CMF20120D [CREE]

Silicon Carbide Power MOSFET; 碳化硅功率MOSFET
CMF20120D
型号: CMF20120D
厂家: CREE, INC    CREE, INC
描述:

Silicon Carbide Power MOSFET
碳化硅功率MOSFET

文件: 总13页 (文件大小:2291K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
CMF20120D-Silicon Carbide Power MOSFET  
1200V 80 mΩ  
Z-FETMOSFET  
N-Channel Enhancement Mode  
Subject to change without notice.  
www.cree.com/power  
1
CMF20120D-Silicon Carbide Power MOSFET  
VDS  
= 1200 V  
Z-FET MOSFET  
N-Channel Enhancement Mode  
RDS(on)  
= 80 m  
ID(MAX)@TC=25°C = 33 A  
Features  
Package  
D
•ꢀ Industry Leading RDS(on)  
•ꢀ High Speed Switching  
•ꢀ Low Capacitances  
•ꢀ Easy to Parallel  
•ꢀ Simple to Drive  
•ꢀ Pb-Free Lead Plating, ROHS Compliant,  
Halogen Free  
G
S
TO-247-3  
Benefits  
•ꢀ HigherꢀSystemꢀEfficiency  
•ꢀ Reduced Cooling Requirements  
•ꢀ Avalanche Ruggedness  
Part Number  
Package  
•ꢀ Increased System Switching Frequency  
CMF20120D  
TO-247-3  
Applications  
•ꢀ Solar Inverters  
•ꢀ High Voltage DC/DC Converters  
•ꢀ Motor Drives  
Maximum Ratings  
Symbol  
Parameter  
Value  
Unit  
Test Conditions  
VGS@20V, TC =ꢀ25˚C  
Note  
33  
17  
Continuous Drain Current  
A
ID  
VGS@20V, TC =ꢀ100˚C  
Pulse width tP limited by Tjmax  
Pulsed Drain Current  
78  
A
IDpulse  
EAS  
TC =ꢀ25˚C  
ID = 20A, VDD = 50 V,  
L = 9.5 mH  
Single Pulse Avalanche Energy  
Repetitive Avalanche Energy  
2.2  
1.5  
J
J
EAR  
tAR limited by Tjmax  
ID = 20A, VDD = 50 V, L = 3 mH  
tAR limited by Tjmax  
Repetitive Avalanche Current  
20  
A
IAR  
Gate Source Voltage  
-5/+25  
150  
V
VGS  
Ptot  
Power Dissipation  
W
TC=25˚C  
-55 to  
+125  
Operating Junction and Storage Temperature  
Solder Temperature  
˚C  
˚C  
TJ , Tstg  
TL  
260  
1.6mm (0.063”) from case for 10s  
M3 or 6-32 screw  
1
8.8  
Nm  
lbf-in  
Mounting Torque  
Md  
2
CMF20120D Rev. -  
Table of Contents  
Features.................................................................................................................2  
Benefits...........................................................................................................2  
Applications.....................................................................................................2  
Maximum Ratings...................................................................................................2  
Table of Contents....................................................................................................3  
Applications Information........................................................................................4  
ESD Ratings............................................................................................................7  
Electrical Characteristics........................................................................................8  
Reverse Diode Characteristics.................................................................................8  
Thermal Characteristics..........................................................................................8  
Gate Charge Characteristics....................................................................................8  
TypicalPerformance..............................................................................................................9  
ClampedInductiveSwitchTestingFixture..............................................................11  
Package Dimensions.............................................................................................12  
Recommended Solder Pad Layout..........................................................................13  
Notice..............................................................................................................14  
3
CMF20120D Rev. -  
Applications Information  
The Cree SiC MOSFET has removed the upper voltage limit of silicon MOSFETs.  
However, there are some differences in characteristics when compared to what is  
usually expected with high voltage silicon MOSFETs. These differences need to be  
carefullyꢀaddressedꢀtoꢀgetꢀmaximumꢀbenefitꢀfromꢀtheꢀSiCꢀMOSFET.ꢀInꢀgeneral,ꢀ  
although the SiC MOSFET is a superior switch compared to its silicon counterparts,  
it should not be considered as a direct drop-in replacement in existing applications.  
There are two key characteristics that need to be kept in mind when applying the  
SiC MOSFETs: modest transconductance requires that VGS needs to be 20 V to  
optimize performance. This can be see in the Output and Transfer Characteristics  
shown in Figures 1-3. The modest transconductance also affects the transition  
where the device behaves as a voltage controlled resistance to where it behaves as  
a voltage controlled current source as a funtion of VDS. The result is that the  
transition occurs over higher values of VDS than are usually experienced with Si  
MOSFETs and IGBTs.  
This might affect the operation anti-desaturation circuits,  
especially if the circuit takes advantage of the device entering the constant current  
region at low values of forward voltage.  
The modest transconductance needs to be carefully considered in the design of the  
gateꢀdriveꢀcircuit.ꢀTheꢀfirstꢀobviousꢀrequirementꢀisꢀthatꢀtheꢀgateꢀbeꢀcapable  
of a >22 V (+20 V to -2V) swing. The recommended on state VGS is +20 V and the  
recommended off state VGS is between -2 V to -5 V. Please carefully note that  
although the gate voltage swing is higher than the typical silicon MOSFETs and  
IGBTs, the total gate charge of the SiC MOSFET is considerably lower. In fact, the  
product of gate voltage swing and gate charge for the SiC MOSFET is lower than  
comparable silicon devices. The gate voltage must have a fast dV/dt to achieve  
fast switching times which indicates that a very low impedance driver is necessary.  
Lastly,ꢀtheꢀfidelityꢀofꢀtheꢀgateꢀdriveꢀpulseꢀmustꢀbeꢀcarefullyꢀcontrolled.ꢀTheꢀnominal  
threshold voltage is 2.5V and the device is not fully on (dVDS/dt≈0) until the VGS is  
above 16V. This is a noticeably wider range than what is typically experienced with  
silicon MOSFETs and IGBTs. The net result of this is that the SiC MOSFET has a  
somewhat lower ‘noise margin. Any excessive ringing that is present on the gate  
drive signal could cause unintentional turn-on or partial turn-off of the device. The  
gate resistance should be carefully selected to ensure that the gate drive pulse is  
adequatelyꢀdampened.ꢀToꢀfirstꢀorder,ꢀtheꢀgateꢀcircuitꢀcanꢀbeꢀapproximatedꢀasꢀaꢀ  
simple series RLC circuit driven by a voltage pulse as shown below.  
4
CMF20120D Rev. -  
RLOOP CGATE  
ζ =  
1  
RLOOP  
LLOOP  
2
LLOOP  
VPULSE  
CGATE  
LLOOP  
CGATE  
RLOOP 2  
minimizes the value of  
As shown, minimizing L  
RLOOP needed for critical  
LOOP  
dampening. Minimizing LLOOP also minimizes the rise/fall time. Therefore, it is  
strongly recommended that the gate drive be located as close to the SiC MOSFET  
MOSFET  
as possible to minimize LLOOP. The internal gate resistance of the SiC  
is 5ꢀΩ.ꢀ  
Anꢀexternalꢀresistanceꢀofꢀ6.8ꢀΩꢀwasꢀusedꢀtoꢀcharacterizeꢀthisꢀdevice.  
Lowerꢀvaluesꢀofꢀexternalꢀgateꢀresistanceꢀcanꢀbeꢀusedꢀsoꢀlongꢀasꢀtheꢀgateꢀfidelityꢀisꢀ  
maintained. In the event that no external gate resistance is used, it is suggested  
that the gate current be checked to indirectly verify that there is no ringing present  
in the gate circuit. This can be accomplished with a very small current transformer.  
A recommended setup is a two-stage current transformer as shown below:  
IG SENSE  
VCC  
GATE DRIVER  
T1  
SiC DMOSFET  
GATEDRIVEINPUT  
+
-
VEE  
  
  
  
  
  
5
CMF20120D Rev. -  
Stray inductance on source lead causes load  
di/dt to be fed back into gate drive which  
causes the following:  
ꢀꢀKelvinꢀgateꢀconnectionꢀwithꢀseparate  
ꢀꢀsourceꢀreturnꢀisꢀhighlyꢀrecommended  
•ꢀ Switchꢀdi/dtꢀisꢀlimited  
•ꢀ Couldꢀcauseꢀoscillation  
LOAD CURRENT  
20V  
20V  
R GATE  
SiC DMOS  
R GATE  
ꢀꢀDRIVE  
SiC DMOS  
ꢀꢀDRIVE  
LOAD CURRENT  
L STRAY  
L STRAY  
  
A schematic of the gate driver circuit used for characterization of the SiC MOSFET  
  
is shown below:  
THESE COMPONENTS ARE  
THESE COMPONENTS ARE  
C1  
LOCATED ON THE GND  
+VCC  
LOCATED ON THE -VEE  
+VCC  
10u  
C2  
PLANE  
-VEE  
-VEE  
-VEE  
-VEE  
-VEE  
-VEE  
PLANE  
100n  
C4  
C3  
10u  
GND  
100n  
C5  
+VCC  
C6  
R1  
1
C7  
100n  
C8  
10u  
+VCC  
10u  
C9  
U1  
LM2931T-5.0  
-VEE  
PIN 1 SOURCE  
100n  
C12  
-VEE  
1
3
IN  
OUT  
100n  
C13  
C10  
C11  
100u  
6.3V  
R2  
100n  
100n  
390  
10n  
PULSEGENINPUT  
J1  
BNC  
D1  
ISO1  
-VEE  
R3  
R4  
PIN 2 GATE  
1
2
3
8
U2  
TBD 1206  
R7  
1
2
3
4
8
7
6
5
330  
VCC  
VCC  
OUT  
OUT  
GND  
RB160M-60  
R5  
120  
R6  
120  
7
6
IN  
TBD 1206  
R8  
NC  
GND  
C14  
100n  
D2  
6N137  
IXDI414  
TBD 1206  
-VEE  
-VEE  
RB160M-60  
-VEE  
C15  
J2  
BNC  
100n  
C16  
-VEE  
-VEE  
-VEE  
-VEE  
-VEE  
-VEE  
1
VGS MONITOR  
100n  
C17  
100n  
C18  
100n  
C19  
100n  
C20  
10u  
The gate driver is an IXYS IXDI414. This device has a 35 V ouput swing, output  
resistanceꢀofꢀ0.6ꢀΩꢀtypical,ꢀandꢀaꢀpeakꢀcurrentꢀcapabilityꢀofꢀ14ꢀA.ꢀTheꢀexternalꢀ  
gateꢀresistanceꢀusedꢀforꢀcharacterizationꢀofꢀtheꢀSiCꢀMOSFETꢀwasꢀ6.8ꢀΩ.ꢀCarefulꢀ  
consideration needs to be given to the selection of the gate driver. The typical  
application error is selection of a gate driver that has adequate swing, but output  
6
CMF20120D Rev. -  
resistance and current drive capability are not carefully considered. It is critical that  
the gate driver possess high peak current capability and low output resistance along  
with adequate voltage swing.  
AꢀsignificantꢀbenefitꢀofꢀtheꢀSiCꢀMOSFETꢀisꢀtheꢀeliminationꢀofꢀtheꢀtailꢀcurrentꢀobservedꢀ  
in silicon IGBTs. However, it is very important to note that the current tail does  
provide a certain degree of parasitic dampening during turn-off. Additional ringing and  
overshoot is typically observed when silicon IGBTs are replaced with SiC MOSFETs. The  
additional voltage overshoot can be high enough to destroy the device. Therefore, it  
is critical to manage the output interconnection parasitics (and snubbers) to keep the  
ringing and overshoot from becoming problematic.  
ESD RATINGS  
ESD Test  
Total Devices Sampled  
Resulting Classification  
ESD-HBM  
ESD-MM  
ESD-CDM  
All Devices Passed 1000V  
All Devices Passed 400V  
All Devices Passed 1000V  
2 (>2000V)  
C (>400V)  
IV (>1000V)  
7
CMF20120D Rev. -  
Electrical Characteristics  
Symbol  
Parameter  
Min.  
Typ.  
Max. Unit  
Test Conditions  
Note  
V(BR)DSS  
Drain-Source Breakdown Voltage  
1200  
V
VGS = 0V, IDꢀ=ꢀ100μA  
2.5  
1.8  
1
4
VDS = VGS, ID = 1mA, TJ = 25ºC  
VDS = VGS, ID = 1mA, TJ = 125ºC  
VDS = 1200V, VGS = 0V, TJ = 25ºC  
VDS = 1200V, VGS = 0V, TJ = 125ºC  
VGS = 20V, VDS = 0V  
VGS(th)  
Gate Threshold Voltage  
1
V
100  
μA  
IDSS  
IGSS  
Zero Gate Voltage Drain Current  
Gate-Source Leakage Current  
Drain-Source On-State Resistance  
10  
250  
250  
110  
130  
nA  
80  
95  
VGS = 20V, ID = 20A, TJ = 25ºC  
VGS = 20V, ID = 20A, TJ = 125ºC  
VDS= 20V, IDS= 20A, TJ = 25ºC  
VDS= 20V, IDS= 20A, TJ = 125ºC  
RDS(on)  
mΩ  
7.3  
6.8  
1915  
gfs  
Transconductance  
S
fig.ꢀ3  
fig.ꢀ5  
Ciss  
Input Capacitance  
Output Capacitance  
VGS = 0V  
Coss  
120  
VDS = 800V  
pF  
f = 1MHz  
Crss  
Reverse Transfer Capacitance  
13  
AC  
V
= 25mV  
td(on)i  
tr  
td(off)i  
tfi  
Turn-On Delay Time  
Rise Time  
17.2  
13.6  
62  
VDD = 800V  
VGS = -2/20V  
ID = 20A  
ns  
Turn-Off Delay Time  
Fall Time  
fig.ꢀ12  
35.6  
RGꢀ=ꢀ6.8Ω  
530  
422  
(25ºC)  
EON  
Turn-On Switching Loss  
Turn-Off Switching Loss  
μJ  
L = 856μH  
(
125ºC)  
Per JEDEC24 Page 27  
320  
329  
(25ºC)  
EOff  
μJ  
Ω
(
125ºC)  
,
VGS = 0V, f = 1MHz VAC = 25mV  
RG  
Internal Gate Resistance  
5
NOTES: 1. The recommended on-state V  
VGS is between -2V and -5V  
is +20V and the recommended off-state  
GS  
Reverse Diode Characteristics  
Symbol Parameter  
Typ.  
Max.  
Unit  
Test Conditions  
Note  
=
VGS = -5V, IF 10A, TJ = 25ºC  
3.5  
3.1  
220  
142  
2.3  
Vsd  
Diode Forward Voltage  
V
=
VGS = -2V, IF 10A, TJ = 25ºC  
trr  
Reverse Recovery Time  
ns  
nC  
A
=
VGS = -5V, IF 20A, TJ = 25ºC  
VR = 800V,  
diF/dt=ꢀ100A/μs  
Qrr  
Irrm  
Reverse Recovery Charge  
Peak Reverse Recovery Current  
fig.ꢀ13,14  
Thermal Characteristics  
Symbol Parameter  
Typ.  
Max.  
Unit  
Test Conditions  
Note  
RθJC  
RθCS  
Thermal Resistance from Junction to Case  
Case to Sink, w/ Thermal Compound  
0.58  
0.25  
0.7  
°C/W  
fig.ꢀ6  
RθJA  
Thermal Resistance From Junction to Ambient  
40  
Gate Charge Characteristics  
Symbol Parameter  
Typ.  
Max.  
Unit  
Test Conditions  
Note  
Qgs  
Qgd  
Qg  
Gate to Source Charge  
Gate to Drain Charge  
Gate Charge Total  
23.8  
43.1  
90.8  
VDD = 800V  
ID =20A  
VGS = -2/20V  
fig.9  
nC  
Per JEDEC24-2  
8
CMF20120D Rev. -  
Typical Performance  
40  
40  
=10V  
V
VGS=10V  
Fig 1. Typical Output Characteristics TJ = 25ºC  
Fig 2. Typical Output Characteristics TJ = 125ºC  
T= 125°C  
VGS=20V  
T= 25°C  
Figure 3. Typical Transfer Characteristics  
Fig 4. Normalized On-Resistance vs. Temperature  
VGS = 0 V  
f = 1 MHz  
VGS = 0 V  
f = 1 MHz  
Ciss  
Ciss  
Coss  
Coss  
Crss  
Crss  
DS
DS
Fig 5A and 5B. Typical Capacitance vs. Drain – Source Voltage  
9
CMF20120D Rev. -  
Typical Performance  
Fig 6. Transient Thermal Impedence, Junction - Case  
VGS= -2/20V  
RG= 11.8ΩꢀTotal  
VDD= 800V  
ID= 20A  
VGS= -2/20V  
RG= 11.8ΩꢀTotal  
VDD= 800V  
ID= 20A  
Fig 8. Inductive Switching Energy(Turn-off) vs. T  
Fig 7. Inductive Switching Energy(Turn-on) vs. T  
VDS  
IDS  
ID=20A  
VDD=800V  
EAS = 2.20 J  
Fig 10. Typical Avalanche Waveform  
Fig 9. Typical Gate Charge Characteristics @ 25°C  
CMF20120D Rev. -  
10  
Clamped Inductive Switch Testing Fixture  
t
w
pulse duration  
V
GS(on)  
90%  
90%  
Input (V )  
i
50%  
50%  
10%  
10%  
V
GS(off)  
C2D10120D  
Input Pulse  
Fall Time  
Input Pulse  
Rise Time  
10A, 1200V  
SiC Schottky  
856μH  
+
-
800V  
42.3μf  
t
t
t
t
ri  
d(off)i  
d(on)i  
i
D(on)  
CMF20120D  
D.U.T.  
10%  
10%  
Output (i  
)
D
90%  
90%  
i
D(off)  
t
off(i)  
t
on(i)  
Fig 11. Switching Waveform Test Circuit  
Fig 12. Switching Test Waveform Times  
trr  
id dt  
tx  
t
rr  
Qrr=  
Ic  
tx  
10% Irr  
856μH  
CMF20120D  
D.U.T.  
V
cc  
10% V  
Irr  
cc  
Vpk  
+
-
800V  
42.3μf  
Diode Recovery  
Waveforms  
CMF20120D  
t2  
id dt  
t1  
Erec=  
Diode Reverse  
Recovery Energy  
t1  
t2  
Fig 14. Body Diode Recovery Test  
Fig 13. Body Diode Recovery Waveform  
11  
CMF20120D Rev. -  
2
EA = 1/2L x ID  
Fig 16. Theoretical Avalanche Waveform  
Fig 15. Avalanche Test Circuit  
Package Dimensions  
Package TO-247-3  
Inches  
POS  
Millimeters  
Min  
Min  
.190  
.090  
.075  
.042  
.075  
.075  
.113  
.113  
.022  
.819  
.640  
.037  
.620  
.516  
.145  
.039  
.487  
Max  
.205  
.100  
.085  
.052  
.095  
.085  
.133  
.123  
.027  
.831  
.695  
.049  
.635  
.557  
.201  
.075  
.529  
Max  
5.21  
2.54  
2.16  
1.33  
2.41  
2.16  
3.38  
3.13  
0.68  
21.10  
17.65  
1.25  
16.13  
14.15  
5.10  
1.90  
13.43  
A
A1  
A2  
b
4.83  
2.29  
1.91  
1.07  
1.91  
1.91  
2.87  
2.87  
0.55  
20.80  
16.25  
0.95  
15.75  
13.10  
3.68  
1.00  
12.38  
b1  
b2  
b3  
b4  
c
D
D1  
D2  
E
E1  
E2  
E3  
E4  
e
.214 BSC  
5.44 BSC  
N
3
3
D
L
.780  
.161  
.138  
.216  
.238  
.800  
.173  
.144  
.236  
.248  
19.81  
4.10  
3.51  
5.49  
6.04  
20.32  
4.40  
3.65  
6.00  
6.30  
L1  
ØP  
Q
S
G
S
12  
CMF20120D Rev. -  
Recommended Solder Pad Layout  
TO-247-3  
Part Number  
CMF20120D  
Package  
TO-247-3  
“The levels of environmentally sensitive, persistent biologically toxic (PBT), persistent organic pollutants (POP), or otherwise restricted materials in this product are below the  
maximum concentration values (also referred to as the threshold limits) permitted for such substances, or are used in an exempted application, in accordance with EU Directive  
2002/95/EC on the restriction of the use of certain hazardous substances in electrical and electronic equipment (RoHS), as amended through April 21, 2006.  
This product has not been designed or tested for use in, and is not intended for use in, applications implanted into the human body  
nor in applications in which failure of the product could lead to death, personal injury or property damage, including but not limited  
toꢀequipmentꢀusedꢀinꢀtheꢀoperationꢀofꢀnuclearꢀfacilities,ꢀlife-supportꢀmachines,ꢀcardiacꢀdefibrillatorsꢀorꢀsimilarꢀemergencyꢀmedicalꢀ  
equipment,ꢀaircraftꢀnavigationꢀorꢀcommunicationꢀorꢀcontrolꢀsystems,ꢀairꢀtrafficꢀcontrolꢀsystems,ꢀorꢀweaponsꢀsystems.  
Cree, Inc.  
4600 Silicon Drive  
Durham, NC 27703  
USA Tel: +1.919.313.5300  
Fax: +1.919.313.5451  
www.cree.com/power  
Copyright © 2010-2011 Cree, Inc. All rights reserved. The information in this document is subject to change without notice. Cree,  
the Cree logo, Z-REC and Z-FET are registered trademarks of Cree, Inc.  
13  
CMF20120D Rev. -  

相关型号:

CMF20120R00GKEK

RES 120 OHM 1W 2% AXIAL
VISHAY

CMF20120R00JNR6

Metal Film Resistors, Industrial, Precision
VISHAY

CMF2012K000GKEB

RES 12K OHM 1W 2% AXIAL
VISHAY

CMF2012K000GKR6

RES 12K OHM 1W 2% AXIAL
VISHAY

CMF2012R000GKBF

RES 12 OHM 1W 2% AXIAL
VISHAY

CMF2012R000GKEB

RESISTOR, METAL FILM, 1 W, 2 %, 100 ppm, 12 ohm, THROUGH HOLE MOUNT, AXIAL LEADED, ROHS COMPLIANT
VISHAY

CMF2012R000GKEK

RESISTOR, METAL FILM, 1 W, 2 %, 100 ppm, 12 ohm, THROUGH HOLE MOUNT, AXIAL LEADED, ROHS COMPLIANT
VISHAY

CMF2012R000GKR6

RES 12 OHM 1W 2% AXIAL
VISHAY

CMF2012R000JNEB

RES 12 OHM 1W 5% AXIAL
VISHAY

CMF2012R000JNR6

RES 12 OHM 1W 5% AXIAL
VISHAY

CMF20150K00GKEA

RES 150K OHM 1W 2% AXIAL
VISHAY

CMF20150R00GKEA

RES 150 OHM 1W 2% AXIAL
VISHAY