C2M0045170D [CREE]

Silicon Carbide Power MOSFET C2MTM MOSFET Technology;
C2M0045170D
型号: C2M0045170D
厂家: CREE, INC    CREE, INC
描述:

Silicon Carbide Power MOSFET C2MTM MOSFET Technology

文件: 总10页 (文件大小:1197K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
VDS  
ID  
RDS(on)  
1700 V  
72 A  
@
25˚C  
C2M0045170D  
45 m  
Silicon Carbide Power MOSFET  
C2MTM MOSFET Technology  
N-Channel Enhancement Mode  
Features  
Package  
•ꢀ High Blocking Voltage with Low On-Resistance  
•ꢀ High Speed Switching with Low Capacitances  
•ꢀ Easy to Parallel and Simple to Drive  
•ꢀ Resistant to Latch-Up  
•ꢀ Halogen Free, RoHS Compliant  
Benefits  
TO-247-3  
•ꢀ HigherꢀSystemꢀEfficiency  
•ꢀ Reduced Cooling Requirements  
•ꢀ Increased Power Density  
•ꢀ Increased System Switching Frequency  
Applications  
•ꢀ Solar Inverters  
•ꢀ Switch Mode Power Supplies  
•ꢀ High Voltage DC/DC converters  
•ꢀ Motor Drive  
Part Number  
Package  
Marking  
•ꢀ Pulsed Power Applications  
C2M0045170D  
TO-247-3  
C2M0045170  
Maximum Ratings (TCꢀ=ꢀ25ꢀ˚Cꢀunlessꢀotherwiseꢀspecified)  
Symbol  
Parameter  
Drain - Source Voltage  
Value  
Unit  
Test Conditions  
Note  
VGS = 0 V, IDꢀ=ꢀ100ꢀμA  
1700  
-10/+25  
-5/+20  
72  
V
V
V
VDSmax  
VGSmax  
VGSop  
Gate - Source Voltage  
Gate - Source Voltage  
Absoluteꢀmaximumꢀvalues,ꢀACꢀ(fꢀ>1ꢀHz)  
Recommended operational values  
Fig. 19  
VGS =20 V, TC =ꢀ25˚C  
VGS =20 V, TC =ꢀ100˚C  
Continuous Drain Current  
Pulsed Drain Current  
A
A
ID  
48  
160  
520  
Fig. 22  
Fig. 20  
ID(pulse)  
PD  
Pulse width tP limited by Tjmax  
Power Dissipation  
W
TC=25˚C,ꢀT ꢀ=ꢀ150ꢀ˚C  
J
-40 to  
+150  
Operating Junction and Storage Temperature  
˚C  
T , Tstg  
J
Solder Temperature  
Mounting Torque  
260  
˚C  
1.6mmꢀ(0.063”)ꢀfromꢀcaseꢀforꢀ10s  
TL  
1
8.8  
Nm  
lbf-in  
M3 or 6-32 screw  
Md  
1
C2M0045170D Rev. -, 06-2016  
Electrical Characteristics (TCꢀ=ꢀ25˚Cꢀunlessꢀotherwiseꢀspecified)  
Symbol  
Parameter  
Min.  
1700  
2.0  
Typ.  
Max. Unit  
Test Conditions  
Note  
V(BR)DSS  
Drain-Source Breakdown Voltage  
V
VGS = 0 V, IDꢀ=ꢀ100ꢀμA  
2.6  
1.8  
2
4
VDS = VGS, ID = 18mA  
V
V
VGS(th)  
Gate Threshold Voltage  
Fig. 11  
VDS = VGS, ID = 18mA, TJ = 150 °C  
VDS = 1700 V, VGS = 0 V  
VGS = 20 V, VDS = 0 V  
IDSS  
IGSS  
Zero Gate Voltage Drain Current  
Gate-Source Leakage Current  
100  
600  
70  
μA  
nA  
45  
90  
VGS = 20 V, ID = 50 A  
Fig.  
4,5,6  
RDS(on)  
Drain-Source On-State Resistance  
Transconductance  
mΩ  
VGS = 20 V, ID = 50 A, TJ = 150 °C  
VDS= 20 V, IDS= 50 A  
21.7  
24.4  
gfs  
S
Fig. 7  
VDS= 20 V, IDS= 50 A, TJ = 150 °C  
Ciss  
Coss  
Crss  
Eoss  
EON  
EOFF  
EON  
EOFF  
td(on)  
tr  
Input Capacitance  
3672  
171  
6.7  
VGS = 0 V  
Fig.  
17,18  
Output Capacitance  
pF  
VDS = 1000 V  
Reverse Transfer Capacitance  
Coss Stored Energy  
f = 1 MHz  
AC  
V
= 25 mV  
105  
2.1  
μJ  
Fig 16  
VDS = 1200 V, VGS = -5/20 V,  
Fig. 26,  
29b  
Note 2  
Turn-OnꢀSwitchingꢀEnergyꢀ(SiCꢀDiodeꢀFWD)  
TurnꢀOffꢀSwitchingꢀEnergyꢀ(SiCꢀDiodeꢀFWD)  
Turn-OnꢀSwitchingꢀEnergyꢀ(BodyꢀDiodeꢀFWD)  
TurnꢀOffꢀSwitchingꢀEnergyꢀ(BodyꢀDiodeꢀFWD)  
Turn-On Delay Time  
mJ  
ID = 50A, RG(ext)ꢀ=ꢀ2.5Ω,ꢀL=ꢀ105ꢀμH,ꢀ  
TJ = 150 °C, using SiC Diode as FWD  
0.86  
4.7  
VDS = 1200 V, VGS = -5/20 V,  
Fig. 26,  
29a  
Note 2  
mJ  
ns  
ID = 50A, RG(ext)ꢀ=ꢀ2.5Ω,ꢀL=ꢀ105ꢀμH,ꢀ  
TJ = 150 °C, using MOSFET as FWD  
0.93  
65  
VDD = 1200 V, VGS = -5/20 V  
ID = 50 A,  
RG(ext)ꢀ=ꢀ2.5ꢀΩ,ꢀꢀTimingꢀrelativeꢀtoꢀVDS  
Inductive load  
Fig. 27,  
29  
Note 2  
Rise Time  
20  
td(off)  
Turn-Off Delay Time  
48  
tf  
RG(int)  
Qgs  
Qgd  
Qg  
Fall Time  
18  
1.3  
44  
,
Internal Gate Resistance  
Gate to Source Charge  
Gate to Drain Charge  
Total Gate Charge  
f = 1 MHz VAC = 25 mV  
VDS = 1200 V, VGS = -5/20 V  
ID = 50 A  
57  
nC  
Fig. 12  
Per IEC60747-8-4 pg 21  
188  
Reverse Diode Characteristics  
Symbol  
Parameter  
Typ.  
Max.  
Unit  
Test Conditions  
Note  
4.1  
3.6  
V
V
A
VGS = - 5 V, ISD = 25 A  
Fig. 8, 9,  
10  
VSD  
Diode Forward Voltage  
Note 1  
VGS = - 5 V, ISD = 25 A, T = 150 °C  
J
IS  
trr  
Continuous Diode Forward Current  
Reverse Recovery Time  
72  
TC= 25 °C, VGS = - 5 V  
Note 1  
70  
530  
14  
ns  
nC  
A
VGS = - 5 V, ISD = 50 A , VR = 1200 V  
dif/dt = 1400 A/µs  
Qrr  
Irrm  
Reverse Recovery Charge  
Note 1  
Peak Reverse Recovery Current  
Noteꢀ(1):ꢀWhenꢀusingꢀSiCꢀBodyꢀDiodeꢀtheꢀmaximumꢀrecommendedꢀVGS = -5V  
Thermal Characteristics  
Symbol  
Parameter  
Typ.  
Max.  
Unit  
Test Conditions  
Note  
RθJC  
RθJC  
Thermal Resistance from Junction to Case  
Thermal Resistance from Junction to Ambient  
0.22  
0.24  
40  
Fig. 21  
°C/W  
2
C2M0045170D Rev. -, 06-2016  
Typical Performance  
150  
150  
125  
100  
75  
Conditions:  
TJ = -40 °C  
tp < 200 µs  
Conditions:  
TJ = 25 °C  
tp < 200 µs  
VGS = 20 V  
VGS = 20 V  
125  
VGS = 18 V  
VGS = 18 V  
VGS = 14 V  
VGS = 16 V  
VGS = 16 V  
100  
VGS = 14 V  
VGS = 12 V  
75  
50  
25  
0
VGS = 12 V  
50  
VGS = 10 V  
VGS = 10 V  
25  
0
0.0  
0.0  
0
2.5  
5.0  
7.5  
10.0  
12.5  
15.0  
20.0  
140  
0.0  
2.5  
5.0  
7.5  
10.0  
12.5  
15.0  
150  
150  
Drain-Source Voltage, VDS (V)  
Drain-Source Voltage, VDS (V)  
Figure 1. Output Characteristics TJ = -40 °C  
Figure 2. Output Characteristics TJ = 25 °C  
2.5  
2.0  
1.5  
1.0  
0.5  
0.0  
150  
125  
100  
75  
Conditions:  
TJ = 150 °C  
tp < 200 µs  
Conditions:  
IDS = 50 A  
GS = 20 V  
tp < 200 µs  
VGS = 20 V  
VGS = 18 V  
V
VGS = 16 V  
VGS = 14 V  
VGS = 12 V  
VGS = 10 V  
50  
25  
0
-50  
-25  
0
25  
50  
75  
100  
125  
2.5  
5.0  
7.5  
10.0  
12.5  
15.0  
17.5  
Junction Temperature, TJ (°C)  
Drain-Source Voltage, VDS (V)  
Figure 4. Normalized On-Resistance vs. Temperature  
Figure 3. Output Characteristics TJ = 150 °C  
160  
140  
120  
100  
80  
120  
100  
80  
60  
40  
20  
0
Conditions:  
IDS = 50 A  
tp < 200 µs  
Conditions:  
VGS = 20 V  
tp < 200 µs  
TJ = 150 °C  
VGS = 14 V  
VGS = 16 V  
TJ = 25 °C  
60  
VGS = 20 V  
40  
VGS = 18 V  
TJ = -40 °C  
20  
0
20  
40  
60  
80  
100  
120  
-50  
-25  
0
25  
50  
75  
100  
125  
Drain-Source Current, IDS (A)  
Junction Temperature, TJ (°C)  
Figure 5. On-Resistance vs. Drain Current  
For Various Temperatures  
Figure 6. On-Resistance vs. Temperature  
For Various Gate Voltage  
3
C2M0045170D Rev. -, 06-2016  
Typical Performance  
125  
-7  
-6  
-5  
-4  
-3  
-2  
-1  
0
Conditions:  
VDS = 20 V  
tp < 200 µs  
0
100  
75  
50  
25  
0
VGS = -5 V  
-30  
-60  
-90  
-120  
-150  
TJ = 150 °C  
VGS = 0 V  
TJ = 25 °C  
VGS = -2 V  
TJ = -40 °C  
Conditions:  
TJ = -40°C  
tp < 200 µs  
0
2
4
6
8
10  
12  
14  
Drain-Source Voltage VDS (V)  
Gate-SourceVoltage, VGS (V)  
Figure 7. Transfer Characteristic For  
Various Junction Temperatures  
Figure 8. Body Diode Characteristic at -40 ºC  
-7  
-6  
-5  
-4  
-3  
-2  
-1  
0
-7  
-6  
-5  
-4  
-3  
-2  
-1  
0
0
0
VGS = -5 V  
VGS = -5 V  
-30  
-60  
-90  
-120  
-150  
-30  
-60  
-90  
VGS = 0 V  
VGS = 0 V  
VGS = -2 V  
VGS = -2 V  
-120  
Conditions:  
TJ = 150°C  
tp < 200 µs  
Conditions:  
TJ = 25°C  
tp < 200 µs  
-150  
Drain-Source Voltage VDS (V)  
Drain-Source Voltage VDS (V)  
Figure 9. Body Diode Characteristic at 25 ºC  
Figure 10. Body Diode Characteristic at 150 ºC  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0.0  
25  
Conditons  
GS =VDS  
IDS = 18 mA  
Conditions:  
V
I
I
DS = 50 A  
GS = 100 mA  
20  
15  
10  
5
VDS = 1200 V  
TJ = 25 °C  
0
-5  
-50  
-25  
0
25  
50  
75  
100  
125  
150  
0
20  
40  
60  
80  
100  
120  
140  
160  
180  
200  
Junction Temperature TJ (°C)  
Gate Charge, QG (nC)  
Figure 11. Threshold Voltage vs. Temperature  
Figure 12. Gate Charge Characteristic  
4
C2M0045170D Rev. -, 06-2016  
Typical Performance  
-6  
-5  
-4  
-3  
-2  
-1  
0
-6  
-5  
-4  
-3  
-2  
-1  
0
0
0
VGS = 0 V  
VGS = 0 V  
VGS = 5 V  
-30  
-60  
-90  
-120  
-150  
-30  
-60  
-90  
-120  
-150  
VGS = 5 V  
VGS = 10 V  
VGS = 10 V  
VGS = 15 V  
VGS = 15 V  
VGS = 20 V  
VGS = 20 V  
Conditions:  
TJ = -40 °C  
tp < 200 µs  
Conditions:  
TJ = 25 °C  
tp < 200 µs  
Drain-Source Voltage VDS (V)  
Drain-Source Voltage VDS (V)  
Figure 13. 3rd Quadrant Characteristic at -40 ºC  
Figure 14. 3rd Quadrant Characteristic at 25 ºC  
120  
100  
80  
60  
40  
20  
0
-6  
-5  
-4  
-3  
-2  
-1  
0
0
VGS = 0 V  
-30  
-60  
-90  
-120  
-150  
VGS = 5 V  
VGS = 10 V  
VGS = 15 V  
VGS = 20 V  
Conditions:  
TJ = 150 °C  
tp < 200 µs  
0
200  
400  
600  
800  
1000  
1200  
Drain to Source Voltage, VDS (V)  
Drain-Source Voltage VDS (V)  
Figure 15. 3rd Quadrant Characteristic at 150 ºC  
Figure 16. Output Capacitor Stored Energy  
10000  
10000  
1000  
100  
10  
Conditions:  
TJ = 25 °C  
Conditions:  
TJ = 25 °C  
VAC = 25 mV  
VAC = 25 mV  
Ciss  
Ciss  
f = 1 MHz  
f = 1 MHz  
1000  
100  
10  
Coss  
Coss  
Crss  
Crss  
1
1
0
50  
100  
Drain-Source Voltage, VDS (V)  
150  
200  
0
200  
400  
600  
800  
1000  
Drain-Source Voltage, VDS (V)  
Figure 18. Capacitances vs. Drain-Source  
Figure 17. Capacitances vs. Drain-Source  
Voltageꢀ(0-1000ꢀV)  
Voltageꢀ(0-200ꢀV)  
5
C2M0045170D Rev. -, 06-2016  
Typical Performance  
80  
70  
60  
50  
40  
30  
20  
10  
0
600  
500  
400  
300  
200  
100  
0
Conditions:  
TJ ≤ 150 °C  
Conditions:  
TJ ≤ 150 °C  
-55  
-30  
-5  
20  
45  
70  
95  
120  
145  
-55  
-30  
-5  
20  
45  
70  
95  
120  
145  
Case Temperature, TC (°C)  
Case Temperature, TC (°C)  
Figure 19. Continuous Drain Current Derating vs.  
Case Temperature  
Figure 20. Maximum Power Dissipation Derating vs.  
Case Temperature  
100.00  
10 µs  
Limited by RDS On  
100 µs  
100E-3  
0.5  
0.3  
1 ms  
10.00  
100 ms  
0.1  
0.05  
1.00  
0.10  
0.01  
10E-3  
1E-3  
0.02  
SinglePulse  
0.01  
Conditions:  
TC = 25 °C  
D = 0,  
Parameter:tp  
0.1  
1
10  
100  
1000  
1E-6  
10E-6  
100E-6  
1E-3  
Time, tp (s)  
10E-3  
100E-3  
1
Drain-Source Voltage, VDS (V)  
Figure 21. Transient Thermal Impedance  
Figure 22. Safe Operating Area  
(Junctionꢀ-ꢀCase)ꢀ  
6
5
4
3
2
1
0
8
7
6
5
4
3
2
1
0
Conditions:  
TJ = 25 °C  
Conditions:  
TJ = 25 °C  
V
R
V
DD = 900 V  
G(ext) = 2.5 Ω  
GS = -5V/+20 V  
V
R
V
DD = 1200 V  
G(ext) = 2.5 Ω  
GS = -5V/+20 V  
ETotal  
ETotal  
FWD = C2M0045170D  
L = 105 μH  
FWD = C2M0045170D  
L = 105 μH  
EOn  
EOn  
EOff  
EOff  
0
10  
20  
30  
40  
50  
60  
70  
80  
90  
100  
0
10  
20  
30  
40  
50  
60  
70  
80  
90  
100  
Drain to Source Current,IDS (A)  
Drain to Source Current,IDS (A)  
Figure 23. Clamped Inductive Switching Energy vs.  
Figure 24. Clamped Inductive Switching Energy vs.  
Drain Current (VDDꢀ=ꢀ900V)  
Drain Current (VDDꢀ=ꢀ1200V)  
6
C2M0045170D Rev. -, 06-2016  
Typical Performance  
8
7
6
5
4
3
2
1
0
Conditions:  
TJ = 25 °C  
Conditions:  
DS = 50 A  
I
7
VDD = 1200 V  
V
R
V
DD = 1200 V  
G(ext) = 2.5 Ω  
GS = -5V/+20 V  
I
V
DS = 50 A  
GS = -5V/+20 V  
ETotal  
6
5
4
3
2
1
0
FWD = C2M0045170D  
L = 105 μH  
FWD = C2M0045170D  
(- - -) FWD = C3D25170H  
L = 105 μH  
ETotal  
EOn  
EOn  
ETotal  
EOn  
EOff  
EOff  
EOff  
0
5
10  
15  
20  
25  
0
25  
50  
75  
100  
125  
150  
175  
External Gate Resistor RG(ext) (Ohms)  
Junction Temperature, TJ (°C)  
Figure 26. Clamped Inductive Switching Energy vs.  
Temperature  
Figure 25. Clamped Inductive Switching Energy vs. RG(ext)  
160  
140  
120  
100  
80  
Conditions:  
TJ = 25 °C  
V
I
V
DD = 1200 V  
DS = 50 A  
GS = -5V/+20 V  
td(off)  
FWD = C2M0045170D  
L = 105 μH  
td(on)  
60  
tf  
40  
tr  
20  
0
0
5
10  
15  
20  
25  
External Gate Resistor RG(ext) (Ohms)  
Figureꢀ28.ꢀSwitchingꢀTimesꢀDefinition  
Figure 27. Switching Times vs. RG(ext)ꢀ  
7
C2M0045170D Rev. -, 06-2016  
Test Circuit Schematic  
Q1  
RG  
C2M0045170D  
VGS= - 5V  
VDC  
Q2  
RG  
C2M0045170D  
D.U.T  
Figure 29a. Clamped Inductive Switching Test Circuit using  
MOSFET intristic body diode  
C3D25170H  
25A, 1700V  
SiC Schottky  
D1  
VDC  
Q2  
RG  
D.U.T  
C2M0045170D  
Figure 29b. Clamped Inductive Switching Test Circuit using  
SiC Schottky diode  
ESD Ratings  
ESD Test  
Total Devices Sampled  
Resulting Classification  
ESD-HBM  
ESD-CDM  
All Devices Passed 4000V  
All Devices Passed 1000V  
3Aꢀ(>4000V)  
IVꢀ(>1000V)  
8
C2M0045170D Rev. -, 06-2016  
Package Dimensions  
Inches  
Millimeters  
Min  
POS  
Package TO-247-3  
Min  
.190  
.090  
.075  
.042  
.075  
.075  
.113  
.113  
.022  
.819  
.640  
.037  
.620  
.516  
.145  
.039  
.487  
Max  
.205  
.100  
.085  
.052  
.095  
.085  
.133  
.123  
.027  
.831  
.695  
.049  
.635  
.557  
.201  
.075  
.529  
Max  
5.21  
2.54  
2.16  
1.33  
2.41  
2.16  
3.38  
3.13  
0.68  
21.10  
17.65  
1.25  
16.13  
14.15  
5.10  
1.90  
13.43  
A
A1  
A2  
b
4.83  
2.29  
1.91  
1.07  
1.91  
1.91  
2.87  
2.87  
0.55  
20.80  
16.25  
0.95  
15.75  
13.10  
3.68  
1.00  
12.38  
b1  
b2  
b3  
b4  
c
D
D1  
D2  
E
E1  
E2  
E3  
E4  
e
.214 BSC  
3
5.44 BSC  
N
3
L
.780  
.800  
.173  
.144  
.236  
.248  
11˚  
11˚  
8˚  
19.81  
4.10  
3.51  
5.49  
6.04  
9˚  
20.32  
4.40  
3.65  
6.00  
6.30  
11˚  
11˚  
8˚  
Pinout Information:  
T
U
L1  
ØP  
Q
.161  
.138  
.216  
.238  
9˚  
•ꢀ Pin 1 = Gate  
•ꢀ Pin 2, 4 = Drain  
•ꢀ Pin 3 = Source  
S
V
W
T
U
9˚  
9˚  
V
2˚  
2˚  
W
2˚  
8˚  
2˚  
8˚  
Recommended Solder Pad Layout  
TO-247-3  
9
C2M0045170D Rev. -, 06-2016  
Notes  
•ꢀ RoHSꢀCompliance  
The levels of RoHS restricted materials in this product are below the maximum concentration values (also referred to as the  
threshold limits) permitted for such substances, or are used in an exempted application, in accordance with EU Directive 2011/65/  
EC (RoHS2), as implemented January 2, 2013. RoHS Declarations for this product can be obtained from your Cree representative or  
from the Product Documentation sections of www.cree.com.  
•ꢀ REAChꢀCompliance  
REACh substances of high concern (SVHCs) information is available for this product. Since the European Chemical Agency (ECHA)  
has published notice of their intent to frequently revise the SVHC listing for the foreseeable future,please contact a Cree represen-  
tative to insure you get the most up-to-date REACh SVHC Declaration. REACh banned substance information (REACh Article 67) is  
also available upon request.  
•ꢀ This product has not been designed or tested for use in, and is not intended for use in, applications implanted into the human body  
nor in applications in which failure of the product could lead to death, personal injury or property damage, including but not limited  
toꢀequipmentꢀusedꢀinꢀtheꢀoperationꢀofꢀnuclearꢀfacilities,ꢀlife-supportꢀmachines,ꢀcardiacꢀdefibrillatorsꢀorꢀsimilarꢀemergencyꢀmedicalꢀ  
equipment,ꢀaircraftꢀnavigationꢀorꢀcommunicationꢀorꢀcontrolꢀsystems,ꢀairꢀtrafficꢀcontrolꢀsystems.  
Related Links  
C2M PSPICE Models: http://wolfspeed.com/power/tools-and-support  
SiC MOSFET Isolated Gate Driver reference design: http://wolfspeed.com/power/tools-and-support  
SiC MOSFET Evaluation Board: http://wolfspeed.com/power/tools-and-support  
Cree, Inc.  
4600 Silicon Drive  
Durham, NC 27703  
Copyright © 2016 Cree, Inc. All rights reserved.  
The information in this document is subject to change without notice.  
Cree, the Cree logo, and Zero Recovery are registered trademarks of Cree, Inc.  
USA Tel: +1.919.313.5300  
Fax: +1.919.313.5451  
www.cree.com/power  
10  
C2M0045170D Rev. -, 06-2016  

相关型号:

C2M0045170P

Silicon Carbide Power MOSFET C2M MOSFET Technology
CREE

C2M0080120D

Silicon Carbide Power MOSFET Z-FETTM MOSFET
CREE

C2M0080120D_15

Silicon Carbide Power MOSFET
CREE

C2M0080170P

Silicon Carbide Power MOSFET C2M MOSFET Technology
CREE

C2M0160120D

N-Channel Enhancement Mode
CREE

C2M0160120D_15

Silicon Carbide Power MOSFET
CREE

C2M0280120D

Silicon Carbide Power MOSFET
CREE

C2M100-28

TRANSISTOR | BJT | NPN | 12A I(C) | SOT-119VAR
ETC

C2M100-28A

TRANSISTOR | BJT | NPN | 12A I(C) | RFMOD
ETC

C2M1000170D

Silicon Carbide Power MOSFET Z-FETTM MOSFET
CREE

C2M1000170D_15

Silicon Carbide Power MOSFET
CREE

C2M1000170J

Silicon Carbide Power MOSFET
CREE