CPC7584xA [CLARE]

Line Card Access Switch;
CPC7584xA
型号: CPC7584xA
厂家: CLARE    CLARE
描述:

Line Card Access Switch

文件: 总16页 (文件大小:307K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
CPC7584  
Line Card Access Switch  
Features  
Description  
Small 16-pin SOIC or micro-leadframe package  
Micro-leadframe package (MLP) printed circuit board  
The CPC7584 is a monolithic solid state switch in a  
16-pin SOIC or MLP surface mount package. It  
provides the necessary functions to replace two  
2-Form-C electro-mechanical relays on traditional  
analog and integrated voice and data (IVD) line cards  
found in Central Office, Access, and PBX equipment.  
The device contains solid state switches for tip and  
ring line break, ringing injection/ringing return and  
channel test access. The CPC7584 requires only a  
+5V supply and offers “break-before-make” or  
“make-before-break” switch operation using simple  
logic-level input control.  
TH  
footprint is 70% smaller than 4 generation EMRs  
and 60% smaller than SOIC version  
Monolithic IC reliability  
Low matched R  
Eliminates the need for zero cross switching  
Flexible switch timing to transition from ringing mode  
to talk mode.  
ON  
Clean, bounce free switching  
Tertiary protection consisting of integrated current  
limiting, voltage clamping, and thermal shutdown for  
SLIC protection  
5V operation with power consumption < 10 mW  
Intelligent battery monitor  
The CPC7584xC logic differs from the CPC7584xA/B  
with an enhancement permitting channel monitoring in  
the test state. See “Functional Description” on page 9  
for more information. The CPC7584xC also has a  
higher trigger and hold current for the protection SCR.  
Specify CPC7584Bx for SOIC or specify CPC7582Mx  
for MLP devices shipped in tubes. Append the part  
number with the suffix TR for tape and reel packaging.  
Latched logic level inputs, no external drive circuitry  
required  
Applications  
Central office (CO)  
Digital Loop Carrier (DLC)  
PBX Systems  
Ordering Information  
Digitally Added Main Line (DAML)  
Hybrid Fiber Coax (HFC)  
Fiber in the Loop (FITL)  
Pair Gain System  
Part Number Description  
CPC7584xA  
CPC7584xB  
CPC7584xC  
With protection SCR  
Without protection SCR  
With protection SCR and “Monitor” test state  
Channel Banks  
Figure 1. CPC7584 Block Diagram  
(TCHANTEST  
)
TTEST  
+5 Vdc  
T
VDD  
6
1
8
RINGING  
CPC7584  
SW3  
SW5  
Tip  
X
X
X
TLINE  
TBAT  
3
4
X
SW1  
Secondary  
Protection  
SLIC  
Ring  
SXW2  
RLINE  
RBAT  
14  
13  
9
L
A
T
C
H
INTEST  
SW6  
SW4  
X
SCR  
and  
Trip  
Switch  
Control  
Logic  
VREF  
10  
INRINGING  
Circuit  
11  
LATCH  
TSD  
VBAT  
12  
16  
2
15  
VBAT  
8
7
RRINGING  
FGND  
DGND  
300Ω  
(min.)  
RINGING  
RTEST (RCHANTEST  
)
DS-CPC7584 - R0B  
www.clare.com  
1
CPC7584  
1. Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3  
1.1 Package Pinout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3  
1.2 Pinout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3  
1.3 Absolute Maximum Ratings (at 25° C). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4  
1.4 Electrical Characteristics, TA = -40° C to +85° C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4  
1.4.1 Power Supply Specifications. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4  
1.4.2 Break Switches, SW1 and SW2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4  
1.4.3 Ringing Return Switch, SW3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5  
1.4.4 Ringing Switch, SW4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6  
1.4.5 Test Switches, SW5 and SW6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6  
1.5 Digital Input Characteristics - IN  
,IN  
and LATCH Pins. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7  
TEST RINGING  
1.6 Power Consumption Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7  
1.7 Thermal Shutdown Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
1.8 Protection Circuitry Electrical Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
1.9 Truth Table - CPC7584xA/B . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
1.10 Truth Table - CPC7584xC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
2. Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
2.2 Switch Timing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
2.2.1 Make-Before-Break Operation (Ringing to Talk Transition) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
2.2.2 Break-Before-Make Operation (Ringing to Talk Transition) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
2.2.3 Alternate Break-Before-Make Operation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
2.3 Ring Access Switch Zero-Cross Current Turn Off . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
2.4 Power Supplies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
2.5 Battery Voltage Monitor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
2.6 Protection. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
2.6.1 Diode Bridge/SCR. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
2.6.2 Current Limiting function. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
2.7 Temperature Shutdown . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
2.8 External Protection Elements. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
2.9 Data Latch . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
3. Manufacturing Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
3.1 Mechanical Dimensions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
3.1.1 SOIC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
3.1.2 MLP. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
3.2 Printed-Circuit Board Layout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
3.2.1 SOIC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
3.2.2 MLP. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
3.3 Tape and Reel Packaging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
3.3.1 SOIC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
3.4 Soldering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
3.4.1 Moisture Reflow Sensitivity. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
3.4.2 Reflow Profile . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
3.5 Washing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
2
www.clare.com  
R0B  
CPC7584  
1. Specifications  
1.1 Package Pinout  
1.2 Pinout  
Pin  
1
Name  
Description  
CPC7584  
TTEST  
FGND  
TBAT  
T
1
2
3
4
5
6
7
8
16 RTEST  
15 VBAT  
Connect to Tip lead of test bus  
Fault ground  
TEST  
F
2
GND  
T
3
Connect to tip lead of SLIC  
Connect to tip lead of the line (drop)  
Connect to ringing generator return  
+5 V supply  
BAT  
14  
RBAT  
T
4
LINE  
TLINE  
TRINGING  
VDD  
13 RLINE  
T
5
RINGING  
V
6
12 RRINGING  
DD  
Temperature shutdown indicator pin.  
Bi-directional I/O with internal pull up to  
11  
LATCH  
V
. Output function indicates status of  
TSD  
DD  
10 INRINGING  
9 INTEST  
T
7
SD  
thermal shutdown circuitry, Input function  
can be used to set the “All-Off” mode using  
an open-drain type output.  
DGND  
D
8
9
Digital ground  
GND  
IN  
Logic-level switch control input  
Logic-level switch control input  
TEST  
IN  
10  
RINGING  
Data latch control, active high, transparent  
low  
11  
12  
LATCH  
Connect to ringing generator current  
limiting resistor  
R
RINGING  
R
13  
14  
15  
Connect to ring lead of the line (drop)  
Connect to ring lead of the SLIC  
Connect to ring lead of SLIC  
LINE  
R
BAT  
V
BAT  
Battery voltage supply. Must be capable of  
sourcing the trigger current for proper  
operation of the protection SCR.  
R
16  
TEST  
Rev. B  
www.clare.com  
3
CPC7584  
Absolute maximum ratings are stress ratings. Stresses in  
excess of these ratings can cause permanent damage to  
the device. Functional operation of the device at conditions  
beyond those indicated in the operational sections of this  
data sheet is not implied.  
1.3 Absolute Maximum Ratings (at 25° C)  
Parameter  
Minimum Maximum  
Unit  
Operating temperature  
Storage temperature  
-40  
-40  
5
+110  
+150  
95  
°C  
°C  
%
1.4.1 Power Supply Specifications  
Operating relative humidity  
Pin soldering temperature  
(10 seconds max)  
Supply  
Minimum Typical Maximum Unit  
-
+260  
°C  
V
+4.5  
-19  
+5.0  
-
+5.5  
-72  
V
V
DD  
+5 V power supply  
Battery Supply  
-0.3  
-
7
V
V
V
1
V
-85  
BAT  
1
V
is used only for internal protection circuitry. If V  
will enter and remain in the all-off state until the battery exceeds -15 V.  
rises above -10 V, the device  
BAT  
V
+0.3  
BAT  
Logic input voltage  
-0.3  
DD  
Logic input to switch output  
isolation  
-
330  
V
Switch isolation (SW1,  
SW2, SW3, SW5, SW6)  
-
-
330  
465  
V
V
ESD Rating (Human Body Model)  
Switch Isolation (SW4)  
1000 V  
1.4 Electrical Characteristics, T = -40° C to +85° C  
A
Unless otherwise specified:  
Minimum and maximum values are production testing  
requirements. Typical values are provided for  
information purposes only and are not part of the  
testing requirements. They are characteristic of the  
device and are the result of engineering evaluations.  
V
= +5V and V  
= -48V  
DD  
dc  
BAT dc  
1.4.2 Break Switches, SW1 and SW2  
Parameter  
Conditions  
to T  
Symbol  
Minimum  
Typical  
Maximum  
Unit  
V
V
= T  
LINE  
SW1  
BAT  
= R  
to R  
BAT  
SW2  
LINE  
V
V
= -320V to GND  
= +260 V to -60 V  
+25°C  
+85°C  
-40°C  
SW  
0.1  
0.3  
0.1  
SW  
Open Contact Isolation -  
Off-state leakage current  
V
V
= -330V to GND  
= +270 V to -60 V  
SW  
I
-
1
µA  
SW  
SW  
V
V
= -310 V to GND  
= +250 V to -60 V  
SW  
SW  
I
= 10 mA, 40 mA, T = -2 V +25°C  
BAT  
-
-
-
14.5  
20.5  
10.5  
-
28  
-
SW  
I
I
= 10 mA, 40 mA, T = -2 V +85°C  
BAT  
R
On Resistance  
SW  
SW  
ON  
= 10 mA, 40 mA, T = -2 V -40°C  
BAT  
Per On Resistance test conditions above.  
Magnitude R SW1 - R SW2  
Switch Resistance  
Matching  
R  
-
0.15  
0.8  
ON  
ON  
ON  
V
V
V
(on) = 10 V  
(on) = 10 V  
(on) = 10 V  
+25°C  
+85°C  
-40°C  
-
80  
-
300  
160  
400  
-
-
SW  
SW  
SW  
I
DC Current Limit  
mA  
LIM  
425  
4
www.clare.com  
Rev. B  
CPC7584  
Parameter  
Conditions  
Symbol  
Minimum  
Typical  
Maximum  
Unit  
Break switches on, all other switches off,  
apply 1 kV 10/1000 µs pulse to Tip/Ring  
interface with appropriate protection in place.  
Dynamic Current Limit  
(t = <0.5 µs)  
I
-
2.5  
-
A
SW  
V
(T , R ) = 320 V  
SW LINE LINE  
+25°C  
+85°C  
-40°C  
0.1  
0.3  
0.1  
logic inputs = GND  
(T , R ) = 330 V  
V
SW LINE LINE  
I
Contacts to Input Isolation  
-
1
µA  
SW  
logic inputs = GND  
(T , R ) = 310 V,  
V
SW LINE LINE  
logic inputs = GND  
Applied voltage = 100 V p-p square wave at  
100 Hz  
dv/dt sensitivity  
-
-
200  
-
V/µs  
1.4.3 Ringing Return Switch, SW3  
Parameter  
Conditions  
to T  
Symbol  
Minimum  
Typical  
Maximum  
Unit  
V
= T  
LINE  
SW3  
RINGING  
V
V
= -320V to GND  
= +260 V to -60 V  
+25°C  
+85°C  
-40°C  
SW  
0.1  
0.3  
0.1  
SW  
Open Contact Isolation -  
Off-state leakage current  
V
V
= -330 V to GND  
= +270 V to -60 V  
SW  
I
-
-
1
µA  
SW  
SW  
V
V
= -310 V to GND  
= +250 V to -60 V  
SW  
SW  
I
(on) = 0 mA, 10 mA  
(on) = 0 mA, 10 mA  
(on) = 0 mA, 10 mA  
+25°C  
+85°C  
-40°C  
60  
85  
45  
-
100  
-
SW  
I
I
R
On Resistance  
SW  
SW  
ON  
V
V
V
(on) = 10 V  
+25°C  
+85°C  
-40°C  
135  
85  
SW  
(on) = 10 V  
(on) = 10 V  
I
DC Current Limit  
-
-
-
-
mA  
A
SW  
SW  
SW  
210  
Ringing switches on, all other switches off,  
apply 1 kV 10/1000 µs pulse to Tip/Ring  
interface with appropriate protection in place.  
Dynamic current limit  
(t = <0.5 µs)  
I
2.5  
SW  
V
(T , T  
SW LINE RINGING  
) = 320 V  
) = 330 V  
) = 310 V  
+25°C  
+85°C  
-40°C  
0.1  
0.3  
0.1  
logic inputs = GND  
(T , T  
V
SW LINE RINGING  
I
Contacts to Input Isolation  
-
-
1
µA  
SW  
logic inputs = GND  
(T , T  
V
SW LINE RINGING  
logic inputs = GND  
Applied voltage = 100 V p-p square wave at  
100 Hz  
dv/dt sensitivity  
-
200  
-
V/µs  
Rev. B  
www.clare.com  
5
CPC7584  
1.4.4 Ringing Switch, SW4  
Parameter  
Conditions  
to R  
Symbol  
Minimum  
Typical  
Maximum  
Unit  
V
= R  
LINE  
SW4  
RINGING  
V
V
= -255 V to +210 V  
= +255 V to -210 V  
+25°C  
+85°C  
-40°C  
SW  
0.05  
0.1  
SW  
Open Contact Isolation -  
Off-state leakage current  
V
V
= -270 V to +210 V  
= +270 V to -210 V  
SW  
I
-
1
µA  
SW  
SW  
V
V
= -245 V to +210 V  
= +245 V to -210 V  
SW  
0.05  
SW  
I
(on) = 1 mA  
V
On Voltage  
-
-
1.5  
8.5  
3
V
SW  
SW  
I
(on) = 70 mA, 80 mA  
R
On Resistance  
12  
SW  
ON  
Ringing generator current  
to ground  
I
Ringing switches on.  
-
0.1  
0.25  
mA  
RINGING  
On steady-state current* Ringing switches on.  
-
-
-
-
-
-
-
2
2
-
A
A
Surge current*  
Release current  
Ringing switches on.  
I
Remove ringing mode, SW4 on.  
300  
µA  
SW  
V
(R , R  
) = 320 V  
) = 330 V  
) = 310 V  
+25°C  
+85°C  
-40°C  
SW LINE RINGING  
0.05  
0.1  
logic inputs = GND  
(R , R  
V
SW LINE RINGING  
I
Contacts to Inout Isolation  
-
1
µA  
SW  
logic inputs = GND  
(R , R  
V
SW LINE RINGING  
0.05  
logic inputs = GND  
Applied voltage = 100 V p-p square wave at  
100 Hz  
dv/dt sensitivity  
-
-
200  
-
V/µs  
* Secondary protection and ringing source current limiting must prevent exceeding these parameters.  
1.4.5 Test Switches, SW5 and SW6  
Parameter  
Conditions  
to T  
Symbol  
Minimum  
Typical  
Maximum  
Unit  
V
V
= T  
TEST  
SW5  
BAT  
= R  
to R  
BAT  
SW6  
TEST  
V
V
= -320 V to GND  
= +260 V to -60 V  
+25°C  
+85°C  
-40°C  
0.1  
0.3  
0.1  
SW  
SW  
Open Contact Isolation -  
Off-state leakage current  
V
V
= -330 V to GND  
=+270 V to -60 V  
I
-
1
µA  
SW  
SW  
SW  
V
V
= -310 V to GND  
= +250 V to -60 V  
SW  
SW  
6
www.clare.com  
Rev. B  
CPC7584  
Parameter  
Conditions  
Symbol  
Minimum  
Typical  
38  
Maximum  
Unit  
T
T
T
= 10 mA, 40 mA, T = -2 V +25°C  
BAT  
-
70  
-
LINE  
LINE  
LINE  
= 10 mA, 40 mA, T = -2 V +85°C  
BAT  
R
On Resistance  
-
46  
ON  
= 10 mA, 40 mA, T = -2 V -40°C  
BAT  
28  
V
V
V
(on) = 10 V  
(on) = 10 V  
(on) = 10 V  
+25°C  
+85°C  
-40°C  
-
80  
-
175  
110  
210  
-
-
SW  
SW  
SW  
I
DC Current Limit  
mA  
A
SW  
250  
Test switches on , ringing access switches  
off, apply 1 kV at 10/1000 µs pulse, with  
appropriate secondary protection in place.  
Dynamic current limit  
(t = <0.5 µs)  
I
-
2.5  
-
SW  
V
(T  
, R  
SW TEST TEST  
) = 320 V  
) = 330 V  
) = 310 V  
+25°C  
+85°C  
-40°C  
0.1  
0.3  
0.1  
logic inputs = GND  
(T , R  
V
SW TEST TEST  
I
Contacts to Input Isolation  
-
-
1
µA  
SW  
logic inputs = GND  
(T , R  
V
SW TEST TEST  
logic inputs = GND  
Applied voltage = 100 V p-p square wave at  
100 Hz  
dv/dt sensitivity  
-
200  
-
V/µs  
1.5 Digital Input Characteristics - IN  
,IN  
and LATCH Pins  
TEST RINGING  
Parameter  
Input Threshold  
Conditions  
Symbol  
Minimum  
Typical  
Maximum  
Unit  
V
Logic low  
Logic high  
-
3.5  
-
-
1.5  
-
IL  
V
V
-
IH  
V
= 5.5 V, V = -75 V, V = 5 V  
BAT IH  
I
0.1  
0.1  
1
DD  
DD  
IH  
Input Leakage Current  
µA  
V
= 5.5 V, V = -75 V, V = 0 V  
BAT IL  
I
-
1
IL  
1.6 Power Consumption Characteristics  
Parameter  
Conditions  
= 5 V, V = -48V,  
Symbol  
Minimum  
Typical  
Maximum  
Unit  
V
DD  
BAT  
-
1.1  
2.0  
Talk or All-Off states.  
V
V
Current Consumption  
I
mA  
DD  
DD  
V
= 5 V, V = -48 V,  
BAT  
DD  
-
-
1.3  
0.1  
5.5  
6.5  
2.0  
10  
10  
10  
Ringing or Test states.  
= 5 V, V = -48 V,  
V
DD  
BAT  
Current Consumption  
I
µA  
BAT  
BAT  
Any state  
= 5 V, V = -48 V,  
V
DD  
BAT  
Talk or All-Off states.  
= 5 V, V = -48 V,  
Power Consumption  
P
-
mW  
V
DD  
BAT  
Ringing or Test states.  
Rev. B  
www.clare.com  
7
CPC7584  
1.7 Thermal Shutdown Characteristics  
Parameter  
Activation Temperature  
Hysteresis  
Conditions  
Symbol  
Minimum  
110  
Typical  
Maximum  
150  
Unit  
°C  
T
T
=> Low  
=> High  
T
125  
-
SD  
T  
10  
25  
°C  
SD  
1.8 Protection Circuitry Electrical Specifications  
Parameter Conditions  
Symbol  
Minimum  
Typical  
Maximum  
Unit  
Parameters Related to the Diodes in the Diode Bridge  
Voltage drop at continuous  
current (50/60 Hz)  
V
Apply dc current limit of break switches  
-
-
2.1  
5
3
-
F
V
Voltage drop at surge  
current  
Apply dynamic current limit of break  
switches  
V
F
Parameters Related to the Protection SCR  
Surge current  
-
-
-
-
-
*
-
A
+25°C  
+85°C  
+25°C  
+85°C  
60  
35  
100  
70  
I
Trigger current  
Hold current  
mA  
TRIG  
-
I
-
mA  
HOLD  
60  
V
or  
TBAT  
I
= I  
GATE Tr igger  
**  
V
-4  
V
-2  
Gate trigger voltage  
Reverse leakage current  
On-state voltage  
-
V
µA  
V
BAT  
BAT  
V
RBAT  
V
= -48V  
I
-
-
1.0  
BAT  
VBAT  
0.5 A, t = 0.5 ms  
2.0 A, t = 0.5 ms  
V
or  
-3  
-5  
TBAT  
-
-
V
RBAT  
*Passes GR1089 and ITU-T K.20 with appropriate protection in place.  
** V must be capable of sourcing I for the internal SCR to activate.  
BAT  
TRIGGER  
8
www.clare.com  
Rev. B  
CPC7584  
1.9 Truth Table - CPC7584xA/B  
Break  
Switches  
Ringing  
Switches  
Test  
Switches  
1
IN  
IN  
Test  
State  
LATCH  
TSD  
RINGING  
Talk  
0
1
0
1
X
X
0
0
1
1
On  
Off  
Off  
Off  
Off  
On  
Off  
Off  
Off  
Off  
On  
Off  
Ringing  
Test  
0
1 or Floating  
All Off  
Latched  
X
X
1
Unchanged Unchanged Unchanged  
All off  
X
0
Off  
Off  
Off  
1
If TSD = 5V, thermal shutdown is disabled. If TSD is left floating, the thermal shutdown mechanism is enabled.  
1.10 Truth Table - CPC7584xC  
Break  
Switches  
Ringing  
Switches  
Test  
Switches  
1
IN  
IN  
Test  
State  
LATCH  
TSD  
RINGING  
Talk  
0
1
0
1
X
X
0
0
1
1
On  
Off  
On  
Off  
Off  
On  
Off  
Off  
Off  
Off  
On  
Off  
Ringing  
0
Test / Monitor  
All Off  
1 or Floating  
Latched  
X
X
1
Unchanged Unchanged Unchanged  
Off Off Off  
All off  
X
0
1
If TSD = 5V, thermal shutdown is disabled. If TSD is left floating, the thermal shutdown mechanism is enabled.  
Rev. B  
www.clare.com  
9
CPC7584  
2. Functional Description  
2.1 Introduction  
The CPC7584xA/B has four states:  
To protect the CPC7584 from an overvoltage fault  
condition, use of a secondary protector is required.  
The secondary protector must limit the voltage seen at  
the tip and ring terminals to a level below the  
maximum breakdown voltage of the switches. To  
minimize the stress on the solid-state contacts, use of  
a foldback or crowbar type secondary protector is  
recommended. With proper selection of the secondary  
protector, a line card using the CPC7582BC will meet  
all relevant ITU, LSSGR, FCC and UL protection  
requirements.  
Talk. Line break switches SW1 and SW2 closed,  
ringing switches SW3 and SW4 open, and test  
switches SW5 and SW6 open.  
Ringing. Line break switches SW1 and SW2 open,  
ringing switches SW3 and SW4 closed, and test-in  
switches SW5 and SW6 open.  
Test. Line break switches SW1 and SW2 open,  
ringing switches SW3 and SW4 open, and test-in  
switches SW5 and SW6 closed.  
All off. Line break switches SW1 and SW2 open,  
ringing switches SW3 and SW4 open, and loop test  
switches SW5 and SW6 open.  
The CPC7584 operates from a +5 V supply only. This  
gives the device extremely low idle and active power  
dissipation and allows use with virtually any range of  
battery voltage. A battery voltage is also used by the  
CPC7584 as a reference for the integrated protection  
circuit. In the event of a loss of battery voltage, the  
CPC7584 enters the all-off state.  
The CPC7584xC replaces the Test state with the  
Test/Monitor state as defined below.  
Test/Monitor. Line break switches SW1 and SW2  
closed, ringing switches SW3 and SW4 open, and  
test-in switches SW5 and SW6 closed.  
2.2 Switch Timing  
The CPC7584 provides, when switching from the  
ringing state to the idle/talk state, the ability to control  
the release timing of the ringing access switches SW3  
and SW4 relative to the state of the line break  
switches SW1 and SW2 using simple logic-level input.  
This is referred to a make-before-break or  
break-before-make operation. When the line break  
switch contacts (SW1 and SW2) are closed (or made)  
before the ringing access switch contacts (SW3 and  
SW4) are opened (or broken), this is referred to  
make-before-break operation. Break-before-make  
operation occurs when the ringing access contacts  
(SW3 and SW4) are opened (broken) before the line  
break switch contacts (SW1 and SW2) are closed  
(made). With the CPC7584, the make-before-break  
and break-before-make operations can easily be  
selected by applying logic-level inputs to pins 9 and 10  
The CPC7584 offers break-before-make and  
make-before-break switching with simple logic-level  
input control. Solid-state switch construction means no  
impulse noise is generated when switching during ring  
cadence or ring trip, eliminating the need for external  
zero-cross switching circuitry. State-control is via  
logic-level input so no additional driver circuitry is  
required. The line break switches SW1 and SW2 are  
linear switches that have exceptionally low RDS  
ON  
and excellent matching characteristics. The ringing  
access switch SW4 has a breakdown voltage rating of  
greater than 480 V. This is sufficiently high, with proper  
protection, to prevent breakdown in the presence of a  
transient fault condition (i.e., passing the transient on  
to the ring generator).  
(IN  
and IN  
) of the device.  
RING  
TEST-IN  
Integrated into the CPC7584 is a diode bridge/SCR  
clamping circuit, current limiting, and a thermal  
shutdown mechanism to provide protection to the  
SLIC device during a fault condition. Positive and  
negative surges are reduced by the current limiting  
circuitry and steered to ground via diodes and the  
integrated SCR. Power-cross transients are also  
reduced by the current limiting and thermal shutdown  
circuits. Note that only the CPC7584xA and  
CPC7584xC parts include the integrated protection  
SCR.  
The logic sequences for either mode of operation are  
given in “Make-Before-Break Operation (Ringing to  
Talk Transition)” on page 11 and “Break-Before-Make  
Operation (Ringing to Talk Transition)” on page 11.  
Logic states and explanations are given in “Truth Table  
- CPC7584xA/B” on page 9.  
Break-before-make operation can also be achieved  
using pin 7 (TSD) as an input. In “Break-Before-Make  
Operation (Ringing to Talk Transition)” on page 11  
lines 2 and 3, it is possible to induce the switches to  
the all-off state by grounding pin 7 (TSD) instead of  
10  
www.clare.com  
Rev. B  
CPC7584  
apply logic input to the pins. This has the effect of  
overriding the logic inputs and forcing the device to the  
all-off state. Hold this input state for 25 ms. During this  
hold period, toggle the inputs from the ringing state  
(10) to the idle/talk state (00). After the 25 ms, release  
pin 7 (TSD) to return the switch control to the input  
pins 9 and 10 and reset the device to the idle/talk  
state.  
Setting TSD to +5 V allows switch control using the  
logic pins 9 and 10. This setting, however, also  
disables the thermal shutdown circuit and is therefore  
not recommended. When using logic controls via the  
input pins 9 and 10, pin 7 (TSD) should be allowed to  
float. As a result, the two recommended states when  
using pin 7 (TSD) as a control are 0, which forces the  
device to the all-off state, or float, which allows logic  
inputs to pins 9 and 10 to remain active. This may  
require the use of an open-collector buffer.  
2.2.1 Make-Before-Break Operation (Ringing to Talk Transition)  
Ringing  
Ringing  
Break  
Return  
Test  
Switches  
IN  
IN  
T
SD  
State  
Timing  
Switch  
(SW4)  
RINGING  
TEST  
Switches Switch  
(SW3)  
Ringing  
1
0
Floating  
Floating  
Floating  
-
Open  
Closed  
Closed  
Closed  
Open  
Open  
Closed  
Closed  
Open  
Open  
Open  
Open  
SW4 waiting for next zero-current crossing  
to turn off. Maximum time is one-half of  
ringing. In this transition state, current that is  
limited to the dc break switch current limit  
value will be sourced from the ring node of  
the SLIC.  
Make-  
before-  
break  
0
0
Talk  
0
0
Zero-cross current has occurred  
2.2.2 Break-Before-Make Operation (Ringing to Talk Transition)  
Ringing  
Return  
Switches Switch  
(SW3)  
Ringing  
Switch  
(SW4)  
Break  
Test  
Switches  
IN  
IN  
T
SD  
State  
Timing  
RINGING  
TEST  
Ringing  
All-off  
Talk  
1
1
0
0
1
0
Floating  
Floating  
Floating  
-
Open  
Closed  
Open  
Open  
Closed  
Closed  
Open  
Open  
Open  
Hold this state for at least 25 ms. SW4  
waiting for zero current to turn off.  
Open  
SW4 has opened.  
Open  
Open  
Close Break Switches  
Closed  
2.2.3 Alternate Break-Before-Make Operation  
Break-before-make operation can also be achieved  
using TSD as an input. In lines 2 and 3 of  
logic input pins. However, setting TSD to +5 V also  
disables the thermal shutdown mechanism. This is not  
recommended. Therefore, to allow switch control via  
the logic input pins, allow TSD to float.  
“Break-Before-Make Operation (Ringing to Talk  
Transition)” on page 11, instead of using the logic  
input pins to force the all-off state, force TSD to  
ground. This overrides the logic inputs and also forces  
the all off state. Hold this state for 25 ms. During this  
25 ms all-off state, toggle the inputs from the ringing  
state (Ring = 5 V, Test-In = 0 V) to the idle/talk state  
(Ring = 0 V, Test-In=0 V). After 25 ms, release TSD to  
return switch control to the input pins which will set the  
idle talk state.  
When using TSD as an input, the two recommended  
states are 0 (overrides logic input pins and forces all  
off state) and float (allows switch control via logic input  
pins and the thermal shutdown mechanism is active).  
This may require use of an open-collector buffer.  
When using the CPC7584 in this mode, forcing TSD to  
ground overrides the input pins and force an all off  
state. Setting TSD to +5 V allows switch control via the  
Rev. B  
www.clare.com  
11  
CPC7584  
2.3 Ring Access Switch Zero-Cross Current Turn Off  
After the application of a logic input to turn SW4 off,  
the ring access switch is designed to delay the change  
in state until the next zero-crossing. Once on, the  
switch requires a zero-current cross to turn off, and  
therefore should not be used to switch a pure DC  
signal. The switch will remain in the on state no matter  
what logic input until the next zero crossing. For proper  
positive transient condition, the fault current is  
conducted through the diode bridge to ground. Voltage  
is clamped to the diode drop above ground. During a  
negative transient of 2 to 4 V more negative than the  
battery, the SCR conducts and faults are shunted to  
ground via the SCR and diode bridge.  
In order for the SCR to crowbar or foldback, the on  
voltage (see “Protection Circuitry Electrical  
Specifications” on page 8) of the SCR must be less  
negative than the battery reference voltage. If the  
battery voltage is less negative the SCR on voltage,  
the SCR will not crowbar, however it will conduct fault  
currents to ground.  
operation, pin 12 (R  
) should be connected using  
RING  
proper impedance to a ring generator or other AC  
source. These switching characteristics will reduce  
and possibly eliminate overall system impulse noise  
normally associated with ringing access switches. The  
attributes of ringing access switch SW4 may make it  
possible to eliminate the need for a zero-cross  
switching scheme. A minimum impedance of 300 in  
series with the ring generator is recommended.  
For power induction or power-cross fault conditions,  
the positive cycle of the transient is clamped to the  
diode drop above ground and the fault current directed  
to ground. The negative cycle of the transient will  
cause the SCR to conduct when the voltage exceeds  
the battery reference voltage by two to four volts,  
steering the current to ground.  
2.4 Power Supplies  
Both a +5 V supply and battery voltage are connected  
to the CPC7584. CPC7584 switch state control is  
powered exclusively by the +5 V supply. As a result,  
the CPC7584 exhibits extremely low power dissipation  
during both active and idle states.  
2.6.2 Current Limiting function  
If a lightning strike transient occurs when the device in  
the talk/idle state, the current is passed along the line  
to the integrated protection circuitry and limited by the  
dynamic current limit response of break switches SW1  
and SW2. When a 1000V 10/1000 pulse (LSSGR  
lightning) is applied to the line though a properly  
clamped external protector, the current seen at pins 2  
(T ) and pin 15 (R ) will be a pulse with a typical  
The battery voltage is not used for switch control but  
rather as a reference for the integrated secondary  
protection circuitry. The integrated SCR is designed to  
trigger when pin 3 (T ) or pin 14 (R ) drops 2 to  
BAT  
BAT  
4 V below the battery. This trigger prevents a fault  
induced overvoltage event at the T  
or R  
nodes.  
BAT  
BAT  
BAT  
BAT  
magnitude of 2.5 A and a duration of less than 0.5 ms.  
If a power-cross fault occurs with the device in the  
talk/idle state, the current is passed though break  
switches SW1 and SW2 on to the integrated  
protection circuit and is limited by the dynamic DC  
current limit response of the two break switches. The  
DC current limit, specified over temperature, is  
between 80 mA and 425 mA, and the circuitry has a  
negative temperature coefficient. As a result, if the  
device is subjected to extended heating due to power  
2.5 Battery Voltage Monitor  
The CPC7584 also uses the voltage reference to  
monitor battery voltage. If battery voltage is lost, the  
CPC7582BC immediately enters the all-off state. It  
remains in this state until the battery voltage is  
restored. The device also enters the all-off state if the  
battery voltage rises above –10 V and remains in the  
all-off state until the battery voltage drops below  
–15 V. This battery monitor feature draws a small  
current from the battery (less than 1 mA typical) and  
will add slightly to the device’s overall power  
dissipation.  
cross fault, the measured current at pin 2 (T ) and  
BAT  
pin 15 (R ) will decrease as the device temperature  
BAT  
increases. If the device temperature rises sufficiently,  
the temperature shutdown mechanism will activate  
and the device will default to the all-off state.  
2.6 Protection  
2.6.1 Diode Bridge/SCR  
2.7 Temperature Shutdown  
The CPC7584 uses a combination of current limited  
break switches, a diode bridge/SCR clamping circuit,  
and a thermal shutdown mechanism to protect the  
SLIC device or other associated circuitry from damage  
during line transient events such as lightning. During a  
The thermal shutdown mechanism will activate when  
the device temperature reaches a minimum of 110° C,  
placing the device in the all-off state regardless of  
logic input. During thermal shutdown mode, pin 7  
(TSD) will read 0 V. Normal output of TSD is +V  
.
DD  
12  
www.clare.com  
Rev. B  
CPC7584  
If presented with a short duration transient such as a  
lightning event, the thermal shutdown feature will  
typically not activate. But in an extended power-cross  
transient, the device temperature will rise and the  
thermal shutdown will activate forcing the switches to  
the all-off state. At this point the current measured at  
switches will remain in the position they were in when  
the LATCH changed from logic 0 to logic 1 and will not  
respond to changes in input as long as the latch is at  
logic 1. The TSD input is not tied to the data latch.  
Therefore, TSD is not affected by the LATCH input and  
the TSD input will override state control via pin 10  
pin 3 (T ) and pin 14 (R ) will drop to zero. Once  
(IN  
) and pin 9 (IN  
) and the LATCH.  
BAT  
BAT  
RING  
TEST-IN  
the device enters thermal shutdown it will remain in  
the all-off state until the temperature of the device  
drops below the activation level of the thermal  
shutdown circuit. This will return the device to the state  
prior to thermal shutdown. If the transient has not  
passed, current will flow at the value allowed by the  
dynamic DC current limiting of the switches and  
heating will begin again, reactivating the thermal  
shutdown mechanism. This cycle of entering and  
exiting the thermal shutdown mode will continue as  
long as the fault condition persists. If the magnitude of  
the fault condition is great enough, the external  
secondary protector could activate and shunt all  
current to ground.  
The thermal shutdown mechanism of the CPC7584  
can be disable by applying +V to pin 7 (TSD).  
DD  
2.8 External Protection Elements  
The CPC7584 requires only one overvoltage  
secondary protector on the loop side of the device.  
The integrated protection feature described above  
negates the need for protection on the line side. The  
secondary protector limits voltage transients to levels  
that do not exceed the breakdown voltage or  
input-output isolation barrier of the CPC7584. A  
foldback or crowbar type protector is recommended to  
minimize stresses on the device.  
Consult Clare’s application note, AN-100, “Designing  
Surge and Power Fault Protection Circuits for Solid  
State Subscriber Line Interfaces” for equations related  
to the specifications of external secondary protectors,  
fused resistors and PTCs.  
2.9 Data Latch  
The CPC7584 has an integrated data latch. The latch  
operation is controlled by logic-level input pin 11  
(LATCH). The data input of the latch is pin 10 (IN  
)
RING  
and pin 9 (IN  
) of the device while the output of  
TEST-IN  
the data latch is an internal node used for state  
control. When LATCH control pin is at logic 0, the data  
latch is transparent and data control signals flow  
directly through to state control. A change in input will  
be reflected in a change is switch state. When LATCH  
control pin is at logic 1, the data latch is active and a  
change in input control will not affect switch state. The  
Rev. B  
www.clare.com  
13  
CPC7584  
3. Manufacturing Information  
3.1 Mechanical Dimensions  
3.1.1 SOIC  
16 Pin SOIC (JEDEC Package)  
10.11 MIN / 10.31 MAX  
(.398 MIN / .406 MAX)  
1.27  
(.050)  
0.23 MIN / 0.32 MAX  
(.0091 MIN / .0125 MAX)  
2.44 MIN / 2.64 MAX  
(.096 MIN / .104 MAX)  
10.11 MIN / 10.51 MAX  
(.398 MIN / .414 MAX)  
7.40 MIN / 7.60 MAX  
(.291 MIN / .299 MAX)  
0.51 MIN / 1.01 MAX  
(.020 MIN / .040 MAX)  
0.36 MIN / 0.46 MAX  
(.014 MIN / .018 MAX)  
3.1.2 MLP  
7
6
INDEX AREA  
TOP VIEW  
0.2  
0.80  
0.10)  
(
SEATING  
PLANE  
SIDE VIEW  
0.02  
(+0.05, -0)  
0.33  
(+0.07, -0.05)  
1
2
EXPOSED PAD  
0.55  
4.0  
0.05)  
(
0.55  
0.1)  
(
16  
6.0  
0.05)  
(
Terminal Tip  
0.80  
BOTTOM VIEW  
Dimensions in mm  
14  
www.clare.com  
Rev. B  
CPC7584  
3.2 Printed-Circuit Board Layout  
3.2.2 MLP  
5.75  
0.75 on center  
3.2.1 SOIC  
0.65  
PC Board Pattern  
(Top View)  
0.38  
1.270  
(.050)  
5.35 on center  
6.1  
Detail A  
9.728 .051  
(.383 .002)  
1.193  
(.047)  
6.13  
Detail A  
0.65  
.787  
(.031)  
All dimensions in mm  
Not drawn to scale  
0.66  
0.47  
0.38  
3.3 Tape and Reel Packaging  
3.3.1 SOIC  
A0  
6.50  
3.00  
R = .50  
2.00  
2.30  
K1  
K0  
B0  
6.80  
2.70  
1.30  
16.00  
7.50  
12.00  
4.00  
2.00  
1.50  
NOTES: 1. ALL DIMENSIONS ARE IN MILLIMETERS AND CARRY TOLERANCES OF EIA  
STANDARD 481-2. 2. THE TAPE COMPLIES WITH ALL "NOTES" FOR CONSTANT DIMENSIONS  
LISTED ON PAGE 5 OF EIA-481-2.  
A0 =  
B0 =  
K0 =  
K1 =  
6.5 mm  
10.3 mm  
2.3 mm  
2.7 mm  
3.4 Soldering  
3.4.1 Moisture Reflow Sensitivity  
Clare has characterized the moisture reflow sensitivity  
of LCAS products using IPC/JEDEC standard  
J-STD-020A. Moisture uptake from atmospheric  
humidity occurs by diffusion. During the solder reflow  
process, in which the component is attached to the  
PCB, the whole body of the component is exposed to  
high process temperatures. The combination of  
moisture uptake and high reflow soldering  
Rev. B  
www.clare.com  
15  
temperatures may lead to moisture induced  
delamination and cracking of the component. To  
prevent this, this component must be handled in  
accordance with IPC/JEDEC standard J-STD-020A  
per the labeled moisture sensitivity level (MSL), level 1  
for the SOIC package, and level 2 for the MLP  
package.  
3.4.2 Reflow Profile  
The maximum ramp rates, dwell times, and  
temperatures of the assembly reflow profile should not  
exceed those specified in IPC/JEDEC standard  
J-STD-020A, which were used to determine the  
moisture sensitivity level of this component.  
3.5 Washing  
Clare does not recommend ultrasonic cleaning of  
LCAS parts.  
For additional information please visit www.clare.com  
Clare, Inc. makes no representations or warranties with respect to the accuracy or completeness of the contents of this publication and reserves the right to make  
changes to specifications and product descriptions at any time without notice. Neither circuit patent licenses or indemnity are expressed or implied. Except as set  
forth in Clare’s Standard Terms and Conditions of Sale, Clare, Inc. assumes no liability whatsoever, and disclaims any express or implied warranty relating to its  
products, including, but not limited to, the implied warranty of merchantability, fitness for a particular purpose, or infringement of any intellectual property right.  
The products described in this document are not designed, intended, authorized, or warranted for use as components in systems intended for surgical implant into  
the body, or in other applications intended to support or sustain life, or where malfunction of Clare’s product may result in direct physical harm, injury, or death to a  
person or severe property or environmental damage. Clare, Inc. reserves the right to discontinue or make changes to its products at any time without notice.  
Specifications: DS-CPC7584 - R0B  
© Copyright 2004, Clare, Inc.  
All rights reserved. Printed in USA.  
1/23/2004  

相关型号:

CPC7584xB

Line Card Access Switch
CLARE

CPC7584xC

Line Card Access Switch
CLARE

CPC7591

Line Card Access Switch
CLARE

CPC7591BA

Line Card Access Switch
IXYS

CPC7591BATR

Line Card Access Switch
CLARE

CPC7591BATR

Line Card Access Switch
IXYS

CPC7591BB

Line Card Access Switch
IXYS

CPC7591BBTR

Line Card Access Switch
CLARE

CPC7591BBTR

Line Card Access Switch
IXYS

CPC7591BC

Telecom IC,
IXYS

CPC7591BC-TR

Telecom IC,
IXYS

CPC7591BCTR

Telecom Circuit, 1-Func, PDSO16, SOIC-16
IXYS