VS1003B-L [CONSONANCE]

芬兰VLSI厂家生产的音频编解码芯片; 芬兰VLSI厂家生产的音频编解码芯片
VS1003B-L
型号: VS1003B-L
厂家: Shanghai Consonance Electronics Incorporated    Shanghai Consonance Electronics Incorporated
描述:

芬兰VLSI厂家生产的音频编解码芯片
芬兰VLSI厂家生产的音频编解码芯片

文件: 总62页 (文件大小:629K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
VS1003  
VS1003 - MP3/WMA AUDIO CODEC  
Features  
Description  
Decodes MPEG 1 & 2 audio layer III  
(CBR +VBR +ABR); WMA 4.0/4.1/7/8/9  
all profiles (5-384kbit/s); WAV (PCM +  
IMA ADPCM); General MIDI / SP-MIDI  
files  
VS1003 is a single-chip MP3/WMA/MIDI au-  
dio decoder and ADPCM encoder. It contains  
a high-performance, proprietary low-power DSP  
processor core VS_DSP4, working data mem-  
ory, 5 KiB instruction RAM and 0.5 KiB data  
RAM for user applications, serial control and  
input data interfaces, 4 general purpose I/O  
pins, an UART, as well as a high-quality variable-  
sample-rate mono ADC and stereo DAC, fol-  
lowed by an earphone amplifier and a com-  
mon buffer.  
Encodes IMA ADPCM from microphone  
or line input  
Streaming support for MP3 and WAV  
Bass and treble controls  
Operates with a single 12..13 MHz clock  
Internal PLL clock multiplier  
Low-power operation  
High-quality on-chip stereo DAC with no  
phase error between channels  
Stereo earphone driver capable of driv-  
ing a 30load  
VS1003 receives its input bitstream through  
a serial input bus, which it listens to as a  
system slave. The input stream is decoded  
and passed through a digital volume control  
to an 18-bit oversampling, multi-bit, sigma-  
delta DAC. The decoding is controlled via a  
serial control bus. In addition to the basic de-  
coding, it is possible to add application spe-  
cific features, like DSP effects, to the user  
RAM memory.  
Separate operating voltages for analog,  
digital and I/O  
5.5 KiB On-chip RAM for user code /  
data  
Serial control and data interfaces  
Can be used as a slave co-processor  
SPI flash boot for special applications  
UART for debugging purposes  
New functions may be added with soft-  
ware and 4 GPIO pins  
audio  
L
mic  
audio  
VS1003  
Mono  
ADC  
Stereo  
DAC  
Stereo Ear−  
phone Driver  
MIC AMP  
MUX  
R
line  
audio  
GPIO  
output  
4
GPIO  
X ROM  
X RAM  
Y ROM  
Y RAM  
DREQ  
SO  
SI  
Serial  
Data/  
Control  
Interface  
4
SCLK  
XCS  
XDCS  
VSDSP  
RX  
TX  
UART  
Clock  
multiplier  
Instruction  
RAM  
Instruction  
ROM  
Version: 1.05, 2011-04-13  
1
VS1003  
CONTENTS  
Contents  
VS1003  
1
2
5
6
6
6
7
Table of Contents  
List of Figures  
1 Licenses  
2 Disclaimer  
3 Definitions  
4 Characteristics & Specifications  
4.1 Absolute Maximum Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
4.2 Recommended Operating Conditions . . . . . . . . . . . . . . . . . . . . . . . .  
4.3 Analog Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
4.4 Power Consumption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
4.5 Digital Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
4.6 Switching Characteristics - Boot Initialization . . . . . . . . . . . . . . . . . . . .  
7
7
8
9
9
9
4.7 Typical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
4.7.1 Line input ADC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
4.7.2 Microphone input ADC . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
4.7.3 RIGHT and LEFT outputs . . . . . . . . . . . . . . . . . . . . . . . . 11  
5 Packages and Pin Descriptions  
12  
5.1 Packages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
5.1.1 LQFP-48 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
5.1.2 BGA-49 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
5.2 LQFP-48 and BGA-49 Pin Descriptions . . . . . . . . . . . . . . . . . . . . . . . 14  
6 Connection Diagram, LQFP-48  
7 SPI Buses  
16  
17  
7.1 General . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
7.2 SPI Bus Pin Descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
7.2.1 VS1002 Native Modes (New Mode) . . . . . . . . . . . . . . . . . . . 17  
7.2.2 VS1001 Compatibility Mode . . . . . . . . . . . . . . . . . . . . . . . 17  
7.3 Data Request Pin DREQ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
7.4 Serial Protocol for Serial Data Interface (SDI) . . . . . . . . . . . . . . . . . . . 18  
7.4.1 General . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
7.4.2 SDI in VS1002 Native Modes (New Mode) . . . . . . . . . . . . . . . 18  
7.4.3 SDI in VS1001 Compatibility Mode . . . . . . . . . . . . . . . . . . . 19  
7.4.4 Passive SDI Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
7.5 Serial Protocol for Serial Command Interface (SCI) . . . . . . . . . . . . . . . . 19  
7.5.1 General . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
7.5.2 SCI Read . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
7.5.3 SCI Write . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
7.6 SPI Timing Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
7.7 SPI Examples with SM_SDINEW and SM_SDISHARED set . . . . . . . . . . . 22  
7.7.1 Two SCI Writes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
Version: 1.05, 2011-04-13  
2
VS1003  
CONTENTS  
7.7.2 Two SDI Bytes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
7.7.3 SCI Operation in Middle of Two SDI Bytes . . . . . . . . . . . . . . . 23  
8 Functional Description  
24  
8.1 Main Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24  
8.2 Supported Audio Codecs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24  
8.2.1 Supported MP3 (MPEG layer III) Formats . . . . . . . . . . . . . . . 24  
8.2.2 Supported WMA Formats . . . . . . . . . . . . . . . . . . . . . . . . 25  
8.2.3 Supported RIFF WAV Formats . . . . . . . . . . . . . . . . . . . . . . 26  
8.2.4 Supported MIDI Formats . . . . . . . . . . . . . . . . . . . . . . . . . 27  
8.3 Data Flow of VS1003 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  
8.4 Serial Data Interface (SDI) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  
8.5 Serial Control Interface (SCI) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  
8.6 SCI Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  
8.6.1 SCI_MODE (RW) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  
8.6.2 SCI_STATUS (RW) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  
8.6.3 SCI_BASS (RW) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  
8.6.4 SCI_CLOCKF (RW) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33  
8.6.5 SCI_DECODE_TIME (RW) . . . . . . . . . . . . . . . . . . . . . . . 34  
8.6.6 SCI_AUDATA (RW) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34  
8.6.7 SCI_WRAM (RW) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34  
8.6.8 SCI_WRAMADDR (W) . . . . . . . . . . . . . . . . . . . . . . . . . . 34  
8.6.9 SCI_HDAT0 and SCI_HDAT1 (R) . . . . . . . . . . . . . . . . . . . . 35  
8.6.10 SCI_AIADDR (RW) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36  
8.6.11 SCI_VOL (RW) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37  
8.6.12 SCI_AICTRL[x] (RW) . . . . . . . . . . . . . . . . . . . . . . . . . . . 37  
9 Operation  
38  
9.1 Clocking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38  
9.2 Hardware Reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38  
9.3 Software Reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38  
9.4 ADPCM Recording . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39  
9.4.1 Activating ADPCM mode . . . . . . . . . . . . . . . . . . . . . . . . . 39  
9.4.2 Reading IMA ADPCM Data . . . . . . . . . . . . . . . . . . . . . . . 39  
9.4.3 Adding a RIFF Header . . . . . . . . . . . . . . . . . . . . . . . . . . 40  
9.4.4 Playing ADPCM Data . . . . . . . . . . . . . . . . . . . . . . . . . . . 41  
9.4.5 Sample Rate Considerations . . . . . . . . . . . . . . . . . . . . . . . 41  
9.4.6 Example Code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41  
9.5 SPI Boot . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43  
9.6 Play/Decode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43  
9.7 Feeding PCM data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43  
9.8 SDI Tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44  
9.8.1 Sine Test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44  
9.8.2 Pin Test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45  
9.8.3 Memory Test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45  
9.8.4 SCI Test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45  
10 VS1003 Registers  
46  
10.1 Who Needs to Read This Chapter . . . . . . . . . . . . . . . . . . . . . . . . . . 46  
10.2 The Processor Core . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46  
10.3 VS1003 Memory Map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46  
Version: 1.05, 2011-04-13  
3
VS1003  
CONTENTS  
10.4 SCI Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46  
10.5 Serial Data Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47  
10.6 DAC Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48  
10.7 GPIO Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48  
10.8 Interrupt Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49  
10.9 A/D Modulator Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50  
10.10 Watchdog v1.0 2002-08-26 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51  
10.10.1 Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51  
10.11 UART v1.0 2002-04-23 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52  
10.11.1 Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52  
10.11.2 Status UARTx_STATUS . . . . . . . . . . . . . . . . . . . . . . . . . 52  
10.11.3 Data UARTx_DATA . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53  
10.11.4 Data High UARTx_DATAH . . . . . . . . . . . . . . . . . . . . . . . . 53  
10.11.5 Divider UARTx_DIV . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53  
10.11.6 Interrupts and Operation . . . . . . . . . . . . . . . . . . . . . . . . . 54  
10.12 Timers v1.0 2002-04-23 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55  
10.12.1 Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55  
10.12.2 Configuration TIMER_CONFIG . . . . . . . . . . . . . . . . . . . . . 55  
10.12.3 Configuration TIMER_ENABLE . . . . . . . . . . . . . . . . . . . . . 56  
10.12.4 Timer X Startvalue TIMER_Tx[L/H] . . . . . . . . . . . . . . . . . . . 56  
10.12.5 Timer X Counter TIMER_TxCNT[L/H] . . . . . . . . . . . . . . . . . . 56  
10.12.6 Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56  
10.13 System Vector Tags . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57  
10.13.1 AudioInt, 0x20 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57  
10.13.2 SciInt, 0x21 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57  
10.13.3 DataInt, 0x22 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57  
10.13.4 ModuInt, 0x23 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57  
10.13.5 TxInt, 0x24 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58  
10.13.6 RxInt, 0x25 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58  
10.13.7 Timer0Int, 0x26 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58  
10.13.8 Timer1Int, 0x27 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58  
10.13.9 UserCodec, 0x0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59  
10.14 System Vector Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59  
10.14.1 WriteIRam(), 0x2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59  
10.14.2 ReadIRam(), 0x4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59  
10.14.3 DataBytes(), 0x6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60  
10.14.4 GetDataByte(), 0x8 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60  
10.14.5 GetDataWords(), 0xa . . . . . . . . . . . . . . . . . . . . . . . . . . . 60  
10.14.6 Reboot(), 0xc . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60  
11 Document Version Changes  
12 Contact Information  
61  
62  
Version: 1.05, 2011-04-13  
4
VS1003  
LIST OF FIGURES  
List of Figures  
1
Measured ADC performance of the LINEIN pin. X-axis is rms amplitude of 1 kHz  
sine input. Curves are unweighted signal-to-noise ratio (blue), A-weighted signal-  
to-noise ratio (green), and unweighted signal-to-distortion ratio (red). Sampling  
rate of ADC is 48 kHz (master clock 12.288 MHz), noise calculated from 0 to  
20 kHz. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
Measured ADC performance of the MIC pins (differential). Other settings same  
as in Fig. 1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
Measured performance of RIGHT (or LEFT) output with 1 kHz generated sine.  
Sampling rate of DAC is 48 kHz (master clock 12.288 MHz), noise calculated  
from 0 to 20 kHz. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
Typical spectrum of RIGHT (or LEFT) output with maximum level and 30 Ohm  
load. Setup is the same is in Fig. 3. . . . . . . . . . . . . . . . . . . . . . . . . . 12  
Pin Configuration, LQFP-48. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
Pin Configuration, BGA-49. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
Typical Connection Diagram Using LQFP-48. . . . . . . . . . . . . . . . . . . . . 16  
BSYNC Signal - one byte transfer. . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
BSYNC Signal - two byte transfer. . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
2
3
4
5
6
7
8
9
10 SCI Word Read . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
11 SCI Word Write . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
12 SPI Timing Diagram. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
13 Two SCI Operations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
14 Two SDI Bytes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
15 Two SDI Bytes Separated By an SCI Operation. . . . . . . . . . . . . . . . . . . . 23  
16 Data Flow of VS1003. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  
17 ADPCM Frequency Responses with 8kHz sample rate. . . . . . . . . . . . . . . 31  
18 User’s Memory Map. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47  
19 RS232 Serial Interface Protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52  
Version: 1.05, 2011-04-13  
5
VS1003  
3
DEFINITIONS  
1 Licenses  
MPEG Layer-3 audio decoding technology licensed from Fraunhofer IIS and Thomson.  
VS1003 contains WMA decoding technology from Microsoft.  
This product is protected by certain intellectual property rights of Microsoft and cannot  
be used or further distributed without a license from Microsoft.  
2 Disclaimer  
All properties and figures are subject to change.  
3 Definitions  
B Byte, 8 bits.  
b Bit.  
Ki “Kibi” = 210 = 1024 (IEC 60027-2).  
Mi “Mebi” = 220 = 1048576 (IEC 60027-2).  
VS_DSP VLSI Solution’s DSP core.  
W Word. In VS_DSP, instruction words are 32-bit and data words are 16-bit wide.  
Version: 1.05, 2011-04-13  
6
VS1003  
4
CHARACTERISTICS & SPECIFICATIONS  
4 Characteristics & Specifications  
4.1 Absolute Maximum Ratings  
Parameter  
Symbol Min  
AVDD -0.3  
CVDD -0.3  
IOVDD -0.3  
Max  
Unit  
V
V
V
Analog Positive Supply  
Digital Positive Supply  
I/O Positive Supply  
2.85  
2.85  
3.6  
Current at Any Digital Output  
Voltage at Any Digital Input  
Operating Temperature  
Storage Temperature  
±50  
mA  
V
-0.3 IOVDD+0.31  
-40  
-65  
+85  
+150  
C  
C  
1
Must not exceed 3.6 V  
4.2 Recommended Operating Conditions  
Parameter  
Symbol  
Min  
-40  
Typ  
Max Unit  
Ambient Operating Temperature  
Analog and Digital Ground 1  
Positive Analog  
+85 C  
V
AGND DGND  
AVDD  
0.0  
2.8  
2.5  
2.6  
2.4  
CVDD-0.6V  
2.85  
2.85  
3.6  
V
V
V
Positive Digital  
I/O Voltage  
CVDD  
IOVDD  
XTALI  
2.8  
Input Clock Frequency2  
Internal Clock Frequency  
Internal Clock Multiplier3  
Master Clock Duty Cycle  
12  
12  
12.288  
13  
MHz  
CLKI  
36.864 52.04 MHz  
4
1.0×  
3.0×  
4.5×  
40  
50  
60  
%
1
2
Must be connected together as close the device as possible for latch-up immunity.  
The maximum sample rate that can be played with correct speed is XTALI/256.  
Thus, XTALI must be at least 12.288 MHz to be able to play 48 kHz at correct speed.  
3 Reset value is 1.0×. Recommended SC_MULT=3.0×, SC_ADD=1.0× (SCI_CLOCKF=0x9000).  
4
52.0 MHz is the maximum clock for the full CVDD range.  
(4.0 × 12.288 MHz=49.152 MHz or 4.0 × 13.0 MHz=52.0 MHz)  
Version: 1.05, 2011-04-13  
7
VS1003  
4
CHARACTERISTICS & SPECIFICATIONS  
4.3 Analog Characteristics  
Unless otherwise noted: AVDD=2.85V, CVDD=2.5V, IOVDD=-2.8V, TA=-25..+70C,  
XTALI=12.288MHz, DAC tested with 1307.894 Hz full-scale output sinewave, measurement  
bandwidth 20..20000 Hz, analog output load: LEFT to GBUF 30, RIGHT to GBUF 30. Mi-  
crophone test amplitude 50 mVpp, f=1 kHz, Line input test amplitude 2.2 Vpp, f=1 kHz.  
Parameter  
Symbol Min Typ  
Max Unit  
DAC Resolution  
18  
bits  
Total Harmonic Distortion  
Dynamic Range (DAC unmuted, A-weighted)  
S/N Ratio (full scale signal)  
Interchannel Isolation (Cross Talk)  
Interchannel Isolation (Cross Talk), with GBUF  
Interchannel Gain Mismatch  
Frequency Response  
Full Scale Output Voltage (Peak-to-peak)  
Deviation from Linear Phase  
Analog Output Load Resistance  
Analog Output Load Capacitance  
Microphone input amplifier gain  
Microphone input amplitude  
THD  
IDR  
SNR  
0.1  
>90  
834  
75  
0.3  
%
dB  
dB  
dB  
dB  
dB  
dB  
Vpp  
705  
50  
40  
-0.5 ±0.2  
0.5  
0.1  
1.7  
5
-0.1  
1.3  
1.51  
AOLR  
MICG  
16  
302  
100  
pF  
dB  
26  
50  
1403 mVpp AC  
Microphone Total Harmonic Distortion  
Microphone S/N Ratio  
Line input amplitude  
Line input Total Harmonic Distortion  
Line input S/N Ratio  
MTHD  
MSNR  
0.02  
68  
0.10  
%
dB  
505  
605  
2200 28003 mVpp AC  
LTHD  
LSNR  
0.015 0.10  
86  
100  
%
dB  
kΩ  
Line and Microphone input impedances  
Typical values are measured of about 5000 devices of Lot 4234011, Week Code 0452.  
1
3.0 volts can be achieved with +-to-+ wiring for mono difference sound.  
AOLR may be much lower, but below Typical distortion performance may be compromised.  
Above typical amplitude the Harmonic Distortion increases.  
Unweighted, A-weighted is about 3 dB better.  
2
3
4
5
Limit low due to noise level of production tester.  
Version: 1.05, 2011-04-13  
8
VS1003  
4
CHARACTERISTICS & SPECIFICATIONS  
4.4 Power Consumption  
Tested with an MPEG 1.0 Layer-3 128 kbit/s sample and generated sine. Output at full volume.  
XTALI 12.288 MHz. Internal clock multiplier 3.0×. CVDD = 2.5 V, AVDD = 2.8 V.  
Parameter  
Min Typ Max Unit  
Power Supply Consumption AVDD, Reset  
0.6  
3.7  
5.0  
40.0 µA  
200.0 µA  
µA  
Power Supply Consumption CVDD, Reset, +25C  
Power Supply Consumption CVDD, Reset, +85C  
Power Supply Consumption AVDD, sine test, 30+ GBUF  
Power Supply Consumption CVDD, sine test  
36.9  
12.4  
mA  
mA  
Power Supply Consumption AVDD, no load  
Power Supply Consumption AVDD, output load 30Ω  
Power Supply Consumption AVDD, 30+ GBUF  
Power Supply Consumption CVDD  
7.0  
mA  
mA  
mA  
mA  
10.9  
16.1  
17.5  
4.5 Digital Characteristics  
Parameter  
High-Level Input Voltage  
Low-Level Input Voltage  
Symbol  
Min  
Typ  
Max  
Unit  
V
V
V
0.7×IOVDD  
IOVDD+0.31  
-0.2  
0.3×IOVDD  
High-Level Output Voltage at IO = -1.0 mA  
Low-Level Output Voltage at IO = 1.0 mA  
Input Leakage Current  
0.7×IOVDD  
0.3×IOVDD  
V
-1.0  
1.0  
µA  
MHz  
ns  
CLKI  
7
SPI Input Clock Frequency 2  
Rise time of all output pins, load = 50 pF  
50  
1
2
Must not exceed 3.6V  
Value for SCI reads. SCI and SDI writes allow  
CLKI  
4
.
4.6 Switching Characteristics - Boot Initialization  
Parameter  
Symbol  
Min  
Max  
Unit  
XRESET active time  
XRESET inactive to software ready  
Power on reset, rise time to CVDD  
2
XTALI  
16600 500001 XTALI  
10  
V/s  
1
DREQ rises when initialization is complete. You should not send any data or commands  
before that.  
Version: 1.05, 2011-04-13  
9
VS1003  
4
CHARACTERISTICS & SPECIFICATIONS  
4.7 Typical characteristics  
4.7.1 Line input ADC  
100  
90  
80  
70  
60  
50  
40  
30  
SNR  
SNRa  
THD  
20  
0.001  
0.01  
0.1  
1
input voltage (rms)  
Figure 1: Measured ADC performance of the LINEIN pin. X-axis is rms amplitude of 1 kHz  
sine input. Curves are unweighted signal-to-noise ratio (blue), A-weighted signal-to-noise ratio  
(green), and unweighted signal-to-distortion ratio (red). Sampling rate of ADC is 48 kHz (master  
clock 12.288 MHz), noise calculated from 0 to 20 kHz.  
4.7.2 Microphone input ADC  
Version: 1.05, 2011-04-13  
10  
VS1003  
4
CHARACTERISTICS & SPECIFICATIONS  
100  
90  
80  
70  
60  
50  
40  
30  
20  
SNR  
SNRa  
THD  
0.001  
0.01  
input voltage (rms)  
0.1  
Figure 2: Measured ADC performance of the MIC pins (differential). Other settings same as in  
Fig. 1.  
4.7.3 RIGHT and LEFT outputs  
100  
80  
60  
40  
SNR 30R LOAD  
20  
SNR AWEIGHT 30R LOAD  
THD 30R LOAD  
THD NO LOAD  
0.1  
output voltage (rms)  
0
0.001  
0.01  
1
Figure 3: Measured performance of RIGHT (or LEFT) output with 1 kHz generated sine. Sam-  
pling rate of DAC is 48 kHz (master clock 12.288 MHz), noise calculated from 0 to 20 kHz.  
Version: 1.05, 2011-04-13  
11  
VS1003  
5
PACKAGES AND PIN DESCRIPTIONS  
0
-20  
-40  
-60  
-80  
-100  
-120  
0
5000  
10000  
15000  
20000  
frequency Hz  
Figure 4: Typical spectrum of RIGHT (or LEFT) output with maximum level and 30 Ohm load.  
Setup is the same is in Fig. 3.  
5 Packages and Pin Descriptions  
5.1 Packages  
Both LPQFP-48 and BGA-49 are lead (Pb) free and also RoHS compliant packages. RoHS  
is a short name of Directive 2002/95/EC on the restriction of the use of certain hazardous  
substances in electrical and electronic equipment.  
5.1.1 LQFP-48  
48  
1
Figure 5: Pin Configuration, LQFP-48.  
LQFP-48 package dimensions are at http://www.vlsi.fi/ .  
Version: 1.05, 2011-04-13  
12  
VS1003  
5
PACKAGES AND PIN DESCRIPTIONS  
5.1.2 BGA-49  
A1 BALL PAD CORNER  
4
5
3
6
7
1
2
A
B
C
D
E
F
G
1.10 REF  
0.80 TYP  
4.80  
7.00  
TOP VIEW  
Figure 6: Pin Configuration, BGA-49.  
BGA-49 package dimensions are at http://www.vlsi.fi/ .  
Version: 1.05, 2011-04-13  
13  
VS1003  
5
PACKAGES AND PIN DESCRIPTIONS  
5.2 LQFP-48 and BGA-49 Pin Descriptions  
Pin Name  
LQFP- BGA49 Pin  
Function  
48  
Ball  
Type  
Pin  
MICP  
MICN  
1
2
3
4
5
6
7
8
9
C3  
C2  
B1  
D2  
C1  
D3  
D1  
E2  
E1  
F2  
E3  
F3  
G2  
F4  
G3  
E4  
G4  
F5  
AI  
AI  
DI  
DGND  
CPWR  
IOPWR  
CPWR  
DO  
DIO  
DIO  
DI  
IOPWR  
DO  
DGND  
AO  
AI  
IOPWR  
IOPWR  
DGND  
DGND  
DGND  
DI  
Positive differential microphone input, self-biasing  
Negative differential microphone input, self-biasing  
Active low asynchronous reset  
Core & I/O ground  
Core power supply  
I/O power supply  
Core power supply  
Data request, input bus  
General purpose IO 2 / serial input data bus clock  
General purpose IO 3 / serial data input  
Data chip select / byte sync  
I/O power supply  
For testing only (Clock VCO output)  
Core & I/O ground  
Crystal output  
Crystal input  
I/O power supply  
XRESET  
DGND0  
CVDD0  
IOVDD0  
CVDD1  
DREQ  
GPIO2 / DCLK1  
GPIO3 / SDATA1 10  
XDCS / BSYNC1 13  
IOVDD1  
VCO  
DGND1  
XTALO  
XTALI  
IOVDD2  
IOVDD3  
DGND2  
DGND3  
DGND4  
XCS  
14  
15  
16  
17  
18  
19  
I/O power supply  
20  
21  
22  
23  
24  
Core & I/O ground  
Core & I/O ground  
Core & I/O ground  
Chip select input (active low)  
Core power supply  
G5  
F6  
G6  
G7  
CVDD2  
CPWR  
RX  
TX  
SCLK  
SI  
SO  
CVDD3  
TEST  
GPIO0 / SPIBOOT 33  
26  
27  
28  
29  
30  
31  
32  
E6  
F7  
D6  
E7  
D5  
D7  
C6  
C7  
DI  
DO  
DI  
UART receive, connect to IOVDD if not used  
UART transmit  
Clock for serial bus  
Serial input  
Serial output  
DI  
DO3  
CPWR  
DI  
Core power supply  
Reserved for test, connect to IOVDD  
General purpose IO 0 / SPIBOOT, use 100 kpull-  
down resistor2  
DIO  
GPIO1  
34  
B6  
DIO  
General purpose IO 1  
AGND0  
AVDD0  
RIGHT  
AGND1  
AGND2  
GBUF  
AVDD1  
RCAP  
AVDD2  
LEFT  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
C5  
B5  
A6  
B4  
A5  
C4  
A4  
B3  
A3  
B2  
A2  
A1  
APWR  
APWR  
AO  
APWR  
APWR  
AO  
APWR  
AIO  
APWR  
AO  
Analog ground, low-noise reference  
Analog power supply  
Right channel output  
Analog ground  
Analog ground  
Common buffer for headphones  
Analog power supply  
Filtering capacitance for reference  
Analog power supply  
Left channel output  
AGND3  
LINEIN  
APWR  
AI  
Analog ground  
Line input  
1
2
First pin function is active in New Mode, latter in Compatibility Mode.  
Unless pull-down resistor is used, SPI Boot is tried. See Chapter 9.5 for details.  
Version: 1.05, 2011-04-13  
14  
VS1003  
5
PACKAGES AND PIN DESCRIPTIONS  
Pin types:  
Type  
Description  
Type Description  
AO  
Analog output  
DI  
Digital input, CMOS Input Pad  
AIO  
Analog input/output  
Analog power supply pin  
Core or I/O ground pin  
Core power supply pin  
DO  
DIO  
Digital output, CMOS Input Pad  
Digital input/output  
APWR  
DGND  
CPWR  
DO3 Digital output, CMOS Tri-stated Output  
Pad  
AI  
Analog input  
IOPWR I/O power supply pin  
In BGA-49, no-connect balls are A7, B7, D4, E5, F1, G1.  
In LQFP-48, no-connect pins are 11, 12, 25, 35, 36.  
Version: 1.05, 2011-04-13  
15  
VS1003  
6
CONNECTION DIAGRAM, LQFP-48  
6 Connection Diagram, LQFP-48  
Figure 7: Typical Connection Diagram Using LQFP-48.  
The common buffer GBUF can be used for common voltage (1.24 V) for earphones. This will  
eliminate the need for large isolation capacitors on line outputs, and thus the audio output pins  
from VS1003 may be connected directly to the earphone connector.  
GBUF must NOT be connected to ground under any circumstances. If GBUF is not used,  
LEFT and RIGHT must be provided with coupling capacitors. To keep GBUF stable, you should  
always have the resistor and capacitor even when GBUF is not used. See application notes for  
details.  
Unused GPIO pins should have a pull-down resistor.  
If UART is not used, RX should be connected to IOVDD and TX be unconnected.  
Do not connect any external load to XTALO.  
Note: This connection assumes SM_SDINEW is active (see Chapter 8.6.1). If also SM_SDISHARE  
is used, xDCS should be tied high (see Chapter 7.2.1).  
Version: 1.05, 2011-04-13  
16  
VS1003  
7
SPI BUSES  
7 SPI Buses  
7.1 General  
The SPI Bus - that was originally used in some Motorola devices - has been used for both  
VS1003’s Serial Data Interface SDI (Chapters 7.4 and 8.4) and Serial Control Interface SCI  
(Chapters 7.5 and 8.5).  
7.2 SPI Bus Pin Descriptions  
7.2.1 VS1002 Native Modes (New Mode)  
These modes are active on VS1003 when SM_SDINEW is set to 1 (default at startup). DCLK  
and SDATA are not used for data transfer and they can be used as general-purpose I/O pins  
(GPIO2 and GPIO3). BSYNC function changes to data interface chip select (XDCS).  
SDI Pin SCI Pin Description  
XDCS  
XCS  
Active low chip select input. A high level forces the serial interface into  
standby mode, ending the current operation. A high level also forces serial  
output (SO) to high impedance state. If SM_SDISHARE is 1, pin  
XDCS is not used, but the signal is generated internally by inverting  
XCS.  
SCK  
Serial clock input. The serial clock is also used internally as the master  
clock for the register interface.  
SCK can be gated or continuous. In either case, the first rising clock edge  
after XCS has gone low marks the first bit to be written.  
Serial input. If a chip select is active, SI is sampled on the rising CLK edge.  
Serial output. In reads, data is shifted out on the falling SCK edge.  
In writes SO is at a high impedance state.  
SI  
-
SO  
7.2.2 VS1001 Compatibility Mode  
This mode is active when SM_SDINEW is set to 0. In this mode, DCLK, SDATA and BSYNC  
are active.  
SDI Pin SCI Pin Description  
-
XCS  
Active low chip select input. A high level forces the serial interface into  
standby mode, ending the current operation. A high level also forces serial  
output (SO) to high impedance state.  
BSYNC  
DCLK  
-
SDI data is synchronized with a rising edge of BSYNC.  
Serial clock input. The serial clock is also used internally as the master  
clock for the register interface.  
SCK  
SCK can be gated or continuous. In either case, the first rising clock edge  
after XCS has gone low marks the first bit to be written.  
Serial input. SI is sampled on the rising SCK edge, if XCS is low.  
Serial output. In reads, data is shifted out on the falling SCK edge.  
In writes SO is at a high impedance state.  
SDATA  
-
SI  
SO  
Version: 1.05, 2011-04-13  
17  
VS1003  
7
SPI BUSES  
7.3 Data Request Pin DREQ  
The DREQ pin/signal is used to signal if VS1003’s FIFO is capable of receiving data. If DREQ  
is high, VS1003 can take at least 32 bytes of SDI data or one SCI command. When these  
criteria are not met, DREQ is turned low, and the sender should stop transferring new data.  
Because of the 32-byte safety area, the sender may send upto 32 bytes of SDI data at a  
time without checking the status of DREQ, making controlling VS1003 easier for low-speed  
microcontrollers.  
Note: DREQ may turn low or high at any time, even during a byte transmission. Thus, DREQ  
should only be used to decide whether to send more bytes. It should not abort a transmission  
that has already started.  
Note: In VS10XX products upto VS1002, DREQ was only used for SDI. In VS1003 DREQ is  
also used to tell the status of SCI.  
There are cases when you still want to send SCI commands when DREQ is low. Because  
DREQ is shared between SDI and SCI, you can not determine if a SCI command has been  
executed if SDI is not ready to receive. In this case you need a long enough delay after every  
SCI command to make certain none of them is missed. The SCI Registers table in section 8.6  
gives the worst-case handling time for each SCI register write.  
7.4 Serial Protocol for Serial Data Interface (SDI)  
7.4.1 General  
The serial data interface operates in slave mode so DCLK signal must be generated by an  
external circuit.  
Data (SDATA signal) can be clocked in at either the rising or falling edge of DCLK (Chapter 8.6).  
VS1003 assumes its data input to be byte-sychronized. SDI bytes may be transmitted either  
MSb or LSb first, depending of contents of SCI_MODE (Chapter 8.6.1).  
The firmware is able to accept the maximum bitrate the SDI supports.  
7.4.2 SDI in VS1002 Native Modes (New Mode)  
In VS1002 native modes (SM_NEWMODE is 1), byte synchronization is achieved by XDCS.  
The state of XDCS may not change while a data byte transfer is in progress. To always main-  
tain data synchronization even if there may be glitches in the boards using VS1003, it is rec-  
ommended to turn XDCS every now and then, for instance once after every flash data block or  
a few kilobytes, just to keep sure the host and VS1003 are in sync.  
If SM_SDISHARE is 1, the XDCS signal is internally generated by inverting the XCS input.  
For new designs, using VS1002 native modes are recommended.  
Version: 1.05, 2011-04-13  
18  
VS1003  
7
SPI BUSES  
7.4.3 SDI in VS1001 Compatibility Mode  
BSYNC  
SDATA  
DCLK  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Figure 8: BSYNC Signal - one byte transfer.  
When VS1003 is running in VS1001 compatibility mode, a BSYNC signal must be generated  
to ensure correct bit-alignment of the input bitstream. The first DCLK sampling edge (rising or  
falling, depending on selected polarity), during which the BSYNC is high, marks the first bit of  
a byte (LSB, if LSB-first order is used, MSB, if MSB-first order is used). If BSYNC is ’1’ when  
the last bit is received, the receiver stays active and next 8 bits are also received.  
BSYNC  
SDATA  
DCLK  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Figure 9: BSYNC Signal - two byte transfer.  
7.4.4 Passive SDI Mode  
If SM_NEWMODE is 0 and SM_SDISHARE is 1, the operation is otherwise like the VS1001  
compatibility mode, but bits are only received while the BSYNC signal is ’1’. Rising edge of  
BSYNC is still used for synchronization.  
7.5 Serial Protocol for Serial Command Interface (SCI)  
7.5.1 General  
The serial bus protocol for the Serial Command Interface SCI (Chapter 8.5) consists of an  
instruction byte, address byte and one 16-bit data word. Each read or write operation can read  
or write a single register. Data bits are read at the rising edge, so the user should update data  
at the falling edge. Bytes are always send MSb first. XCS should be low for the full duration of  
the operation, but you can have pauses between bits if needed.  
The operation is specified by an 8-bit instruction opcode. The supported instructions are read  
and write. See table below.  
Instruction  
Name  
READ  
Opcode  
0b0000 0011 Read data  
Operation  
WRITE 0b0000 0010 Write data  
Note: VS1003 sets DREQ low after each SCI operation. The duration depends on the opera-  
tion. It is not allowed to start a new SCI/SDI operation before DREQ is high again.  
Version: 1.05, 2011-04-13  
19  
VS1003  
7
SPI BUSES  
7.5.2 SCI Read  
XCS  
0
0
1
0
2
0
3
0
4
0
5
0
6
1
7
1
8
0
9
0
10 11 12 13 14 15 16 17  
30 31  
SCK  
SI  
3
2
1
0
don’t care  
data out  
don’t care  
0
0
0
instruction (read)  
address  
15 14  
1
0
SO  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
X
execution  
DREQ  
Figure 10: SCI Word Read  
VS1003 registers are read from using the following sequence, as shown in Figure 10. First,  
XCS line is pulled low to select the device. Then the READ opcode (0x3) is transmitted via  
the SI line followed by an 8-bit word address. After the address has been read in, any further  
data on SI is ignored by the chip. The 16-bit data corresponding to the received address will be  
shifted out onto the SO line.  
XCS should be driven high after data has been shifted out.  
DREQ is driven low for a short while when in a read operation by the chip. This is a very short  
time and doesn’t require special user attention.  
7.5.3 SCI Write  
XCS  
0
0
0
1
0
2
0
3
0
4
0
5
0
6
1
0
7
0
0
8
0
0
9
0
0
10 11 12 13 14 15 16 17  
30 31  
SCK  
SI  
15 14  
1
0
3
2
1
0
X
X
0
0
0
data out  
instruction (write)  
address  
SO  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
execution  
DREQ  
Figure 11: SCI Word Write  
VS1003 registers are written from using the following sequence, as shown in Figure 11. First,  
XCS line is pulled low to select the device. Then the WRITE opcode (0x2) is transmitted via the  
SI line followed by an 8-bit word address.  
Version: 1.05, 2011-04-13  
20  
VS1003  
7
SPI BUSES  
After the word has been shifted in and the last clock has been sent, XCS should be pulled high  
to end the WRITE sequence.  
After the last bit has been sent, DREQ is driven low for the duration of the register update,  
marked “execution” in the figure. The time varies depending on the register and its contents  
(see table in Chapter 8.6 for details). If the maximum time is longer than what it takes from  
the microcontroller to feed the next SCI command or SDI byte, it is not allowed to finish a new  
SCI/SDI operation before DREQ has risen up again.  
7.6 SPI Timing Diagram  
tWL tWH  
tXCSH  
tXCSS  
XCS  
SCK  
SI  
tXCS  
30  
0
1
14  
15  
16  
31  
tH  
tSU  
SO  
tZ  
tV  
tDIS  
Figure 12: SPI Timing Diagram.  
Symbol Min Max Unit  
tXCSS  
tSU  
5
0
ns  
ns  
tH  
tZ  
2
0
CLKI cycles  
ns  
tWL  
tWH  
tV  
tXCSH  
tXCS  
tDIS  
2
2
CLKI cycles  
CLKI cycles  
CLKI cycles  
CLKI  
2 (+ 25ns1)  
1
2
CLKI cycles  
10 ns  
1
25ns is when pin loaded with 100pF capacitance. The time is shorter with lower capacitance.  
Note: As tWL and tWH, as well as tH require at least 2 clock cycles, the maximum speed for  
the SPI bus that can easily be used with asynchronous clocks is 1/7 of VS1003’s internal clock  
speed CLKI.  
Note: Although the timing is derived from the internal clock CLKI, the system always starts up  
in 1.0× mode, thus CLKI=XTALI.  
Version: 1.05, 2011-04-13  
21  
VS1003  
7
SPI BUSES  
7.7 SPI Examples with SM_SDINEW and SM_SDISHARED set  
7.7.1 Two SCI Writes  
SCI Write 1  
SCI Write 2  
XCS  
SCK  
0
0
1
0
2
0
3
0
30  
1
31  
0
32  
33  
61  
62  
1
63  
0
2
SI  
X
0
0
X
DREQ up before finishing next SCI write  
DREQ  
Figure 13: Two SCI Operations.  
Figure 13 shows two consecutive SCI operations. Note that xCS must be raised to inactive  
state between the writes. Also DREQ must be respected as shown in the figure.  
7.7.2 Two SDI Bytes  
SDI Byte 1  
SDI Byte 2  
XCS  
0
7
1
6
2
5
3
4
6
1
7
0
8
7
9
6
13  
2
14  
1
15  
0
SCK  
SI  
3
5
X
DREQ  
Figure 14: Two SDI Bytes.  
SDI data is synchronized with a raising edge of xCS as shown in Figure 14. However, every  
byte doesn’t need separate synchronization.  
Version: 1.05, 2011-04-13  
22  
VS1003  
7
SPI BUSES  
7.7.3 SCI Operation in Middle of Two SDI Bytes  
SDI Byte  
SDI Byte  
SCI Operation  
XCS  
SCK  
0
1
7
8
9
39  
40  
7
41  
6
46  
1
47  
0
7
6
5
1
0
5
X
SI  
0
0
DREQ high before end of next transfer  
DREQ  
Figure 15: Two SDI Bytes Separated By an SCI Operation.  
Figure 15 shows how an SCI operation is embedded in between SDI operations. xCS edges  
are used to synchronize both SDI and SCI. Remember to respect DREQ as shown in the figure.  
Version: 1.05, 2011-04-13  
23  
VS1003  
8
FUNCTIONAL DESCRIPTION  
8 Functional Description  
8.1 Main Features  
VS1003 is based on a proprietary digital signal processor, VS_DSP. It contains all the code  
and data memory needed for MP3, WMA and WAV PCM + ADPCM audio decoding, MIDI  
synthesizer, together with serial interfaces, a multirate stereo audio DAC and analog output  
amplifiers and filters. Also ADPCM audio encoding is supported using a microphone amplifier  
and A/D converter. A UART is provided for debugging purposes.  
8.2 Supported Audio Codecs  
Conventions  
Mark Description  
+
-
Format is supported  
Format exists but is not supported  
Format doesn’t exist  
8.2.1 Supported MP3 (MPEG layer III) Formats  
MPEG 1.01:  
Samplerate / Hz  
Bitrate / kbit/s  
32 40 48 56 64 80 96 112 128 160 192 224 256 320  
48000  
44100  
32000  
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
MPEG 2.01:  
Samplerate / Hz  
Bitrate / kbit/s  
16 24 32 40 48 56 64 80 96 112 128 144 160  
8
24000  
22050  
16000  
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
MPEG 2.51 2  
:
Samplerate / Hz  
Bitrate / kbit/s  
16 24 32 40 48 56 64 80 96 112 128 144 160  
8
12000  
11025  
8000  
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
1
2
Also all variable bitrate (VBR) formats are supported.  
Incompatibilities may occur because MPEG 2.5 is not a standard format.  
Version: 1.05, 2011-04-13  
24  
VS1003  
8
FUNCTIONAL DESCRIPTION  
8.2.2 Supported WMA Formats  
Windows Media Audio codec versions 2, 7, 8, and 9 are supported. All WMA profiles (L1, L2,  
and L3) are supported. Previously streams were separated into Classes 1, 2a, 2b, and 3. WMA  
9 Professional and WMA 9 Lossless are not supported. The decoder has passed Microsoft’s  
conformance testing program.  
WMA 4.0 / 4.1:  
Samplerate  
/ Hz  
Bitrate / kbit/s  
5
+
6
+
8
10 12 16 20 22 32 40 48 64 80 96 128 160 192  
8000  
11025  
16000  
22050  
32000  
44100  
48000  
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
WMA 7:  
Samplerate  
/ Hz  
Bitrate / kbit/s  
5
+
6
+
8
10 12 16 20 22 32 40 48 64 80 96 128 160 192  
8000  
11025  
16000  
22050  
32000  
44100  
48000  
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
WMA 8:  
Samplerate  
/ Hz  
Bitrate / kbit/s  
5
+
6
+
8
10 12 16 20 22 32 40 48 64 80 96 128 160 192  
8000  
11025  
16000  
22050  
32000  
44100  
48000  
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
WMA 9:  
Samplerate  
/ Hz  
Bitrate / kbit/s  
5
+
6
8
10 12 16 20 22 32 40 48 64 80 96 128 160 192 256 320  
8000  
11025  
16000  
22050  
32000  
44100  
48000  
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
In addition to these expected WMA decoding profiles, all other bitrate and samplerate com-  
binations are supported, including variable bitrate WMA streams. Note that WMA does not  
consume the bitstream as evenly as MP3, so you need a higher peak transfer capability for  
clean playback at the same bitrate.  
Version: 1.05, 2011-04-13  
25  
VS1003  
8
FUNCTIONAL DESCRIPTION  
8.2.3 Supported RIFF WAV Formats  
The most common RIFF WAV subformats are supported.  
Format Name  
Supported Comments  
0x01  
0x02  
0x03  
0x06  
0x07  
0x10  
0x11  
0x15  
0x16  
0x30  
0x31  
0x3b  
0x3c  
0x40  
0x41  
0x50  
0x55  
0x64  
0x65  
PCM  
ADPCM  
IEEE_FLOAT  
ALAW  
MULAW  
OKI_ADPCM  
IMA_ADPCM  
DIGISTD  
DIGIFIX  
DOLBY_AC2  
GSM610  
ROCKWELL_ADPCM  
ROCKWELL_DIGITALK  
G721_ADPCM  
G728_CELP  
MPEG  
MPEGLAYER3  
G726_ADPCM  
G722_ADPCM  
+
-
-
-
-
-
+
-
-
-
-
-
-
-
-
-
+
-
-
16 and 8 bits, any sample rate 48kHz  
Any sample rate 48kHz  
For supported MP3 modes, see Chapter 8.2.1  
Version: 1.05, 2011-04-13  
26  
VS1003  
8
FUNCTIONAL DESCRIPTION  
8.2.4 Supported MIDI Formats  
General MIDI and SP-MIDI format 0 files are played. Format 1 and 2 files must be converted to  
format 0 by the user. The maximum simultaneous polyphony is 40. Actual polyphony depends  
on the internal clock rate (which is user-selectable), the instruments used, and the possible  
postprocessing effects enabled, such as bass and treble enhancers. The polyphony restriction  
algorithm makes use of the SP-MIDI MIP table, if present.  
36.86 MHz (3.0× input clock) achieves 16-26 simultaneous sustained notes. The instantaneous  
amount of notes can be larger. 36 MHz is a fair compromise between power consumption and  
quality, but higher clocks can be used to increase polyphony.  
VS1003b implements 36 distinct instruments. Each melodic, effect, and percussion instrument  
is mapped into one of these instruments.  
VS1003b  
Effect  
Melodic  
Percussion  
piano  
vibraphone  
organ  
reverse cymbal bass drum  
guitar fret noise snare  
breath  
closed hihat  
open hihat  
high tom  
guitar  
seashore  
distortion guitar bird tweet  
bass  
telephone  
helicopter  
applause  
gunshot  
low tom  
violin  
strings  
trumpet  
sax  
flute  
lead  
crash cymbal 2  
ride cymbal  
tambourine  
high conga  
low conga  
maracas  
pad  
claves  
steeldrum  
Version: 1.05, 2011-04-13  
27  
VS1003  
8
FUNCTIONAL DESCRIPTION  
8.3 Data Flow of VS1003  
MP3/PlusV/  
SDI  
Bitstream  
FIFO  
WAV/ADPCM/  
WMA decode/  
MIDI decode  
SM_ADPCM=0  
AIADDR = 0  
SB_AMPLITUDE=0  
ST_AMPLITUDE=0  
L
User  
Application  
Bass  
enhancer  
Treble  
enhancer  
Volume  
control  
Audio  
FIFO  
S.rate.conv.  
and DAC  
R
AIADDR != 0  
SB_AMPLITUDE!=0  
ST_AMPLITUDE!=0  
SCI_VOL  
2048 stereo  
samples  
Figure 16: Data Flow of VS1003.  
First, depending on the audio data, and provided ADPCM encoding mode is not set, MP3,  
WMA, PCM WAV, IMA ADPCM WAV, or MIDI data is received and decoded from the SDI bus.  
After decoding, if SCI_AIADDR is non-zero, application code is executed from the address  
pointed to by that register. For more details, see Application Notes for VS10XX.  
Then data may be sent to the Bass and Treble Enhancer depending on the SCI_BASS register.  
After that the signal is fed to the volume control unit, which also copies the data to the Audio  
FIFO.  
The Audio FIFO holds the data, which is read by the Audio interrupt (Chapter 10.13.1) and fed  
to the sample rate converter and DACs. The size of the audio FIFO is 2048 stereo (2×16-bit)  
samples, or 8 KiB.  
The sample rate converter converts all different sample rates to XTALI/2, or 128 times the  
highest usable sample rate. This removes the need for complex PLL-based clocking schemes  
and allows almost unlimited sample rate accuracy with one fixed input clock frequency. With  
a 12.288 MHz clock, the DA converter operates at 128 × 48 kHz, i.e. 6.144 MHz, and creates  
a stereo in-phase analog signal. The oversampled output is low-pass filtered by an on-chip  
analog filter. This signal is then forwarded to the earphone amplifier.  
8.4 Serial Data Interface (SDI)  
The serial data interface is meant for transferring compressed MP3 or WMA data, WAV PCM  
and ADPCM data as well as MIDI data.  
If the input of the decoder is invalid or it is not received fast enough, analog outputs are auto-  
matically muted.  
Also several different tests may be activated through SDI as described in Chapter 9.  
Version: 1.05, 2011-04-13  
28  
VS1003  
8
FUNCTIONAL DESCRIPTION  
8.5 Serial Control Interface (SCI)  
The serial control interface is compatible with the SPI bus specification. Data transfers are  
always 16 bits. VS1003 is controlled by writing and reading the registers of the interface.  
The main controls of the control interface are:  
control of the operation mode, clock, and builtin effects  
access to status information and header data  
access to encoded digital data  
uploading user programs  
8.6 SCI Registers  
SCI registers, prefix SCI_  
Reg Type Reset  
Time1 Abbrev[bits]  
Description  
Mode control  
Status of VS1003  
Built-in bass/treble enhancer  
Clock freq + multiplier  
0x0  
0x1  
0x2  
0x3  
0x4  
0x5  
0x6  
0x7  
rw  
rw  
rw  
rw  
rw  
rw  
rw  
rw  
0x800  
70 CLKI4 MODE  
40 CLKI STATUS  
0x3C3  
0
0
0
0
0
0
2100 CLKI BASS  
11000 XTALI5 CLOCKF  
40 CLKI DECODE_TIME Decode time in seconds  
3200 CLKI AUDATA  
80 CLKI WRAM  
Misc. audio data  
RAM write/read  
80 CLKI WRAMADDR  
Base  
address  
for  
RAM  
write/read  
0x8  
0x9  
0xA  
0xB  
0xC  
0xD  
0xE  
0xF  
r
r
0
0
0
0
0
0
0
0
-
-
HDAT0  
HDAT1  
Stream header data 0  
Stream header data 1  
Start address of application  
Volume control  
Application control register 0  
Application control register 1  
Application control register 2  
Application control register 3  
rw  
rw  
rw  
rw  
rw  
rw  
3200 CLKI2 AIADDR  
2100 CLKI VOL  
50 CLKI2 AICTRL0  
50 CLKI2 AICTRL1  
50 CLKI2 AICTRL2  
50 CLKI2 AICTRL3  
1
This is the worst-case time that DREQ stays low after writing to this register. The user may  
choose to skip the DREQ check for those register writes that take less than 100 clock cycles to  
execute.  
2
In addition, the cycles spent in the user application routine must be counted.  
3
Firmware changes the value of this register immediately to 0x38, and in less than 100 ms to  
0x30.  
4
When mode register write specifies a software reset the worst-case time is 16600 XTALI  
cycles.  
5
Writing to this register may force internal clock to run at 1.0 × XTALI for a while. Thus it is not  
a good idea to send SCI or SDI bits while this register update is in progress.  
Note that if DREQ is low when an SCI write is done, DREQ also stays low after SCI write  
processing.  
Version: 1.05, 2011-04-13  
29  
VS1003  
8
FUNCTIONAL DESCRIPTION  
8.6.1 SCI_MODE (RW)  
SCI_MODE is used to control the operation of VS1003 and defaults to 0x0800 (SM_SDINEW  
set).  
Bit Name  
Function  
Differential  
Value Description  
normal in-phase audio  
0
1
2
3
4
5
6
7
8
9
SM_DIFF  
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
left channel inverted  
right  
wrong  
no reset  
reset  
SM_SETTOZERO  
SM_RESET  
Set to zero  
Soft reset  
SM_OUTOFWAV  
SM_PDOWN  
SM_TESTS  
Jump out of WAV decoding  
Powerdown  
no  
yes  
power on  
powerdown  
not allowed  
allowed  
no  
yes  
right  
wrong  
rising  
falling  
MSb first  
MSb last  
no  
yes  
no  
yes  
no  
yes  
no  
yes  
microphone  
Allow SDI tests  
Stream mode  
SM_STREAM  
SM_SETTOZERO2 Set to zero  
SM_DACT  
DCLK active edge  
SM_SDIORD  
SDI bit order  
10 SM_SDISHARE  
11 SM_SDINEW  
12 SM_ADPCM  
Share SPI chip select  
VS1002 native SPI modes  
ADPCM recording active  
ADPCM high-pass filter active  
ADPCM recording selector  
13 SM_ADPCM_HP  
14 SM_LINE_IN  
line in  
When SM_DIFF is set, the player inverts the left channel output. For a stereo input this creates  
virtual surround, and for a mono input this creates a differential left/right signal.  
Software reset is initiated by setting SM_RESET to 1. This bit is cleared automatically.  
If you want to stop decoding a WAV, WMA, or MIDI file in the middle, set SM_OUTOFWAV, and  
send data honouring DREQ until SM_OUTOFWAV is cleared. SCI_HDAT1 will also be cleared.  
For WMA and MIDI it is safest to continue sending the stream, send zeroes for WAV.  
Bit SM_PDOWN sets VS1003 into software powerdown mode. Note that software powerdown  
is not nearly as power efficient as hardware powerdown activated with the XRESET pin.  
If SM_TESTS is set, SDI tests are allowed. For more details on SDI tests, look at Chapter 9.8.  
Version: 1.05, 2011-04-13  
30  
VS1003  
8
FUNCTIONAL DESCRIPTION  
SM_STREAM activates VS1003’s stream mode. In this mode, data should be sent with as  
even intervals as possible (and preferable with data blocks of less than 512 bytes), and VS1003  
makes every attempt to keep its input buffer half full by changing its playback speed upto 5%.  
For best quality sound, the average speed error should be within 0.5%, the bitrate should not  
exceed 160 kbit/s and VBR should not be used. For details, see Application Notes for VS10XX.  
This mode does not work with WMA files.  
SM_DACT defines the active edge of data clock for SDI. When ’0’, data is read at the rising  
edge, when ’1’, data is read at the falling edge.  
When SM_SDIORD is clear, bytes on SDI are sent as a default MSb first. By setting SM_SDIORD,  
the user may reverse the bit order for SDI, i.e. bit 0 is received first and bit 7 last. Bytes are,  
however, still sent in the default order. This register bit has no effect on the SCI bus.  
Setting SM_SDISHARE makes SCI and SDI share the same chip select, as explained in Chap-  
ter 7.2, if also SM_SDINEW is set.  
Setting SM_SDINEW will activate VS1002 native serial modes as described in Chapters 7.2.1 and 7.4.2.  
Note, that this bit is set as a default when VS1003 is started up.  
By activating SM_ADPCM and SM_RESET at the same time, the user will activate IMA ADPCM  
recording mode. More information is available in the Application Notes for VS10XX.  
If SM_ADPCM_HP is set at the same time as SM_ADPCM and SM_RESET, ADPCM mode  
will start with a high-pass filter. This may help intelligibility of speech when there is lots of  
background noise. The difference created to the ADPCM encoder frequency response is as  
shown in Figure 17.  
VS1003 AD Converter with and Without HP Filter  
5
No High−Pass  
High−Pass  
0
−5  
−10  
−15  
−20  
0
500  
1000  
1500  
2000  
Frequency / Hz  
2500  
3000  
3500  
4000  
Figure 17: ADPCM Frequency Responses with 8kHz sample rate.  
SM_LINE_IN is used to select the input for ADPCM recording. If ’0’, microphone input pins  
MICP and MICN are used; if ’1’, LINEIN is used.  
Version: 1.05, 2011-04-13  
31  
VS1003  
8
FUNCTIONAL DESCRIPTION  
8.6.2 SCI_STATUS (RW)  
SCI_STATUS contains information on the current status of VS1003 and lets the user shutdown  
the chip without audio glitches.  
Name  
Bits Description  
SS_VER  
6:4 Version  
SS_APDOWN2  
SS_APDOWN1  
SS_AVOL  
3
2
Analog driver powerdown  
Analog internal powerdown  
1:0 Analog volume control  
SS_VER is 0 for VS1001, 1 for VS1011, 2 for VS1002 and 3 for VS1003.  
SS_APDOWN2 controls analog driver powerdown. Normally this bit is controlled by the sys-  
tem firmware. However, if the user wants to powerdown VS1003 with a minimum power-off  
transient, turn this bit to 1, then wait for at least a few milliseconds before activating reset.  
SS_APDOWN1 controls internal analog powerdown. This bit is meant to be used by the system  
firmware only.  
SS_AVOL is the analog volume control: 0 = -0 dB, 1 = -6 dB, 3 = -12 dB. This register is meant  
to be used automatically by the system firmware only.  
8.6.3 SCI_BASS (RW)  
Name  
Bits  
Description  
ST_AMPLITUDE 15:12 Treble Control in 1.5 dB steps (-8..7, 0 = off)  
ST_FREQLIMIT  
SB_AMPLITUDE  
SB_FREQLIMIT  
11:8 Lower limit frequency in 1000 Hz steps (0..15)  
7:4  
3:0  
Bass Enhancement in 1 dB steps (0..15, 0 = off)  
Lower limit frequency in 10 Hz steps (2..15)  
The Bass Enhancer VSBE is a powerful bass boosting DSP algorithm, which tries to take the  
most out of the users earphones without causing clipping.  
VSBE is activated when SB_AMPLITUDE is non-zero. SB_AMPLITUDE should be set to the  
user’s preferences, and SB_FREQLIMIT to roughly 1.5 times the lowest frequency the user’s  
audio system can reproduce. For example setting SCI_BASS to 0x00f6 will have 15 dB en-  
hancement below 60 Hz.  
Note: Because VSBE tries to avoid clipping, it gives the best bass boost with dynamical music  
material, or when the playback volume is not set to maximum. It also does not create bass: the  
source material must have some bass to begin with.  
Treble Control VSTC is activated when ST_AMPLITUDE is non-zero. For example setting  
SCI_BASS to 0x7a00 will have 10.5 dB treble enhancement at and above 10 kHz.  
Bass Enhancer uses about 3.0 MIPS and Treble Control 1.2 MIPS at 44100 Hz sample rate.  
Both can be on simultaneously.  
Version: 1.05, 2011-04-13  
32  
VS1003  
8
FUNCTIONAL DESCRIPTION  
8.6.4 SCI_CLOCKF (RW)  
The operation of SCI_CLOCKF is different in VS1003 than in VS10x1 and VS1002.  
SCI_CLOCKF bits  
Name  
Bits  
Description  
SC_MULT 15:13 Clock multiplier  
SC_ADD  
12:11 Allowed multiplier addition  
SC_FREQ 10: 0 Clock frequency  
SC_MULT activates the built-in clock multiplier. This will multiply XTALI to create a higher CLKI.  
The values are as follows:  
SC_MULT MASK  
CLKI  
0
1
2
3
4
5
6
7
0x0000 XTALI  
0x2000 XTALI×1.5  
0x4000 XTALI×2.0  
0x6000 XTALI×2.5  
0x8000 XTALI×3.0  
0xa000 XTALI×3.5  
0xc000 XTALI×4.0  
0xe000 XTALI×4.5  
SC_ADD tells, how much the decoder firmware is allowed to add to the multiplier specified by  
SC_MULT if more cycles are temporarily needed to decode a WMA stream. The values are:  
SC_ADD MASK  
Multiplier addition  
0
1
2
3
0x0000 No modification is allowed  
0x0800 0.5×  
0x1000 1.0×  
0x1800 1.5×  
SC_FREQ is used to tell if the input clock XTALI is running at something else than 12.288 MHz.  
XTALI is set in 4 kHz steps. The formula for calculating the correct value for this register is  
XTALI8000000  
(XTALI is in Hz).  
4000  
Note: The default value 0 is assumed to mean XTALI=12.288 MHz.  
Note: because maximum sample rate is XTALI , all sample rates are not available if XTALI  
256  
< 12.288 MHz.  
Note: Automatic clock change can only happen when decoding WMA files. Automatic clock  
change is done one 0.5× at a time. This does not cause a drop to 1.0× clock and you can  
use the same SCI and SDI clock throughout the WMA file. When decoding ends the default  
multiplier is restored and can cause 1.0× clock to be used momentarily.  
Example: If SCI_CLOCKF is 0x9BE8, SC_MULT = 4, SC_ADD = 3 and SC_FREQ = 0x3E8 = 1000.  
This means that XTALI = 1000 × 4000 + 8000000 = 12 MHz. The clock multiplier is set to  
3.0×XTALI = 36 MHz, and the maximum allowed multiplier that the firmware may automatically  
choose to use is (3.0 + 1.5)×XTALI = 54 MHz.  
Version: 1.05, 2011-04-13  
33  
VS1003  
8
FUNCTIONAL DESCRIPTION  
8.6.5 SCI_DECODE_TIME (RW)  
When decoding correct data, current decoded time is shown in this register in full seconds.  
The user may change the value of this register. In that case the new value should be written  
twice.  
SCI_DECODE_TIME is reset at every software reset and also when WAV (PCM or IMA AD-  
PCM), WMA, or MIDI decoding starts or ends.  
8.6.6 SCI_AUDATA (RW)  
When decoding correct data, the current sample rate and number of channels can be found in  
bits 15:1 and 0 of SCI_AUDATA, respectively. Bits 15:1 contain the sample rate divided by two,  
and bit 0 is 0 for mono data and 1 for stereo. Writing to SCI_AUDATA will change the sample  
rate directly.  
Note: due to a bug, an odd sample rate reverses the operation of the stereo bit in VS1003b.  
Example: 44100 Hz stereo data reads as 0xAC45 (44101).  
Example: 11025 Hz mono data reads as 0x2B10 (11025).  
Example: 11025 Hz stereo data reads as 0x2B11 (11026).  
Example: Writing 0xAC80 sets sample rate to 44160 Hz, stereo mode does not change.  
8.6.7 SCI_WRAM (RW)  
SCI_WRAM is used to upload application programs and data to instruction and data RAMs.  
The start address must be initialized by writing to SCI_WRAMADDR prior to the first write/read  
of SCI_WRAM. As 16 bits of data can be transferred with one SCI_WRAM write/read, and the  
instruction word is 32 bits long, two consecutive writes/reads are needed for each instruction  
word. The byte order is big-endian (i.e. most significant words first). After each full-word  
write/read, the internal pointer is autoincremented.  
8.6.8 SCI_WRAMADDR (W)  
SCI_WRAMADDR is used to set the program address for following SCI_WRAM writes/reads.  
Address offset of 0 is used for X, 0x4000 for Y, and 0x8000 for instruction memory. Peripheral  
registers can also be accessed.  
SM_WRAMADDR Dest. addr.  
Start. . . End Start. . . End  
Bits/ Description  
Word  
0x1800. . . 0x187F 0x1800. . . 0x187F 16  
0x5800. . . 0x587F 0x1800. . . 0x187F 16  
0x8030. . . 0x84FF 0x0030. . . 0x04FF 32  
0xC000. . . 0xFFFF 0xC000. . . 0xFFFF 16  
X data RAM  
Y data RAM  
Instruction RAM  
I/O  
Only user areas in X, Y, and instruction memory are listed above. Other areas can be accessed,  
but should not be written to unless otherwise specified.  
Version: 1.05, 2011-04-13  
34  
VS1003  
8
FUNCTIONAL DESCRIPTION  
8.6.9 SCI_HDAT0 and SCI_HDAT1 (R)  
For WAV files, SCI_HDAT0 and SCI_HDAT1 read as 0x7761, and 0x7665, respectively.  
For WMA files, SCI_HDAT1 contains 0x574D and SCI_HDAT0 contains the data speed mea-  
sured in bytes per second. To get the bit-rate of the file, multiply the value of SCI_HDAT0 by  
8.  
for MIDI files, SCI_HDAT1 contains 0x4D54 and SCI_HDAT0 contains values according to the  
following table:  
HDAT0[15:8] HDAT0[7:0] Value Explanation  
0
polyphony  
current polyphony  
1..255  
reserved  
For MP3 files, SCI_HDAT[0. . . 1] have the following content:  
Bit  
Function  
Value Explanation  
HDAT1[15:5]  
HDAT1[4:3]  
syncword  
ID  
2047 stream valid  
3
2
1
0
3
2
1
0
1
0
ISO 11172-3 MPG 1.0  
ISO 13818-3 MPG 2.0 (1/2-rate)  
MPG 2.5 (1/4-rate)  
MPG 2.5 (1/4-rate)  
I
II  
III  
HDAT1[2:1]  
HDAT1[0]  
layer  
reserved  
No CRC  
protect bit  
CRC protected  
ISO 11172-3  
reserved  
32/16/ 8 kHz  
48/24/12 kHz  
44/22/11 kHz  
additional slot  
normal frame  
not defined  
mono  
HDAT0[15:12] bitrate  
HDAT0[11:10] sample rate  
3
2
1
0
1
0
HDAT0[9]  
pad bit  
HDAT0[8]  
HDAT0[7:6]  
private bit  
mode  
3
2
1
0
dual channel  
joint stereo  
stereo  
HDAT0[5:4]  
HDAT0[3]  
extension  
copyright  
ISO 11172-3  
copyrighted  
free  
original  
copy  
CCITT J.17  
reserved  
50/15 microsec  
none  
1
0
1
0
3
2
1
0
HDAT0[2]  
original  
HDAT0[1:0]  
emphasis  
Version: 1.05, 2011-04-13  
35  
VS1003  
8
FUNCTIONAL DESCRIPTION  
When read, SCI_HDAT0 and SCI_HDAT1 contain header information that is extracted from  
MP3 stream currently being decoded. After reset both registers are cleared, indicating no data  
has been found yet.  
The “sample rate” field in SCI_HDAT0 is interpreted according to the following table:  
“sample rate” ID=3 / Hz ID=2 / Hz ID=0,1 / Hz  
3
2
1
0
-
32000  
48000  
44100  
-
16000  
24000  
22050  
-
8000  
12000  
11025  
The “bitrate” field in HDAT0 is read according to the following table:  
“bitrate” ID=3 / kbit/s ID=0,1,2 / kbit/s  
15  
14  
13  
12  
11  
10  
9
forbidden  
320  
256  
224  
192  
160  
128  
112  
96  
forbidden  
160  
144  
128  
112  
96  
80  
64  
56  
8
7
6
80  
48  
5
64  
40  
4
56  
32  
3
48  
24  
2
40  
16  
1
32  
8
0
-
-
8.6.10 SCI_AIADDR (RW)  
SCI_AIADDR indicates the start address of the application code written earlier with SCI_WRAMADDR  
and SCI_WRAM registers. If no application code is used, this register should not be initialized,  
or it should be initialized to zero. For more details, see Application Notes for VS10XX.  
Version: 1.05, 2011-04-13  
36  
VS1003  
8
FUNCTIONAL DESCRIPTION  
8.6.11 SCI_VOL (RW)  
SCI_VOL is a volume control for the player hardware. For each channel, a value in the range of  
0..254 may be defined to set its attenuation from the maximum volume level (in 0.5 dB steps).  
The left channel value is then multiplied by 256 and the values are added. Thus, maximum  
volume is 0 and total silence is 0xFEFE.  
Example: for a volume of -2.0 dB for the left channel and -3.5 dB for the right channel: (4*256)  
+ 7 = 0x407. Note, that at startup volume is set to full volume. Resetting the software does not  
reset the volume setting.  
Note: Setting SCI_VOL to 0xFFFF will activate analog powerdown mode.  
8.6.12 SCI_AICTRL[x] (RW)  
SCI_AICTRL[x] registers ( x=[0 .. 3] ) can be used to access the user’s application program.  
Version: 1.05, 2011-04-13  
37  
VS1003  
9
OPERATION  
9 Operation  
9.1 Clocking  
VS1003 operates on a single, nominally 12.288 MHz fundamental frequency master clock. This  
clock can be generated by external circuitry (connected to pin XTALI) or by the internal clock  
crystal interface (pins XTALI and XTALO).  
9.2 Hardware Reset  
When the XRESET -signal is driven low, VS1003 is reset and all the control registers and  
internal states are set to the initial values. XRESET-signal is asynchronous to any external  
clock. The reset mode doubles as a full-powerdown mode, where both digital and analog parts  
of VS1003 are in minimum power consumption stage, and where clocks are stopped. Also  
XTALO is grounded.  
After a hardware reset (or at power-up) DREQ will stay down for at least 16600 clock cycles,  
which means an approximate 1.35 ms delay if VS1003 is run at 12.288 MHz. After this the  
user should set such basic software registers as SCI_MODE, SCI_BASS, SCI_CLOCKF, and  
SCI_VOL before starting decoding. See section 8.6 for details.  
Internal clock can be multiplied with a PLL. Supported multipliers through the SCI_CLOCKF  
register are 1.0 × . . . 4.5× the input clock. Reset value for Internal Clock Multiplier is 1.0×. If  
typical values are wanted, the Internal Clock Multiplier needs to be set to 3.0× after reset. Wait  
until DREQ rises, then write value 0x9800 to SCI_CLOCKF (register 3). See section 8.6.4 for  
details.  
9.3 Software Reset  
In some cases the decoder software has to be reset. This is done by activating bit 2 in  
SCI_MODE register (Chapter 8.6.1). Then wait for at least 2 µs, then look at DREQ. DREQ  
will stay down for at least 16600 clock cycles, which means an approximate 1.35 ms delay if  
VS1003 is run at 12.288 MHz. After DREQ is up, you may continue playback as usual.  
If you want to make sure VS1003 doesn’t cut the ending of low-bitrate data streams and you  
want to do a software reset, it is recommended to feed 2048 zeros (honoring DREQ) to the SDI  
bus after the file and before the reset. This is especially important for MIDI files, although you  
can also use SCI_HDAT1 polling.  
If you want to interrupt the playing of a WAV, WMA, or MIDI file in the middle, set SM_OUTOFWAV  
in the mode register, and wait until SCI_HDAT1 is cleared (with a two-second timeout) before  
continuing with a software reset. MP3 does not currently implement the SM_OUTOFWAV be-  
cause it is a stream format, thus the timeout requirement.  
Version: 1.05, 2011-04-13  
38  
VS1003  
9
OPERATION  
9.4 ADPCM Recording  
This chapter explains how to create RIFF/WAV file with IMA ADPCM format. This is a widely  
supported ADPCM format and many PC audio playback programs can play it. IMA ADPCM  
recording gives roughly a compression ratio of 4:1 compared to linear, 16-bit audio. This makes  
it possible to record 8 kHz audio at 32.44 kbit/s.  
9.4.1 Activating ADPCM mode  
IMA ADPCM recording mode is activated by setting bits SM_RESET and SM_ADPCM in  
SCI_MODE. Optionally a high-pass-filter can be enabled for 8 kHz sample rate by also set-  
ting SM_ADPCM_HP at the same time. Line input is used instead of mic if SM_LINE_IN is set.  
Before activating ADPCM recording, user must write a clock divider value to SCI_AICTRL0  
and gain to SCI_AICTRL1.  
The differences of using SM_ADPCM_HP are presented in figure 17 (page 31). As a general  
rule, audio will be fuller and closer to original if SM_ADPCM_HP is not used. However, speech  
may be more intelligible with the high-pass filter active. Use the filter only with 8 kHz sample  
rate.  
Before activating ADPCM recording, user should write a clock divider value to SCI_AICTRL0.  
Fc  
The sampling frequency is calculated from the following formula: fs = 256×d , where Fc is the  
internal clock (CLKI) and d is the divider value in SCI_AICTRL0. The lowest valid value for d is  
4. If SCI_AICTRL0 contains 0, the default divider value 12 is used.  
Examples:  
2.0×12288000  
Fc = 2.0 × 12.288 MHz, d = 12. Now fs =  
= 8000 Hz.  
= 8000 Hz.  
256×12  
2.5×14745000  
256×18  
Fc = 2.5 × 14.745 MHz, d = 18. Now fs =  
2.5×13000000  
Fc = 2.5 × 13 MHz, d = 16. Now fs =  
= 7935 Hz.  
256×16  
Also, before activating ADPCM mode, the user has to set linear recording gain control to register  
SCI_AICTRL1. 1024 is equal to digital gain 1, 512 is equal to digital gain 0.5 and so on. If the  
user wants to use automatic gain control (AGC), SCI_AICTRL1 should be set to 0. Typical  
speech applications usually are better off using AGC, as this takes care of relatively uniform  
speech loudness in recordings.  
Since VS1033c SCI_AICTRL2 controls the maximum AGC gain. If SCI_AICTRL2 is zero, the  
maximum gain is 65535 (64×), i.e. whole range is used. This is compatible with previous  
operation.  
9.4.2 Reading IMA ADPCM Data  
After IMA ADPCM recording has been activated, registers SCI_HDAT0 and SCI_HDAT1 have  
new functions.  
The IMA ADPCM sample buffer is 1024 16-bit words. The fill status of the buffer can be read  
from SCI_HDAT1. If SCI_HDAT1 is greater than 0, you can read as many 16-bit words from  
SCI_HDAT0. If the data is not read fast enough, the buffer overflows and returns to empty state.  
Version: 1.05, 2011-04-13  
39  
VS1003  
9
OPERATION  
Note: if SCI_HDAT1 896, it may be better to wait for the buffer to overflow and clear before  
reading samples. That way you may avoid buffer aliasing.  
Each IMA ADPCM block is 128 words, i.e. 256 bytes. If you wish to interrupt reading data  
and possibly continue later, please stop at a 128-word boundary. This way whole blocks are  
skipped and the encoded stream stays valid.  
9.4.3 Adding a RIFF Header  
To make your IMA ADPCM file a RIFF / WAV file, you have to add a header before the actual  
data. Note that 2- and 4-byte values are little-endian (lowest byte first) in this format:  
File Offset Field Name  
Size Bytes  
Description  
0
4
8
ChunkID  
ChunkSize  
Format  
4
4
4
4
4
2
2
4
4
2
2
2
2
4
4
4
4
4
F0 F1 F2 F3  
File size - 8  
12 SubChunk1ID  
16 SubChunk1Size  
20 AudioFormat  
22 NumOfChannels  
24 SampleRate  
28 ByteRate  
0x14 0x0 0x0 0x0 20  
0x11 0x0  
0x1 0x0  
R0 R1 R2 R3  
B0 B1 B2 B3  
0x0 0x1  
0x4 0x0  
0x2 0x0  
0xf9 0x1  
0x11 for IMA ADPCM  
Mono sound  
0x1f40 for 8 kHz  
0xfd7 for 8 kHz  
0x100  
4-bit ADPCM  
2
Samples per block (505)  
32 BlockAlign  
34 BitsPerSample  
36 ByteExtraData  
38 ExtraData  
40 SubChunk2ID  
44 SubChunk2Size  
48 NumOfSamples  
52 SubChunk3ID  
56 SubChunk3Size  
0x4 0x0 0x0 0x0  
S0 S1 S2 S3  
4
D0 D1 D2 D3  
Data size (File Size-60)  
First ADPCM block  
More ADPCM data blocks  
60 Block1  
316 . . .  
256  
If we have n audio blocks, the values in the table are as follows:  
F = n × 256 + 52  
R = Fs (see Chapter 9.4.1 to see how to calculate Fs)  
Fs×256  
B =  
505  
S = n × 505. D = n × 256  
If you know beforehand how much you are going to record, you may fill in the complete header  
before any actual data. However, if you don’t know how much you are going to record, you have  
to fill in the header size datas F, S and D after finishing recording.  
The 128 words (256 bytes) of an ADPCM block are read from SCI_HDAT0 and written into file  
as follows. The high 8 bits of SCI_HDAT0 should be written as the first byte to a file, then the  
low 8 bits. Note that this is contrary to the default operation of some 16-bit microcontrollers,  
and you may have to take extra care to do this right.  
Version: 1.05, 2011-04-13  
40  
VS1003  
9
OPERATION  
A way to see if you have written the file in the right way is to check bytes 2 and 3 (the first byte  
counts as byte 0) of each 256-byte block. Byte 3 should always be zero.  
9.4.4 Playing ADPCM Data  
In order to play back your IMA ADPCM recordings, you have to have a file with a header as  
described in Chapter 9.4.3. If this is the case, all you need to do is to provide the ADPCM file  
through SDI as you would with any audio file.  
9.4.5 Sample Rate Considerations  
VS10xx chips that support IMA ADPCM playback are capable of playing back ADPCM files with  
any sample rate. However, some other programs may expect IMA ADPCM files to have some  
exact sample rates, like 8000 or 11025 Hz. Also, some programs or systems do not support  
sample rates below 8000 Hz.  
However, if you don’t have an appropriate clock, you may not be able to get an exact 8 kHz  
sample rate. If you have a 12 MHz clock, the closest sample rate you can get with 2.0 × 12 MHz  
and d = 12 is fs = 7812.5Hz. Because the frequency error is only 2.4%, it may be best to set  
fs = 8000Hz to the header if the same file is also to be played back with an PC. This causes  
the sample to be played back a little faster (one minute is played in 59 seconds).  
Note, however, that unless absolutely necessary, sample rates should not be tweaked in the  
way described here.  
If you want better quality with the expense of increased data rate, you can use higher sample  
rates, for example 16 kHz.  
9.4.6 Example Code  
The following code initializes IMA ADPCM encoding on VS1003b/VS1023 and shows how to  
read the data.  
Version: 1.05, 2011-04-13  
41  
VS1003  
9
OPERATION  
Version: 1.05, 2011-04-13  
42  
VS1003  
9
OPERATION  
9.5 SPI Boot  
If GPIO0 is set with a pull-up resistor to 1 at boot time, VS1003 tries to boot from external SPI  
memory.  
SPI boot redefines the following pins:  
Normal Mode SPI Boot Mode  
GPIO0  
GPIO1  
DREQ  
GPIO2  
xCS  
CLK  
MOSI  
MISO  
The memory has to be an SPI Bus Serial EEPROM with 16-bit addresses (i.e. at least 1 KiB).  
The serial speed used by VS1003 is 245 kHz with the nominal 12.288 MHz clock. The first  
three bytes in the memory have to be 0x50, 0x26, 0x48. The exact record format is explained  
in the Application Notes for VS10XX.  
9.6 Play/Decode  
This is the normal operation mode of VS1003. SDI data is decoded. Decoded samples are  
converted to analog domain by the internal DAC. If no decodable data is found, SCI_HDAT0  
and SCI_HDAT1 are set to 0 and analog outputs are muted.  
When there is no input for decoding, VS1003 goes into idle mode (lower power consumption  
than during decoding) and actively monitors the serial data input for valid data.  
All different formats can be played back-to-back without software reset in-between. Send at  
least 4 zeros after each stream. However, using software reset between streams may still be a  
good idea, as it guards against broken files. In this case you shouldt wait for the completion of  
the decoding (SCI_HDAT0 and SCI_HDAT1 become zero) before issuing software reset.  
9.7 Feeding PCM data  
VS1003 can be used as a PCM decoder by sending to it a WAV file header. If the length  
sent in the WAV file is 0 or 0xFFFFFFF, VS1003 will stay in PCM mode indefinitely (or until  
SM_OUTOFWAV has been set). 8-bit linear and 16-bit linear audio is supported in mono or  
stereo.  
Version: 1.05, 2011-04-13  
43  
VS1003  
9
OPERATION  
9.8 SDI Tests  
There are several test modes in VS1003, which allow the user to perform memory tests, SCI  
bus tests, and several different sine wave tests.  
All tests are started in a similar way: VS1003 is hardware reset, SM_TESTS is set, and then a  
test command is sent to the SDI bus. Each test is started by sending a 4-byte special command  
sequence, followed by 4 zeros. The sequences are described below.  
9.8.1 Sine Test  
Sine test is initialized with the 8-byte sequence 0x53 0xEF 0x6E n 0 0 0 0, where n defines the  
sine test to use. n is defined as follows:  
n bits  
Name Bits Description  
FsIdx  
S
7:5 Sample rate index  
4:0 Sine skip speed  
FsIdx  
Fs  
0
1
2
3
4
5
6
7
44100 Hz  
48000 Hz  
32000 Hz  
22050 Hz  
24000 Hz  
16000 Hz  
11025 Hz  
12000 Hz  
S
128  
The frequency of the sine to be output can now be calculated from F = Fs ×  
.
Example: Sine test is activated with value 126, which is 0b01111110. Breaking n to its compo-  
nents, FsIdx = 0b011 = 3 and thus Fs = 22050Hz. S = 0b11110 = 30, and thus the final sine  
30  
128  
frequency F = 22050Hz ×  
5168Hz.  
To exit the sine test, send the sequence 0x45 0x78 0x69 0x74 0 0 0 0.  
Note: Sine test signals go through the digital volume control, so it is possible to test channels  
separately.  
Version: 1.05, 2011-04-13  
44  
VS1003  
9
OPERATION  
9.8.2 Pin Test  
Pin test is activated with the 8-byte sequence 0x50 0xED 0x6E 0x54 0 0 0 0. This test is meant  
for chip production testing only.  
9.8.3 Memory Test  
Memory test mode is initialized with the 8-byte sequence 0x4D 0xEA 0x6D 0x54 0 0 0 0. After  
this sequence, wait for 500000 clock cycles. The result can be read from the SCI register  
SCI_HDAT0, and ’one’ bits are interpreted as follows:  
Bit(s) Mask  
Meaning  
15  
14:7  
6
5
4
3
2
1
0
0x8000 Test finished  
Unused  
0x0040 Mux test succeeded  
0x0020 Good I RAM  
0x0010 Good Y RAM  
0x0008 Good X RAM  
0x0004 Good I ROM  
0x0002 Good Y ROM  
0x0001 Good X ROM  
0x807f All ok  
Memory tests overwrite the current contents of the RAM memories.  
9.8.4 SCI Test  
Sci test is initialized with the 8-byte sequence 0x53 0x70 0xEE n 0 0 0 0, where n is the  
register number to test. The content of the given register is read and copied to SCI_HDAT0. If  
the register to be tested is HDAT0, the result is copied to SCI_HDAT1.  
Example: if n is 0, contents of SCI register 0 (SCI_MODE) is copied to SCI_HDAT0.  
Version: 1.05, 2011-04-13  
45  
VS1003  
10 VS1003 REGISTERS  
10 VS1003 Registers  
10.1 Who Needs to Read This Chapter  
User software is required when a user wishes to add some own functionality like DSP effects  
to VS1003.  
However, most users of VS1003 don’t need to worry about writing their own code, or about this  
chapter, including those who only download software plug-ins from VLSI Solution’s Web site.  
10.2 The Processor Core  
VS_DSP is a 16/32-bit DSP processor core that also had extensive all-purpose processor fea-  
tures. VLSI Solution’s free VSKIT Software Package contains all the tools and documentation  
needed to write, simulate and debug Assembly Language or Extended ANSI C programs for the  
VS_DSP processor core. VLSI Solution also offers a full Integrated Development Environment  
VSIDE for full debug capabilities.  
10.3 VS1003 Memory Map  
VS1003’s Memory Map is shown in Figure 18.  
10.4 SCI Registers  
SCI registers described in Chapter 8.6 can be found here between 0xC000..0xC00F. In addition  
to these registers, there is one in address 0xC010, called SCI_CHANGE.  
SCI registers, prefix SCI_  
Reg Type Reset Abbrev[bits]  
Description  
0xC010  
r
0
CHANGE[5:0]  
Last SCI access address.  
SCI_CHANGE bits  
Bits Description  
1 if last access was a write cycle.  
3:0 SPI address of last access.  
Name  
SCI_CH_WRITE  
SCI_CH_ADDR  
4
Version: 1.05, 2011-04-13  
46  
VS1003  
10 VS1003 REGISTERS  
Instruction (32−bit)  
X (16−bit)  
Y (16−bit)  
0000  
0030  
0000  
0030  
System Vectors  
User  
Instruction  
RAM  
0500  
0500  
X DATA  
RAM  
Y DATA  
RAM  
1800  
1880  
1940  
1800  
1880  
1940  
User  
Space  
User  
Space  
Stack  
Stack  
1C00  
1E00  
1C00  
1E00  
4000  
4000  
Instruction  
ROM  
X DATA  
ROM  
Y DATA  
ROM  
8000  
8000  
C000  
C100  
C000  
C100  
Hardware  
Register  
Space  
Figure 18: User’s Memory Map.  
10.5 Serial Data Registers  
SDI registers, prefix SER_  
Reg Type Reset Abbrev[bits]  
Description  
0xC011  
0xC012  
r
w
0
0
DATA  
DREQ[0]  
Last received 2 bytes, big-endian.  
DREQ pin control.  
Version: 1.05, 2011-04-13  
47  
VS1003  
10 VS1003 REGISTERS  
10.6 DAC Registers  
DAC registers, prefix DAC_  
Reg Type Reset Abbrev[bits]  
Description  
0xC013  
0xC014  
0xC015  
0xC016  
rw  
rw  
rw  
rw  
0
0
0
0
FCTLL  
FCTLH  
LEFT  
DAC frequency control, 16 LSbs.  
DAC frequency control 4MSbs, PLL control.  
DAC left channel PCM value.  
RIGHT  
DAC right channel PCM value.  
Every fourth clock cycle, an internal 26-bit counter is added to by (DAC_FCTLH & 15) × 65536  
+ DAC_FCTLL. Whenever this counter overflows, values from DAC_LEFT and DAC_RIGHT  
are read and a DAC interrupt is generated.  
10.7 GPIO Registers  
GPIO registers, prefix GPIO_  
Reg Type Reset Abbrev[bits]  
Description  
0xC017  
0xC018  
0xC019  
rw  
r
rw  
0
0
0
DDR[3:0]  
IDATA[3:0]  
ODATA[3:0]  
Direction.  
Values read from the pins.  
Values set to the pins.  
GPIO_DIR is used to set the direction of the GPIO pins. 1 means output. GPIO_ODATA  
remembers its values even if a GPIO_DIR bit is set to input.  
GPIO registers don’t generate interrupts.  
Note that in VS1003 the VSDSP registers can be read and written through the SCI_WRAMADDR  
and SCI_WRAM registers. You can thus use the GPIO pins quite conveniently.  
Version: 1.05, 2011-04-13  
48  
VS1003  
10 VS1003 REGISTERS  
10.8 Interrupt Registers  
Interrupt registers, prefix INT_  
Reg Type Reset Abbrev[bits]  
Description  
0xC01A  
0xC01B  
0xC01C  
0xC01D  
rw  
w
w
0
0
0
0
ENABLE[7:0]  
GLOB_DIS[-]  
GLOB_ENA[-]  
COUNTER[4:0]  
Interrupt enable.  
Write to add to interrupt counter.  
Write to subtract from interript counter.  
Interrupt counter.  
rw  
INT_ENABLE controls the interrupts. The control bits are as follows:  
INT_ENABLE bits  
Name  
Bits Description  
INT_EN_TIM1  
INT_EN_TIM0  
INT_EN_RX  
7
6
5
4
3
2
1
0
Enable Timer 1 interrupt.  
Enable Timer 0 interrupt.  
Enable UART RX interrupt.  
Enable UART TX interrupt.  
Enable AD modulator interrupt.  
Enable Data interrupt.  
INT_EN_TX  
INT_EN_MODU  
INT_EN_SDI  
INT_EN_SCI  
INT_EN_DAC  
Enable SCI interrupt.  
Enable DAC interrupt.  
Note: It may take upto 6 clock cycles before changing INT_ENABLE has any effect.  
Writing any value to INT_GLOB_DIS adds one to the interrupt counter INT_COUNTER and  
effectively disables all interrupts. It may take upto 6 clock cycles before writing to this register  
has any effect.  
Writing any value to INT_GLOB_ENA subtracts one from the interrupt counter (unless INT_COUNTER  
already was 0). If the interrupt counter becomes zero, interrupts selected with INT_ENABLE  
are restored. An interrupt routine should always write to this register as the last thing it does,  
because interrupts automatically add one to the interrupt counter, but subtracting it back to its  
initial value is the responsibility of the user. It may take upto 6 clock cycles before writing this  
register has any effect.  
By reading INT_COUNTER the user may check if the interrupt counter is correct or not. If the  
register is not 0, interrupts are disabled.  
Version: 1.05, 2011-04-13  
49  
VS1003  
10 VS1003 REGISTERS  
10.9 A/D Modulator Registers  
Interrupt registers, prefix AD_  
Reg Type Reset Abbrev[bits]  
Description  
0xC01E  
0xC01F  
rw  
rw  
0
0
DIV  
DATA  
A/D Modulator divider.  
A/D Modulator data.  
AD_DIV controls the AD converter’s sampling frequency. To gather one sample, 128 × n clock  
cycles are used (n is value of AD_DIV). The lowest usable value is 4, which gives a 48 kHz  
sample rate when CLKI is 24.576 MHz. When AD_DIV is 0, the A/D converter is turned off.  
AD_DATA contains the latest decoded A/D value.  
Version: 1.05, 2011-04-13  
50  
VS1003  
10 VS1003 REGISTERS  
10.10 Watchdog v1.0 2002-08-26  
The watchdog consist of a watchdog counter and some logic. After reset, the watchdog is  
inactive. The counter reload value can be set by writing to WDOG_CONFIG. The watchdog is  
activated by writing 0x4ea9 to register WDOG_RESET. Every time this is done, the watchdog  
counter is reset. Every 65536’th clock cycle the counter is decremented by one. If the counter  
underflows, it will activate vsdsp’s internal reset sequence.  
Thus, after the first 0x4ea9 write to WDOG_RESET, subsequent writes to the same register  
with the same value must be made no less than every 65536×WDOG_CONFIG clock cycles.  
Once started, the watchdog cannot be turned off. Also, a write to WDOG_CONFIG doesn’t  
change the counter reload value.  
After watchdog has been activated, any read/write operation from/to WDOG_CONFIG or WDOG_DUMMY  
will invalidate the next write operation to WDOG_RESET. This will prevent runaway loops from  
resetting the counter, even if they do happen to write the correct number. Writing a wrong value  
to WDOG_RESET will also invalidate the next write to WDOG_RESET.  
Reads from watchdog registers return undefined values.  
10.10.1 Registers  
Watchdog, prefix WDOG_  
Reg Type Reset Abbrev  
Description  
0xC020  
0xC021  
0xC022  
w
w
w
0
0
0
CONFIG  
RESET  
DUMMY[-] Dummy register  
Configuration  
Clock configuration  
Version: 1.05, 2011-04-13  
51  
VS1003  
10 VS1003 REGISTERS  
10.11 UART v1.0 2002-04-23  
RS232 UART implements a serial interface using rs232 standard.  
Start  
bit  
Stop  
bit  
D0  
D4  
D1  
D2  
D3  
D5  
D6  
D7  
Figure 19: RS232 Serial Interface Protocol  
When the line is idling, it stays in logic high state. When a byte is transmitted, the transmission  
begins with a start bit (logic zero) and continues with data bits (LSB first) and ends up with a  
stop bit (logic high). 10 bits are sent for each 8-bit byte frame.  
10.11.1 Registers  
UART registers, prefix UARTx_  
Reg Type Reset Abbrev  
Description  
STATUS[3:0] Status  
DATA[7:0] Data  
DATAH[15:8] Data High  
DIV Divider  
0xC028  
0xC029  
0xC02A  
0xC02B  
r
0
0
0
0
r/w  
r/w  
r/w  
10.11.2 Status UARTx_STATUS  
A read from the status register returns the transmitter and receiver states.  
UARTx_STATUS Bits  
Name  
Bits Description  
UART_ST_RXORUN  
UART_ST_RXFULL  
UART_ST_TXFULL  
UART_ST_TXRUNNING  
3
2
1
0
Receiver overrun  
Receiver data register full  
Transmitter data register full  
Transmitter running  
UART_ST_RXORUN is set if a received byte overwrites unread data when it is transferred from  
the receiver shift register to the data register, otherwise it is cleared.  
UART_ST_RXFULL is set if there is unread data in the data register.  
UART_ST_TXFULL is set if a write to the data register is not allowed (data register full).  
UART_ST_TXRUNNING is set if the transmitter shift register is in operation.  
Version: 1.05, 2011-04-13  
52  
VS1003  
10 VS1003 REGISTERS  
10.11.3 Data UARTx_DATA  
A read from UARTx_DATA returns the received byte in bits 7:0, bits 15:8 are returned as ’0’. If  
there is no more data to be read, the receiver data register full indicator will be cleared.  
A receive interrupt will be generated when a byte is moved from the receiver shift register to  
the receiver data register.  
A write to UARTx_DATA sets a byte for transmission. The data is taken from bits 7:0, other  
bits in the written value are ignored. If the transmitter is idle, the byte is immediately moved  
to the transmitter shift register, a transmit interrupt request is generated, and transmission is  
started. If the transmitter is busy, the UART_ST_TXFULL will be set and the byte remains in the  
transmitter data register until the previous byte has been sent and transmission can proceed.  
10.11.4 Data High UARTx_DATAH  
The same as UARTx_DATA, except that bits 15:8 are used.  
10.11.5 Divider UARTx_DIV  
UARTx_DIV Bits  
Name  
Bits Description  
UART_DIV_D1  
UART_DIV_D2  
15:8 Divider 1 (0..255)  
7:0 Divider 2 (6..255)  
The divider is set to 0x0000 in reset. The ROM boot code must initialize it correctly depending  
on the master clock frequency to get the correct bit speed. The second divider (D2) must be  
from 6 to 255.  
fm  
(D1+1)×(D2)  
The communication speed f =  
the TX/RX speed in bps.  
, where fm is the master clock frequency, and f is  
Divider values for common communication speeds at 26 MHz master clock:  
Version: 1.05, 2011-04-13  
53  
VS1003  
10 VS1003 REGISTERS  
Example UART Speeds, fm = 26MHz  
Comm. Speed [bps] UART_DIV_D1 UART_DIV_D2  
4800  
9600  
85  
42  
42  
51  
42  
25  
1
63  
63  
42  
26  
21  
26  
226  
226  
14400  
19200  
28800  
38400  
57600  
115200  
0
10.11.6 Interrupts and Operation  
Transmitter operates as follows: After an 8-bit word is written to the transmit data register it will  
be transmitted instantly if the transmitter is not busy transmitting the previous byte. When the  
transmission begins a TX_INTR interrupt will be sent. Status bit [1] informs the transmitter data  
register empty (or full state) and bit [0] informs the transmitter (shift register) empty state. A  
new word must not be written to transmitter data register if it is not empty (bit [1] = ’0’). The  
transmitter data register will be empty as soon as it is shifted to transmitter and the transmission  
is begun. It is safe to write a new word to transmitter data register every time a transmit interrupt  
is generated.  
Receiver operates as follows: It samples the RX signal line and if it detects a high to low  
transition, a start bit is found. After this it samples each 8 bit at the middle of the bit time (using  
a constant timer), and fills the receiver (shift register) LSB first. Finally if a stop bit (logic high)  
is detected the data in the receiver is moved to the reveive data register and the RX_INTR  
interrupt is sent and a status bit[2] (receive data register full) is set, and status bit[2] old state is  
copied to bit[3] (receive data overrun). After that the receiver returns to idle state to wait for a  
new start bit. Status bit[2] is zeroed when the receiver data register is read.  
RS232 communication speed is set using two clock dividers. The base clock is the processor  
master clock. Bits 15-8 in these registers are for first divider and bits 7-0 for second divider. RX  
sample frequency is the clock frequency that is input for the second divider.  
Version: 1.05, 2011-04-13  
54  
VS1003  
10 VS1003 REGISTERS  
10.12 Timers v1.0 2002-04-23  
There are two 32-bit timers that can be initialized and enabled independently of each other. If  
enabled, a timer initializes to its start value, written by a processor, and starts decrementing  
every clock cycle. When the value goes past zero, an interrupt is sent, and the timer initializes  
to the value in its start value register, and continues downcounting. A timer stays in that loop  
as long as it is enabled.  
A timer has a 32-bit timer register for down counting and a 32-bit TIMER1_LH register for  
holding the timer start value written by the processor. Timers have also a 2-bit TIMER_ENA  
register. Each timer is enabled (1) or disabled (0) by a corresponding bit of the enable register.  
10.12.1 Registers  
Timer registers, prefix TIMER_  
Reg Type Reset Abbrev  
Description  
0xC030  
0xC031  
r/w  
r/w  
0
0
CONFIG[7:0] Timer configuration  
ENABLE[1:0] Timer enable  
0xC034  
0xC035  
0xC036  
0xC037  
0xC038  
0xC039  
0xC03A  
0xC03B  
r/w  
r/w  
r/w  
r/w  
r/w  
r/w  
r/w  
r/w  
0
0
0
0
0
0
0
0
T0L  
T0H  
T0CNTL  
T0CNTH  
T1L  
T1H  
T1CNTL  
T1CNTH  
Timer0 startvalue - LSBs  
Timer0 startvalue - MSBs  
Timer0 counter - LSBs  
Timer0 counter - MSBs  
Timer1 startvalue - LSBs  
Timer1 startvalue - MSBs  
Timer1 counter - LSBs  
Timer1 counter - MSBs  
10.12.2 Configuration TIMER_CONFIG  
TIMER_CONFIG Bits  
Bits Description  
7:0 Master clock divider  
Name  
TIMER_CF_CLKDIV  
TIMER_CF_CLKDIV is the master clock divider for all timer clocks. The generated internal  
fm  
clock frequency fi = c+1 , where fm is the master clock frequency and c is TIMER_CF_CLKDIV.  
Example: With a 12 MHz master clock, TIMER_CF_DIV=3 divides the master clock by 4, and  
12MHz  
3+1  
the output/sampling clock would thus be fi =  
= 3MHz.  
Version: 1.05, 2011-04-13  
55  
VS1003  
10 VS1003 REGISTERS  
10.12.3 Configuration TIMER_ENABLE  
TIMER_ENABLE Bits  
Bits Description  
Enable timer 1  
Enable timer 0  
Name  
TIMER_EN_T1  
TIMER_EN_T0  
1
0
10.12.4 Timer X Startvalue TIMER_Tx[L/H]  
The 32-bit start value TIMER_Tx[L/H] sets the initial counter value when the timer is reset. The  
fi  
c+1  
timer interrupt frequency ft =  
where fi is the master clock obtained with the clock divider  
(see Chapter 10.12.2 and c is TIMER_Tx[L/H].  
Example: With a 12 MHz master clock and with TIMER_CF_CLKDIV=3, the master clock fi =  
3MHz  
99+1  
3MHz. If TIMER_TH=0, TIMER_TL=99, then the timer interrupt frequency ft =  
30kHz.  
=
10.12.5 Timer X Counter TIMER_TxCNT[L/H]  
TIMER_TxCNT[L/H] contains the current counter values. By reading this register pair, the user  
may get knowledge of how long it will take before the next timer interrupt. Also, by writing to  
this register, a one-shot different length timer interrupt delay may be realized.  
10.12.6 Interrupts  
Each timer has its own interrupt, which is asserted when the timer counter underflows.  
Version: 1.05, 2011-04-13  
56  
VS1003  
10 VS1003 REGISTERS  
10.13 System Vector Tags  
The System Vector Tags are tags that may be replaced by the user to take control over several  
decoder functions.  
10.13.1 AudioInt, 0x20  
Normally contains the following VS_DSP assembly code:  
The user may, at will, replace the first instruction with a jmpi command to gain control over the  
audio interrupt.  
10.13.2 SciInt, 0x21  
Normally contains the following VS_DSP assembly code:  
The user may, at will, replace the instruction with a jmpi command to gain control over the SCI  
interrupt.  
10.13.3 DataInt, 0x22  
Normally contains the following VS_DSP assembly code:  
The user may, at will, replace the instruction with a jmpi command to gain control over the SDI  
interrupt.  
10.13.4 ModuInt, 0x23  
Normally contains the following VS_DSP assembly code:  
Version: 1.05, 2011-04-13  
57  
VS1003  
10 VS1003 REGISTERS  
The user may, at will, replace the instruction with a jmpi command to gain control over the AD  
Modulator interrupt.  
10.13.5 TxInt, 0x24  
Normally contains the following VS_DSP assembly code:  
The user may, at will, replace the instruction with a jmpi command to gain control over the  
UART TX interrupt.  
10.13.6 RxInt, 0x25  
Normally contains the following VS_DSP assembly code:  
The user may, at will, replace the first instruction with a jmpi command to gain control over the  
UART RX interrupt.  
10.13.7 Timer0Int, 0x26  
Normally contains the following VS_DSP assembly code:  
The user may, at will, replace the first instruction with a jmpi command to gain control over the  
Timer 0 interrupt.  
10.13.8 Timer1Int, 0x27  
Normally contains the following VS_DSP assembly code:  
The user may, at will, replace the first instruction with a jmpi command to gain control over the  
Timer 1 interrupt.  
Version: 1.05, 2011-04-13  
58  
VS1003  
10 VS1003 REGISTERS  
10.13.9 UserCodec, 0x0  
Normally contains the following VS_DSP assembly code:  
If the user wants to take control away from the standard decoder, the first instruction should be  
replaced with an appropriate j command to user’s own code.  
Unless the user is feeding MP3 or WMA data at the same time, the system activates the user  
program in less than 1 ms. After this, the user should steal interrupt vectors from the system,  
and insert user programs.  
10.14 System Vector Functions  
The System Vector Functions are pointers to some functions that the user may call to help  
implementing his own applications.  
10.14.1 WriteIRam(), 0x2  
VS_DSP C prototype:  
void WriteIRam(register __i0 u_int16 *addr, register __a1 u_int16 msW, register __a0 u_int16  
lsW);  
This is the preferred way to write to the User Instruction RAM.  
10.14.2 ReadIRam(), 0x4  
VS_DSP C prototype:  
u_int32 ReadIRam(register __i0 u_int16 *addr);  
This is the preferred way to read from the User Instruction RAM.  
A1 contains the MSBs and a0 the LSBs of the result.  
Version: 1.05, 2011-04-13  
59  
VS1003  
10 VS1003 REGISTERS  
10.14.3 DataBytes(), 0x6  
VS_DSP C prototype:  
u_int16 DataBytes(void);  
If the user has taken over the normal operation of the system by switching the pointer in User-  
Codec to point to his own code, he may read data from the Data Interface through this and the  
following two functions.  
This function returns the number of data bytes that can be read.  
10.14.4 GetDataByte(), 0x8  
VS_DSP C prototype:  
u_int16 GetDataByte(void);  
Reads and returns one data byte from the Data Interface. This function will wait until there is  
enough data in the input buffer.  
10.14.5 GetDataWords(), 0xa  
VS_DSP C prototype:  
void GetDataWords(register __i0 __y u_int16 *d, register __a0 u_int16 n);  
Read n data byte pairs and copy them in big-endian format (first byte to MSBs) to d. This  
function will wait until there is enough data in the input buffer.  
10.14.6 Reboot(), 0xc  
VS_DSP C prototype:  
void Reboot(void);  
Causes a software reboot, i.e. jump to the standard firmware without reinitializing the IRAM  
vectors.  
This is NOT the same as the software reset function, which causes complete initialization.  
Version: 1.05, 2011-04-13  
60  
VS1003  
11 DOCUMENT VERSION CHANGES  
11 Document Version Changes  
This chapter describes the most important changes to this document.  
Version 1.06, 2010-03-14  
SCI Test description fixed.  
CVDD limits changed.  
Version 1.04, 2009-02-03  
Typical characteristics added to section 4.7, some values changed in section 4.3.  
Version 1.03, 2008-07-21  
Max SCI read clock changed from CLKI/6 to CLKI/7.  
Typical connection diagram updated.  
SCI commands need a fixed delay if DREQ is low.  
AD_DIV documentation fixed.  
Version 1.02, 2006-07-13  
Some clarifications to ADPCM recording.  
GBUF is now called Common mode buffer.  
Updated the connection diagram in Section 6  
Version 1.01, 2005-12-08  
ADPCM recording section added (section 9.4)  
Changed output voltage current to 1 mA, max CLKI to 52 MHz, temperature range -  
40..85C.  
Version 1.00, 2005-09-05  
AVDD maximum reduced to 2.85 V  
Production version, no longer preliminary  
Version 0.93, 2005-06-23  
Power consumption limits updated  
Version 0.92, 2005-06-07  
License clause updated  
Midi instruments listed  
Recommended temperature range -25C..+70◦  
Version: 1.05, 2011-04-13  
61  
VS1003  
12 CONTACT INFORMATION  
12 Contact Information  
VLSI Solution Oy  
Entrance G, 2nd floor  
Hermiankatu 8  
FI-33720 Tampere  
FINLAND  
系人:王立青  
phone:0755-82565571  
手机:13267231725  
QQ:2355355254  
Email:Bill@yeshere.cn  
URL: http://www.vlsi.fi/  
URL: http://www.vlsi.fi/  
Version: 1.05, 2011-04-13  
62  

相关型号:

VS1005

此产品是芬兰VLSI刚刚研发成功的音频编解码芯片样品
ETC

VS100AE

CAMERA MONOCHROME
ETC

VS100B

Single output 10W~150W
LAMBDA

VS100B-12

Single output 10W~150W
LAMBDA

VS100B-12

AC-DC Regulated Power Supply Module, 1 Output, 105W
INFINEON

VS100B-15

Single output 10W~150W
LAMBDA

VS100B-15

AC-DC Regulated Power Supply Module, 1 Output, 105W
INFINEON

VS100B-24

Single output 10W~150W
LAMBDA

VS100B-24

AC-DC Regulated Power Supply Module, 1 Output, 103.2W
INFINEON

VS100B-3

Single output 10W~150W
LAMBDA

VS100B-3

AC-DC Regulated Power Supply Module, 1 Output, 66W
INFINEON

VS100B-36

Single output 10W~150W
LAMBDA