the  
speaker mixer (for speakerphone operation), but not into the mono mixer (to prevent forming a  
feedback loop). When the signal is not selected as an input to any of the mixers the output of the PGA  
is muted automatically.  
When not in use, the MONOIN PGA can be powered down using the Powerdown register bit MOIN  
(register 3Eh, bit 4).  
MONOIN is biased internally to the reference voltage VREF. Whenever the input is muted or the  
device placed into standby mode, the input remains biased to VREF using special anti-thump circuitry  
to suppress any audible clicks when changing inputs.  
REGISTER  
ADDRESS  
BIT  
15  
LABEL  
M2H  
DEFAULT  
DESCRIPTION  
08h  
1
MONOIN to Headphone Mixer Mute  
Control  
MONOIN  
PGA Vol /  
Routing  
1 = Mute  
0 = No mute  
14  
M2S  
1
MONOIN to Speaker Mixer Mute Control  
1 = Mute  
0 = No mute  
12:8  
MONOIN  
VOL  
01000  
(0dB)  
MONOIN to Mixers Volume Control  
00000 = +12dB  
… (1.5dB steps)  
11111 = -34.5dB  
Table 29 Mono PGA Control  
PCBEEP INPUT  
Pin 19 (PCBEEP) is a mono, line level input intended for externally generated signal or warning tones.  
It is routed directly to the record selector and all three output mixers, without an input amplifier. The  
signal gain into each mixer can be independently controlled, with a separate mute bit for each signal  
path.  
PCBEEP is biased internally to the reference voltage VREF. When the signal is not selected as an  
input to any of the mixers the input remains biased to VREF using special anti-thump circuitry to  
suppress any audible clicks when changing inputs.  
50  
Rev 4.0  
WM9714L  
REGISTER  
ADDRESS  
BIT  
15  
LABEL  
DEFAULT  
DESCRIPTION  
16h  
PCBEEP input  
B2H  
1
PCBEEP to Headphone Mixer Mute  
Control  
1 = Mute  
0 = No mute  
14:12  
B2HVOL 010  
(0dB)  
PCBEEP to Headphone Mixer Volume  
Control  
000 = +6dB  
… (+3dB steps)  
111 = -15dB  
11  
B2S  
1
PCBEEP to Speaker Mixer Mute Control  
1 = Mute  
0 = No mute  
10:8  
B2SVOL  
010  
PCBEEP to Speaker Mixer Volume  
Control  
(0dB)  
000 = +6dB  
… (+3dB steps)  
111 = -15dB  
7
B2M  
1
PCBEEP to Mono Mixer Mute Control  
1 = Mute  
0 = No mute  
6:4  
B2MVOL 010  
(0dB)  
PCBEEP to Mono Mixer Volume Control  
000 = +6dB  
… (+3dB steps)  
111 = -15dB  
Table 30 PCBEEP Control  
DIFFERENTIAL MONO INPUT  
PCBEEP and MONOIN inputs can be configured to provide a differential mono input. This is achieved  
by mixing the two inputs together using the headphone mixers or the speaker mixer. Note that the  
gain of the MONOIN PGA must match the gain of the PCBEEP mixer input to achieve a balanced  
differential mono input.  
Rev 4.0  
51  
WM9714L  
AUDIO MIXERS  
MIXER OVERVIEW  
The WM9714L has four separate low-power audio mixers to cover all audio functions required by  
smartphones, PDAs and handheld computers. These mixers are used to drive the audio outputs HPL,  
HPR, MONO, SPKL, SPKR, OUT3 and OUT4. There are also two inverters used to provide differential  
output signals (e.g. for driving BTL loads)  
HEADPHONE MIXERS  
There are two headphone mixers, headphone mixer left and headphone mixer right (HPMIXL and  
HPMIXR). These mixers are the stereo output driver source. They are used to drive the stereo outputs  
HPL and HPR. They can also be used to drive SPKL and SPKR outputs and, when used in  
conjunction with OUT3 and OUT4, they can be configured to drive complementary signals through the  
two output inverters to support bridge-tied load (BTL) stereo loudspeaker outputs. The following  
signals can be mixed into the headphone path:  
MONOIN (controlled by register 08h, see Audio Inputs”)  
LINEL/R (controlled by register 0Ah, see Audio Inputs”)  
the output of the Record PGA (controlled by register 14h, see Audio ADCs, Record Gain)  
the stereo DAC signal (controlled by register 0Ch, see “Audio DACs”)  
the MIC signal (controlled by register 10h, see Audio Inputs”)  
PC_BEEP (controlled by register 16h, see Audio Inputs”)  
the VXDAC signal (controlled by register 18h, see “Audio DACs”)  
the AUXDAC signal (controlled by register 1Ah, see “Auxiliary DAC”)  
In a typical smartphone application, the headphone signal is a mix of MONOIN / VXDAC and sidetone  
(for phone calls) and the stereo DAC signal (for music playback).  
If not in use, the headphone mixers can be powered down using the Powerdown register bits HPLX  
and HPRX (register 3Ch, bits [3:2]).  
SPEAKER MIXER  
The speaker mixer (SPKMIX) is a mono source. It is typically used to drive a mono loudspeaker in  
BTL configuration. The following signals can be mixed into the speaker path:  
MONOIN (controlled by register 08h, see Audio Inputs”)  
LINEL/R (controlled by register 0Ah, see Audio Inputs”)  
the stereo DAC signal (controlled by register 0Ch, see “Audio DACs”)  
PC_BEEP (controlled by register 16h, see Audio Inputs”)  
the VXDAC signal (controlled by register 18h, see “Audio DACs”)  
the AUXDAC signal (controlled by register 1Ah, see “Auxiliary DAC”)  
In a typical smartphone application, the speaker signal is a mix of AUXDAC (for system alerts or ring  
tone playback), MONOIN / VXDAC (for speakerphone function), and PC_BEEP (for externally  
generated ring tones).  
Note that when selected the stereo input pairs LINEL/R and DACL/R are summed and attenuated by -  
6dB so that 0dBFS signals on each channel sum to give a 0dBFS mono signal.  
If not in use, the speaker mixer can be powered down using the Powerdown register bit SPKX  
(register 3Ch, bit 1).  
52  
Rev 4.0  
WM9714L  
MONO MIXER  
The mono mixer drives the MONO pin. The following signals can be mixed into MONO:  
LINEL/R (controlled by register 0Ah, see “Audio Inputs”)  
the output of the Record PGA (controlled by register 14h, see “Audio ADCs”, “Record Gain”)  
the stereo DAC signal (controlled by register 0Ch, see “Audio DACs”)  
the MIC signal (controlled by register 10h, see “Audio Inputs”)  
PC_BEEP (controlled by register 16h, see “Audio Inputs”)  
the VXDAC signal (controlled by register 18h, see “Audio DACs”)  
the AUXDAC signal (controlled by register 12h, see “Auxiliary DAC”)  
In a typical smartphone application, the MONO signal is a mix of the amplified microphone signal  
(possibly with Automatic Gain Control) and (if enabled) an audio playback signal from the stereo DAC  
or the auxiliary DAC.  
Note that when selected the stereo input pairs LINEL/R and DACL/R are summed and attenuated by -  
6dB so that 0dBFS signals on each channel sum to give a 0dBFS mono signal.  
If not in use, the mono mixer can be powered down using the Powerdown register bit MX (register  
3Ch, bit 0).  
MIXER OUTPUT INVERTERS  
There are two general purpose mixer output inverters, INV1 and INV2. Each inverter can be selected  
to drive HPMIXL, HPMIXR, SPKMIX, MONOMIX or { ( HPMIXL + HPMIXR ) / 2 }. The outputs of the  
inverters can be used to generate complimentary signals (to drive BTL configured loads) and to  
provide greater flexibility in output driver configurations. INV1 can be selected as the source for SPKL,  
MONO and OUT3 and INV2 as the source for SPKR and OUT4.  
The input source for each inverter is selected using INV1[2:0] and INV2[2:0] in register 1Eh (see Table  
31). If no input is selected, the inverter is powered down.  
REGISTER  
ADDRESS  
BIT  
LABEL  
INV1  
DEFAULT  
DESCRIPTION  
1Eh  
15:13  
000 (OFF)  
INV1 Source Select  
000 = No input (tri-stated)  
001 = MONOMIX  
010 = SPKMIX  
011 = HPMIXL  
100 = HPMIXR  
101 = HPMIXMONO  
110 = Reserved  
111 = VMID  
12:10  
INV2  
000 (OFF)  
INV2 Source Select  
000 = No input (tri-stated)  
001 = MONOMIX  
010 = SPKMIX  
011 = HPMIXL  
100 = HPMIXR  
101 = HPMIXMONO  
110 = Reserved  
111 = VMID  
Table 31 Mixer Inverter Source Select  
Rev 4.0  
53  
 
 
WM9714L  
ANALOGUE AUDIO OUTPUTS  
The following sections give an overview of the analogue audio output pins. The WM9714L has three  
outputs capable of driving loads down to 16(headphone / line drivers) HPL, HPR and MONO - and  
four outputs capable of driving loads down to 8(loudspeaker / line drivers) SPKL, SPKR, OUT3  
and OUT4. The combination of output drivers, mixers and mixer inverters means that many output  
configurations can be supported.  
For examples of typical output and mixer configurations, see Typical Output Configurations. For  
more information on recommended external components, see “Applications Information.  
Each output is driven by a PGA with a gain range of 0dB to -46.5dB in -1.5dB steps. Each PGA has  
an input source mux, mute and zero-cross detect circuit (delaying gain changes until a zero-cross is  
detected, or after time-out).  
HEADPHONE OUTPUTS HPL AND HPR  
The HPL and HPR outputs (pins 39 and 41) are designed to drive a 16or 32headphone load.  
They can also be used as line outputs. They can be used in and AC coupled or DC coupled (capless)  
configuration. The available input sources are HPMIXL/R and Vmid (see Table 32).  
REGISTER  
ADDRESS  
BIT  
LABEL  
HPL  
DEFAULT  
DESCRIPTION  
1Ch  
7:6  
00 (Vmid)  
HPL Source Control  
Output PGA  
Mux Select  
00 = VMID  
01 = No input (tri-stated if HPL is  
disabled in 3Eh)  
10 = HPMIXL  
11 = Reserved  
HPR Source Control  
00 = VMID  
5:4  
HPR  
00 (Vmid)  
01 = No input (tri-stated if HPR is  
disabled in 3Eh)  
10 = HPMIXR  
11 = Reserved  
Table 32 HPL / HPR PGA Input Source  
The signal volume on HPL and HPR can be independently adjusted under software control by writing  
to register 04h.  
When not in use HPL and HPR can be powered down using the Powerdown register bits HPL and  
HPR (register 3Eh, bits [10:9]). To minimise pops and clicks when the PGA is powered down / up it is  
recommended that the Vmid input is selected during the power down / up cycle. This ensures the  
same DC level is maintained on the output pin throughout.  
54  
Rev 4.0  
 
WM9714L  
REGISTER  
ADDRESS  
BIT  
15  
LABEL  
MUL  
DEFAULT  
DESCRIPTION  
04h  
1 (Mute)  
HPL Mute Control  
Headphone  
Volume  
1 = Mute  
0 = No mute  
14  
ZCL  
0
HPL Zero Cross Control  
1 = Zero cross enabled (change volume  
only on zero crossings, or after time-out)  
0 = Zero cross disabled (change volume  
immediately)  
13:8  
HPLVOL  
000000  
(0dB)  
HPL Volume Control  
000000 = 0dB (maximum)  
… (1.5dB steps)  
011111 = -46.5dB  
1xxxxx = -46.5dB  
HPR Mute Control  
1 = Mute  
7
6
MUR  
ZCR  
1 (Mute)  
0
0 = No mute  
HPR Zero Cross Control  
1 = Zero cross enabled (change volume  
only on zero crossings, or after time-out)  
0 = Zero cross disabled (change volume  
immediately)  
5:0  
HPRVOL  
000000  
(0dB)  
HPR Volume Control  
000000 = 0dB (maximum)  
… (1.5dB steps)  
011111 = -46.5dB  
1xxxxx = -46.5dB  
Table 33 HPL / HPR PGA Control  
MONO OUTPUT  
The MONO output (pin 31) is designed to drive a 16headphone load and can also be used as a line  
output. The available input sources are MONOMIX, INV1 and Vmid (see Table 34)  
REGISTER  
ADDRESS  
BIT  
LABEL  
MONO  
DEFAULT  
DESCRIPTION  
1Ch  
15:14  
00 (Vmid)  
MONO Source Control  
Output PGA  
Mux Select  
00 = VMID  
01 = No input (tri-stated if MONO is  
disabled in 3Eh)  
10 = MONOMIX  
11 = INV1  
Table 34 MONO PGA Input Source  
The signal volume on MONO can be independently adjusted under software control by writing to  
register 08h.  
When not in use MONO can be powered down using the Powerdown register bit MONO (register 3Eh,  
bit 13). To minimise pops and clicks when the PGA is powered down / up it is recommended that the  
Vmid input is selected during the power down / up cycle. This ensures the same DC level is  
maintained on the output pin throughout.  
Rev 4.0  
55  
 
WM9714L  
REGISTER  
ADDRESS  
BIT  
LABEL  
DEFAULT  
DESCRIPTION  
08h  
MONO Vol  
7
MU  
ZC  
1 (Mute)  
MONO Mute Control  
1 = Mute  
0 = No mute  
6
0
MONO Zero Cross Control  
1 = Zero cross enabled (change volume  
only on zero crossings, or after time-out)  
0 = Zero cross disabled (change volume  
immediately)  
5:0  
MONOVOL  
000000  
(0dB)  
MONO Volume Control  
000000 = 0dB (maximum)  
… (1.5dB steps)  
011111 = -46.5dB  
1xxxxx = -46.5dB  
Table 35 Mono PGA Control  
SPEAKER OUTPUTS SPKL AND SPKR  
The SPKL and SPKR (pins 35 and 36) are designed to drive a loudspeaker load down to 8and can  
also be used as line outputs and headphone outputs. They are designed to drive an 8load AC  
coupled or in a BTL (capless) configuration. The available input sources are HPMIXL/R, SPKMIXL/R,  
INV1/2 and Vmid (see Table 36).  
REGISTER  
ADDRESS  
BIT  
LABEL  
SPKL  
DEFAULT  
DESCRIPTION  
1Ch  
13:11  
000  
SPKL Source Control  
(Vmid)  
Output PGA  
Mux Select  
000 = VMID  
001 = No input (tri-stated if SPKL is  
disabled in 3Eh)  
010 = HPMIXL  
011 = SPKMIX  
100 = INV1  
All other values are reserved  
SPKR Source Control  
000 = VMID  
10:8  
SPKR  
000  
(Vmid)  
001 = No input (tri-stated if SPKR is  
disabled in 3Eh)  
010 = HPMIXR  
011 = SPKMIX  
100 = INV2  
All other values are reserved  
Table 36 SPKL / SPKR PGA Input Source  
The signal volume on SPKL and SPKR can be independently adjusted under software control by  
writing to register 02h.  
When not in use SPKL and SPKR can be powered down using the Powerdown register bits SPKL and  
SPKR (register 3Eh, bits [8:7]). To minimise pops and clicks when the PGA is powered down / up it is  
recommended that the Vmid input is selected during the power down / up cycle. This ensures the  
same DC level is maintained on the output pin throughout.  
56  
Rev 4.0  
 
WM9714L  
REGISTER  
ADDRESS  
BIT  
15  
LABEL  
MUL  
DEFAULT  
DESCRIPTION  
02h  
1 (Mute)  
SPKL Mute Control  
Speaker  
Volume  
1 = Mute  
0 = No mute  
14  
ZCL  
0
SPKL Zero Cross Control  
1 = Zero cross enabled (change volume  
only on zero crossings, or after time-out)  
0 = Zero cross disabled (change volume  
immediately)  
13:8  
SPKLVOL  
000000  
(0dB)  
SPKL Volume Control  
000000 = 0dB (maximum)  
… (1.5dB steps)  
011111 = -46.5dB  
1xxxxx = -46.5dB  
SPKR Mute Control  
1 = Mute  
7
6
MUR  
ZCR  
1 (Mute)  
0
0 = No mute  
SPKR Zero Cross Control  
1 = Zero cross enabled (change volume  
only on zero crossings, or after time-out)  
0 = Zero cross disabled (change volume  
immediately)  
5:0  
SPKRVOL  
000000  
(0dB)  
SPKR Volume Control  
000000 = 0dB (maximum)  
… (1.5dB steps)  
011111 = -46.5dB  
1xxxxx = -46.5dB  
Table 37 SPKL / SPKR PGA Control  
Note:  
1. For BTL speaker drive, it is recommended that both PGAs have the same gain setting.  
AUXILIARY OUTPUTS OUT3 AND OUT4  
The OUT3 and OUT4 outputs (pins 37 and 33) are designed to drive a loudspeaker load down to 8  
and can also be used as line outputs and headphone outputs. They are designed to drive an 8load  
AC coupled or in a BTL (cap-less) configuration and can be used as a mid-rail buffer to drive the  
headphone outputs in a cap-less DC configuration. The available input sources are INV1/2 and Vmid  
(see Table 38).  
REGISTER  
ADDRESS  
BIT  
LABEL  
OUT3  
DEFAULT  
DESCRIPTION  
1Ch  
3:2  
00 (Vmid)  
OUT3 Source Control  
Output PGA  
Mux Select  
00 = VMID  
01 = No input (tri-stated if OUT3 is  
disabled in 3Eh)  
10 = INV1  
11 = Reserved  
OUT4 Source Control  
00 = VMID  
1:0  
OUT4  
00 (Vmid)  
01 = No input (tri-stated if OUT4 is  
disabled in 3Eh)  
10 = INV2  
11 = Reserved  
Table 38 OUT3 / OUT4 PGA Input Source  
Rev 4.0  
57  
 
WM9714L  
The signal volume on OUT3 and OUT4 can be independently adjusted under software control by  
writing to register 06h.  
When not in use OUT3 and OUT4 can be powered down using the Powerdown register bits OUT3  
and OUT4 (register 3Eh, bits [11:12]). To minimise pops and clicks when the PGA is powered down /  
up it is recommended that the Vmid input is selected during the power down / up cycle. This ensures  
the same DC level is maintained on the output pin throughout.  
REGISTER  
ADDRESS  
BIT  
15  
LABEL  
MU4  
DEFAULT  
DESCRIPTION  
06h  
1 (Mute)  
OUT4 Mute Control  
Speaker  
Volume  
1 = Mute  
0 = No mute  
14  
ZC4  
0
OUT4 Zero Cross Control  
1 = Zero cross enabled (change volume  
only on zero crossings, or after time-out)  
0 = Zero cross disabled (change volume  
immediately)  
13:8  
OUT4VOL  
000000  
(0dB)  
OUT4 Volume Control  
000000 = 0dB (maximum)  
… (1.5dB steps)  
011111 = -46.5dB  
1xxxxx = -46.5dB  
OUT3 Mute Control  
1 = Mute  
7
6
MU3  
ZC3  
1 (Mute)  
0
0 = No mute  
OUT3 Zero Cross Control  
1 = Zero cross enabled (change volume  
only on zero crossings, or after time-out)  
0 = Zero cross disabled (change volume  
immediately)  
5:0  
OUT3VOL  
000000  
(0dB)  
OUT3 Volume Control  
000000 = 0dB (maximum)  
… (1.5dB steps)  
011111 = -46.5dB  
1xxxxx = -46.5dB  
Table 39 OUT3 / OUT4 PGA Control  
58  
Rev 4.0  
WM9714L  
THERMAL SENSOR  
The speaker and headphone outputs can drive very large currents. To protect the WM9714L from  
becoming too hot, a thermal sensor has been built in. If the chip temperature reaches approximately  
150C, and the TSHUT bit is cleared, and the GP11 bit is set, the WM9714L de-asserts TI, a virtual  
GPIO that can be set up to generate an interrupt to the CPU (see “GPIO and Interrupt Control”).  
REGISTER  
ADDRESS  
BIT  
13  
LABEL  
DEFAULT  
DESCRIPTION  
3Ch  
4Eh  
54h  
TSHUT  
1
Thermal Sensor Disable Control  
1 = Disabled  
(disabled)  
0 = Enabled  
11  
11  
GP11  
TI  
1
0
Thermal Sensor Polarity Control  
1 = Active Low  
0 = Active High  
Thermal Sensor Status Bit (Virtual GPIO)  
See also “GPIO and Interrupt Control” section.  
GP11 = 1 (default)  
1 = Temp < 150C  
0 = Temp > 150C  
GP11 = 0  
1 = Temp > 150C  
0 = Temp < 150C  
Table 40 Thermal Shutdown Control  
JACK INSERTION AND AUTO-SWITCHING  
In a phone application, a BTL ear speaker may be connected across MONO and HPL, a stereo  
headphone on HPL and HPR and stereo speakers on SPKL, SPKR, OUT3 and OUT4 (see Figure 23).  
Typically, only one of these three output devices is used at any given time: when no headphone is  
plugged in, the BTL ear speaker or stereo speakers are active, otherwise the headphone is used.  
MONO  
Ear Speaker  
32R  
Hands-free  
32R  
HP  
16/32R  
HPL  
PHONE  
MIXER  
HPR  
HEADPHONE  
MIXER  
SPKL  
SPEAKER  
MIXER  
SPKR  
OUT3  
Stereo  
Speaker (R)  
8R  
Stereo  
Speaker (L)  
8R  
OUT4  
Figure 23 Typical Output Configuration  
The presence of a headphone can be detected using one of GPIO1/6/7/8 (pins 44, 3, 11 & 12) and an  
external pull-up resistor (see Figure 35, page 114 for a circuit diagram). When the jack is inserted, the  
GPIO is pulled low by a switch on the socket. When the jack is removed the GPIO is pulled high by a  
resistor. If the JIEN bit is set, the WM9714L automatically switches between headphone and any other  
output configuration, typically ear speaker or stereo speaker that has been set up in the Powerdown  
and Output PGA Mux Select registers.  
Rev 4.0  
59  
 
 
 
 
WM9714L  
Note: Please refer to Application Note WAN 0182 for further information on jack detect configuration.  
In addition to the typical configuration explained above, the WM9714L can also support automatic  
switching between the following three configurations set as BTL ear speaker and headphone.  
REGISTER  
ADDRESS  
BIT  
LABEL  
DEFAULT  
DESCRIPTION  
24h  
1:0  
EARSPKSEL  
00  
Ear Speaker Source Control  
Output Volume  
Mapping (Jack  
Insert)  
00 = Default, no ear speaker  
configuration selected.  
01 = MONO and HPL driver selected  
as BTL ear speaker.  
10 = OUT3 and HPL driver selected as  
BTL ear speaker.  
11 = OUT4 and HPL driver selected as  
BTL ear speaker.  
Table 41 Ear Speaker Configuration  
For example, if OUT4 and HPL is selected as the BTL ear speaker, the user should select  
EARSPKSEL = 3h, then OUT4 is tri-stated on jack insert to prevent sound across the ear speaker  
during headphone operation and HPL volume is set to OUT4 volume on jack out to ensure correct ear  
speaker operation. It should be noted that all other outputs except HPL, HPR and selected ear  
speaker driver are disabled and internally connected to VREF on jack insert. This maintains VREF at  
those outputs and helps prevent pops when the outputs are enabled.  
Finally if the user wishes to DC couple the headphone outputs the user needs to select between  
OUT3 and OUT4 as the mid-rail output buffer driver. The selected mid-rail output buffer is enabled on  
jack insert. On jack out it defaults to whatever configuration has been set up in the Powerdown and  
Output PGA Mux Select registers.  
REGISTER  
ADDRESS  
BIT  
LABEL  
DEFAULT  
DESCRIPTION  
24h  
3:2  
DCDRVSEL  
00  
Jack Insert Headphone DC Reference  
Control  
Output Volume  
Mapping (Jack  
Insert)  
00 = AC coupled headphones, no DC  
source  
01 = OUT3 is mid-rail output buffer  
10 = Reserved  
11 = OUT4 is mid-rail output buffer  
Table 42 DC Coupled Headphone Configuration  
In summary:  
JIEN not set: Outputs work as normal as selected in the Powerdown and Output PGA Mux Select  
registers.  
JIEN set: On jack insertion, GPIO1/6/7/8 is pulled low, HPL and HPR are enabled, DCDRVSEL  
decides if the headphones are DC or AC coupled and configures OUT3 or OUT4 to suit, EARSPKSEL  
decides if MONO, OUT3 or OUT4 need to be tri-stated to ensure no sound out on the ear-speaker and  
finally all other outputs are disabled as explained above to prevent pops on re-enabling.  
On jack removal, GPIO1/6/7/8 is pulled high, the outputs work as normal as selected in the  
Powerdown and Output PGA Mux Select registers except that HPL Volume is controlled by  
EARSPKSEL to ensure correct ear speaker operation.  
60  
Rev 4.0  
WM9714L  
REGISTER  
ADDRESS  
BIT  
LABEL  
DEFAULT  
DESCRIPTION  
24h Output  
Volume  
Mapping  
(Jack  
4
JIEN  
0 (OFF)  
Jack Insert Control  
0 = Disable jack insert circuitry  
1 = Enable jack insert circuitry  
Insert)  
5Ah  
7:6  
JSEL  
00  
(GPIO1)  
Jack Detect Pin Input Control  
00 = GPIO1  
Additional  
Functions  
(1)  
01 = GPIO6  
10 = GPIO7  
11 = GPIO8  
Table 43 Jack Insertion / Auto-Switching (1)  
Rev 4.0  
61  
WM9714L  
MODE DESCRIPTION  
0
1
XX  
00  
XX  
00  
X
0
Jack Insert Detection  
Disabled.  
Jack Insert Detection  
Enabled.  
Headphone plugged in.  
No Ear Speaker Selected.  
AC Coupled Headphone  
Selected.  
1
1
1
1
01  
10  
11  
11  
00  
00  
00  
01  
0
0
0
0
Jack Insert Detection  
Enabled.  
Headphone plugged in.  
MONO Ear Speaker  
Selected.  
AC Coupled Headphone  
Selected.  
Jack Insert Detection  
Enabled.  
Headphone plugged in.  
OUT3 Ear Speaker  
Selected.  
AC Coupled Headphone  
Selected.  
Jack Insert Detection  
Enabled.  
Headphone plugged in.  
OUT4 Ear Speaker  
Selected.  
AC Coupled Headphone  
Selected.  
Jack Insert Detection  
Enabled.  
Headphone plugged in.  
OUT4 Ear Speaker  
Selected.  
OUT3 DC Coupled  
Headphone Selected.  
1
1
00  
11  
XX  
XX  
1
1
Jack Insert Detection  
Enabled.  
Headphone plugged out.  
No Ear Speaker Selected.  
Jack Insert Detection  
Enabled. Headphone  
plugged out.  
OUT4 Ear Speaker  
Selected.  
Table 44 Jack Insertion / Auto-Switching (2)  
62  
Rev 4.0  
WM9714L  
DIGITAL AUDIO (S/PDIF) OUTPUT  
The WM9714L supports the S/PDIF standard. Pins 48 & 12 can be used to output the S/PDIF data.  
Note that pins 48 & 12 can also be used as GPIO pins. The GE5 & GE8 bits (register 56h, bit 5 & bit  
8) select between GPIO and S/PDIF functionality for pins 48 & 12 respectively (see GPIO and  
Interrupt Control).  
Register 3Ah is a read/write register that controls S/PDIF functionality and manages bit fields  
propagated as channel status (or sub-frame in the V case). With the exception of V, this register  
should only be written to when the S/PDIF transmitter is disabled (S/PDIF bit in register 2Ah is ‘0’).  
Once the desired values have been written to this register, the contents should be read back to  
ensure that the sample rate in particular is supported, then S/PDIF validity bit SPCV in register 2Ah  
should be read to ensure the desired configuration is valid. Only then should the S/PDIF enable bit in  
register 2Ah be set. This ensures that control and status information start up correctly at the beginning  
of S/PDIF transmission.  
REGISTER  
ADDRESS  
BIT  
10  
LABEL  
DEFAULT  
DESCRIPTION  
2Ah  
SPCV  
0
S/PDIF Validity Bit (Read Only)  
1 = Valid  
Extended  
Audio  
0 = Not valid  
5:4  
SPSA  
01  
S/PDIF Slot Assignment Control  
00 = Slots 3 and 4  
01 = Slots 6 and 9  
10 = Slots 7 and 8  
11 = Slots 10 and 11  
Note: This control is only valid when ADCO=0  
in 5Ch  
2
SEN  
V
0
0
S/PDIF Output Enable Control  
1 = Enabled  
0 = Disabled  
3Ah  
15  
S/PDIF Validity Bit  
1 = Valid  
S/PDIF  
Control  
Register  
0 = Not valid  
14  
DRS  
0
Indicates that the WM9713L does not support  
double rate S/PDIF output (read-only)  
13:12  
SPSR  
10  
Indicates that the WM9713L only supports  
48kHz sampling on the S/PDIF output (read-  
only)  
11  
L
0
S/PDIF L-bit Control  
Programmed as required by user  
S/PDIF Category Code Control  
10:4  
CC  
0000000  
Category code; programmed as required by  
user  
3
2
1
0
PRE  
0
0
0
0
S/PDIF Pre-emphasis Indication Control  
0 = no pre-emphasis  
1 = 50/15µs pre-emphasis  
COPY  
AUDIB  
PRO  
S/PDIF Copyright Indication Control  
0 = Copyright not asserted  
1 = Copyright asserted  
S/PDIF Non-audio Indication Control  
0 = PCM data  
1 = Non-PCM data (e.g. DD or DTS)  
S/PDIF Professional Indication Control  
0 = Consumer mode  
1 = Professional mode  
Rev 4.0  
63  
WM9714L  
REGISTER  
ADDRESS  
BIT  
LABEL  
DEFAULT  
DESCRIPTION  
5Ch  
4
ADCO  
0
S/PDIF Data Source Control  
0 = From SDATAOUT (pin 5)  
1 = Output from audio ADC  
Additional  
Function  
Control  
Note: Slot selected by SPSA in 2Ah  
Table 45 S/PDIF Output Control  
AUXILIARY ADC  
The WM9714L includes a very low power, 12-bit successive approximation type ADC which can be  
used for battery and auxiliary measurements. Three pins that can be used as auxiliary ADC inputs:  
MIC2A / COMP1 / AUX1 (pin 29)  
MIC2B / COMP2 / AUX2 (pin 30)  
AUX4 (pin 12)  
Pins 29 and 30 are also used as comparator inputs (see Battery Alarm and Analogue Comparators”),  
but auxiliary measurements can still be taken on these pins at any time.  
Additionally, the speaker supply (SPKVDD) can be used as an auxiliary ADC input through an on-chip  
potential divider giving an input to the auxiliary ADC of SPKVDD/3. This input is referred to as the  
AUX3 input.  
SPKVDD  
AUX  
ADC  
20K  
10K  
Figure 24 Auxiliary ADC Inputs  
The AUX ADC is accessed and controlled through the AC-Link interface.  
64  
Rev 4.0  
WM9714L  
AUXADC POWER MANAGEMENT  
To save power, the AUXADC can be independently disabled when not used.  
The AUXADC is powered-down using PADCPD, register 3Ch bit 15.  
The state of the ADC is controlled using the bits described in Table 46.  
REGISTER  
ADDRESS  
BIT  
15  
LABEL  
DEFAULT  
DESCRIPTION  
3Ch  
PADCPD  
1 = off  
AUXADC Disable Control  
1 = Disabled  
0 = Enabled  
78h  
15:14  
PRP  
00  
Additional Enable for AUXADC  
00 = Disabled  
01 = Reserved  
10 = Reserved  
11 = Enabled  
Table 46 AUXADC Power Management  
INITIATION OF MEASUREMENTS  
The WM9714L AUXADC interface supports both polling routines and DMA (direct memory access) to  
control the flow of data from the AUX ADC to the host CPU.  
In a polling routine, the CPU starts each measurement individually by writing to the POLL bit (register  
74h, bit 9). This bit automatically resets itself when the measurement is completed.  
REGISTER  
ADDRESS  
BIT  
LABEL  
DEFAULT  
DESCRIPTION  
74h  
9
8
POLL  
0
Poll Measurement Control  
Writing “1” initiates a measurement (when  
CTC=0)  
CTC  
CR  
0
AUXADC Measurement Mode  
0 = Polling mode  
1 = Continuous mode (for DMA)  
76h  
9:8  
00  
Continuous Mode Conversion Rate  
Continuous mode rate (DEL 1111)  
00: 93.75 Hz (every 512 AC-Link frames)  
01: 120 Hz (every 400 AC-Link frames)  
10: 153.75 Hz (every 312 AC-Link frames)  
11: 187.5Hz (every 256 AC-Link frames)  
Continuous mode “fast rate” (DEL = 1111)  
00: 8 kHz (every six AC-Link frames)  
01: 12 kHz (every four AC-Link frames)  
10: 24 kHz (every other AC-Link frame)  
11: 48 kHz (every AC-Link frame)  
Table 47 AUX ADC Control (Initiation of Measurements)  
In continuous mode (CTC = 1), the WM9714L autonomously initiates measurements (or sets of  
measurements) at the rate set by CR, and supplies the measured data to the CPU on one of the  
unused AC’97 time slots. DMA-enabled CPUs can write the data directly into a FIFO without any  
intervention by the CPU core. This reduces CPU loading and speeds up the execution of user  
programs in handheld systems.  
Note that the measurement frequency in continuous mode is also affected by the DEL bits (see  
Register Bits by Address”, Register 76h). The faster rates achieved when DEL = 1111 may be useful  
when the ADC is used for multiple measurements.  
Rev 4.0  
65  
 
WM9714L  
MEASUREMENT TYPES  
The ADCSEL control bits determine which type of measurement is performed (see below).  
REGISTER  
ADDRESS  
BIT  
LABEL  
DEFAULT  
DESCRIPTION  
74h  
7
ADCSEL_AUX4  
0
AUX4 Measurement Enable Control  
0 = Disable AUX4 measurement (pin 12)  
1 = Enable AUX4 measurement (pin 12)  
6
ADCSEL_AUX3  
0
AUX3 Measurement Enable Control  
0 = Disable AUX3 measurement  
(SPKVDD/3)  
1 = Enable AUX3 measurement  
(SPKVDD/3)  
5
4
ADCSEL_AUX2  
ADCSEL_AUX1  
0
0
AUX2 Measurement Enable Control  
0 = Disable AUX2 measurement (pin 30)  
1 = Enable AUX2 measurement (pin 30)  
AUX1 Measurement Enable Control  
0 = Disable AUX1 measurement (pin 29)  
1 = Enable AUX1 measurement (pin 29)  
Note: Only one bit in 74h[7:4] should be set at any one time  
Table 48 AUX ADC Control (Measurement Types)  
The WM9714L performs a single measurement either in polling mode or continuously, as indicated  
by the CTC bit. The type of measurement is specified by the ADCSEL[7:4] bits. Only one of the  
ADCSEL[7:4] bits should be set.  
CONVERSION RATE  
The AUXADC conversion rate is specified by the CR bits (reg 76h).  
CR may be set to 93.75Hz (every 512 AC-Link Frames), 120Hz (every 400 AC-Link Frames),  
153.75Hz (every 312 AC-Link frames) or 187.5Hz (every 256 AC-Link frames).  
If only one ADRSEL[7:1] bit is set, each individual conversion occurs at the rate specified by CR.  
If multiple ADRSEL[7:1] bits are set, the complete set of conversions requested is completed at the  
rate specified by CR.  
DATA READBACK  
AUXADC measured data is stored in register 7Ah, and can be retrieved by reading the register in the  
usual manner (see AC97 Interface). Additionally, the data can also be passed to the controller on  
one of the AC-Link time slots not used for audio functions.  
The output data word of the AUX ADC interface consists of three parts:  
1 Unused bit (Ignore).  
Output data from the AUX ADC (12 bits)  
ADCSRC: 3 additional bits that indicate the source of the ADC data.  
66  
Rev 4.0  
WM9714L  
If the data is being read back using the polling method, there are several ways to determine when a  
measurement has finished:  
Reading back the POLL bit. If it has been reset to ‘0’, then the measurement has finished.  
Monitoring the ADA signal (see GPIO and Interrupt Control”). ADA goes high after every  
single conversion.  
Reading back 7Ah until the new data appears  
REGISTER  
ADDRESS  
BIT  
LABEL  
DEFAULT  
DESCRIPTION  
AUXADC Source  
7Ah  
or  
14:12  
ADCSRC  
000  
000 = No measurement  
001 = Reserved  
AC-Link slot  
selected by  
SLT  
010 = Reserved  
011 = Reserved  
100 = COMP1/AUX1 measurement (pin 29)  
101 = COMP2/AUX2 measurement (pin 30)  
110 = AUX3 measurements (SPKVDD/3)  
111 = AUX4 measurement (pin 12)  
AUXADC Data (Read-only)  
Bit 0 = LSB  
11:0  
9
ADCD  
WAIT  
000h  
0
Bit 11 = MSB  
78h  
AUXADC Data Control  
0 = Overwrite existing data in 7Ah with new  
data  
1 = Retain existing data in 7Ah until it is read  
Table 49 AUX ADC Data  
To avoid losing data that has not yet been read, the WM9714L can delay overwriting register 7Ah with  
new conversions until the old data has been read. This function is enabled using the WAIT bit. If the  
SLEN bit is set to ‘1’, then the ADC data appears on the AC-Link slot selected by the SLT control bits,  
as shown below. The Slot 0 ‘tag’ bit corresponding to the selected time slot is asserted whenever  
there is new data on that slot.  
REGISTER  
ADDRESS  
BIT  
LABEL  
SLEN  
DEFAULT  
DESCRIPTION  
76h  
3
0
Slot Readback Enable Control  
0 = Disabled (readback through register map  
only)  
1 = Enabled (readback slot selected by SLT)  
AC’97 Slot for AUXADC Data Control  
000 = Slot 5  
2:0  
SLT  
110  
001 = Slot 6  
010 = Slot 7  
011 = Slot 8  
100 = Slot 9  
101 = Slot 10  
110 = Slot 11  
111 = Reserved  
Table 50 Returning AUX ADC Data Through an AC-Link Time Slot  
Rev 4.0  
67  
WM9714L  
MASK INPUT CONTROL  
Sources of glitch noise, such as the signals driving an LCD display, may feed through to the AUX  
ADC inputs and affect measurement accuracy. In order to minimise this effect, a signal may be  
applied to MASK (pin 47 / pin 3) to delay or synchronise the sampling of any input to the ADC. The  
effect of the MASK signal depends on the MSK bits of register 78h, as described in Table 51.  
REGISTER  
ADDRESS  
BIT  
LABEL  
MSK  
DEFAULT  
DESCRIPTION  
78h  
7:6  
00  
Mask Input Control  
see Table 52 for details  
Table 51 MASK Input Control  
MSK[1-0]  
EFFECT OF SIGNAL ON MASK PIN  
Mask has no effect on conversions GPIO input disabled (default)  
Static; ‘hi’ on MASK pin stops conversions, ‘lo’ has no effect.  
Edge triggered; rising or falling edge on MASK pin delays conversions  
00  
01  
10  
by an amount set in the DEL[3-0] register. Conversions are asynchronous to the  
MASK signal.  
Synchronous mode; conversions wait until rising or falling edge on MASK initiates  
cycle; screen starts to be driven when the edge arrives, the conversion sample  
being taken a period set by DEL[3-0] after the edge.  
11  
Table 52 Controlling the MASK Feature  
Note that pin 47 / pin 3 can also be used as a GPIO (see GPIO and Interrupt Control”), or to output  
the ADA signal (see below).  
ADA (ADC DATA AVAILABLE) SIGNAL  
Whenever data becomes available from the AUXADC, the internal ADA (ADC Data Available) signal  
goes high and remains high until the data has been read from register 7Ah (if SLEN = 0) or until it has  
been sent out on an AC-Link slot (if SLEN = 1).  
ADA goes high after every AUXADC conversion (in normal mode, COO=0)  
ADA can be used to generate an interrupt, if the AW bit (register 52h, bit 12) is set (see GPIO and  
Interrupt Control”).  
It is also possible to output the ADA signal on pin 47 / pin 3, if this pin is not used as a GPIO. The  
GE4/6 bit must be set to ‘0’ to achieve this (see GPIO and Interrupt Control”).  
Alternatively, ADA can be read from bit 12 in register 54h.  
68  
Rev 4.0  
 
 
WM9714L  
ADDITIONAL FEATURES  
BATTERY ALARM AND ANALOGUE COMPARATORS  
The battery alarm function differs from battery measurement in that it does not actually measure the  
battery voltage. Battery alarm only indicates “OK”, “Low” or “Dead”. The advantage of the battery  
alarm function is that it does not require a clock and can therefore be used in low-power sleep or  
standby modes.  
VOLTAGE  
AVDD, DCVDD, ...  
REGULATOR  
WM9714L  
AUX1/  
COMP1  
IALARM  
R1  
DEAD  
BAT  
+
-
C
GPIO /  
INTERRUPT  
LOGIC  
R2  
R3  
VREF  
VBATT  
-
+
LOW  
BAT  
AUX2/  
COMP2  
GPIO2/ GPIO  
IRQ  
PINS  
Figure 25 Battery Alarm Example Schematic  
The typical schematic for a dual threshold battery alarm is shown above. This alarm has two  
thresholds, “dead battery” (COMP1) and “low battery” (COMP2). R1, R2 and R3 set the threshold  
voltages. Their values can be up to about 1Min order to keep the battery current [IALARM = VBATT  
/
(R1+R2+R3)] to a minimum (higher resistor values may affect the accuracy of the system as leakage  
currents into the input pins become significant).  
Dead battery alarm: COMP1 triggers when VBATT < VREF (R1+R2+R3) / (R2+R3)  
A dead battery alarm is the highest priority of interrupt in the system. It should immediately save all  
unsaved data and shut down the system. The GP15, GS15 and GW15 bits must be set to generate  
this interrupt.  
Low battery alarm: COMP2 triggers when VBATT < VREF (R1+R2+R3) / R3  
A low battery alarm has a lower priority than a dead battery alarm. Since the threshold voltage is  
higher than for a dead battery alarm, there is enough power left in the battery to give the user a  
warning and/or shut down “gracefully”. When VBATT gets close to the low battery threshold, spurious  
alarms are filtered out by the COMP2 delay function.  
The purpose of the capacitor C is to remove from the comparator inputs any high frequency noise or  
glitches that may be present on the battery (for example, noise generated by a charge pump). It forms  
a low pass filter with R1, R2 and R3.  
Low pass cutoff fc [Hz] = 1/ (2C (R1 || (R2+R3)))  
Provided that the cutoff frequency is several orders of magnitude lower than the noise frequency fn,  
this simple circuit can achieve excellent noise rejection.  
Noise rejection [dB] = 20 log (fn / fc)  
Rev 4.0  
69  
 
WM9714L  
The circuit shown above also allows for measuring the battery voltage VBATT. This is achieved simply  
by setting the AUXADC input to be either COMP1 (ADCSEL = 100) or COMP2 (ADCSEL = 101) (see  
also Auxiliary ADC Inputs).  
The WM9714L has two on-chip comparators that can be used to implement a battery alarm function,  
or other functions such as a window comparator. Each comparator has one of its inputs tied to  
COMP1 (pin 29) or COMP2 (pin 30), and the other tied to a voltage reference. The voltage reference  
can be either internally generated (VREF = AVDD/2) or externally connected on AUX4 (pin 12).  
The comparator output signals are passed to the GPIO logic block (see GPIO and Interrupt Control”  
section), where they can be used to send an interrupt to the CPU via the AC-Link or via the IRQ pin,  
and / or to wake up the WM9714L from sleep mode. COMP1/AUX1 (pin 29) corresponds to GPIO bit  
15 and COMP2/AUX2 (pin30) to bit 14.  
REGISTER  
ADDRESS  
BIT  
15  
LABEL  
DEFAULT  
DESCRIPTION  
4Eh  
CP1  
1
COMP1 Polarity Control  
0: Alarm when COMP1 voltage is below VREF  
1: Alarm when COMP1 voltage is above VREF  
Note: see also “GPIO and Interrupt Control”  
COMP2 Polarity Control  
14  
CP2  
1
0: Alarm when COMP2 voltage is below VREF  
1: Alarm when COMP2 voltage is above VREF  
Note: see also “GPIO and Interrupt Control”  
Low Battery Alarm Delay Control  
000 = No delay  
5Ah  
15:13  
COMP2 000  
DEL  
001 = 213 AC-link frames (0.17s)  
010 = 214 AC-link frames (0.34s)  
011 = 215 AC-link frames (0.68s)  
100 = 216 AC-link frames (1.4s)  
101 = 217 AC-link frames (2.7s)  
110 = 218 AC-link frames (5.5s)  
111 = 219 AC-link frames (10.9s)  
Table 53 Comparator Control  
REGISTER  
ADDRESS  
BIT  
14  
LABEL  
DEFAULT  
DESCRIPTION  
5Ch  
C1REF  
0
Comparator 1 Reference Voltage Select  
0 = AVDD/2  
Additional  
Analogue  
Functions  
1 = AUX4 (pin 12)  
13:12  
C1SRC  
00  
Comparator 1 Signal Source  
00 = AVDD/2 when C1REF=1, else COMP1  
powered down  
01 = COMP1/AUX1 (pin 29)  
10 = COMP2/AUX2 (pin 30)  
11 = Reserved  
11  
C2REF  
C2SRC  
0
Comparator 2 Reference Voltage Select  
0 = AVDD/2  
1 = AUX4 (pin 12)  
10:9  
00  
Comparator 2 Signal Source  
00 = AVDD/2 when C2REF=1, else COMP2  
powered down  
01 = COMP1/AUX1 (pin 29)  
10 = COMP2/AUX2 (pin 30)  
11 = Reserved  
Table 54 Comparator Reference and Source Control  
70  
Rev 4.0  
WM9714L  
COMP2 DELAY FUNCTION  
COMP2 has an optional delay function for use when the input signal is noisy. When COMP2 triggers  
and the delay is enabled (i.e. COMP2DEL is non-zero), then GPIO bit 14 does not change state  
immediately, and no interrupt is generated. Instead, the WM9714L starts a delay timer and checks  
COMP2 again after the delay time has passed. If COMP2 is still active, then the GPIO bit is set and  
an interrupt may be generated (depending on the state of the GW14 bit). If COMP2 is no longer  
active, the GPIO bit is not set, i.e. all register bits are as if COMP2 had never triggered.  
COMP2  
TRIGGERS  
C2W?  
1
0
END  
COMP2  
DEL?  
non-zero  
START TIMER  
WAIT  
time=COMP2DEL  
000  
SHUT DOWN  
TIMER  
END  
[FALSE ALARM]  
COMP2?  
Inactive  
Active  
SET GI14  
END  
Figure 26 COMP2 Delay Flow Chart  
Rev 4.0  
71  
WM9714L  
GPIO AND INTERRUPT CONTROL  
The WM9714L has eight GPIO pins that operate as defined in the AC’97 Revision 2.2 specification.  
Each GPIO pin can be set up as an input or as an output, and has corresponding bits in register 54h  
and in slot 12. The state of a GPIO output is determined by sending data through slot 12 of outgoing  
frames (SDATAOUT). Data can be returned from a GPIO input by reading the register bit, or  
examining slot 12 of incoming frames (SDATAIN). GPIO inputs can be made sticky, and can be  
programmed to generate an interrupt, transmitted either through the AC-Link or through a dedicated,  
level-mode interrupt pin (GPIO2/IRQ, pin 45).  
In addition, the GPIO pins 1, 3, 4 and 5 can be used for the PCM interface by setting bit 15 of register  
36h (see PCM Audio Data Formatssection). Setting this bit disables any GPIO functions selected on  
these pins.  
REGISTER  
ADDRESS  
BIT  
15  
LABEL  
DEFAULT  
DESCRIPTION  
36h  
CTRL  
0
GPIO Pin Configuration Control  
0 = GPIO pins used as GPIOs  
PCM  
CODEC  
Control  
1 = GPIO pins used as PCM interface  
Note: For PCM interface, one or more of these  
pins (depending on master/slave/partial master  
mode) must be set up as an output by writing to  
register 4Ch (see Table 57)  
56h  
8:2  
GE#  
1 (GPIO)  
Toggle GPIO pin function  
0: secondary function enabled  
1: GPIO enabled  
GPIO Pin  
Sharing  
Table 55 GPIO Additional Function Control  
GPIO pins 2 to 8 are multi-purpose pins that can also be used for other (non-GPIO / -PCM) purposes,  
e.g. as a S/PDIF output. This is controlled by register 56h (see Table 58).  
Note that GPIO6/7/8 each have an additional function independent of the GPIO / auxiliary functions  
discussed above. If these pins are to be used as GPIO then the independent function needs to be  
disabled using its own control registers, e.g. to use pin 11 as a GPIO then the RESETB function  
needs to be disabled (RSTDIS, register 5Ah, bit 8).  
Independently of the GPIO pins, the WM9714L also has seven virtual GPIOs. These are signals from  
inside the WM9714L, which are treated as if they were GPIO input signals. From a software  
perspective, virtual GPIOs are the same as GPIO pins, but they cannot be set up as outputs, and are  
not tied to an actual pin. This allows for simple, uniform processing of different types of signals that  
may generate interrupts (e.g. battery warnings, jack insertion, high-temperature warning, or GPIO  
signals).  
72  
Rev 4.0  
 
WM9714L  
STATUS  
54h.n / SLOT12.n  
0
STATUS READBACK  
54h.n / SLOT12.n  
MUX  
0
1
FUNCTION  
SELECT  
56h.n  
58h.n  
MUX  
XNOR  
S
R
Q
1
RSFF  
CONFIGURATION  
(4Ch.n)  
0=O/P  
1
GPIO  
PIN  
POLARITY  
(4Eh.n)  
STICKY  
(50h.n)  
1=I/P  
0=NOT STICKY  
1=STICKY  
WRITE '0'  
TO 54h.n  
CLEAR STICKY  
STATUS  
(SLOT12.n)  
58h.n  
4C  
STICKY (50h.n)  
WAKE-UP (52h.n)  
OTHER  
FUNCTION  
AND  
CONFIGURATION (4Ch.n)  
WAKEEN  
5Ah, bit 1  
IF WM9714L SLEEPING:  
WAKE UP AC-LINK  
8 circuits like this (one for each GPIO pin)  
AND  
IF WM9714L AWAKE:  
SET GPIO_INT  
(SLOT12, BIT0)  
STICKY (50h.n)  
WAKE-UP (52h.n)  
GE2=0: CLOSED  
GE2=1: OPEN  
AND  
OR  
IRQ  
PIN 45  
XOR  
WRITE '0'  
TO 54h.n  
IRQINV  
5Ah, bit 0  
STICKY  
(50h.n)  
OTHER  
GPIOs  
POLARITY  
(4Eh.n)  
R
S
RSFF  
XNOR  
Q
1
WM9714L  
internal signal  
STATUS READBACK  
54h.n / SLOT12.n  
MUX  
0
7 circuits like this (one for each virtual GPIO)  
Figure 27 GPIO Logic  
GPIO  
BIT  
1
SLOT  
12 BIT  
TYPE  
PIN NO.  
DESCRIPTION  
GPIO1  
5
6
GPIO Pin  
GPIO Pin  
44  
45  
GPIO2 / IRQ  
2
enabled only when pin not used as IRQ  
GPIO3  
3
4
7
8
GPIO Pin  
GPIO Pin  
46  
47  
GPIO4 / ADA / MASK  
enabled only when pin not used as ADA  
GPIO5 / S/PDIF_OUT  
5
6
9
GPIO Pin  
GPIO Pin  
48  
3
enabled only when pin not used as S/PDIF_OUT  
GPIO6 / ADA / MASK  
10  
Enabled only when pin not used as ADA  
GPIO7  
7
8
11  
12  
GPIO Pin  
GPIO Pin  
11  
12  
GPIO8 / S/PDIF_OUT  
enabled only when pin not used as S/PDIF_OUT  
Internal microphone bias current detect, generates an interrupt above  
a threshold (see MICBIAS Current Detect)  
9
13  
14  
15  
16  
18  
19  
Virtual GPIO  
Virtual GPIO  
Virtual GPIO  
Virtual GPIO  
Virtual GPIO  
Virtual GPIO  
-
[MICDET]  
Internal shorted microphone detect, generates an interrupt above a  
threshold (see MICBIAS Current Detect)  
10  
11  
12  
14  
15  
-
[MICSHT]  
-
Internal thermal cutout signal, indicates when internal temperature  
reaches approximately 150C (see “Thermal Sensor”)  
[Thermal Cutout]  
Internal ADA (ADC Data Available) Signal  
enabled only when AUXADC is active  
Internal COMP2 output (Low Battery Alarm)  
enabled only when COMP2 is on  
-
[ADA]  
-
[COMP2]  
-
Internal COMP1 output (Dead Battery Alarm)  
enabled only when COMP1 is on  
[COMP1]  
Table 56 GPIO Bits and Pins  
Note: GPIO7 (Pin 11) has an independent RESETB function. This must be disabled using RSTDIS (Register 5Ah, bit 8) before  
using Pin 11 as a GPIO.  
Rev 4.0  
73  
WM9714L  
The properties of the GPIOs are controlled through registers 4Ch to 52h, as shown below.  
REGISTER  
ADDRESS  
BIT  
LABEL  
DEFAULT  
DESCRIPTION  
4Ch  
n
GCn  
1
GPIO Pin Configuration Control  
0 = Output  
1 = Input (GC9-15 are always inputs)  
GPIO Pin Polarity / Type (Note 1)  
4Eh  
n
GPn  
1
Input (GCn = 1)  
Input (GCn = 1)  
0 = Active low  
0 = Active low  
1 = Acitve high  
1 = Acitve high  
50h  
52h  
n
n
GSn  
0
0
GPIO Pin Sticky Control  
0 = Not sticky  
1 = Sticky  
GWn  
GPIO Pin Wake-up Control  
0 = No wake-up (no interrupts generated by  
GPIO)  
1 = Wake-up (generate interrupts from GPIO)  
GPIO Pin Status  
54h  
n
GIn  
N/A  
Read = Returns status of GPIO  
Write = Writing 0 clears sticky bits  
Table 57 GPIO Control  
Note 1: Excludes GP11. For Thermal Sensor Polarity Control (GP11) see Table 40 on page 59.  
The following procedure is recommended for handling interrupts:  
When the controller receives an interrupt, check register 54h. For each GPIO bit in descending order  
of priority, check if the bit is ‘1’. If yes, execute corresponding interrupt routine, then write ‘0’ to  
corresponding bit in 54h. If no, continue to next lower priority GPIO. After all GPIOs have been  
checked, check if interrupt still present or no. If yes, repeat procedure. If no, then jump back to  
process that ran before the interrupt.  
If the system CPU cannot execute such an interrupt routine, it may be preferable to switch internal  
signals directly onto the GPIO pins. However, in this case the interrupt signals cannot be made sticky,  
and more GPIO pins are tied up both on the WM9714L and on the CPU.  
74  
Rev 4.0  
WM9714L  
REGISTER  
ADDRESS  
BIT  
LABEL  
DEFAULT  
DESCRIPTION  
56h  
2
GE2  
1
GPIO2 (Pin 45) Function Control  
0 = Pin 45 is not controlled by GPIO logic  
1 = Pin 45 is controlled by GPIO logic  
Note: When GE2=0,  
GPIO pins  
function  
select  
set GC2=0 in 4Ch to output IRQ  
GPIO4 (Pin 47) Function Control  
0 = Pin 47 is not controlled by GPIO logic  
1 = Pin 47 is controlled by GPIO logic  
Note: When GE4=0,  
4
GE4  
1
set GC4=0 in 4Ch to output ADA  
set GC4=1 in 4Ch to input MASK  
GPIO5 (Pin 48) Function Control  
0 = Pin 48 is not controlled by GPIO logic  
1 = Pin 48 is controlled by GPIO logic  
Note: When GE5=0,  
5
6
GE5  
GE6  
1
1
set GC5=0 in 4Ch to output S/PDIF  
GPIO6 (Pin 3) Function Control  
0 = Pin 3 is not controlled by GPIO logic  
1 = Pin 3 is controlled by GPIO logic  
Note: When GE6=0,  
set GC6=0 in 4Ch to output ADA signal  
set GC6=1 in 4Ch to input MASK signal  
GPIO8 (Pin 12) Function Control  
0 = Pin 12 is not controlled by GPIO logic  
1 = Pin 12 is controlled by GPIO logic  
Note: When GE8=0,  
8
GE8  
1
set GC8=0 in 4Ch to output S/PDIF  
Table 58 Using GPIO Pins for Non-GPIO Functions  
Rev 4.0  
75  
WM9714L  
POWER MANAGEMENT  
INTRODUCTION  
The WM9714L includes the standard power down control register defined by the AC’97 specification  
(register 26h). Additionally, it also allows more specific control over the individual blocks of the device  
through register Powerdown registers 3Ch and 3Eh. Each particular circuit block is active when both  
the relevant bit in register 26h AND the relevant bit in the Powerdown registers 3Ch and 3Eh are set  
to ‘0’.  
Note that the default power-up condition is all OFF.  
AC97 CONTROL REGISTER  
REGISTER  
ADDRESS  
BIT  
14  
LABEL  
DEFAULT  
DESCRIPTION  
26h  
PR6  
1
Output PGAs Disable Control  
1 = Disabled  
(disabled)  
Powerdown/  
Status  
register  
0 = Enabled  
13  
12  
11  
PR5  
PR4  
PR3  
1
Internal Clock Disable Control  
1 = Disabled  
(disabled)  
0 = Enabled  
1
AC-Link Disable Control  
1 = Disabled  
(disabled)  
0 = Enabled  
1
Analogue Disable Control  
1 = Disabled  
(disabled)  
0 = Enabled  
Note: This control disables VREF, input PGAs,  
DACs, ADCs, mixers and outputs  
10  
9
PR2  
PR1  
PR0  
REF  
ANL  
DAC  
ADC  
1
Input PGAs and Mixers Disable Control  
1 = Disabled  
(disabled)  
0 = Enabled  
1
Stereo DAC Disable Control  
1 = Disabled  
(disabled)  
0 = Enabled  
8
1
Stereo ADC and Record Mux Disable Control  
1 = Disabled  
(disabled)  
0 = Enabled  
3
0
0
0
0
VREF Ready (Read Only)  
1 = VREF ready  
0 = VREF not ready  
2
Analogue Mixers Ready (Read Only)  
1 = Analogue mixers ready  
0 = Analogue mixers not ready  
Stereo DAC Ready (Read Only)  
1 = DAC ready  
1
0 = DAC not ready  
0
Stereo ADC Ready (Read Only)  
1 = ADC ready  
0 = ADC not ready  
Table 59 Powerdown and Status Register (Conforms to AC’97 Rev 2.2)  
76  
Rev 4.0  
WM9714L  
EXTENDED POWERDOWN REGISTERS  
REGISTER  
ADDRESS  
BIT  
LABEL  
DEFAULT  
DESCRIPTION  
3Ch  
15  
PADCPD  
1
AUXADC Disable Control  
(disabled)  
Powerdown  
(1)  
1 = Disabled  
0 = Enabled  
14  
13  
12  
11  
10  
9
VMID1M  
TSHUT  
VXDAC  
AUXDAC  
VREF  
PLL  
1
1Meg VMID String Disable Control  
1 = Disabled  
(disabled)  
0 = Enabled  
1
Thermal Shutdown Disable Control  
1 = Disabled  
(disabled)  
0 = Enabled  
1
Voice DAC Disable Control  
1 = Disabled  
(disabled)  
0 = Enabled  
1
AUXDAC Disable Control  
1 = Disabled  
(disabled)  
0 = Enabled  
1
VREF Disable Control  
1 = Disabled  
(disabled)  
0 = Enabled  
1
PLL Disable Control  
1 = Disabled  
(disabled)  
0 = Enabled  
7
DACL  
DACR  
ADCL  
ADCR  
HPLX  
HPRX  
SPKX  
MX  
1
Left DAC Disable Control (see Note 1)  
1 = Disabled  
(disabled)  
0 = Enabled  
6
1
Right DAC Disable Control (see Note 1)  
1 = Disabled  
(disabled)  
0 = Enabled  
5
1
Left ADC Disable Control  
1 = Disabled  
(disabled)  
0 = Enabled  
4
1
Right ADC Disable Control  
1 = Disabled  
(disabled)  
0 = Enabled  
3
1
Left Headphone Mixer Disable Control  
1 = Disabled  
(disabled)  
0 = Enabled  
2
1
Right Headphone Mixer Disable Control  
1 = Disabled  
(disabled)  
0 = Enabled  
1
1
Speaker Mixer Disable Control  
1 = Disabled  
(disabled)  
0 = Enabled  
0
1
Mono Mixer Disable Control  
1 = Disabled  
(disabled)  
0 = Enabled  
Note: When analogue inputs or outputs are disabled, they are internally connected to VREF  
through a large resistor (VREF=AVDD/2 except when VREF and VMID1M are both OFF). This  
maintains the potential at that node and helps to eliminate pops when the pins are re-enabled.  
Table 60 Extended Power Down Register (1) (Additional to AC’97 Rev 2.2)  
Note: When disabling a PGA, always ensure that it is muted first.  
Rev 4.0  
77  
WM9714L  
REGISTER  
ADDRESS  
BIT  
15  
LABEL  
DEFAULT  
DESCRIPTION  
3Eh  
MCD  
1
Microphone Current Detect Disable Control  
1 = Disabled  
(disabled)  
Powerdown  
(2)  
0 = Enabled  
14  
13  
12  
11  
10  
9
MICBIA  
S
1
Microphone Bias Disable Control (see Note 1)  
1 = Disabled  
(disabled)  
0 = Enabled  
MONO  
OUT4  
OUT3  
HPL  
1
MONO PGA Disable Control (see Note 1)  
1 = Disabled  
(disabled)  
0 = Enabled  
1
OUT4 PGA Disable Control (see Note 1)  
1 = Disabled  
(disabled)  
0 = Enabled  
1
OUT3 PGA Disable Control (see Note 1)  
1 = Disabled  
(disabled)  
0 = Enabled  
1
HPL PGA Disable Control (see Note 1)  
1 = Disabled  
(disabled)  
0 = Enabled  
HPR  
SPKL  
SPKR  
LL  
1
HPR PGA Disable Control (see Note 1)  
1 = Disabled  
(disabled)  
0 = Enabled  
8
1
SPKL PGA Disable Control (see Note 1)  
1 = Disabled  
(disabled)  
0 = Enabled  
7
1
SPKR PGA Disable Control (see Note 1)  
1 = Disabled  
(disabled)  
0 = Enabled  
6
1
LINEL PGA Disable Control (see Note 1)  
1 = Disabled  
(disabled)  
0 = Enabled  
5
LR  
1
LINER PGA Disable Control (see Note 1)  
1 = Disabled  
(disabled  
0 = Enabled  
4
MOIN  
MA  
1
MONOIN PGA Disable Control (see Note 1)  
1 = Disabled  
(disabled)  
0 = Enabled  
3
1
MICA PGA Disable Control (see Note 1)  
1 = Disabled  
(disabled)  
0 = Enabled  
2
MB  
1
MICB PGA Disable Control (see Note 1)  
1 = Disabled  
(disabled)  
0 = Enabled  
1
MPA  
MPB  
1
Mic Pre-amp MPA Disable Control  
1 = Disabled  
(disabled)  
0 = Enabled  
0
1
Mic Pre-amp MPB Disable Control  
1 = Disabled  
(disabled)  
0 = Enabled  
Note: When analogue inputs or outputs are disabled, they are internally connected to VREF  
through a large resistor (VREF=AVDD/2 except when VREF and VMID1M are both OFF). This  
maintains the potential at that node and helps to eliminate pops when the pins are re-enabled.  
Table 61 Extended Power Down Register (2) (Additional to AC’97 Rev 2.2)  
Note: When disabling a PGA, always ensure that it is muted first.  
78  
Rev 4.0  
WM9714L  
ADDITIONAL POWER MANAGEMENT  
Mixer output inverters: see “Mixer Output Inverters” section. Inverters are disabled by default.  
SLEEP MODE  
Whenever the PR4 bit (reg. 26h) is set, the AC-Link interface is disabled, and the WM9714L is in  
sleep mode. There is in fact a very large number of different sleep modes, depending on the other  
control bits. For example, the low-power standby mode described below is a sleep mode. It is  
desirable to use sleep modes whenever possible, as this will save power. The following functions do  
not require a clock and can therefore operate in sleep mode:  
Analogue-to-analogue audio (DACs and ADCs unused), e.g. phone call mode  
GPIO and interrupts  
Battery alarm / analogue comparators  
The WM9714L can awake from sleep mode as a result of  
A warm reset on the AC-Link (according to the AC’97 specification)  
A signal on a GPIO pin (if the pin is configured as an input, with wake-up enabled see  
GPIO and Interrupt Control” section)  
A virtual GPIO event such as battery alarm, etc. (see “GPIO and Interrupt Control” section)  
LOW-POWER STANDBY MODE  
If all the bits in registers 26h, 3Ch and 3Eh are set except VMID1M (register 3Ch, bit 14), then the  
WM9714L is in low-power standby mode and consumes very little current. A 1Mresistor string  
remains connected across AVDD to generate VREF. This is necessary if the on-chip analogue  
comparators are used (see Battery Alarm and Analogue Comparatorssection), and helps shorten  
the delay between wake-up and playback readiness. If VREF is not required, the 1Mresistor string  
can be disabled by setting the VMID1M bit, reducing current consumption further.  
SAVING POWER AT LOW SUPPLY VOLTAGES  
The analogue supplies to the WM9714L can run from 1.8V to 3.6V. By default, all analogue circuitry  
on the IC is optimized to run at 3.3V. This set-up is also good for all other supply voltages down to  
1.8V. However, at lower voltages, it is possible to save power by reducing the internal bias currents  
used in the analogue circuitry. This is controlled as shown below.  
REGISTER  
ADDRESS  
BIT  
6:5  
LABEL  
DEFAULT  
DESCRIPTION  
5Ch  
VBIAS  
00  
Analogue Bias Optimization Control  
0X = Default bias current, optimized for 3.3V  
10 = Low bias current, optimized for 2.5V  
11 = Lowest bias current, optimized for 1.8V  
Table 62 Analogue Bias Selection  
POWER-ON RESET (POR)  
The WM9714L has an internal power on reset (PORB) which ensures that a reset is applied to all  
registers until a supply threshold has been exceeded. The POR circuitry monitors the voltage for both  
AVDD and DCVDD and will release the internal reset signal once these supplies are both nominally  
greater than 1.36V. The internal reset signal is an AND of the PORB and RESETB input signal.  
It is recommended that for operation of the WM9714L, all device power rails should be stable before  
configuring the device for operation.  
Rev 4.0  
79  
WM9714L  
REGISTER MAP  
Reg  
Name  
15  
0
14  
SE4  
ZCL  
ZCL  
ZC4  
M2S  
L2S  
D2S  
0
13  
12  
11  
10  
9
8
7
ID7  
MUR  
MUR  
MU3  
MU  
0
6
ID6  
ZCR  
ZCR  
ZC3  
ZC  
0
5
4
3
2
1
0
Default  
6174h  
8080h  
8080h  
8080h  
C880h  
E808h  
E808h  
0808h  
00DAh  
8000h  
D600h  
AAA0h  
AAA0h  
AAA0h  
0000h  
0000h  
0F0Fh  
0040h  
0000h  
7F00h  
0405h  
0410h  
BB80h  
BB80h  
BB80h  
4523h  
2000h  
FDFFh  
FFFFh  
0000h  
0000h  
0080h  
0000h  
FFFEh  
FFFFh  
0000h  
0000h  
GPIO pins  
FFFEh  
4000h  
0000h  
0000h  
B032h  
3E00h  
0000h  
0000h  
0006h  
0001h  
0000h  
574Dh  
4C13h  
00h Reset  
SE3  
SE2  
SE1  
SE0  
ID9  
ID8  
ID5  
ID4  
ID3  
ID2  
ID1  
ID0  
02h Speaker Volume  
04h Headphone Volume  
06h OUT3/4 Volume  
MUL  
MUL  
MU4  
M2H  
L2H  
D2H  
0
SPKLVOL  
SPKRVOL  
HPLVOL  
HPRVOL  
OUT3VOL  
MONOVOL  
OUT4VOL  
08h MONO Vol & MONOIN PGA Vol /  
Routing  
0
L2M  
D2M  
0
MONOINVOL  
0Ah LINEIN PGA Volume / Routing  
LINELVOL  
DACLVOL  
MICAVOL  
0
0
0
0
LINERVOL  
0Ch DAC PGA Volume / Routing  
0Eh MIC PGA Volume  
0
0
DACRVOL  
MICBVOL  
0
0
10h MIC Routing  
0
0
0
0
0
0
0
MA2M  
ZC  
MB2M MIC2MB  
ST  
MIC2H  
MIC2HVOL  
RECVOLR  
12h Record PGA Volume  
RMU  
GRL  
(Extended)  
RECVOLL  
R2M  
B2SVOL  
GRR  
(Extended)  
14h Record Routing / Mux Select  
16h PCBEEP Volume / Routing  
18h VxDAC Volume / Routing  
1Ah AUXDAC Volume / Routing  
1Ch Output PGA Mux Select  
1Eh DAC 3D Control & INV Mux Select  
20h DAC Tone Control  
R2H  
R2HVOL  
R2M  
BST  
0
REC  
BST  
RECSL  
RECSR  
B2H  
V2H  
A2H  
B2HVOL  
V2HVOL  
A2HVOL  
B2S  
V2S  
A2S  
B2M  
V2M  
A2M  
B2MVOL  
V2MVOL  
A2MVOL  
0
0
0
0
0
0
0
0
0
0
0
0
V2SVOL  
A2SVOL  
SPKR  
0
MONO  
INVA  
SPKL  
BC  
HPL  
HPR  
OUT3  
OUT4  
INVB  
0
0
0
0
3DLC  
0
3DUC  
TC  
3DDEPTH  
TRBL  
BB  
0
0
BASS  
DAT  
22h MIC Input Select & Bias / Detect  
MICCMPSEL  
MPASEL  
MPABST  
MPBBST  
MBOP2E MBOP1E MBVOL  
N
0
MCDTHR  
DCDRVSEL  
MCDSCTHR  
EARSPKSEL  
Ctrl  
N
0
24h Output Volume Mapping (Jack  
Insert)  
0
0
0
PR6  
ID0  
0
0
PR5  
0
0
PR4  
0
0
PR3  
REV1  
0
0
0
PR1  
AMAP  
0
0
PR0  
LDAC  
0
0
0
0
JIEN  
26h Powerdown Ctrl/Stat  
PR2  
0
SDAC  
0
0
CDAC  
0
0
0
REF  
VRM  
0
ANL  
DAC  
DRA  
0
ADC  
VRA  
VRA  
28h Extended Audio ID  
2Ah Ext'd Audio Stat/Ctrl  
2Ch Audio DACs Sample Rate  
2Eh AUXDAC Sample Rate  
32h Audio ADCs Sample Rate  
36h PCM codec control  
3Ah SPDIF control  
ID1  
0
REV0  
SPCV  
SPDIF  
SEN  
0
0
SPSA  
DACSR (Audio DACs Sample Rate)  
AUXDACSR (Auxiliary DAC Sample Rate)  
ADCSR (Audio ADCs Sample Rate)  
CTRL  
V
MODE  
DRS  
0
DIV  
VDACO  
SR  
CP  
FSP  
SEL  
WL  
FMT  
COPY AUD IB  
SPSR  
L
CC (Category Code)  
PRE  
HPLX  
MA  
PRO  
MX  
3Ch Powerdown (1)  
PADCPD VMID 1M TSHUT VXDAC AUXDAC VREF  
PLL  
HPR  
0
1
DACL  
SPKR  
LB  
DACR  
ADCL  
LR  
ADCR  
HPRX  
MB  
SPKX  
MPA  
0
3Eh Powerdown (2)  
MCD  
MIC  
BIAS  
0
MONO  
3DE  
OUT4  
OUT3  
HPL  
0
SPKL  
LL  
MOIN  
0
MPB  
0
40h General Purpose  
42h Fast Power-Up Control  
44h MCLK / PLL Control  
46h MCLK / PLL Control  
4Ch GPIO Pin Configuration  
4Eh GPIO Pin Polarity / Type  
50h GPIO Pin Sticky  
0
0
0
0
0
0
0
0
0
0
MONO  
0
0
0
0
0
0
0
0
0
SPKL  
SPKR  
PENDIV  
HPL  
HPR  
OUT3  
OUT4  
SEXT[6:4]  
SEXT[3:0]  
CLKSRC  
0
CLKAX2 CLKMUX  
CLKBX2  
N[3:0]  
LF  
1
SDM  
1
DIVSEL DIVCTL  
PGADDR  
GC5  
PGDATA  
1
1
1
PP  
PS  
PW  
PI  
1
AP  
AS  
AW  
AI  
1
MP  
MS  
MW  
MI  
GC8  
GP8  
GS8  
GW8  
GI8  
GC7  
GP7  
GS7  
GW7  
GI7  
GC6  
GP6  
GS6  
GW6  
GI6  
GC4  
GP4  
GS4  
GW4  
GI4  
GC3  
GP3  
GS3  
GW3  
GI3  
GC2  
GP2  
GS2  
GW2  
GI2  
GC1  
GP1  
GS1  
GW1  
GI1  
0
1
C1P  
C1S  
C1W  
C1I  
1
C2P  
C2S  
C2W  
C2I  
1
TP  
TS  
TW  
TI  
SP  
SS  
SW  
SI  
GP5  
GS5  
0
52h GPIO Pin Wake-Up  
54h GPIO Pin Status  
GW5  
GI5  
0
0
56h GPIO Pin Sharing  
58h GPIO Pull UP/DOWN Ctrl  
5Ah Additional Functions (1)  
5Ch Additional Functions (2)  
60h ALC Control  
1
1
1
1
1
GE8  
PU1  
RSTDIS  
0
0
GE6  
PD7  
GE5  
GE4  
PD5  
0
GE2  
PD3  
1
0
PU8  
PU7  
PU6  
PU5  
0
PU4  
PU3  
0
PU2  
0
PD8  
PD6  
PD4  
PD2  
PD1  
COMP2DEL  
C1 REF  
0
JSEL  
HPMODE  
Die Revision  
HPF  
WAKEE IRQ INV  
N
AMUTE  
C2 REF  
C1SRC  
C2SRC  
AMEN  
VBIAS  
DCY (decay time)  
NGG  
ADCO  
0
ASS  
ALCL (target level)  
ALCSEL  
HLD (hold time)  
ZCTIMEOUT  
ATK (attack time)  
NGTH (threshold)  
62h ALC / Noise Gate Control  
64h AUXDAC input control  
74h Digitiser Reg 1  
MAXGAIN  
0
NGAT  
0
XSLE  
AUXDACSLT  
AUXDAC VAL  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
POLL  
WAIT  
CTC  
ADCSEL  
0
1
76h Digitiser Reg 2  
0
0
CR  
DEL  
0
SLEN  
0
SLT  
78h Digitiser Reg 3  
PRP  
0
MSK  
0
0
0
7Ah Digitiser Read Back  
7Ch Vendor ID1  
0
ADCSRC  
ADCD (AUXADC DATA)  
ASCII character “W”  
ASCII character “L”  
ASCII character “M”  
7Eh Vendor ID2  
Device Identifier  
Table 63 WM9714L Register Map  
Note: Register 46h provides access to a sub-page address system to set the SPLL[6:0] and K[21:0] register bits (see Table 6).  
80  
Rev 4.0  
WM9714L  
REGISTER BITS BY ADDRESS  
REGISTER  
ADDRESS  
BIT  
LABEL  
DEFAULT  
11000  
DESCRIPTION  
REFER TO  
00h  
read-only  
14:10  
9:6  
5
SE [4:0]  
Indicates a CODEC from Cirrus Logic  
Intel’s AC’97  
Component  
Specification,  
Revision 2.2,  
page 50  
ID9:6  
ID5  
0101  
Indicates 18 bits resolution for ADCs and DACs  
Indicates that the WM9714L supports bass boost  
1
1
4
ID4  
Indicates that the WM9714L has a headphone  
output  
3
2
1
0
ID3  
ID2  
ID1  
ID0  
0
1
0
0
Indicates that the WM9714L does not support  
simulated stereo  
Indicates that the WM9714L supports bass and  
treble control  
Indicates that the WM9714L does not support  
modem functions  
Indicates that the WM9714L does not have a  
dedicated microphone ADC  
Register 00h is a read-only register. Writing any value to this register resets all registers to their default, but does not change the  
contents of reg. 00h. Reading the register reveals information about the CODEC to the driver, as required by the AC’97  
Specification, Revision 2.2  
REGISTER  
ADDRESS  
BIT  
LABEL  
MUL  
DEFAULT  
1 (mute)  
DESCRIPTION  
SPKL Mute Control  
REFER TO  
02h  
15  
14  
Analogue  
Audio Outputs  
1 = Mute  
0 = No mute  
ZCL  
0 (disabled)  
SPKL Zero Cross Control  
1 = Zero cross enabled  
0 = Zero cross disabled  
SPKL Volume Control  
000000 = 0dB (maximum)  
… (1.5dB steps)  
13:8  
SPKLVOL  
000000 (0dB)  
011111 = -46.5dB  
1xxxxx = -46.5dB  
7
MUR  
1 (mute)  
SPKR Mute Control  
1 = Mute  
0 = No mute  
6
ZCR  
0 (disabled)  
000000 (0dB)  
SPKR Zero Cross Control  
1 = Zero cross enabled  
0 = Zero cross disabled  
5:0  
SPKRVOL  
SPKR Volume Control  
000000 = 0dB (maximum)  
… (1.5dB steps)  
011111 = -46.5dB  
1xxxxx = -46.5dB  
Register 02h controls the output pins SPKL and SPKR.  
Rev 4.0  
81  
WM9714L  
REGISTER  
ADDRESS  
BIT  
LABEL  
MUL  
DEFAULT  
1 (mute)  
DESCRIPTION  
HPL Mute Control  
REFER TO  
04h  
15  
14  
Analogue  
Audio Outputs  
1 = Mute  
0 = No mute  
ZCL  
0 (disabled)  
HPL Zero Cross Control  
1 = Zero cross enabled  
0 = Zero cross disabled  
HPL Volume Control  
000000 = 0dB (maximum)  
… (1.5dB steps)  
13:8  
HPL VOL  
000000 (0dB)  
011111 = -46.5dB  
1xxxxx = -46.5dB  
7
MUR  
1 (mute)  
HPR Mute Control  
1 = Mute  
0 = No mute  
6
ZCR  
0 (disabled)  
000000 (0dB)  
HPR Zero Cross Control  
1 = Zero cross enabled  
0 = Zero cross disabled  
5:0  
HPR VOL  
HPR Volume Control  
000000 = 0dB (maximum)  
… (1.5dB steps)  
011111 = -46.5dB  
1xxxxx = -46.5dB  
Register 04h controls the headphone output pins, HPL and HPR.  
REGISTER  
ADDRESS  
BIT  
LABEL  
MU4  
DEFAULT  
1 (mute)  
DESCRIPTION  
OUT4 Mute Control  
REFER TO  
06h  
15  
14  
Analogue  
Audio Outputs  
1 = Mute  
0 = No mute  
ZC4  
0 (disabled)  
OUT4 Zero Cross Control  
1 = Zero cross enabled  
0 = Zero cross disabled  
OUT4 Volume Control  
000000 = 0dB (maximum)  
… (1.5dB steps)  
13:8  
OUT4VOL  
000000 (0dB)  
011111 = -46.5dB  
1xxxxx = -46.5dB  
7
MU3  
1 (mute)  
OUT3 Mute Control  
1 = Mute  
0 = No mute  
6
ZC3  
0 (disabled)  
000000 (0dB)  
OUT3 Zero Cross Control  
1 = Zero cross enabled  
0 = Zero cross disabled  
5:0  
OUT3VOL  
OUT3 Volume Control  
000000 = 0dB (maximum)  
… (1.5dB steps)  
011111 = -46.5dB  
1xxxxx = -46.5dB  
Register 06h controls the analogue output pins OUT3 and OUT4.  
82  
Rev 4.0  
WM9714L  
REGISTER  
ADDRESS  
BIT  
LABEL  
M2H  
DEFAULT  
1 (mute)  
DESCRIPTION  
REFER TO  
08h  
15  
14  
MONOIN to Headphone Mixer Mute Control  
1 = Mute  
Analogue  
Inputs;  
Analogue  
Audio Outputs  
0 = No mute  
M2S  
1 (mute)  
MONOIN to Speaker Mixer Mute Control  
1 = Mute  
0 = No mute  
12:8  
MONOINVO  
L
01000 (0dB)  
MONOIN to Mixers Volume Control  
00000 = +12dB  
… (1.5dB steps)  
11111 = -34.5dB  
7
MU  
1 (mute)  
MONO Mute Control  
1 = Mute  
0 = No mute  
6
ZC  
0 (disabled)  
000000 (0dB)  
MONO Zero Cross Control  
1 = Zero cross enabled  
0 = Zero cross disabled  
MONO Volume Control  
000000 = 0dB (maximum)  
… (1.5dB steps)  
5:0  
MONOVOL  
011111 = -46.5dB  
1xxxxx = -46.5dB  
Register 08h controls the analogue output pin MONO and the analogue input pin MONOIN.  
REGISTER  
ADDRESS  
BIT  
LABEL  
L2H  
DEFAULT  
1 (mute)  
DESCRIPTION  
REFER TO  
0Ah  
15  
14  
13  
LINE to Headphone Mixer Mute Control  
1 = Mute  
Analogue  
Inputs, Line  
Input  
0 = No mute  
L2S  
1 (mute)  
LINE to Speaker Mixer Mute Control  
1 = Mute  
0 = No mute  
L2M  
1 (mute)  
LINE to Mono Mixer Mute Control  
1 = Mute  
0 = No mute  
12:8  
4:0  
LINELVOL  
01000 (0dB)  
LINEL to Mixers Volume Control  
00000 = +12dB  
… (1.5dB steps)  
11111 = -34.5dB  
LINER to Mixers Volume Control  
00000 = +12dB  
LINERVOL  
01000 (0dB)  
… (1.5dB steps)  
11111 = -34.5dB  
Register 0Ah controls the analogue input pins LINEL and LINER.  
Rev 4.0  
83  
WM9714L  
REGISTER  
ADDRESS  
BIT  
LABEL  
D2H  
DEFAULT  
1 (mute)  
DESCRIPTION  
REFER TO  
0Ch  
15  
14  
13  
DAC to Headphone Mixer Mute Control  
1 = Mute  
Audio DACs  
0 = No mute  
D2S  
1 (mute)  
DAC to Speaker Mixer Mute Control  
1 = Mute  
0 = No mute  
D2M  
1 (mute)  
DAC to Mono Mixer Mute Control  
1 = Mute  
0 = No mute  
12:8  
4:0  
DACLVOL  
01000 (0dB)  
Left DAC to Mixers Volume Control  
00000 = +12dB  
… (1.5dB steps)  
11111 = -34.5dB  
Right DAC to Mixers Volume Control  
00000 = +12dB  
DACRVOL  
01000 (0dB)  
… (1.5dB steps)  
11111 = -34.5dB  
Register 0Ch controls the audio DACs (but not AUXDAC).  
REGISTER  
ADDRESS  
BIT  
12:8  
LABEL  
DEFAULT  
DESCRIPTION  
REFER TO  
0Eh  
MICAVOL  
01000 (0dB)  
MICA PGA Volume Control  
00000 = +12dB  
Analogue  
Inputs,  
Microphone  
Input  
… (1.5dB steps)  
11111 = -34.5dB  
4:0  
MICBVOL  
01000 (0dB)  
MICB PGA Volume Control  
00000 = +12dB  
… (1.5dB steps)  
11111 = -34.5dB  
Register 0Eh controls the microphone PGA volume (MICA and MICB).  
REGISTER  
ADDRESS  
BIT  
LABEL  
MA2M  
DEFAULT  
1 (mute)  
DESCRIPTION  
REFER TO  
10h  
7
6
5
MICA to Mono Mixer Mute Control  
1 = Mute  
Analogue  
Inputs,  
Microphone  
Input  
0 = No mute  
MB2M  
1 (mute)  
0 (0dB)  
MICB to Mono Mixer Mute Control  
1 = Mute  
0 = No mute  
MIC2MBST  
MIC2H  
MIC to Mono Mixer Boost Control  
1 = +20dB  
0 = 0dB  
4:3  
2:0  
11 (mute)  
MIC to Headphone Mixer Path Control  
00 = stereo  
01 = MICA only  
10 = MICB only  
11 = mute MICA and MICB  
MIC2HVOL  
010 (0dB)  
MIC to Headphone Mixer Path Volume Control  
000 = +6dB  
… (+3dB steps)  
111 = -15dB  
Register 10h controls the microphone routing (MICA and MICB).  
84  
Rev 4.0  
WM9714L  
REGISTER  
ADDRESS  
BIT  
LABEL  
RMU  
DEFAULT  
1 (mute)  
DESCRIPTION  
REFER TO  
12h  
15  
14  
Audio ADC Input Mute Control  
1 = Mute  
Audio ADC,  
Record Gain  
0 = No mute  
GRL  
0 (standard)  
Left ADC PGA Gain Range Control  
1 = Extended  
0 = Standard  
13:8  
RECVOLL  
000000 (0dB)  
Left ADC Recording Volume Control  
Standard (GRL=0)  
XX0000: 0dB  
Extended (GRL=1)  
000000: -17.25dB  
XX0001: +1.5dB  
… (1.5dB steps)  
XX1111: +22.5dB  
000001: -16.5dB  
… (0.75dB steps)  
111111: +30dB  
7
ZC  
0 (disabled)  
0 (standard)  
000000 (0dB)  
ADC PGA Zero Cross Control  
1 = Zero cross enabled  
0 = Zero cross disabled  
6
GRR  
Right ADC PGA Gain Range Control  
1 = Extended  
0 = Standard  
5:0  
RECVOLR  
Right ADC Recording Volume Control  
Standard (GRR=0)  
XX0000: 0dB  
Extended (GRR=1)  
000000: -17.25dB  
000001: -16.5dB  
… (0.75dB steps)  
111111: +30dB  
XX0001: +1.5dB  
… (1.5dB steps)  
XX1111: +22.5dB  
Register 12h controls the record volume.  
Rev 4.0  
85  
WM9714L  
REGISTER  
ADDRESS  
BIT  
LABEL  
R2H  
DEFAULT  
DESCRIPTION  
REFER TO  
14h  
15:14  
11 (mute)  
Record Mux to Headphone Mixer Path Control  
00 = stereo  
Audio ADC,  
Record  
Selector  
01 = left record mux only  
10 = right rec mux only  
11=mute left and right  
13:11  
10:9  
R2HVOL  
R2M  
010 (0dB)  
11 (mute)  
Record Mux to Headphone Mixer Path Volume  
Control  
000 = +6dB  
… (+3dB steps)  
111 = -15dB  
Record Mux to Mono Mixer Path Control  
00 = stereo  
01 = left record mux only  
10 = right record mux only  
11 = mute left and right  
Record Mux to Headphone Mixer Boost Control  
1 = +20dB  
8
R2MBST  
RECBST  
RECSL  
0 (0dB)  
0 (0dB)  
000 (mic)  
0 = 0dB  
6
ADC Record Boost Control  
1 = +20dB  
0 = 0dB  
5:3  
Left Record Mux Source Control  
000 = MICA (pre-PGA)  
001 = MICB (pre-PGA)  
010 = LINEL (pre-PGA)  
011 = MONOIN (pre-PGA)  
100 = HPMIXL  
101 = SPKMIC  
110 = MONOMIX  
111 = Reserved  
2:0  
RECSR  
000 (mic)  
Right Record Mux Source Control  
000 = MICA (pre-PGA)  
001 = MICB (pre-PGA)  
010 = LINEL (pre-PGA)  
011 = MONOIN (pre-PGA)  
100 = HPMIXL  
101 = SPKMIC  
110 = MONOMIX  
111 = Reserved  
Register 14h controls the.record selector and the ADC to mono mixer path.  
86  
Rev 4.0  
WM9714L  
REGISTER  
ADDRESS  
BIT  
LABEL  
B2H  
DEFAULT  
1 (mute)  
DESCRIPTION  
REFER TO  
16h  
15  
PCBEEP to Headphone Mixer Mute Control  
Analogue  
Inputs,  
PCBEEP Input  
1 = Mute  
0 = No mute  
14:12  
B2HVOL  
010 (0dB)  
PCBEEP to Headphone Mixer Volume Control  
000 = +6dB  
(+3dB steps)  
111 = -15dB  
11  
B2S  
1 (mute)  
PCBEEP to Speaker Mixer Mute Control  
1 = Mute  
0 = No mute  
10:8  
B2SVOL  
010 (0dB)  
PCBEEP to Speaker Mixer Volume Control  
000 = +6dB  
… (+3dB steps)  
111 = -15dB  
7
B2M  
1 (mute)  
PCBEEP to Mono Mixer Mute Control  
1 = Mute  
0 = No mute  
6:4  
B2MVOL  
010 (0dB)  
PCBEEP to Mono Mixer Volume Control  
000 = +6dB  
… (+3dB steps)  
111 = -15dB  
Register 16h controls the analogue input pin PCBEEP.  
REGISTER  
ADDRESS  
BIT  
LABEL  
V2H  
DEFAULT  
1 (mute)  
DESCRIPTION  
REFER TO  
18h  
15  
VXDAC to Headphone Mixer Mute Control  
Audio Mixers,  
Side Tone  
Control  
1 = Mute  
0 = No mute  
14:12  
V2HVOL  
010 (0dB)  
VXDAC to Headphone Mixer Volume Control  
000 = +6dB  
… (+3dB steps)  
111 = -15dB  
11  
V2S  
1 (mute)  
VXDAC to Speaker Mixer Mute Control  
1 = Mute  
0 = No mute  
10:8  
V2SVOL  
010 (0dB)  
VXDAC to Speaker Mixer Volume Control  
000 = +6dB  
… (+3dB steps)  
111 = -15dB  
7
V2M  
1 (mute)  
VXDAC to Mono Mixer Mute Control  
1 = Mute  
0 = No mute  
6:4  
V2MVOL  
010 (0dB)  
VXDAC to Mono Mixer Volume Control  
000 = +6dB  
… (+3dB steps)  
111 = -15dB  
Register 18h controls the output signal of the Voice DAC.  
Rev 4.0  
87  
WM9714L  
REGISTER  
ADDRESS  
BIT  
LABEL  
A2H  
DEFAULT  
1 (mute)  
DESCRIPTION  
REFER TO  
1Ah  
15  
AUXDAC to Headphone Mixer Mute Control  
Auxiliary DAC  
1 = Mute  
0 = No mute  
14:12  
A2HVOL  
010 (0dB)  
AUXDAC to Headphone Mixer Volume Control  
000 = +6dB  
… (+3dB steps)  
111 = -15dB  
11  
A2S  
1 (mute)  
AUXDAC to Speaker Mixer Mute Control  
1 = Mute  
0 = No mute  
10:8  
A2SVOL  
010 (0dB)  
AUXDAC to Speaker Mixer Volume Control  
000 = +6dB  
… (+3dB steps)  
111 = -15dB  
7
A2M  
1 (mute)  
AUXDAC to Mono Mixer Mute Control  
1 = Mute  
0 = No mute  
6:4  
A2MVOL  
010 (0dB)  
AUXDAC to Mono Mixer Volume Control  
000 = +6dB  
… (+3dB steps)  
111 = -15dB  
Register 1Ah controls the output signal of the auxiliary DAC.  
88  
Rev 4.0  
WM9714L  
REGISTER  
ADDRESS  
BIT  
LABEL  
MONO  
DEFAULT  
DESCRIPTION  
REFER TO  
1Ch  
15:14  
00 (VMID)  
MONO Source Control  
00 = VMID  
Analogue  
Audio Outputs  
01 = No input (tri-stated if MONO is disabled)  
10 = MONOMIX  
11 = INV1  
13:11  
SPKL  
000 (VMID)  
SPKL Source Control  
000 = VMID  
001 = No input (tri-stated if SPKL is disabled)  
010 = HPMIXL  
011 = SPKMIX  
100 = INV1  
All other values are reserved  
SPKR Source Control  
000 = VMID  
10:8  
SPKR  
000 (VMID)  
001 = No input (tri-stated if SPKR is disabled)  
010 = HPMIXR  
011 = SPKMIX  
100 = INV2  
All other values are reserved  
HPL Source Control  
00 = VMID  
7:6  
5:4  
3:2  
1:0  
HPL  
00 (VMID)  
00 (VMID)  
00 (VMID)  
00 (VMID)  
01 = No input (tri-stated if HPL is disabled)  
10 = HPMIXL  
11 = Reserved  
HPR  
HPR Source Control  
00 = VMID  
01 = No input (tri-stated if HPR is disabled)  
10 = HPMIXR  
11 = Reserved  
OUT3  
OUT4  
OUT3 Source Control  
00 = VMID  
01 = No input (tri-stated if OUT3 is disabled)  
10 = INV1  
11 = Reserved  
OUT4 Source Control  
00 = VMID  
01 = No input (tri-stated if OUT4 is disabled)  
10 = INV2  
11 = Reserved  
Register 1Ch controls the inputs to the output PGAs.  
Rev 4.0  
89  
WM9714L  
REGISTER  
ADDRESS  
BIT  
LABEL  
INV1  
DEFAULT  
000 (Z )  
DESCRIPTION  
INV1 Source Select  
REFER TO  
1Eh  
15:13  
H
Audio DACs,  
3D Stereo  
Enhancement;  
Analogue  
000 = No input (tri-stated)  
001 = MONOMIX  
010 = SPKMIX  
Audio Outputs  
011 = HPMIXL  
100 = HPMIXR  
101 = HPMIXMONO  
110 = Reserved  
111 = VMID  
12:10  
INV2  
000 (Z  
H)  
INV2 Source Select  
000 = No input (tri-stated)  
001 = MONOMIX  
010 = SPKMIX  
011 = HPMIXL  
100 = HPMIXR  
101 = HPMIXMONO  
110 = Reserved  
111 = VMID  
5
3DLC  
0 (low)  
3D Lower Cut-off Frequency Control  
1 = High (500Hz at 48kHz sampling)  
0 = Low (200Hz at 48kHz sampling)  
3D Upper Cut-off Frequency Control  
1 = Low (1.5kHz at 48kHz sampling)  
0 = High (2.2kHz at 48kHz sampling)  
3D Depth Control  
4
3DUC  
0 (high)  
3:0  
3DDEPTH  
0000 (0%)  
0000 = 0%  
… (6.67% steps)  
1111 = 100%  
Register 1Eh controls 3D stereo enhancement for the audio DACs and input muxes to the output inverters INV1 and INV2.  
90  
Rev 4.0  
WM9714L  
REGISTER  
ADDRESS  
BIT  
LABEL  
BB  
DEFAULT  
0 (linear)  
DESCRIPTION  
Bass Mode Control  
REFER TO  
20h  
15  
12  
Audio DACs,  
Tone Control /  
Bass Boost  
0 = Linear bass control  
1 = Adaptive bass boost  
BC  
0 (low)  
Bass Cut-off Frequency Control  
0 = Low (130Hz at 48kHz sampling)  
1 = High (200Hz at 48kHz sampling)  
Bass Intensity Control  
11:8  
BASS  
1111 (off0)  
BB=0  
BB=1  
0000 = +9dB  
0001 = +9dB  
… (1.5dB steps)  
0111 = 0dB  
0000 = 15dB  
… (1dB steps)  
1110 = 1dB  
1111 = Bypass (off)  
… (1.5dB steps)  
1011-1110 = -6dB  
1111 = Bypass (off)  
6
DAT  
TC  
0 (0dB)  
Pre-DAC Attenuation Control  
0 = 0dB  
1 = -6dB  
4
0 (high)  
1111 (off)  
Treble Cut-off Frequency Control  
0 = High (8kHz at 48kHz sampling)  
1 = Low (4kHz at 48kHz sampling)  
Treble Intensity Control  
0000 = +9dB  
3:0  
TRBL  
0001 = +9dB  
… (1.5dB steps)  
0111 = 0dB  
… (1.5dB steps)  
1011-1110 = -6dB  
1111 = Bypass (off)  
Register 20h controls the bass and treble response of the left and right audio DAC (but not AUXDAC).  
Rev 4.0  
91  
WM9714L  
REGISTER  
ADDRESS  
BIT  
LABEL  
DEFAULT  
DESCRIPTION  
REFER TO  
22h  
15:14  
MICCMP  
SEL  
00 (mics)  
MIC2A/MIC2B Pin Function Control  
00 = MIC2A and MIC2B are microphone inputs  
01 = MIC2A microphone input only  
10 = MIC2B microphone input only  
11 = MIC2A and MIC2B are not microphone inputs  
MPA Pre-Amp Source Control  
00 = MIC1  
Analogue  
Inputs,  
Microphone  
Input  
13:12  
11:10  
9:8  
MPASEL  
MPABST  
MPBBST  
00 (MIC1)  
00 (12dB)  
00 (12dB)  
01 = MIC2A  
10 = MIC2B  
11 = Reserved  
MPA Pre-Amp Volume Control  
00 = +12dB  
01 = +18dB  
10 = +24dB  
11 = +30dB  
MPB Pre-Amp Volume Control  
00 = +12dB  
01 = +18dB  
10 = +24dB  
11 = +30dB  
7
MBOP2EN  
MBOP1EN  
MBVOL  
0 (Off)  
MICBIAS Output 2 Enable Control  
1 = Enable MICBIAS output on GPIO8 (pin 12)  
0 = Disable MICBIAS output on GPIO8 (pin 12)  
MICBIAS Output 1 Enable Control  
1 = Enable MICBIAS output on MICBIAS (pin 28)  
0 = Disable MICBIAS output on MICBIAS (pin 28)  
MICBIAS Output Voltage Control  
1 = 0.75 x AVDD  
6
1 (On)  
5
0 (0.9xAVDD)  
000 (100uA)  
0 = 0.9 x AVDD  
4:2  
MCDTHR  
Mic Detect Threshold Control  
000 = 100µA  
… (100µA steps)  
111 = 800µA  
1:0  
MCDSCTHR 00 (600uA)  
Mic Detect Short Circuit Threshold Control  
00 = 600µA  
01 = 1200uA  
10 = 1800uA  
11 = 2400µA  
Register 22h controls the microphone input configuration and microphone bias and detect configuration.  
92  
Rev 4.0  
WM9714L  
REGISTER  
ADDRESS  
BIT  
LABEL  
JIEN  
DEFAULT  
DESCRIPTION  
Jack Insert Control  
REFER TO  
24h  
4
0 (disabled)  
Analogue  
Audio Outputs  
0 = Disable jack insert circuitry  
1 = Enable jack insert circuitry  
3:2  
1:0  
DCDRVSEL  
00 (AC)  
Jack Insert Headphone DC Reference Control  
00 = AC coupled headphones, no DC source  
01 = OUT3 is mid-rail output buffer  
10 = Reserved  
11 = OUT4 is mid-rail output buffer  
Ear Speaker Source Control  
00 = No ear speaker  
EARSPK  
SEL  
00 (none)  
01 = MONO and HPL  
10 = OUT3 and HPL  
11 = OUT4 and HPL  
Register 24h controls the output volume mapping on headphone jack insertion.  
REGISTER  
ADDRESS  
BIT  
LABEL  
PR6  
DEFAULT  
1 (OFF)  
DESCRIPTION  
REFER TO  
26h  
14  
13  
12  
11  
10  
9
Output PGAs Disable Control  
1 = Disabled  
Power  
Management  
0 = Enabled  
PR5  
PR4  
PR3  
PR2  
PR1  
PR0  
REF  
ANL  
DAC  
ADC  
1 (OFF)  
1 (OFF)  
1 (OFF)  
1 (OFF)  
1 (OFF)  
1 (OFF)  
0
Internal Clock Disable Control  
1 = Disabled  
0 = Enabled  
AC-Link Disable Control  
1 = Disabled  
0 = Enabled  
Analogue Disable Control  
1 = Disabled  
0 = Enabled  
Input PGAs and Mixers Disable Control  
1 = Disabled  
0 = Enabled  
Stereo DAC Disable Control  
1 = Disabled  
0 = Enabled  
8
Stereo ADC and Record Mux Disable Control  
1 = Disabled  
0 = Enabled  
3
VREF Ready (Read Only)  
1 = VREF ready  
0 = VREF not ready  
Analogue Mixers Ready (Read Only)  
1 = Analogue mixers ready  
0 = Analogue mixers not ready  
Stereo DAC Ready (Read Only)  
1 = DAC ready  
2
0
1
0
0 = DAC not ready  
0
0
Stereo ADC Ready (Read Only)  
1 = ADC ready  
0 = ADC not ready  
Register 26h is for power management according to the AC’97 specification. Note that the actual state of many circuit blocks  
depends on both register 26h AND registers 3Ch and 3Eh.  
Rev 4.0  
93  
WM9714L  
REGISTER  
ADDRESS  
BIT  
LABEL  
DEFAULT  
00  
DESCRIPTION  
REFER TO  
28h  
15:14  
ID  
Indicates that the WM9714L is configured as the  
primary CODEC in the system.  
Intel’s AC’97  
Component  
Specification,  
Revision 2.2,  
page 59  
11:10  
REV  
01  
0
Indicates that the WM9714L conforms to AC’97  
Rev2.2  
9
8
7
6
3
2
1
0
AMAP  
LDAC  
SDAC  
CDAC  
VRM  
Indicates that the WM9714L does not support slot  
mapping  
0
Indicates that the WM9714L does not have an LFE  
DAC  
0
Indicates that the WM9714L does not have  
Surround DACs  
0
Indicates that the WM9714L does not have a  
Centre DAC  
0
Indicates that the WM9714L does not have a  
dedicated, variable rate microphone ADC  
SPDIF  
DRA  
1
Indicates that the WM9714L supports S/PDIF  
output  
0
Indicates that the WM9714L does not support  
double rate audio  
VRA  
1
Indicates that the WM9714L supports variable rate  
audio  
Register 28h is a read-only register that indicates to the driver which advanced AC’97 features the WM9714L supports.  
REGISTER  
ADDRESS  
BIT  
LABEL  
SPCV  
DEFAULT  
1 (valid)  
DESCRIPTION  
REFER TO  
2Ah  
10  
S/PDIF Validity Bit (Read Only)  
1 = Valid  
Digital Audio  
(S/PDIF)  
Output  
0 = Not valid  
5:4  
SPSA  
01 (slots 6, 9)  
S/PDIF Slot Assignment Control  
00 = Slots 3 and 4  
01 = Slots 6 and 9  
10 = Slots 7 and 8  
11 = Slots 10 and 11  
S/PDIF Output Enable Control  
1 = Enabled  
2
0
SEN  
VRA  
0 (OFF)  
0 (OFF)  
0 = Disabled  
Variable Rate Audio Control  
1 = Enable VRA  
0 = Disable VRA (ADC and DAC run at 48kHz)  
Register 2Ah controls the S/PDIF output and variable rate audio.  
94  
Rev 4.0  
WM9714L  
REGISTER  
ADDRESS  
BIT  
LABEL  
DACSR  
DEFAULT  
BB80h  
DESCRIPTION  
REFER TO  
2Ch  
all  
all  
all  
Stereo DAC Sample Rate Control  
1F40h = 8kHz  
Variable Rate  
Audio /  
Sample Rate  
Conversion  
2B11h = 11.025kHz  
2EE0h = 12kHz  
3E80h = 16kHz  
5622h = 22.05kHz  
5DC0h = 24kHz  
7D00h = 32kHz  
AC44h = 44.1kHz  
BB80h = 48kHz  
Any other value defaults to the nearest supported  
sample rate  
2Eh  
AUXDACSR  
BB80h  
AUXDAC Sample Rate Control  
1F40h = 8kHz  
2B11h = 11.025kHz  
2EE0h = 12kHz  
3E80h = 16kHz  
5622h = 22.05kHz  
5DC0h = 24kHz  
7D00h = 32kHz  
AC44h = 44.1kHz  
BB80h = 48kHz  
Any other value defaults to the nearest supported  
sample rate  
32h  
ADCSR  
BB80h  
Stereo ADC Sample Rate Control  
1F40h = 8kHz  
2B11h = 11.025kHz  
2EE0h = 12kHz  
3E80h = 16kHz  
5622h = 22.05kHz  
5DC0h = 24kHz  
7D00h = 32kHz  
AC44h = 44.1kHz  
BB80h = 48kHz  
Any other value defaults to the nearest supported  
sample rate  
Note: The VRA bit in register 2Ah must be set first to obtain sample rates other than 48kHz  
Registers 2Ch, 2Eh 32h and control the sample rates for the stereo DAC, auxiliary DAC and audio ADC, respectively.  
Rev 4.0  
95  
WM9714L  
REGISTER  
ADDRESS  
BIT  
LABEL  
CTRL  
DEFAULT  
DESCRIPTION  
REFER TO  
36h  
15  
0 (GPIO reg)  
GPIO Pin Configuration Control  
0 = GPIO pins used as GPIOs  
1 = GPIO pins used as PCM interface  
PCM Interface Mode Control  
00 = PCM interface disabled  
01 = Slave mode  
PCM CODEC  
14:13  
11:9  
MODE  
10 (master  
mode)  
10 = Master mode  
11 = Partial master mode  
PCMCLK Rate Control  
000 = Voice DAC clock  
001 = Voice DAC clock / 2  
010 = Voice DAC clock / 4  
011 = Voice DAC clock / 8  
100 = Voice DAC clock / 16  
All other values are reserved  
Voice DAC Oversampling Rate Control  
0 = 64 x fs  
DIV  
010 (1/4)  
8
7
6
VDACOSR  
CP  
0 (64x)  
0 (normal)  
0
1 = 128 x fs  
PCMCLK Polarity Control  
0 = Normal  
1 = Inverted  
FSP  
FMT = 00, 01 or 10  
FMT = 11  
PCMFS Polarity  
Control  
DSP Mode Control  
0 = Normal  
1 = Inverted  
0 = DSP Mode A  
1 = DSP Mode B  
5:4  
3:2  
1:0  
SEL  
WL  
00 (LandR  
data)  
PCM ADC Output Channel Control  
00 = Normal stereo  
01 = Reverse stereo  
10 = Output left ADC data only  
11 = Output right ADC data only  
PCM Data Word Length Control  
00 = 16-bit  
10 (24 bits)  
01 = 20-bit  
10 = 24-bit  
11 = 32-bit (not supported when FMT=00)  
PCM Data Format Control  
00 = Right justified  
FMT  
10 (I2S)  
01 = Left justified  
10 = I2S  
11 = DSP mode  
Register 36h controls the PCM CODEC.  
96  
Rev 4.0  
WM9714L  
REGISTER  
ADDRESS  
BIT  
LABEL  
DEFAULT  
DESCRIPTION  
S/PDIF Validity Bit  
REFER TO  
3Ah  
15  
14  
V
0
0
Digital Audio  
(S/PDIF)  
Output  
1 = Valid  
0 = Not valid  
DRS  
SPSR  
L
Indicates that the WM9713L does not support  
double rate S/PDIF output (read-only)  
13:12  
11  
10  
0
Indicates that the WM9713L only supports 48kHz  
sampling on the S/PDIF output (read-only)  
S/PDIF L-bit Control  
Programmed as required by user  
S/PDIF Category Code Control  
Category code; programmed as required by user  
S/PDIF Pre-emphasis Indication Control  
0 = no pre-emphasis  
10:4  
3
CC  
0000000  
0
PRE  
1 = 50/15µs pre-emphasis  
2
1
0
COPY  
AUDIB  
PRO  
0
0
0
S/PDIF Copyright Indication Control  
0 = Copyright not asserted  
1 = Copyright asserted  
S/PDIF Non-audio Indication Control  
0 = PCM data  
1 = Non-PCM data  
S/PDIF Professional Indication Control  
0 = Consumer mode  
1 = Professional mode  
Register 3Ah Read/Write. Controls the S/PDIF output.  
Rev 4.0  
97  
WM9714L  
REGISTER  
ADDRESS  
BIT  
LABEL  
PD15  
DEFAULT  
DESCRIPTION  
AUXADC Disable Control  
REFER TO  
3Ch  
15  
14  
13  
12  
11  
10  
9
1 (disabled)  
Power  
Management  
1 = Disabled  
0 = Enabled  
VMID1M  
TSHUT  
VXDAC  
AUXDAC  
VREF  
PLL  
1 (disabled)  
1 (disabled)  
1 (disabled)  
1 (disabled)  
1 (disabled)  
1 (disabled)  
1 (disabled)  
1 (disabled)  
1 (disabled)  
1 (disabled)  
1 (disabled)  
1 (disabled)  
1 (disabled)  
1 (disabled)  
1Meg VMID String Disable Control  
1 = Disabled  
0 = Enabled  
Thermal Shutdown Disable Control  
1 = Disabled  
0 = Enabled  
Voice DAC Disable Control  
1 = Disabled  
0 = Enabled  
AUXDAC Disable Control  
1 = Disabled  
0 = Enabled  
VREF Disable Control  
1 = Disabled  
0 = Enabled  
PLL Disable Control  
1 = Disabled  
0 = Enabled  
7
DACL  
DACR  
ADCL  
ADCR  
HPLX  
HPRX  
SPKX  
MX  
Left DAC Disable Control  
1 = Disabled  
0 = Enabled  
6
Right DAC Disable Control  
1 = Disabled  
0 = Enabled  
5
Left ADC Disable Control  
1 = Disabled  
0 = Enabled  
4
Right ADC Disable Control  
1 = Disabled  
0 = Enabled  
3
Left Headphone Mixer Disable Control  
1 = Disabled  
0 = Enabled  
2
Right Headphone Mixer Disable Control  
1 = Disabled  
0 = Enabled  
1
Speaker Mixer Disable Control  
1 = Disabled  
0 = Enabled  
0
Mono Mixer Disable Control  
1 = Disabled  
0 = Enabled  
* “0” corresponds to “ON”, if and only if the corresponding bit in register 26h is also 0.  
Register 3Ch is for power management additional to the AC’97 specification. Note that the actual state of each circuit block  
depends on both register 3Ch AND register 26h.  
98  
Rev 4.0  
WM9714L  
REGISTER  
ADDRESS  
BIT  
LABEL  
MCD  
DEFAULT  
DESCRIPTION  
REFER TO  
3Eh  
15  
14  
13  
12  
11  
10  
9
1 (disabled)  
Microphone Current Detect Disable Control  
1 = Disabled  
Power  
Management  
0 = Enabled  
MICBIAS  
MONO  
OUT4  
OUT3  
HPL  
1 (disabled)  
1 (disabled)  
1 (disabled)  
1 (disabled)  
1 (disabled)  
1 (disabled)  
1 (disabled)  
1 (disabled)  
1 (disabled)  
1 (disabled)  
1 (disabled)  
1 (disabled)  
1 (disabled)  
1 (disabled)  
1 (disabled)  
Microphone Bias Disable Control  
1 = Disabled  
0 = Enabled  
MONO PGA Disable Control  
1 = Disabled  
0 = Enabled  
OUT4 PGA Disable Control  
1 = Disabled  
0 = Enabled  
OUT3 PGA Disable Control  
1 = Disabled  
0 = Enabled  
HPL PGA Disable Control  
1 = Disabled  
0 = Enabled  
HPR  
SPKL  
SPKR  
LL  
HPR PGA Disable Control  
1 = Disabled  
0 = Enabled  
8
SPKL PGA Disable Control  
1 = Disabled  
0 = Enabled  
7
SPKR PGA Disable Control  
1 = Disabled  
0 = Enabled  
6
LINEL PGA Disable Control  
1 = Disabled  
0 = Enabled  
5
LR  
LINER PGA Disable Control  
1 = Disabled  
0 = Enabled  
4
MOIN  
MA  
MONOIN PGA Disable Control  
1 = Disabled  
0 = Enabled  
3
MICA PGA Disable Control  
1 = Disabled  
0 = Enabled  
2
MB  
MICB PGA Disable Control  
1 = Disabled  
0 = Enabled  
1
MPA  
MPB  
Mic Pre-amp MPA Disable Control  
1 = Disabled  
0 = Enabled  
0
Mic Pre-amp MPB Disable Control  
1 = Disabled  
0 = Enabled  
* “0” corresponds to “ON”, if and only if the corresponding bit in register 26h is also 0.  
Register 3Eh is for power management additional to the AC’97 specification. Note that the actual state of each circuit block  
depends on both register 3Eh AND register 26h.  
Rev 4.0  
99  
WM9714L  
REGISTER  
ADDRESS  
BIT  
LABEL  
3DE  
DEFAULT  
DESCRIPTION  
3D Enhancement Control  
REFER TO  
40h  
13  
7
0 (disabled)  
Audio DACs,  
3D Stereo  
Enhancement  
1 = Enabled  
0 = Disabled  
LB  
0 (disabled)  
Digital Loopback Control  
1 = Enabled  
Intel’s AC’97  
Component  
Specification,  
Revision 2.2,  
page 55  
0 = Disabled  
Register 40h is a “general purpose” register as defined by the AC’97 specification. Only two bits are implemented in the WM9714L.  
REGISTER  
ADDRESS  
BIT  
LABEL  
MONO  
DEFAULT  
DESCRIPTION  
REFER TO  
42h  
6
5
4
3
2
1
0
0 (normal)  
MONO Fast Power Up Control  
1 = Fast power up  
Analogue  
Audio Outputs,  
Power-Up  
0 = Normal power up  
SPKL  
SPKR  
HPL  
0 (normal)  
0 (normal)  
0 (normal)  
0 (normal)  
0 (normal)  
0 (normal)  
SPKL Fast Power Up Control  
1 = Fast power up  
0 = Normal power up  
SPKR Fast Power Up Control  
1 = Fast power up  
0 = Normal power up  
HPL Fast Power Up Control  
1 = Fast power up  
0 = Normal power up  
HPR  
HPR Fast Power Up Control  
1 = Fast power up  
0 = Normal power up  
OUT3  
OUT4  
OUT3 Fast Power Up Control  
1 = Fast power up  
0 = Normal power up  
OUT4 Fast Power Up Control  
1 = Fast power up  
0 = Normal power up  
Register 42h controls power-up conditions for output PGAs.  
100  
Rev 4.0  
WM9714L  
REGISTER  
ADDRESS  
BIT  
LABEL  
DEFAULT  
DESCRIPTION  
REFER TO  
000 (div 1)  
Hi-fi Block Clock Division Control  
000 = f  
44h  
14:12  
SEXT[6:4]  
Clock  
Generation  
001 = f/2  
111 = f/8  
0000 (div 1)  
Voice DAC Clock Division Control  
0000 = f  
11:8  
SEXT[3:0]  
0001 = f/2  
1111 = f/16  
1 (ext clk)  
AC97 CLK Source Control  
1 = External clock  
0 = PLL clock  
7
CLKSRC  
PENDIV  
000 (div 16)  
AUXADC Clock Division Control  
000 = f/16  
5:3  
001 = f/12  
010 = f/8  
011 = f/6  
100 = f/4  
101 = f/3  
110 = f/2  
111 = f  
0 (Off)  
MCLKB Multiplier Control  
0 = Normal  
2
1
0
CLKBX2  
CLKAX2  
CLKMUX  
1 = Multiply by 2  
MCLKA Multiplier Control  
0 = Normal  
0 (Off)  
1 = Multiply by 2  
External Clock Source Control  
0 = Use MCLKA  
1 = Use MCLKB  
0 (MCLKA)  
Register 44h controls clock division and muxing.  
Rev 4.0  
101  
WM9714L  
REGISTER  
ADDRESS  
BIT  
LABEL  
N[3:0]  
DEFAULT  
DESCRIPTION  
REFER TO  
15:12  
0000 (div by 1) PLL N Divide Control  
0000 = Divide by 1  
0001 = Divide by 1  
0010 = Divide by 2  
46h  
Analogue  
Audio Outputs,  
Power-Up  
1111 = Divide by 15  
11  
10  
9
LF  
0 (normal)  
0 (disabled)  
0 (div by 1)  
0
PLL Low Frequency Input Control  
1 = Low frequency mode (input clock < 8.192MHz)  
0 = Normal mode  
SDM  
PLL SDM Enable Control  
1 = Enable SDM (required for fractional N mode)  
0 = Disable SDM  
DIVSEL  
DIVCTL  
PLL Input Clock Division Control  
0 = Divide by 1  
1 = Divide according to DIVCTL  
PLL Input Clock Division Value Control  
0 = Divide by 2  
8
1 = Divide by 4  
6:4  
3:0  
PGADDR  
PGDATA  
000  
Pager Address  
Pager address bits to access programming of  
K[21:0] and SPLL[6:0]  
0000  
Pager Data  
Pager data bits  
Register 46h controls PLL clock generation.  
102  
Rev 4.0  
WM9714L  
REGISTER  
ADDRESS  
BIT  
LABEL  
GCn  
DEFAULT  
1 (input)  
DESCRIPTION  
REFER TO  
4Ch  
n
n
GPIO Pin Configuration Control  
0 = Output  
GPIO and  
Interrupt  
Control  
1 = Input (GC9-15 are always inputs)  
GPIO Pin Polarity / Type  
4Eh  
GPn  
1 (active high)  
0 (not sticky)  
Input (GCn = 1)  
Output (GCn = 0)  
0 = CMOS output  
1 = Open drain  
0 = Active low  
1 = Acitve high  
50h  
52h  
54h  
n
n
n
GSn  
GWn  
GIn  
GPIO Pin Sticky Control  
0 = Not sticky  
1 = Sticky  
0 (no wake-  
up)  
GPIO Pin Wake-up Control  
0 = No wake-up (no interrupts generated by GPIO)  
1 = Wake-up (generate interrupts from GPIO)  
GPIO Pin Status  
N/A  
Read = Returns status of GPIO  
Write = Writing 0 clears sticky bits  
Controls Comparator 1 signal (virtual GPIO)  
Controls Comparator 2 signal (virtual GPIO)  
Controls ADA signal (virtual GPIO)  
Controls Thermal sensor signal (virtual GPIO)  
Controls Microphone short detect (virtual GPIO)  
Controls Microphone insert detect (virtual GPIO)  
Controls GPIO8 (pin 3)  
Bit definitions  
for registers  
4Ch to 54h  
15  
14  
12  
11  
10  
9
8
7
Controls GPIO7 (pin 11)  
6
Controls GPIO6 (pin 12)  
5
Controls GPIO5 (pin 48)  
4
Controls GPIO4 (pin 47)  
3
Controls GPIO3 (pin 46)  
2
Controls GPIO2 (pin 45)  
1
Controls GPIO1 (pin 44)  
Register 4Ch to 54h control the GPIO pins and virtual GPIO signals.  
REGISTER  
ADDRESS  
BIT  
LABEL  
GE8  
DEFAULT  
1 (GPIO)  
DESCRIPTION  
REFER TO  
56h  
8
6
5
4
2
GPIO8 (Pin 12) Function Control  
0 = Pin 12 is not controlled by GPIO logic  
1 = Pin 12 is controlled by GPIO logic  
GPIO6 (Pin 3) Function Control  
GPIO and  
Interrupt  
Control  
GE6  
GE5  
GE4  
GE2  
1 (GPIO)  
1 (GPIO)  
1 (GPIO)  
1 (GPIO)  
0 = Pin 3 is not controlled by GPIO logic  
1 = Pin 3 is controlled by GPIO logic  
GPIO5 (Pin 48) Function Control  
0 = Pin 48 is not controlled by GPIO logic  
1 = Pin 48 is controlled by GPIO logic  
GPIO4 (Pin 47) Function Control  
0 = Pin 47 is not controlled by GPIO logic  
1 = Pin 47 is controlled by GPIO logic  
GPIO2 (Pin 45) Function Control  
0 = Pin 45 is not controlled by GPIO logic  
1 = Pin 45 is controlled by GPIO logic  
Register 56h controls the use of GPIO pins for non-GPIO functions.  
Rev 4.0  
103  
WM9714L  
REGISTER  
ADDRESS  
BIT  
15:8  
LABEL  
PU  
DEFAULT  
DESCRIPTION  
GPIO Pin Pull-Up Control  
REFER TO  
58h  
01000000  
GPIO and  
Interrupt  
Control  
1 = Enables weak pull-up on GPIO pins  
0 = No pull-up on GPIO pins  
7:0  
PD  
00000000  
GPIO Pin Pull-Down Control  
1 = Enables weak pull-down on GPIO pins  
0 = No pull-down on GPIO pins  
Register 56h controls GPIO pull-up/down.  
REGISTER  
ADDRESS  
BIT  
LABEL  
DEFAULT  
DESCRIPTION  
REFER TO  
5Ah  
15:13  
COMP2DEL  
000 (no delay)  
Low Battery Alarm Delay Control  
000 = No delay  
Battery Alarm  
001 = 213 AC-link frames  
010 = 214 AC-link frames  
011 = 215 AC-link frames  
100 = 216 AC-link frames  
101 = 217 AC-link frames  
110 = 218 AC-link frames  
111 = 219 AC-link frames  
RESETB Pin Disable Control  
0 = Pin 11 is RESETB  
8
RSTDIS  
JSEL  
0 (RESETB  
enabled)  
GPIO Interrupt  
and Control  
1 = Pin 11 is GPIO (RESETB function disabled)  
Jack Detect Pin Input Control  
00 = GPIO1  
7:6  
00 (GPIO1)  
00 (7Hz)  
N/A  
Jack Insertion  
& Auto-  
Switching  
01 = GPIO6  
10 = GPIO7  
11 = GPIO8  
5:4  
3:2  
HPMODE  
DIE REV  
HPF Cut-Off Control  
00 = 7Hz @ fs=48kHz  
01 = 82Hz @ fs=16kHz  
10 = 82Hz @ fs=8kHz  
11 = 170Hz @ fs=8kHz  
Device Revision (Read-Only)  
00 = Rev.A  
Audio ADCs  
N/A  
01 = Rev.B  
10 = Rev.C  
1
0
WAKEEN  
IRQ INV  
0 (disabled)  
0 (normal)  
GPIO Wake Up Control  
0 = Disable wake-up  
1 = Enable wake up  
IRQ Polarity Control  
0 = Normal  
GPIO and  
Interrupt  
Control  
1 = Inverted  
Register 5Ah controls several additional functions.  
104  
Rev 4.0  
WM9714L  
REGISTER  
ADDRESS  
BIT  
LABEL  
AMUTE  
DEFAULT  
DESCRIPTION  
REFER TO  
5Ch  
15  
14  
0
DAC Automute Status (Read-Only)  
0 = DAC not muted  
Audio DACs,  
Stereo DACs  
1 = DAC auto-muted  
C1REF  
C1SRC  
0 (AVDD/2)  
Comparator 1 Reference Voltage Select  
0 = AVDD/2  
Battery Alarm  
1 = WIPER/AUX4 (pin 12)  
Comparator 1 Signal Source  
13:12  
00 (power  
down)  
00 = AVDD/2 when C1REF=1, else powered down  
01 = COMP1/AUX1 (pin 29)  
10 = COMP2/AUX2 (pin 30)  
11 = Reserved  
11  
C2REF  
C2SRC  
0 (AVDD/2)  
00 (OFF)  
Comparator 2 Reference Voltage Select  
0 = AVDD/2  
1 = WIPER/AUX4 (pin 12)  
Comparator 2 Signal Source  
00 = AVDD/2 when C2REF=1, else powered down  
01 = COMP1/AUX1 (pin 29)  
10 = COMP2/AUX2 (pin 30)  
11 = Reserved  
10:9  
7
AMEN  
VBIAS  
0 (OFF)  
DAC Automute Control  
0 = Disabled  
1 = Enabled  
6:5  
00 (3.3V)  
Analogue Bias Optimization Control  
0X = Optimized for 3.3V  
10 = Optimized for 2.5V  
Power  
Management  
11 = Optimized for 1.8V  
4
ADCO  
HPF  
0
S/PDIF Data Source Control  
0 = From SDATAOUT  
Digital Audio  
(S/PDIF)  
Output  
(SDATAOUT)  
1 = Output from audio ADC  
ADC HPF Disable Control  
0 = HPF enabled  
3
0 (enabled)  
Audio ADC  
1 = HPF disabled  
1:0  
ASS  
00 (slots 3, 4)  
ADC Data Slot Mapping Control  
Audio ADC,  
ADC Slot  
Mapping  
Left Data  
Slot 3  
Right Data  
Slot 4  
00 =  
01 =  
10 =  
11 =  
Slot 7  
Slot 8  
Slot 6  
Slot 9  
Slot 10  
Slot 11  
Register 5Ch controls several additional functions.  
Rev 4.0  
105  
WM9714L  
REGISTER  
ADDRESS  
BIT  
LABEL  
ALCL  
DEFAULT  
DESCRIPTION  
ALC Target Level Control  
REFER TO  
60h  
15:12  
1011 (-12dB)  
Audio ADC,  
Automatic  
Level Control  
0000 = -28.5dBFS  
… (1.5dB steps)  
1111 = -6dBFS  
11:8  
HLD  
0000 (0 ms)  
ALC Hold Time Control  
0000 = 0ms  
0001 = 2.67ms  
… (time doubles with every step)  
1111 = 43.691s  
7:4  
DCY  
0011 (192 ms)  
0010 (24 ms)  
00 (OFF)  
ALC Decay Time Control  
0000 = 24ms  
… (time doubles with every step)  
1010 to 1111 = 24.58s  
ALC Attack Time Control  
0000 = 6ms  
3:0  
ATK  
… (time doubles with every step)  
1010 to 1111 = 6.14s  
ALC Function Channel Control  
00 = ALC disabled  
62h  
15:14  
ALCSEL  
01 = ALC on right channel only  
10 = ALC or left channel only  
11 = ALC on both left and right channels  
ALC PGA Gain Limit Control  
000 = -12dB  
13:11  
10:9  
MAXGAIN  
111 (+30dB)  
11 (slowest)  
… (6dB steps)  
111 = +30dB  
ZC  
TIMEOUT  
ALC Zero Cross Timeout Delay Control  
00 = 214 x tBITCLK (1.33ms)  
01 = 215 x tBITCLK (2.67ms)  
10 = 216 x tBITCLK (5.33ms)  
11 = 217 x tBITCLK (10.67ms)  
Noise Gate Enable Control  
0 = Disabled  
7
NGAT  
NGG  
0 (OFF)  
1 = Enabled  
5
0 (hold gain)  
Noise Gate Function Control  
0 = Hold PGA gain at last value  
1 = Mute ADC output  
Noise Gate Threshold Control  
00000 = -76.5dBFS  
4:0  
NGTH  
00000 (-  
76.5dB)  
… (1.5dB steps)  
11111 = -30dBFS  
Registers 60h and 62h control the ALC and Noise Gate functions.  
106  
Rev 4.0  
WM9714L  
REGISTER  
ADDRESS  
BIT  
LABEL  
XSLE  
DEFAULT  
DESCRIPTION  
REFER TO  
64h  
15  
0
AUXDAC Input Select Control  
Auxiliary DAC  
0 = From AUXDACVAL[11:0] (for DC signals)  
1 = From AC-Link (for AC signals)  
AUXDAC Input Control (XSLE=1)  
000 = Slot 5, bits 8-19  
14:12  
AUXDACSL  
T
000 (Slot 5)  
001 = Slot 6, bits 8-19  
010 = Slot 7, bits 8-19  
011 = Slot 8, bits 8-19  
100 = Slot 9, bits 8-19  
101 = Slot 10, bits 8-19  
110 = Slot 11, bits 8-19  
111 = Reserved  
11:0  
AUXDACVA  
L
000000000  
AUXDAC Input Control (XSLE=0)  
000h = Minimum  
FFFh = Full scale  
Register 64h controls the input signal of the auxiliary DAC.  
REGISTER  
ADDRESS  
BIT  
LABEL  
POLL  
DEFAULT  
DESCRIPTION  
REFER TO  
74h  
9
8
0
0
Poll Measurement Control  
AUXADC  
Writing “1” initiates a measurement (when CTC is  
not set)  
CTC  
AUXADC Measurement Mode  
0 = Polling mode  
1 = Continuous mode (for DMA)  
7
6
5
4
ADCSEL_A  
UX4  
0
0
0
0
AUX4 Measurement Enable Control  
0 = Disable AUX4 measurement (pin 12)  
1 = Enable AUX4 measurement (pin 12)  
AUX3 Measurement Enable Control  
0 = Disable AUX3 measurement (SPKVDD/3)  
1 = Enable AUX3 measurement (SPKVDD/3)  
AUX2 Measurement Enable Control  
0 = Disable AUX2 measurement (pin 30)  
1 = Enable AUX2 measurement (pin 30)  
AUX1 Measurement Enable Control  
0 = Disable AUX1 measurement (pin 29)  
1 = Enable AUX1 measurement (pin 29)  
ADCSEL_A  
UX3  
ADCSEL_A  
UX2  
ADCSEL_A  
UX1  
Registers 74h controls the measurements for the AUXADC.  
Rev 4.0  
107  
WM9714L  
REGISTER  
ADDRESS  
BIT  
9:8  
LABEL  
CR  
DEFAULT  
DESCRIPTION  
REFER TO  
76h  
00 (93.75Hz)  
Continuous Mode Conversion Rate  
AUXADC  
DEL < 1111  
00 = 93.75Hz  
01 = 120Hz  
DEL = 1111  
00 = 8kHz  
01 = 12kHz  
10 = 24kHz  
11 = 48kHz  
10 = 153.75kHz  
11 = 187.5Hz  
7:4  
DEL  
0000 (20.8µs)  
AUXADC Settling Time Control  
0000 = 1 AC-link frame (20.8µs)  
0001 = 2 AC-link frames (41.7µs)  
0010 = 4 AC-link frames (83.3µs)  
0011 = 8 AC-link frames (167µs)  
0100 = 16 AC-link frames (333µs)  
0101 = 32 AC-link frames (667µs)  
0110 = 48 AC-link frames (1ms)  
0111 = 64 AC-link frames (1.33ms)  
1000 = 96 AC-link frame (2ms)  
1001 = 128 AC-link frames (2.67ms)  
1010 = 160 AC-link frames (3.33ms)  
1011 = 192 AC-link frames (4ms)  
1100 = 224 AC-link frames (4.67ms)  
1101 = 256 AC-link frames (5.33ms)  
1110 = 288 AC-link frames (6ms)  
1111 = No delay, switch matrix always on  
Slot Readback Enable Control  
3
SLEN  
SLT  
1
0 = Disabled (readback through register map only)  
1 = Enabled (readback slot selected by SLT)  
AC’97 Slot for AUXADC Data Control  
000 = Slot 5  
2:0  
110 (slot 11)  
001 = Slot 6  
010 = Slot 7  
011 = Slot 8  
100 = Slot 9  
101 = Slot 10  
110 = Slot 11  
111 = Reserved  
Registers 76h controls the AUXADC measurement timing.  
108  
Rev 4.0  
WM9714L  
REGISTER  
ADDRESS  
BIT  
LABEL  
PRP  
DEFAULT  
00  
DESCRIPTION  
REFER TO  
78h  
15:14  
Additional Enable for AUXADC  
00 = Disabled  
AUXADC  
01 = Reserved  
10 = Reserved  
11 = Enabled  
9
WAIT  
MSK  
0
AUXADC Data Control  
0 = Overwrite existing data in 7Ah with new data  
1 = Retain existing data in 7Ah until it is read  
Mask Input Control  
7:6  
00 (disabled)  
00 = Disabled  
01 = Static  
10 = Edge-triggered  
11 = Synchronous  
Register 78h control the physical properties of the AUXADC.  
REGISTER  
ADDRESS  
BIT  
LABEL  
DEFAULT  
DESCRIPTION  
REFER TO  
7Ah  
read-only  
14:12  
ADCSRC  
000 (none)  
AUXADC Source  
AUXADC  
000 = No measurement  
001 = Reserved  
010 = Reserved  
011 = Reserved  
100 = COMP1/AUX1 measurement (pin 29)  
101 = COMP2/AUX2 measurement (pin 30)  
110 = AUX3 measurement (SPKVDD/3)  
111 = AUX4 measurement (pin 12)  
AUXADC Data (Read-only)  
Bit 0 = LSB  
11:0  
ADCD  
000h  
Bit 11 = MSB  
Registers 7Ah is a read-only register which reports the AUXADC measurement results  
REGISTER  
ADDRESS  
BIT  
15:8  
LABEL  
F7:0  
DEFAULT  
57h  
DESCRIPTION  
REFER TO  
7Ch  
ASCII character “W” for Wolfson  
ASCII character “M”  
ASCII character “L”  
Intel’s AC’97  
Component  
Specification,  
Revision 2.2,  
page 50  
7:0  
S7:0  
4Dh  
4Ch  
13h  
7Eh  
15:8  
7:0  
T7:0  
REV7:0  
Device identifier  
Register 7Ch and 7Eh are read-only registers that indicate to the driver that the CODEC is a WM9714L.  
Rev 4.0  
109  
WM9714L  
APPLICATIONS INFORMATION  
RECOMMENDED EXTERNAL COMPONENTS  
Figure 28 Recommended External Component Diagram  
110  
Rev 4.0  
WM9714L  
LINE OUTPUT  
The headphone outputs, HPL and HPR, can be used as stereo line outputs. The speaker outputs,  
SPKL and SPKR, can also be used as line outputs. Recommended external components are shown  
below.  
C1  
R1  
1uF  
100 Ohm  
LINE-OUT  
SOCKET  
(LEFT)  
HPOUTL /  
SPKL  
HPGND/SPKGND  
WM9714L  
LINE-OUT  
SOCKET  
(RIGHT)  
HPOUTR /  
SPKR  
C2  
R2  
1uF  
100 Ohm  
HPGND/SPKGND  
Figure 29 Recommended Circuit for Line Output  
The DC blocking capacitors and the load resistance together determine the lower cut-off frequency, fc.  
Assuming a 10 kload and C1, C2 = 10F:  
fc = 1 / 2(RL+R1) C1 = 1 / (2x 10.1kx 1F) = 16 Hz  
Increasing the capacitance lowers fc, improving the bass response. Smaller values of C1 and C2 will  
diminish the bass response. The function of R1 and R2 is to protect the line outputs from damage  
when used improperly.  
AC-COUPLED HEADPHONE OUTPUT  
The circuit diagram below shows how to connect a stereo headphone to the WM9714L.  
C1 220uF  
HPL  
HPR  
WM9714L  
C2 220uF  
HPGND = 0V  
Figure 30 Simple Headphone Output Circuit Diagram  
The DC blocking capacitors C1 and C2 together with the load resistance determine the lower cut-off  
frequency, fc. Increasing the capacitance lowers fc, improving the bass response. Smaller  
capacitance values will diminish the bass response. For example, with a 16load and C1 = 220F:  
fc = 1 / 2RLC1 = 1 / (2x 16x 220F) = 45 Hz  
Rev 4.0  
111  
WM9714L  
DC-COUPLED (CAPLESS) HEADPHONE OUTPUT  
In the interest of saving board space and cost, it may be desirable to eliminate the 220F DC blocking  
capacitors. This can be achieved by using OUT3 as a headphone pseudo-ground, as shown below.  
HPL  
WM9714L  
HPR  
OUT3 = AVDD/2  
Figure 31 Capless Headphone Output Circuit Diagram  
As the OUT3 pin produces a DC voltage of AVDD/2, there is no DC offset between HPL/HPR and  
OUT3, and therefore no DC blocking capacitors are required. However, this configuration has some  
drawbacks:  
The power consumption of the WM9714L is increased, due to the additional power  
consumed in the OUT3 output buffer.  
If the DC coupled output is connected to the line-in of a grounded piece of equipment, then  
OUT3 becomes short-circuited. Although the built-in short circuit protection will prevent any  
damage to the WM9714L, the audio signal will not be transmitted properly.  
OUT3 cannot be used for another purpose  
BTL LOUDSPEAKER OUTPUT  
SPKL and SPKR can differentially drive a mono 8loudspeaker as shown below.  
-1  
SPKL  
Stereo: VSPKR = R-(-L) = L+R  
Mono: VSPKR = M-(-M) = 2M  
SPKLVOL  
SPKRVOL  
WM9714L  
SPKR  
Figure 32 Speaker Output Connection (INV = 1)  
To drive out differentially one of the speaker outputs must be inverted using INV1 or INV2.  
112  
Rev 4.0  
WM9714L  
COMBINED HEADSET / BTL EAR SPEAKER  
In smartphone applications with a loudspeaker and separate ear speaker (receiver), a BTL ear  
speaker can be connected at the OUT3 pin, as shown below.  
OUT3  
BTL ear  
speaker  
HPL  
WM9714L  
HPR  
HPGND = 0V  
Figure 33 Combined Headset / BTL Ear Speaker  
The ear speaker and the headset play the same signal. Whenever the headset is plugged in, the  
headphone outputs are enabled and OUT3 disabled. When the headset is not plugged in, OUT3 is  
enabled (see Jack Insertion and Auto-Switching”).  
COMBINED HEADSET / SINGLE-ENDED EAR SPEAKER  
Instead of a BTL ear speaker, a single-ended ear speaker can also be used, as shown below.  
OUT3  
ear speaker  
(single-ended)  
HPL  
WM9714L  
HPR  
HPGND = 0V  
Figure 34 Combined Headset / Single-ended Ear Speaker  
Rev 4.0  
113  
WM9714L  
JACK INSERT DETECTION  
The circuit diagram below shows how to detect when a headphone or headset has been plugged into  
the headphone socket. It generates an interrupt, instructing the controller to enable HPL and HPR and  
disable OUT3.  
DBVDD  
-
-
HPR  
HPL  
L
R
100k  
GPIO  
interrupt  
logic  
switch closes  
on insertion  
Figure 35 Jack Insert Detection Circuit  
The circuit requires a headphone socket with a switch that closes on insertion (for using sockets with  
a switch that opens on insertion, please refer to Application Note WAN0182). It detects both  
headphones and phone headsets. Any GPIO pin can be used, provided that it is configured as an  
input.  
HOOKSWITCH DETECTION  
Alternatively a headphone socket with a switch that opens on insertion can be used. For this mode of  
operation the GPIO input must be inverted.  
The circuit diagram below shows how to detect when the “hookswitch” of a phone headset is pressed  
(pressing the hookswitch is equivalent to lifting the receiver in a stationary telephone).  
-
-
HPR  
HPL  
WM9714L  
L
R
AGND  
MIC1/2A/2B  
GPIO  
HOOK  
SWITCH  
MIC  
interrupt  
logic  
MICBIAS  
47  
6802.2k  
PHONE HEADSET  
Figure 36 Hookswitch Detection Circuit  
The circuit uses a GPIO pin as a sense input. The impedance of the microphone and the resistor in  
the MICBIAS path must be such that the potential at the GPIO pin is above 0.7DBVDD when the  
hookswitch is open, and below 0.3DBVDD when it is closed.  
114  
Rev 4.0  
WM9714L  
TYPICAL OUTPUT CONFIGURATIONS  
The WM9714L has three outputs capable of driving loads down to 16(headphone / line drivers) –  
HPL, HPR and MONO - and four outputs capable of driving loads down to 8(loudspeaker / line  
drivers) SPKL, SPKR, OUT3 and OUT4. The combination of output drivers, mixers and mixer  
inverters means that many output configurations can be supported. Below are some examples of  
typical output configurations for smartphone applications.  
STEREO SPEAKER  
Figure 37 shows a typical output configuration for stereo speakers with headphones, ear speaker and  
hands-free operation. The table shows suggested mixer outputs to select for each output PGA for a  
given operating scenario. (Note the inverted mixer outputs can be achieved using the mixer output  
inverters INV1 and INV2).  
MONO  
Ear Speaker  
32R  
Hands-free  
32R  
HP  
16/32R  
HPL  
PHONE  
MIXER  
HPR  
HEADPHONE  
MIXER  
SPKL  
SPEAKER  
MIXER  
SPKR  
OUT3  
Stereo  
Speaker (R)  
8R  
Stereo  
Speaker (L)  
8R  
OUT4  
Config/ Hands-free Hands-free Ear Speaker Ear Speaker Ear Speaker Ear Speaker  
Stereo  
Driver  
(1:mmix) (2:spkmix)  
(1:mmix)  
(2:hpmix) (1) + Speaker (2) + Speaker Speaker Headphone  
mono  
spkl  
spkr  
hpl  
hpr  
out3  
out4  
mmix  
-
-
ZH  
-
-
spkmix  
-
-
ZH  
-
-
mmix  
-
-
-hpmixR  
mmix  
hpmixL  
hpmixR  
Vmid  
-hpmixR  
hpmixL  
hpmixR  
hpmixL  
-
-
ZH  
-
-
hpmixL  
hpmixR  
-
(Z )  
H
-
Vmid  
hpmixL  
hpmixL  
hpmixR  
-
-
-
-
-
-
-
-
-
-hpmixR  
-hpmixL  
-hpmixR  
-hpmixL  
-hpmixR  
-hpmixL  
(Vmid)  
-
-
Figure 37 Stereo Speaker Output Configuration  
Rev 4.0  
115  
 
WM9714L  
MONO SPEAKER  
Figure 38 shows a typical output configuration for mono speaker with headphones, ear speaker and  
hands-free operation. The table shows suggested mixer outputs to select for each output PGA for a  
given operating scenario. (Note the inverted mixer outputs can be achieved using the mixer output  
inverters INV1 and INV2).  
MONO  
Hands-free  
32R  
HP  
16/32R  
HPL  
PHONE  
MIXER  
HPR  
HEADPHONE  
MIXER  
SPKL  
SPEAKER  
MIXER  
SPKR  
OUT3  
Mono  
Speaker  
8R  
Ear Speaker  
32R  
OUT4  
Config/ Hands-free Hands-free Ear Speaker Ear Speaker Ear Speaker Ear Speaker  
Mono  
Driver  
(1:mmix) (2:spkmix)  
(1:mmix)  
(2:hpmix) (1) + Speaker (2) + Speaker Speaker Headphone  
mono  
spkl  
spkr  
hpl  
hpr  
out3  
out4  
mmix  
spkmix  
-
-
-
-
-
hpmixL  
mmix  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
hpmixL  
hpmixR  
-
spkmix  
(Z )  
H
mmix  
-
-
-mmix  
-
hpmixR  
-
-
-hpmixL  
-
-
hpmixL  
hpmixR  
-
-
-
-mmix  
-hpmixR  
-hpmixL  
-hpmixR  
(Vmid  
)
-spkmix  
Figure 38 Mono Speaker Output Configuration  
116  
Rev 4.0  
 
WM9714L  
WM9714L MONO SPEAKER  
Figure 39 shows a typical output configuration compatible with the WM9712 for mono speaker with  
headphones, ear speaker and hands-free operation. The table shows suggested mixer outputs to  
select for each output PGA for a given operating scenario. (Note the inverted mixer outputs can be  
achieved using the mixer output inverters INV1 and INV2).  
When using this configuration note that AVDD, HPVDD and SPKVDD must all be at the same voltage  
to achieve the best performance.  
MONO  
Hands-free  
32R  
HP  
16/32R  
HPL  
PHONE  
MIXER  
HPR  
HEADPHONE  
MIXER  
SPKL  
Mono  
Speaker  
8R  
SPEAKER  
MIXER  
SPKR  
OUT3  
Ear Speaker  
32R  
OUT4  
Config/ Hands-free Hands-free Ear Speaker Ear Speaker Ear Speaker Ear Speaker  
Mono  
Driver  
(1:mmix) (2:spkmix)  
(1:mmix)  
(2:hpmix) (1) + Speaker (2) + Speaker Speaker Headphone  
mono  
spkl  
spkr  
hpl  
hpr  
out3  
out4  
mmix  
spkmix  
-
-
-
-
-
hpmixL  
-hpmixR  
mmix  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
hpmixL  
hpmixR  
hpmixL  
-
-hpmixR  
-
spkmix  
-spkmix  
Vmid  
hpmixL  
-
-hpmixR  
-
hpmixL  
hpmixR  
-
mmix  
-
-mmix  
-
(Z )  
H
-
Figure 39 WM9714L Mono Speaker Configuration  
Rev 4.0  
117  
 
WM9714L  
PACKAGE DIMENSIONS  
DM103.A  
FL: 48 PIN QFN PLASTIC PACKAGE 7 X 7 X 0.9 mm BODY, 0.50 mm LEAD PITCH  
D2  
SEE DETAIL 1  
D
D2/2  
48  
37  
L
INDEX AREA  
(D/2 X E/2)  
36  
1
EXPOSED  
GROUND  
PADDLE  
E2/2  
6
E2  
E
SEE DETAIL 2  
12  
25  
aaa  
C
2 X  
2 X  
24  
13  
b
aaa  
C
TOP VIEW  
e
BOTTOM VIEW  
ccc  
C
(A3)  
A
0.08  
C
A1  
SIDE VIEW  
SEATING PLANE  
DETAIL 1  
C
DETAIL 2  
DETAIL 3  
Terminal  
Tip  
Datum  
W
45°  
e/2  
T
0.30mm  
EXPOSED  
(A3)  
G
e
H
GROUND  
PADDLE  
b
Exposed lead  
Half etch tie bar  
DETAIL 3  
Symbols  
Dimensions (mm)  
MIN  
0.80  
0
NOM  
0.90  
MAX  
1.00  
0.05  
NOTE  
A
A1  
A3  
b
0.02  
0.20 REF  
0.25  
0.18  
5.55  
5.55  
0.30  
5.75  
5.75  
1
D
7.00 BSC  
5.65  
D2  
E
7.00 BSC  
5.65  
E2  
e
0.5 BSC  
0.20  
G
H
L
0.10  
0.50  
0.30  
0.4  
0.103  
0.15  
T
W
Tolerances of Form and Position  
aaa  
bbb  
ccc  
REF  
0.15  
0.10  
0.10  
JEDEC, MO-220, VARIATION VKKD-4  
NOTES:  
1. DIMENSION b APPLIED TO METALLIZED TERMINAL AND IS MEASURED BETWEEN 0.15 mm AND 0.30 mm FROM TERMINAL TIP.  
2. ALL DIMENSIONS ARE IN MILLIMETRES  
3. THE TERMINAL #1 IDENTIFIER AND TERMINAL NUMBERING CONVENTION SHALL CONFORM TO JESD 95-1 SPP-002.  
4. COPLANARITY APPLIES TO THE EXPOSED HEAT SINK SLUG AS WELL AS THE TERMINALS.  
5. THIS DRAWING IS SUBJECT TO CHANGE WITHOUT NOTICE.  
6. REFER TO APPLICATION NOTE WAN_0118 FOR FURTHER INFORMATION REGARDING PCB FOOTPRINTS AND QFN PACKAGE SOLDERING.  
118  
Rev 4.0  
WM9714L  
IMPORTANT NOTICE  
Contacting Cirrus Logic Support  
For all product questions and inquiries, contact a Cirrus Logic Sales Representative.  
To find one nearest you, go to www.cirrus.com.  
For the purposes of our terms and conditions of sale, "Preliminary" or "Advanced" datasheets are non-final datasheets that include  
but are not limited to datasheets marked as “Target”, “Advance”, “Product Preview”, “Preliminary Technical Data” and/or “Pre-  
production.” Products provided with any such datasheet are therefore subject to relevant terms and conditions associated with  
"Preliminary" or "Advanced" designations. The products and services of Cirrus Logic International (UK) Limited; Cirrus Logic, Inc.;  
and other companies in the Cirrus Logic group (collectively either “Cirrus Logic” or “Cirrus”) are sold subject to Cirrus Logic’s terms  
and conditions of sale supplied at the time of order acknowledgment, including those pertaining to warranty, indemnification, and  
limitation of liability. Software is provided pursuant to applicable license terms. Cirrus Logic reserves the right to make changes to its  
products and specifications or to discontinue any product or service without notice. Customers should therefore obtain the latest  
version of relevant information from Cirrus Logic to verify that the information is current and complete. Testing and other quality  
control techniques are utilized to the extent Cirrus Logic deems necessary. Specific testing of all parameters of each device is not  
necessarily performed. In order to minimize risks associated with customer applications, the customer must use adequate design  
and operating safeguards to minimize inherent or procedural hazards. Cirrus Logic is not liable for applications assistance or  
customer product design. The customer is solely responsible for its selection and use of Cirrus Logic products. Use of Cirrus Logic  
products may entail a choice between many different modes of operation, some or all of which may require action by the user, and  
some or all of which may be optional. Nothing in these materials should be interpreted as instructions or suggestions to choose one  
mode over another. Likewise, description of a single mode should not be interpreted as a suggestion that other modes should not be  
used or that they would not be suitable for operation. Features and operations described herein are for illustrative purposes only.  
CERTAIN APPLICATIONS USING SEMICONDUCTOR PRODUCTS MAY INVOLVE POTENTIAL RISKS OF DEATH, PERSONAL  
INJURY, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE (“CRITICAL APPLICATIONS”). CIRRUS LOGIC PRODUCTS  
ARE NOT DESIGNED, AUTHORIZED OR WARRANTED FOR USE IN PRODUCTS SURGICALLY IMPLANTED INTO THE BODY,  
AUTOMOTIVE SAFETY OR SECURITY DEVICES, NUCLEAR SYSTEMS, LIFE SUPPORT PRODUCTS OR OTHER CRITICAL  
APPLICATIONS. INCLUSION OF CIRRUS LOGIC PRODUCTS IN SUCH APPLICATIONS IS UNDERSTOOD TO BE FULLY AT  
THE CUSTOMER’S RISK AND CIRRUS LOGIC DISCLAIMS AND MAKES NO WARRANTY, EXPRESS, STATUTORY OR  
IMPLIED, INCLUDING THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR PARTICULAR PURPOSE,  
WITH REGARD TO ANY CIRRUS LOGIC PRODUCT THAT IS USED IN SUCH A MANNER. IF THE CUSTOMER OR  
CUSTOMER’S CUSTOMER USES OR PERMITS THE USE OF CIRRUS LOGIC PRODUCTS IN CRITICAL APPLICATIONS,  
CUSTOMER AGREES, BY SUCH USE, TO FULLY INDEMNIFY CIRRUS LOGIC, ITS OFFICERS, DIRECTORS, EMPLOYEES,  
DISTRIBUTORS AND OTHER AGENTS FROM ANY AND ALL LIABILITY, INCLUDING ATTORNEYS’ FEES AND COSTS, THAT  
MAY RESULT FROM OR ARISE IN CONNECTION WITH THESE USES.  
This document is the property of Cirrus Logic and by furnishing this information, Cirrus Logic grants no license, express or implied,  
under any patents, mask work rights, copyrights, trademarks, trade secrets or other intellectual property rights. Any provision or  
publication of any third party’s products or services does not constitute Cirrus Logic’s approval, license, warranty or endorsement  
thereof. Cirrus Logic gives consent for copies to be made of the information contained herein only for use within your organization  
with respect to Cirrus Logic integrated circuits or other products of Cirrus Logic, and only if the reproduction is without alteration and  
is accompanied by all associated copyright, proprietary and other notices and conditions (including this notice). This consent does  
not extend to other copying such as copying for general distribution, advertising or promotional purposes, or for creating any work for  
resale. This document and its information is provided “AS IS” without warranty of any kind (express or implied). All statutory  
warranties and conditions are excluded to the fullest extent possible. No responsibility is assumed by Cirrus Logic for the use of  
information herein, including use of this information as the basis for manufacture or sale of any items, or for infringement of patents  
or other rights of third parties. Cirrus Logic, Cirrus, the Cirrus Logic logo design, and SoundClear are among the trademarks of  
Cirrus Logic. Other brand and product names may be trademarks or service marks of their respective owners.  
Copyright © 20102016 Cirrus Logic, Inc. All rights reserved.  
Rev 4.0  
119  
WM9714L  
REVISION HISTORY  
DATE  
REV  
ORIGINATOR  
CHANGES  
Made changes to ‘Thermal Sensor’ section and Table 40 to correct and clarify.  
30/08/10  
3.3  
SS  
Added note in Table 57 ‘GPIO Control’ to exclude Thermal Sensor from polarity  
description and refer to Table 40 ‘Thermal Shutdown Control’.  
10/10/11  
3.3  
JMacD  
Order codes changed from WM9714LGEFL/V and WM9714LGEFL/RV to  
WM9714CLGELF/V and WM9714CLGEFL/RV to reflect change to copper wire  
bonding.  
10/10/11  
09/03/12  
19/12/16  
3.3  
3.4  
4.0  
JMacD  
JMacD  
PH  
Package Diagram changed to DM103.A  
Pin Diagram updated to show Pin 29 and Pin 30 labelling correctly.  
Updated to Cirrus Logic template  
120  
Rev 4.0  

相关型号:

WM9714LGEFL/RV

AC 97 Audio CODEC
WOLFSON

WM9714LGEFL/V

AC 97 Audio CODEC
WOLFSON

WM9714L_06

AC 97 Audio CODEC
WOLFSON

WM9715L

AC’97 Audio and Touchpanel CODEC
WOLFSON

WM9715LGEFL

AC’97 Audio and Touchpanel CODEC
WOLFSON

WM9715LGEFL/RV

AC’97 Audio and Touchpanel CODEC
WOLFSON

WM9715LGEFL/V

AC’97 Audio and Touchpanel CODEC
WOLFSON

WM9715LGEFLRV

AC’97 Audio and Touchpanel CODEC
WOLFSON

WM9715LGEFLV

AC’97 Audio and Touchpanel CODEC
WOLFSON

WM9737

Stereo ADC with microphone preamp
WOLFSON

WM9929

Extractor Tool Instruction Sheet
MOLEX

WM9930

Extractor Tool Instruction Sheet
MOLEX