VP4-0860-R [COOPER]

Inductors and Transformers; 电感器和变压器
VP4-0860-R
型号: VP4-0860-R
厂家: COOPER BUSSMANN, INC.    COOPER BUSSMANN, INC.
描述:

Inductors and Transformers
电感器和变压器

变压器 电感器 固定电感器 过滤器扼流圈 LTE
文件: 总8页 (文件大小:439K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
®
®
VERSA-PAC  
Inductors and Transformers  
(Surface Mount)  
Description  
RoHS  
2002/95/EC  
• Six winding, surface mount devices that  
offer more than 500 usable inductor or  
transformer configurations  
• High power density and low profile  
• Low radiated noise and tightly coupled windings  
• Power range from 1 Watt – 70 Watts  
• Frequency range to over 1MHz  
• 500 VAC Isolation  
• Ferrite core material  
Applications  
• Inductors: buck, boost, coupled, choke, filter, resonant,  
noise filtering, differential, forward, common mode  
Transformers: flyback, feed forward, push-pull, multiple  
output, inverter, step-up, step-down, gate drive, base  
drive, wide band, pulse, control, impedance, isolation,  
bridging, ringer, converter, auto  
Packaging  
• Supplied in tape and reel packaging, 600 (VP01),  
300 (VP02), and 200 (VP03) per reel  
• Supplied in bulk packaging (VP04 and VP05)  
• VP04 & VP05 tape and reel packaging available.  
Please contact factory for details.  
Environmental Data  
• Storage temperature range: -55°C to 125°C  
• Operating ambient temperature range: -40°C to +85°C  
(range is application specific). The internal “hot spot”  
temperature defines the maximum allowable currents,  
which are limited to 130°C, including ambient  
• Solder reflow temperature: +260°C max for 10 seconds  
max.  
Leakage  
Inductance  
(BASE) µH  
(TYP)  
Thermal  
(1)  
Part  
L(BASE)  
µH  
(NOM)  
ISAT(BASE)  
Amps  
(TYP)  
IRMS(BASE)  
Amps  
(TYP)  
R(BASE) Volt-µSEC(BASE) EPEAK(BASE)  
Resistance  
°C/Watt  
Number  
Ohms  
µVs  
µJ  
(TYP)  
(2)  
(3)(4)  
(3)(5)  
(6)  
(7)  
(8)  
(9)  
(MAX)  
(MAX)  
32.9  
21.8  
32.9  
21.8  
32.9  
21.8  
32.9  
21.8  
32.9  
21.8  
48.3  
33.7  
48.3  
33.7  
48.3  
33.7  
48.3  
33.7  
48.3  
33.7  
39.8  
27.7  
39.8  
27.7  
39.8  
27.7  
39.8  
27.7  
39.8  
27.7  
(TYP)  
(10)  
VPH1-1400-R  
VP1-1400-R  
201.6 +/-30%  
89.6 +/-30%  
27.4 +/-20%  
12.2 +/-20%  
14.7 +/-20%  
6.5 +/-20%  
10.9 +/-20%  
4.9 +/-20%  
8.5 +/-20%  
3.8 +/-20%  
160 +/-30%  
78.4 +/-30%  
21.6 +/-20%  
10.6 +/-20%  
11.6 +/-20%  
5.7 +/-20%  
8.3 +/-20%  
4.1 +/-20%  
6.6 +/-20%  
3.2 +/-20%  
132 +/-30%  
63.2 +/-30%  
23.3 +/-20%  
11.2 +/-20%  
14.2 +/-20%  
6.8 +/-20%  
9.3 +/-20%  
4.5 +/-20%  
7.94 +/-20%  
3.8 +/-20%  
0.04  
0.06  
0.29  
0.43  
0.53  
0.80  
0.72  
1.06  
0.92  
1.37  
0.07  
0.10  
0.53  
0.76  
0.99  
1.41  
1.39  
1.95  
1.74  
2.50  
0.07  
0.10  
0.41  
0.59  
0.67  
0.97  
1.02  
1.46  
1.19  
1.73  
0.55  
0.85  
0.55  
0.85  
0.55  
0.85  
0.55  
0.85  
0.55  
0.85  
0.95  
1.26  
0.95  
1.26  
0.95  
1.26  
0.95  
1.26  
0.95  
1.26  
0.97  
1.47  
0.97  
1.47  
0.97  
1.47  
0.97  
1.47  
0.97  
1.47  
0.344  
0.145  
0.344  
0.145  
0.344  
0.145  
0.344  
0.145  
0.344  
0.145  
0.159  
0.090  
0.159  
0.090  
0.159  
0.090  
0.159  
0.090  
0.159  
0.090  
0.14  
0.11  
0.11  
0.77  
0.77  
1.45  
1.45  
1.92  
1.92  
2.48  
2.48  
0.29  
0.29  
2.11  
2.11  
3.94  
3.94  
5.47  
5.47  
7.01  
7.01  
0.24  
0.24  
1.36  
1.36  
2.23  
2.23  
3.38  
3.38  
4.00  
4.00  
0.212  
0.096  
0.212  
0.096  
0.212  
0.096  
0.212  
0.096  
0.212  
0.096  
0.165  
0.083  
0.165  
0.083  
0.165  
0.083  
0.165  
0.083  
0.165  
0.083  
0.125  
0.058  
0.125  
0.058  
0.125  
0.058  
0.125  
0.058  
0.125  
0.058  
60.7  
60.7  
60.7  
60.7  
60.7  
60.7  
60.7  
60.7  
60.7  
60.7  
44.0  
44.0  
44.0  
44.0  
44.0  
44.0  
44.0  
44.0  
44.0  
44.0  
43.4  
43.4  
43.4  
43.4  
43.4  
43.4  
43.4  
43.4  
43.4  
43.4  
(10)  
VPH1-0190-R  
VP1-0190-R  
VPH1-0102-R  
VP1-0102-R  
VPH1-0076-R  
VP1-0076-R  
VPH1-0059-R  
VP1-0059-R  
VPH2-1600-R  
(10)  
(10)  
VP2-1600-R  
VPH2-0216-R  
VP2-0216-R  
VPH2-0116-R  
VP2-0116-R  
VPH2-0083-R  
VP2-0083-R  
VPH2-0066-R  
VP2-0066-R  
VPH3-0780-R  
(10)  
(10)  
VP3-0780-R  
0.061  
0.14  
0.061  
0.14  
0.061  
0.14  
0.061  
0.14  
VPH3-0138-R  
VP3-0138-R  
VPH3-0084-R  
VP3-0084-R  
VPH3-0055-R  
VP3-0055-R  
VPH3-0047-R  
VP3-0047-R  
0.061  
®
®
VERSA-PAC  
Inductors and Transformers  
(Surface Mount)  
Leakage  
Inductance  
(BASE) µH  
(TYP)  
Thermal  
Resistance  
°C/Watt  
(1)  
Part  
L(BASE)  
µH  
(NOM)  
ISAT(BASE)  
Amps  
(TYP)  
IRMS(BASE)  
Amps  
(TYP)  
R(BASE) Volt-µSEC(BASE) EPEAK(BASE)  
Number  
Ohms  
µVs  
µJ  
(TYP)  
(2)  
(3)(4)  
(3)(5)  
(6)  
(7)  
(8)  
(9)  
(MAX)  
(MAX)  
64.6  
44.7  
64.6  
44.7  
64.6  
44.7  
64.6  
44.7  
64.6  
44.7  
98.4  
65.6  
98.4  
65.6  
98.4  
65.6  
98.4  
65.6  
98.4  
65.6  
(TYP)  
(10)  
VPH4-0860-R  
VP4-0860-R  
159.65 +/-30%  
87.0 +/-30%  
23.7 +/-20%  
11.3 +/-20%  
12.7 +/-20%  
6.1 +/-20%  
10.1 +/-20%  
4.9 +/-20%  
7.94 +/-20%  
3.8 +/-20%  
173 +/-30%  
76.8 +/-30%  
22.3 +/-20%  
9.9 +/-20%  
12 +/-20%  
0.11  
0.15  
0.65  
0.95  
1.21  
1.75  
1.52  
2.18  
1.94  
2.81  
0.14  
0.20  
1.05  
1.60  
1.96  
2.95  
2.43  
3.63  
3.07  
4.59  
1.41  
1.70  
1.41  
1.70  
1.41  
1.70  
1.41  
1.70  
1.41  
1.70  
1.70  
2.08  
1.70  
2.08  
1.70  
2.08  
1.70  
2.08  
1.70  
2.08  
0.0828  
0.57  
0.156  
0.075  
0.156  
0.075  
0.156  
0.075  
0.156  
0.075  
0.156  
0.075  
0.235  
0.105  
0.235  
0.105  
0.235  
0.105  
39.4  
39.4  
39.4  
39.4  
39.4  
39.4  
39.4  
39.4  
39.4  
39.4  
30.3  
30.3  
30.3  
30.3  
30.3  
30.3  
30.3  
30.3  
30.3  
30.3  
(10)  
0.057  
0.57  
VPH4-0140-R  
VP4-0140-R  
VPH4-0075-R  
VP4-0075-R  
VPH4-0060-R  
VP4-0060-R  
VPH4-0047-R  
VP4-0047-R  
VPH5-1200-R  
0.0828  
0.057  
3.54  
3.54  
0.0828  
0.057  
6.55  
6.55  
0.0828  
0.057  
8.16  
8.16  
0.0828  
0.057  
0.0711  
0.047  
10.52  
10.52  
1.11  
(10)  
(10)  
VP5-1200-R  
1.11  
VPH5-0155-R  
VP5-0155-R  
VPH5-0083-R  
VP5-0083-R  
VPH5-0067-R  
VP5-0067-R  
VPH5-0053-R  
VP5-0053-R  
0.0711  
0.047  
8.83  
8.83  
0.0711  
0.047  
0.0711  
0.047  
0.0711  
0.047  
16.07  
16.07  
19.83  
19.83  
25.10  
25.10  
5.3 +/-20%  
9.65 +/-20%  
4.3 +/-20%  
7.63 +/-20%  
3.4 +/-20%  
0.235  
0.105  
0.235  
0.105  
(1) The first three digits in the part number signify the size of the  
(8) Maximum Energy capability of each winding. This is based on 30%  
saturation of the core:  
L
package. The next four digits specify the A , or nanoHenries per turn  
squared.  
2
2
1
EnergySERIES = S x x 0.7LBASE x ISAT(BASE)  
2
BASE  
(2) L = Nominal Inductance of a single winding.  
BASE  
SAT(BASE)  
RMS(BASE)  
2
2
(3) I is the lessor of I  
and I  
.
1
EnergyPARALLEL = P x x 0.7LBASE x ISAT(BASE)  
2
(4) Peak current that will result in 30% saturation of the core. This  
current value assumes that equal current flows in all six windings.  
For applications in which all windings are not simultaneously driven  
(i.e. flyback, SEPIC, Cuk, etc.), the saturation current per winding  
For multiple windings, the energy capability varies as the square of  
the number of windings. For example, six windings (either parallel  
or series) can store 36 times more energy than one winding.  
may be calculated as follows:  
6 x ISAT(BASE)  
Number of Windings Driven  
ISAT  
=
(9) Thermal Resistance is the approximate surface temperature rise  
per Watt of heat loss under still-air conditions. Heat loss is a  
combination of core loss and wire loss. The number assumes the  
underlying PCB copper area equals 150% of the component area.  
(5) RMS Current that results in a surface temperature of approximately  
40°C above ambient. The 40°C rise occurs when the specified  
current flows through each of the six windings.  
(6) Maximum DC Resistance of each winding.  
TOTAL  
(7) For multiple windings in series, the volt-µsecond (µVs)  
(10) These devices are designed for feed-forward applications, where  
load current dominates magnitizing current.  
capability varies as the number of windings in series (S):  
Volt-µsecTOTAL = S x Volt-µsec(BASE)  
TOTAL  
For multiple windings in parallel, the volt-µsecond (µVs) capability  
is as shown in the table above.  
VERSA-PAC temperature rise depends on total power losses and  
size. Any other PCM configurations other than those suggested  
could run hotter than acceptable.  
Certain topologies or applications must be analyzed for needed  
requirements and matched with the best VERSA-PAC size and  
configuration. Proper consideration must be used with all  
parameters, especially those associated with current rating, energy  
storage, or maximum volt-seconds.  
VERSA-PAC should not be used in off-line or safety related  
applications. The breakdown voltage from one winding to any other  
winding is 500 VAC maximum.  
PCM  
®
®
VERSA-PAC  
Inductors and Transformers  
(Surface Mount)  
Mechanical Diagrams  
VP1 and VPH1  
RECOMMENDED PCB LAYOUT  
N
TOP VIEW  
WHITE DOT  
PIN #1  
LOGO (OPTIONAL)  
12  
M
P
1
6
D
1
(10PLCS)  
12  
(12 PLCS)  
K
A
NOTES  
COMPONENT  
SIDE  
(12PLCS)  
J
0
1) Tolerances A - I are 0.25 mm  
unless specified otherwise.  
2) Tolerances J - P are +/- 0.1 mm  
unless specified otherwise.  
3) Marking as shown  
(10PLCS)  
7
6
7
L
B
C
(12PLCS)  
a) Dot for pin #1 identification  
b) On top of unit: -- VPHx-xxx  
(product code, size,  
4 digit part number per family  
table.)  
c) On top of unit: Versa Pac  
Logo (optional)  
4
10  
FRONT VIEW  
E
7
1
5
11  
d) On bottom of unit: wwllyy =  
(date code) R = (revision  
level)  
8
2
6
F
12  
4) All soldering surfaces must be  
coplanar within 0.102 mm.  
I
G
H
(12 PLCS)  
(2 PLCS)  
9
3
WWLLYY R  
1:1:1:1:1:1  
A
B
mm  
ref  
C
mm  
max  
D
mm  
ref  
E
mm  
ref  
F
mm  
max  
G
mm  
ref  
H
mm  
ref  
I
J
mm  
ref  
K
mm  
L
mm  
M
mm  
ref  
N
mm  
max  
O
mm  
P
mm  
mm  
mm  
ref  
max  
VP1 and VPH1 12.9  
9.2  
13.0  
0.7  
5.9  
6.2  
1.5  
0.1  
0.25 11.5  
1.5  
2.25  
9.7  
14.2  
2.0  
0.5  
VP2 and VPH2  
RECOMMENDED PCB LAYOUT  
N
TOP VIEW  
WHITE DOT  
PIN #1  
LOGO (OPTIONAL)  
12  
M
P
1
6
D
1
(10PLCS)  
12  
(12 PLCS)  
K
A
NOTES  
COMPONENT  
SIDE  
(12PLCS)  
J
0
1) Tolerances A - I are 0.25 mm  
unless specified otherwise.  
2) Tolerances J - P are +/- 0.1 mm  
unless specified otherwise.  
3) Marking as shown  
(10PLCS)  
7
6
7
L
B
C
(12PLCS)  
a) Dot for pin #1 identification  
b) On top of unit: -- VPHx-xxx  
(product code, size,  
4 digit part number per family  
table.)  
c) On top of unit: Versa Pac  
Logo (optional)  
4
10  
FRONT VIEW  
E
7
1
5
11  
d) On bottom of unit: wwllyy =  
(date code) R = (revision  
level)  
8
2
6
F
12  
4) All soldering surfaces must be  
coplanar within 0.102 mm.  
I
G
H
(12 PLCS)  
(2 PLCS)  
9
3
WWLLYY R  
1:1:1:1:1:1  
A
B
mm  
ref  
C
mm  
max  
D
mm  
ref  
E
mm  
ref  
F
mm  
max  
G
mm  
ref  
H
mm  
ref  
I
J
mm  
ref  
K
mm  
L
mm  
M
mm  
ref  
N
mm  
max  
O
mm  
P
mm  
mm  
mm  
ref  
max  
VP2 and VPH2 16.3 12.0 16.8  
0.7  
6.7  
7.8  
2.0  
0.1  
0.30 14.25 1.75  
2.5  
13.0 18.0  
2.5  
0.75  
®
®
VERSA-PAC  
Inductors and Transformers  
(Surface Mount)  
Mechanical Diagrams  
VP3 and VPH3  
M
L
O
TOP VIEW  
WHITE DOT  
PIN #1  
(10PLCS)  
1
6
12  
7
J
COMPONENT  
SIDE  
12  
7
1
I
N
(12PLCS)  
D
VPH_-_ _ _ _  
(10PLCS)  
(12 PLCS)  
A
LOGO  
(OPTIONAL)  
NOTES  
K (12PLCS)  
1) Tolerances A - I are 0.25 mm  
unless specified otherwise.  
2) Tolerances J - P are +/- 0.1 mm  
unless specified otherwise.  
3) Marking as shown  
6
4
1
B
C
a) Dot for pin #1 identification  
b) On top of unit: -- VPHx-xxx  
(product code, size,  
4 digit part number per family  
table.)  
9
5
12  
2
FRONT VIEW  
c) On top of unit: Versa Pac  
Logo (optional)  
d) On bottom of unit: wwllyy =  
(date code) R = (revision  
level)  
8
6
11  
3
E
H
G
4) All soldering surfaces must be  
coplanar within 0.102 mm.  
F (2 PLCS)  
(12 PLCS)  
(12 PLCS)  
7
10  
1:1:1:1:1:1  
A
B
C
D
E
F
G
H
I
J
K
L
M
N
O
mm mm mm mm mm mm mm mm mm mm mm mm mm mm mm  
max  
ref max  
ref  
max  
ref  
ref  
ref  
ref  
ref  
max  
VP3 and VPH3 17.1 16.0 22.3  
0.7  
8.4  
3.0  
0.1  
0.4 14.49 1.79 3.43 16.88 23.74 2.54 0.75  
VP4 and VPH4  
M
L
O
TOP VIEW  
WHITE DOT  
PIN #1  
(10PLCS)  
1
6
12  
7
J
COMPONENT  
SIDE  
12  
1
I
N
(12PLCS)  
D
VPH_-_ _ _ _  
(10PLCS)  
(12 PLCS)  
A
LOGO  
(OPTIONAL)  
NOTES  
K (12PLCS)  
1) Tolerances A - I are 0.25 mm  
unless specified otherwise.  
2) Tolerances J - P are +/- 0.1 mm  
unless specified otherwise.  
3) Marking as shown  
6
7
4
1
B
C
a) Dot for pin #1 identification  
b) On top of unit: -- VPHx-xxx  
(product code, size,  
4 digit part number per family  
table.)  
9
5
12  
2
FRONT VIEW  
c) On top of unit: Versa Pac  
Logo (optional)  
d) On bottom of unit: wwllyy =  
(date code) R = (revision  
level)  
8
6
11  
3
E
H
G
4) All soldering surfaces must be  
coplanar within 0.102 mm.  
F (2 PLCS)  
(12 PLCS)  
(12 PLCS)  
7
10  
1:1:1:1:1:1  
A
B
C
D
E
F
G
H
I
J
K
L
M
N
O
mm mm mm mm mm mm mm mm mm mm mm mm mm mm mm  
max  
ref max  
ref  
max  
ref  
ref  
ref  
ref  
ref  
max  
VP4 and VPH4 18.0 18.0 24.6  
0.7  
10.0  
3.3  
0.1  
0.4 14.25 1.75 3.43 19.14 26.0  
2.5 0.75  
®
®
VERSA-PAC  
Inductors and Transformers  
(Surface Mount)  
Mechanical Diagrams  
VP5 and VPH5  
M
L
O
TOP VIEW  
WHITE DOT  
PIN #1  
(10PLCS)  
1
6
12  
7
J
COMPONENT  
SIDE  
12  
7
1
I
N
(12PLCS)  
D
VPH_-_ _ _ _  
(10PLCS)  
(12 PLCS)  
A
LOGO  
(OPTIONAL)  
K (12PLCS)  
NOTES  
6
1) Tolerances A - I are 0.25 mm  
unless specified otherwise.  
2) Tolerances J - P are +/- 0.1 mm  
unless specified otherwise.  
3) Marking as shown  
4
1
B
C
a) Dot for pin #1 identification  
b) On top of unit: -- VPHx-xxx  
(product code, size,  
4 digit part number per family  
table.)  
9
5
12  
2
FRONT VIEW  
c) On top of unit: Versa Pac  
Logo (optional)  
d) On bottom of unit: wwllyy =  
(date code) R = (revision  
level)  
8
6
11  
3
E
H
G
F (2 PLCS)  
(12 PLCS)  
(12 PLCS)  
4) All soldering surfaces must be  
coplanar within 0.102 mm.  
7
10  
1:1:1:1:1:1  
A
B
C
D
E
F
G
H
I
J
K
L
M
N
O
mm mm mm mm mm mm mm mm mm mm mm mm mm mm mm  
max  
ref max  
ref  
max  
ref  
ref  
ref  
ref  
ref  
max  
VP5 and VPH5 21.0 21.0 28.5  
0.7  
10.8 2.95  
0.1  
0.4 17.25 2.25 3.15 22.7 29.0  
3.0 0.75  
Inductance Characteristics  
OCL vs. Isat  
100.0%  
90.0%  
80.0%  
70.0%  
60.0%  
50.0%  
40.0%  
30.0%  
20.0%  
10.0%  
0.0%  
0.0%  
20.0%  
40.0%  
60.0%  
80.0%  
100.0% 120.0% 140.0% 160.0% 180.0% 200.0%  
% of Isat  
®
®
VERSA-PAC  
Inductors and Transformers  
(Surface Mount)  
HOW TO USE MULTIPLE WINDINGS  
Discrete inductors combine like resistors, when connected in series or parallel. For example, inductors in series add and  
inductors in parallel reduce in a way similar to Ohm’s Law.  
LSeries = L1 + L2 + L3...Ln  
[
]
LParallel = 1/ 1/L1 + 1/L2 + 1/L3....1/Ln  
Windings on the same magnetic core behave differently. Two windings in series result in four times the inductance of a  
single winding. This is because the inductance varies proportionately to the square of the turns.  
Paralleled VERSA-PAC windings result in no change to the net inductance because the total number of turns remains  
unchanged; only the effective wire size becomes larger. Two parallel windings result in approximately twice the current  
carrying capability of a single winding. The net inductance of a given PCM configuration is based on the number of  
BASE  
windings in series squared multiplied by the inductance of a single winding (L ).The current rating of a PCM configuration  
BASE  
is derived by multiplying the maximum current rating of one winding (I ) by the number of windings in parallel. Examples  
of simple two-winding devices are shown below:  
Series Connected (2 Windings)  
Parallel Connected (2 Windings)  
10µH  
1 Amp  
10µH  
1 Amp  
10µH  
1 Amp  
10µH  
1 Amp  
LTOTAL = LBASE x S2 IMAX = IBASE x P  
L TOTAL = LBASE x S2  
IMAX = IBASE x P  
= 1 Amp x 2  
= 2 Amps  
= 10 µH x 22  
= 40 µH  
= 1 Amp x 1  
= 1 Amp  
= 10 µH x 12  
= 10 µH  
Where:  
LBASE = Inductance of a single winding  
P = Number of windings in parallel (use 1 with all windings in series)  
S = Number of windings in series  
IBASE = Maximum current rating of one winding  
®
®
VERSA-PAC  
Inductors and Transformers  
(Surface Mount)  
®
HOW TO PIN-CONFIGURE VERSA-PAC  
Each VERSA-PAC can be configured in a variety of ways by simply connecting pins together on the Printed Circuit Board  
(PCB). As shown below, the connections on the PCB are equal to the pin configuration statement shown at the bottom of the  
schematic symbol. Connecting a number of windings in parallel will increase the current carrying capability, while connecting  
in series will multiply the inductance. Each VERSA-PAC part can be configured in at least 6 combinations for inductor use or  
configured in at least 15 turns ratios for transformer applications. Given 25 VERSA-PAC part numbers, this allows for at least  
500 magnetic configurations. The PCM configurations can either be created by the designer or simply chosen from the existing  
PCM diagrams.The following inductor example shows 6 windings in series, which result in an inductance of 36 times the base  
inductance and 1 times the base current.  
INDUCTOR EXAMPLE  
FOR SIZES VP3, VP4 AND VP5  
LTOTAL = 36 x LBASE  
Component View  
= 36 times the base  
Inductance from Data Table.  
1
12  
1
4
9
1
7
12  
2
5
8
11  
3
6
7
10  
6
7
PIN CONFIGURATIONS  
(2,12)(3,11)(4,10)(5,9)(6,8)  
Each VERSA-PAC may be used in at least 15 transformer applications. More than 375 transformer combinations may be  
achieved using the available 25 VERSA-PAC parts.  
TRANSFORMER EXAMPLE  
FOR SIZES VP3, VP4 AND VP5  
1:5  
1
12  
1
4
9
LPRIMARY = 1 x LBASE  
12  
1
2
2
5
8
IPRI = 1 x IBASE  
ISEC = 1 x IBASE  
11  
3
6
7
12  
7
10  
6
7
PIN CONFIGURATIONS  
(3,11)(4,10)(5,9)(6,8)  
The PCM configurations may be selected from the examples on the following pages or created by the designer. Six PCM  
inductor and fifteen PCM transformer configurations and equivalent circuit schematics are shown.The printed circuit board  
layout in each example illustrates the connections to obtain the desired inductance or turns ratio. The examples may be  
used by the PCB designer to configure VERSA-PAC as desired.  
To assist the designer, VERSA-PAC phasing, coupling and thermal issues have been considered in each of the PCM  
configurations illustrated. Additionally, the inductance and current ratings, as a function of the respective base values from  
the following Data Tables, are shown in each PCM example.Turns ratios are also given for each PCM Transformer shown.  
It is important to carefully select the proper VERSA-PAC part in order to minimize the component size without exceeding  
the RMS current capability or saturating the core. The Data Tables indicate maximum ratings.  
®
®
VERSA-PAC  
Inductors and Transformers  
(Surface Mount)  
®
VERSA-PAC Performance Characteristics  
Bipolar (Push-Pull) Power vs Frequency  
Unipolar (Flyback) Power vs Frequency  
40.0  
70.0  
35.0  
30.0  
25.0  
20.0  
15.0  
10.0  
5.0  
60.0  
50.0  
VP 5  
VP 5  
40.0  
VP 4  
30.0  
VP 4  
VP 3  
VP 2  
20.0  
VP 3  
10.0  
VP 2  
VP 1  
VP 1  
0.0  
100  
0.0  
100  
200  
300  
Frequency, kHz  
400  
500  
200  
300  
400  
500  
Frequency, kHz  
These curves represent typical power handling capability.  
Indicated power levels may not be achievable with all configurations.  
3.3V Buck Converter  
5V to 3.3V Buck Converter With 5V Output  
This circuit utilizes the gap of the VP5-0083 to handle the 12.5  
Amp output current without saturating. In each of the five VERSA-  
PAC sizes, the gap is varied to achieve a selection of specific  
inductance and current values (see VERSA-PAC Data Table).  
This circuit minimizes both board space and cost by eliminating a  
second regulator. VERSA-PAC’s gap serves to prevent core  
saturation during the switch on-time and also stores energy for the  
+5V load which is delivered during the flyback interval. The +3.3V  
buck winding is configured by placing two windings in series while  
the +5V is generated by an additional flyback winding stacked on  
the 3.3V output. Extra windings are paralleled with primary  
windings to handle more current. The turns ratio of 2:1 adds 1.67V  
to the +3.3V during the flyback interval to achieve +5V.  
All six windings are connected in parallel to minimize AC/DC  
copper losses and to maximize heat dissipation. With VERSA-  
PAC, this circuit works well at or above 300 KHz. Also, the closed  
flux-path EFD geometry enables much lower radiation  
characteristics than open-path bobbin core style components.  
+V  
VERSA-PAC  
+V  
VP5-0083  
RTN  
1,2  
1
2
3
4
5
6
12  
11  
10  
9
+5V@  
1A  
Synchronous  
Controller  
IC  
VERSA-PAC  
VP5-0083  
7
Synchronous  
Controller  
IC  
8
6
+3.3V@  
12.5A  
12,11  
3,4,5  
7
+
+
LEVEL SHIFT  
10,9,8  
RTN  
+3.3V@  
4.2A  
+
LITHIUM-ION BATTERY TO 3.3V SEPIC CONVERTER  
VERSA-PAC  
VP5-0083  
12 11 10  
4
5
6
7
The voltage of a Lithium-Ion Battery varies above and below  
+3.3V depending on the degree of charge. The SEPIC  
configuration takes advantage of VERSA-PAC’s multiple tightly  
coupled windings. This results in lower ripple current which lowers  
noise and core losses substantially. The circuit does not require a  
snubber to control the voltage “spike” associated with switch turn-  
off, and is quite efficient due to lower RMS current in the windings.  
+
+3.3V@  
6A  
Controller  
IC  
W/Integral  
Switch  
+
1
2
3
+
9
8
PM-4301 8/06  
Visit us on the Web at www.cooperbussmann.com  
1225 Broken Sound Pkwy. Suite F Boca Raton, FL 33487  
Tel: +1-561-998-4100 Toll Free: +1-888-414-2645 Fax: +1-561-241-6640  
© Cooper Electronic  
Technologies 2006  
This bulletin is intended to present product design solutions and technical information that will help the end user with design applications. Cooper Electronic  
Technologies reserves the right, without notice, to change design or construction of any products and to discontinue or limit distribution of any products. Cooper  
Electronic Technologies also reserves the right to change or update, without notice, any technical information contained in this bulletin. Once a product has been  
selected, it should be tested by the user in all possible applications.  
Life Support Policy: Cooper Electronic Technologies does not authorize the use of any of its products for use in life support devices or systems without the  
express written approval of an officer of the Company. Life support systems are devices which support or sustain life, and whose failure to perform, when  
properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in significant injury to the user.  

相关型号:

VP4/5A/CAB/12VDC

************GESTRICHEN**********
ETC

VP4/5A/CAB/47VDC

RELAY PLUG-IN 4PCO
ETC

VP4/CAB/12VDC

*************GESTRICHEN********
ETC

VP4/CAB/26VDC

**********GESTRICHEN***********
ETC

VP4009ALF

10/100 BASE-TX VOICE OVER IP MAGNETICS
BOTHHAND

VP4015

1000 BASE –T DUAL PORT MAGNETICS MODULES
BOTHHAND

VP4015-LF

IEEE 802.3af/ANSI X3.263 compliant performance.
BOTHHAND

VP4032K122R050

Surface Mount Varistors VP Series Plastic Encapsulated
KEMET

VP4032K122R060

Surface Mount Varistors VP Series Plastic Encapsulated
KEMET

VP4032K122R075

Surface Mount Varistors VP Series Plastic Encapsulated
KEMET

VP4032K122R095

Surface Mount Varistors VP Series Plastic Encapsulated
KEMET

VP4032K122R115

Surface Mount Varistors VP Series Plastic Encapsulated
KEMET