WAS300M12BM2 [CREE]

1.2kV, 4.2 mohm All-Silicon Carbide THB-80 Half-Bridge Module;
WAS300M12BM2
型号: WAS300M12BM2
厂家: CREE, INC    CREE, INC
描述:

1.2kV, 4.2 mohm All-Silicon Carbide THB-80 Half-Bridge Module

文件: 总9页 (文件大小:1357K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
VDS  
1.2 kV  
12 mJ  
4.2 mΩ  
WAS300M12BM2  
1.2kV, 4.2 mΩ All-Silicon Carbide  
THB-80 Half-Bridge Module  
C2MMOSFET and Z-Rec® Diode  
Esw, Total @ 300A  
RDS(on)  
Features  
Package  
62mm x 106mm x 30mm  
•ꢀ HighꢀTemperature,ꢀHumidity,ꢀandꢀBiasꢀOperation  
•ꢀ UltraꢀLowꢀLoss  
•ꢀ High-FrequencyꢀOperation  
•ꢀ ZeroꢀReverseꢀRecoveryꢀCurrentꢀfromꢀDiode  
•ꢀ ZeroꢀTurn-offꢀTailꢀCurrentꢀfromꢀMOSFET  
•ꢀ Normally-off,ꢀFail-safeꢀDeviceꢀOperation  
•ꢀ EaseꢀofꢀParalleling  
•ꢀ CopperꢀBaseplateꢀandꢀAluminumꢀNitrideꢀInsulator  
ꢀꢀꢀꢀꢀ  
System Benefits  
•ꢀ EnablesꢀCompact,ꢀLightweight,ꢀEfficientꢀSystemsꢀ  
•ꢀ HarshꢀOutdoorꢀEnvironmentꢀInstallation  
•ꢀ MitigatesꢀOver-voltageꢀProtection  
•ꢀ ReducedꢀThermalꢀRequirements  
•ꢀ ReducedꢀSystemꢀCost  
Applications  
•ꢀ SolarꢀandꢀWindꢀInverters  
•ꢀ AuxiliaryꢀConverters  
•ꢀ Traction  
Part Number  
Package  
Marking  
WAS300M12BM2  
ꢀ62mmꢀModuleꢀ  
WAS300M12BM2  
•ꢀ UPSꢀandꢀSMPS  
•ꢀ MotorꢀDrivesꢀ  
Maximum Ratings (TC = 25˚C unless otherwise specified)  
Symbol  
Parameter  
Drainꢀ-ꢀSourceꢀVoltage  
Value  
Unit  
Test Conditions  
Notes  
VDSmax  
VGSmax  
VGSop  
1.2  
kV  
V
Gateꢀ-ꢀSourceꢀVoltage  
Gateꢀ-ꢀSourceꢀVoltage  
-10/+25  
AbsoluteꢀMaximumꢀvalues  
-5/+20  
423  
V
RecommendedꢀOperationalꢀValues  
VGSꢀ=ꢀ20ꢀV,ꢀTCꢀ=ꢀ25ꢀ˚C  
ID  
ContinuousꢀDrainꢀCurrent  
A
Fig.ꢀ26  
Fig.ꢀ29  
293  
VGSꢀ=ꢀ20ꢀV,ꢀTCꢀ=ꢀ90ꢀ˚C  
ID(pulse)  
TJmax  
PulsedꢀDrainꢀCurrent  
JunctionꢀTemperature  
1500  
150  
A
PulseꢀwidthꢀtPꢀlimitedꢀbyꢀTjmax  
˚C  
TCꢀ,TSTG  
CaseꢀandꢀStorageꢀTemperatureꢀRange  
CaseꢀIsolationꢀVoltageꢀ  
-40ꢀtoꢀ+125  
˚C  
Visol  
5.0  
kV  
AC,ꢀ50ꢀHzꢀ,ꢀ1ꢀmin  
LStray  
PD  
StrayꢀInductance  
PowerꢀDissipation  
15  
nH  
W
Measuredꢀbetweenꢀterminalsꢀ2ꢀandꢀ3  
TCꢀ=ꢀ25ꢀ˚C,ꢀTJꢀ=ꢀ150ꢀ˚C  
1668  
Fig.ꢀ25  
Subject to change without notice.  
www.wolfspeed.com  
1
Electrical Characteristics (TC = 25˚C unless otherwise specified)  
Symbol  
VDSS  
Parameter  
Drainꢀ-ꢀSourceꢀBlockingꢀVoltage  
GateꢀThresholdꢀVoltage  
Min.  
1.2  
Typ.  
Max. Unit  
Test Conditions  
VGSꢀ=ꢀ0ꢀV,ꢀIDꢀ=ꢀ2ꢀmA  
Note  
kV  
V
VGS(th)  
2.0  
2.5  
600  
1500  
1
VDSꢀ=ꢀVGS, IDꢀ=ꢀ15ꢀmA  
Figꢀ7  
2000  
VDSꢀ=ꢀ1.2ꢀkV,ꢀVGSꢀ=ꢀ0V  
IDSS  
IGSS  
ZeroꢀGateꢀVoltageꢀDrainꢀCurrent  
Gate-SourceꢀLeakageꢀCurrent  
μA  
VDSꢀ=ꢀ1.2ꢀkV,VGSꢀ=ꢀ0V,ꢀTJꢀ=ꢀ150ꢀ˚C  
VGSꢀ=ꢀ20ꢀV,ꢀVDSꢀ=ꢀ0V  
100  
5.3  
nA  
4.2  
VGSꢀ=ꢀ20ꢀV,ꢀIDSꢀ=ꢀ300ꢀA  
Fig.ꢀ4,ꢀ  
5,ꢀ6  
RDS(on)  
OnꢀStateꢀResistance  
mΩ  
VGSꢀ=ꢀ20ꢀV,ꢀIDSꢀ=ꢀ300ꢀA,ꢀ  
TJꢀ=ꢀ150ꢀ˚C  
7.7  
VDSꢀ=ꢀ20ꢀV, IDSꢀ=ꢀ300ꢀA  
156  
144  
19.3  
gfs  
Transconductance  
S
Fig.ꢀ8  
VDSꢀ=ꢀ20ꢀV, IDꢀ=ꢀ300ꢀA,ꢀTJꢀ=ꢀ150ꢀ˚C  
Ciss  
Coss  
Crss  
Eon  
InputꢀCapacitance  
fꢀ=ꢀ200ꢀkHz,ꢀ  
VDSꢀ=ꢀ600ꢀV,ꢀꢀ  
Fig.ꢀ  
16,ꢀ17  
OutputꢀCapacitance  
2.57  
nF  
VACꢀ=ꢀ25ꢀmV  
ReverseꢀTransferꢀCapacitance  
0.12  
ꢀꢀꢀꢀꢀꢀꢀꢀ  
Turn-OnꢀSwitchingꢀEnergy  
VDDꢀ=ꢀ600ꢀV,ꢀVGSꢀ=ꢀ-5V/+20V  
IDꢀ=ꢀ300ꢀA,ꢀRG(ext)ꢀ=ꢀ2.5ꢀΩ  
Loadꢀ=ꢀ77ꢀμH,ꢀTJꢀ=ꢀ150ꢀ˚C  
Note:ꢀIECꢀ60747-8-4ꢀDefinitions  
5.8  
6.1  
mJ  
ꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀ  
Fig.ꢀ22  
ꢀꢀꢀꢀꢀꢀꢀꢀ  
Turn-OffꢀSwitchingꢀEnergy  
EOff  
mJ  
ꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀ  
InternalꢀGateꢀResistance  
Gate-SourceꢀCharge  
Gate-DrainꢀCharge  
RGꢀ(int)  
QGS  
3.0  
166  
475  
1025  
76  
fꢀ=ꢀ200ꢀkHz,ꢀVACꢀ=ꢀ25ꢀmV  
DD= 800ꢀV,VGSꢀ=ꢀ-5V/+20V,  
ID= 300ꢀA,ꢀPerꢀJEDEC24ꢀpgꢀ27  
V
nC  
Fig.ꢀ15  
Fig.ꢀ23  
QGD  
QG  
TotalꢀGateꢀCharge  
td(on)  
Turn-onꢀdelayꢀtimeꢀ  
ns  
VDDꢀ=ꢀ600V,ꢀꢀVGSꢀ=ꢀ-5/+20V,  
IDꢀ=ꢀ300ꢀA,ꢀRG(ext)ꢀ=ꢀ2.5ꢀΩ,ꢀ  
TimingꢀrelativeꢀtoꢀVDS  
Note:ꢀIECꢀ60747-8-4,ꢀpgꢀ83ꢀ  
Inductiveꢀloadꢀ  
tr  
td(off)ꢀ  
tf  
RiseꢀTime  
68  
168  
43  
ns  
ns  
ns  
Turn-offꢀdelayꢀtime  
FallꢀTime  
Fig.ꢀ10  
Fig.ꢀ11  
1.6  
2.0  
2.0  
IFꢀ=ꢀ300ꢀA,ꢀVGSꢀ=ꢀ0  
VSD  
QC  
DiodeꢀForwardꢀVoltage  
TotalꢀCapacitiveꢀCharge  
V
IFꢀ=ꢀ300ꢀA,ꢀTJꢀ=ꢀ150ꢀ˚C,ꢀVGSꢀ=ꢀ0  
3.2  
μC  
Note:ꢀTheꢀreverseꢀrecoveryꢀisꢀpurelyꢀcapacitive  
Thermal Characteristics (per switch)  
Symbol  
RthJCM  
Parameter  
Min.  
Typ.  
Max.  
0.075  
0.076  
Unit  
Test Conditions  
Note  
ThermalꢀResistanceꢀJuction-to-CaseꢀforꢀMOSFET  
ThermalꢀResistanceꢀJuction-to-CaseꢀforꢀDiode  
0.070  
0.073  
Tcꢀ=ꢀ90ꢀ˚C,ꢀPDꢀ=ꢀ150ꢀW  
Tcꢀ=ꢀ90ꢀ˚C,ꢀPDꢀ=ꢀ130ꢀW  
Fig.ꢀ27  
Fig.ꢀ28  
˚C/W  
RthJCD  
Additional Module Data  
Symbol  
Parameter  
Max.  
Unit  
Test Condtion  
W
M
Weight  
300  
5
g
Nm  
MountingꢀTorque  
ClearanceꢀDistance  
Toꢀheatsinkꢀandꢀterminals  
Terminalꢀtoꢀterminal  
9
mm  
mm  
mm  
30  
40  
Terminalꢀtoꢀterminal  
Terminalꢀtoꢀbaseplate  
CreepageꢀDistance  
WAS300M12BM2 Rev. -, May 2017  
2
Typical Performance  
600  
600  
500  
400  
300  
200  
100  
0
VGS = 14 V  
VGS = 20 V  
VGS = 18 V  
VGS = 16 V  
VGS = 14 V  
VGS = 12 V  
VGS = 20 V  
VGS = 12 V  
VGS = 10 V  
500  
VGS = 18 V  
VGS = 10 V  
400  
VGS = 16 V  
300  
200  
100  
0
Conditions:  
TJ = -40°C  
tp = 200 µs  
Conditions:  
TJ = 25°C  
tp = 200 µs  
0
1
2
3
4
5
6
7
8
0
1
2
3
4
5
6
7
8
Drain-Source Voltage VDS (V)  
Drain-Source Voltage VDS (V)  
ꢀꢀꢀꢀFigureꢀ1.ꢀOutputꢀCharacteristicsꢀTJꢀ=ꢀ-40ꢀ˚C  
Figureꢀ2.ꢀOutputꢀCharacteristicsꢀTJꢀ=ꢀ25ꢀ˚C  
2.0  
1.8  
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0.0  
600  
500  
400  
300  
200  
100  
0
VGS = 20 V  
VGS = 12 V  
Conditions:  
IDS = 300 A  
VGS = 20 V  
tp = 200 µs  
VGS = 18 V  
VGS = 10 V  
VGS = 16 V  
VGS = 14 V  
Conditions:  
TJ = 150°C  
tp = 200 µs  
-50  
-25  
0
25  
50  
75  
100  
125  
150  
0
1
2
3
4
5
6
7
8
Junction Temperature, TJ (°C)  
Drain-Source Voltage VDS (V)  
ꢀFigureꢀ4.ꢀNormalizedꢀOn-Resistanceꢀvs.ꢀTemperature  
Figureꢀ3.ꢀOutputꢀCharacteristicsꢀTJꢀ=ꢀ150ꢀ˚C  
10.0  
10  
9
8
7
6
5
4
3
2
1
0
Conditions:  
VGS = 20 V  
tp = 200 µs  
9.0  
VGS = 12 V  
Tj = 150 °C  
8.0  
VGS = 14 V  
7.0  
6.0  
VGS = 16 V  
5.0  
Tj = 25 °C  
VGS = 18 V  
4.0  
VGS = 20 V  
Tj = -40 °C  
3.0  
2.0  
Conditions:  
IDS = 300 A  
tp = 200 µs  
1.0  
0.0  
0
100  
200  
300  
400  
500  
600  
-50  
-25  
0
25  
50  
75  
100  
125  
150  
Junction Temperature, TJ (°C)  
Drain-Source Current, IDS (A)  
Figureꢀ5.ꢀOn-Resistanceꢀvs.ꢀDrainꢀCurrentꢀforꢀ  
VariousꢀTemperatures  
Figureꢀ6.ꢀOn-Resistanceꢀvs.ꢀTemperatureꢀforꢀVariousꢀ  
Gate-SourceꢀVoltage  
WAS300M12BM2 Rev. -, May 2017  
3
Typical Performance  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0.0  
400  
350  
300  
250  
200  
150  
100  
50  
Conditions:  
VDS = 20 V  
tp < 200 µs  
Conditions  
DS = V
IDS = 15mA
V
GS  
TJ = 150 °C  
TJ = 25 °C  
TJ = -40 °C  
0
-50  
-25  
0
25  
50  
75  
100  
125  
150  
0
2
4
6
8
10  
12  
14  
Junction Temperature TJ (°C)  
Gate-Source Voltage, VGS (V)  
ꢀꢀꢀꢀFigureꢀ8.ꢀTransferꢀCharacteristicꢀforꢀVarious  
JunctionꢀTemperatures  
Figureꢀ7.ꢀThresholdꢀVoltageꢀvs.ꢀTemperature  
-4.0  
-3.5  
-3.0  
-2.5  
-2.0  
-1.5  
-1.0  
-0.5  
0.0  
-4.0  
-3.5  
-3.0  
-2.5  
-2.0  
-1.5  
-1.0  
-0.5  
0.0  
0
0
VGS = 0 V  
-100  
-200  
-300  
-400  
-500  
-600  
-100  
-200  
-300  
-400  
-500  
-600  
VGS = -2 V  
VGS = -5 V  
VGS = -2 V  
Conditions:  
TJ = -40 °C  
tp = 200 µs  
Conditions:  
TJ = 25°C  
tp = 200 µs  
VGS = -5 V  
VGS = 0 V  
Drain-Source Voltage VDS (V)  
Drain-Source Voltage VDS (V)  
Figureꢀ10.ꢀDiodeꢀCharacteristicꢀatꢀ25ꢀ˚Cꢀ  
ꢀFigureꢀ9.ꢀDiodeꢀCharacteristicꢀatꢀ-40ꢀ˚C  
-4.0  
-3.5  
-3.0  
-2.5  
-2.0  
-1.5  
-1.0  
-0.5  
0.0  
-3.0  
-2.5  
-2.0  
-1.5  
-1.0  
-0.5  
0.0  
0
0
VGS = 0 V  
-100  
-200  
-300  
-400  
-500  
-600  
-100  
-200  
-300  
-400  
-500  
-600  
VGS = 5 V  
VGS = 10 V  
VGS = 15 V  
VGS = 20 V  
VGS = 0 V  
VGS = -5 V  
Conditions:  
TJ = 150°C  
tp = 200 µs  
Conditions:  
TJ = -40°C  
tp = 200 µs  
VGS = -2 V  
Drain-Source Voltage VDS (V)  
Drain-Source Voltage VDS (V)  
Figureꢀ12.ꢀ3rdꢀQuadrantꢀCharacteristicꢀatꢀ-40ꢀ  
˚C  
Figureꢀ11.ꢀDiodeꢀCharacteristicꢀatꢀ150ꢀ˚Cꢀ  
WAS300M12BM2 Rev. -, May 2017  
4
Typical Performance  
-3.0  
-2.5  
Conditions:  
TJ = 25°C  
tp = 200 µs  
-2.0  
-1.5  
-1.0  
-0.5  
0.0  
-3.0  
-2.5  
Conditions:  
TJ = 150°C  
tp = 200 µs  
-2.0  
-1.5  
-1.0  
-0.5  
0.0  
0
0
VGS = 0 V  
VGS = 0 V  
-100  
-200  
-300  
-400  
-500  
-600  
-100  
-200  
-300  
-400  
-500  
-600  
VGS = 5 V  
VGS = 5 V  
VGS = 10 V  
VGS = 10 V  
VGS = 15 V  
VGS = 15 V  
VGS = 20 V  
VGS = 20 V  
Drain-Source Voltage VDS (V)  
Drain-Source Voltage VDS (V)  
Figureꢀ14.ꢀ3rdꢀQuadrantꢀCharacteristicꢀatꢀ150ꢀ  
˚C  
ꢀꢀꢀꢀFigureꢀ13.ꢀ3rdꢀQuadrantꢀCharacteristicꢀatꢀ25ꢀ  
˚C  
100  
25  
Conditions:  
TJ = 25 °C  
VAC = 25 mV  
f = 200 kHz  
Conditions:  
TJ = 25 °C  
20  
Ciss  
I
V
DS = 300 A  
DS = 1000 V  
10  
1
15  
10  
5
Coss  
Crss  
0.1  
0.01  
0
-5  
0
50  
100  
Drain-Source Voltage, VDS (V)  
150  
200  
0
200  
400  
600  
800  
1000  
1200  
Gate Charge (nC)  
Figureꢀ16.ꢀTypicalꢀCapacitancesꢀvs.ꢀDrain-Sourceꢀ  
Voltageꢀ(0ꢀ-ꢀ200ꢀV)  
Figureꢀ15.ꢀTypicalꢀGateꢀChargeꢀCharacteristics  
100  
1.6  
Conditions:  
TJ = 25 °C  
AC = 25 mV  
f = 200 kHz  
1.4  
1.2  
1
V
Ciss  
10  
Coss  
1
0.8  
0.6  
0.4  
0.2  
0
Crss  
0.1  
0.01  
0
200  
400  
600  
800  
1000  
1200  
0
200  
400  
600  
800  
1000  
Drain-Source Voltage, VDS (V)  
Drain to Source Voltage, VDS (V)  
Figureꢀ17.ꢀTypicalꢀCapacitancesꢀvs.ꢀDrain-Sourceꢀ  
Voltageꢀ(0ꢀ-ꢀ1ꢀkV)  
Figureꢀ18.ꢀTypicalꢀOutputꢀCapacitorꢀStoredꢀEnergy  
WAS300M12BM2 Rev. -, May 2017  
5
Typical Performance  
20  
30  
25  
20  
15  
10  
5
Conditions:  
TJ = 25 °C  
18  
Conditions:  
TJ = 25 °C  
V
R
V
DD = 600 V  
G(ext) = 2.5 Ω  
GS = -5/+20 V  
V
R
V
DD = 800 V  
G(ext) = 2.5 Ω  
GS = -5/+20 V  
16  
14  
12  
10  
8
L = 77 μH  
L = 77 μH  
ETotal  
ETotal  
6
EOn  
EOn  
4
EOff  
EOff  
2
0
0
0
50  
100  
150  
200  
250  
300  
350  
400  
450  
0
50  
100  
150  
200  
250  
300  
350  
400  
450  
Drain to Source Current, IDS (A)  
Drain to Source Current, IDS (A)  
ꢀꢀꢀꢀFigureꢀ19.ꢀInductiveꢀSwitchingꢀEnergyꢀvs.  
DrainꢀCurrentꢀForꢀVDSꢀ=ꢀ600V,ꢀRGꢀ=ꢀ2.5ꢀΩꢀ  
ꢀꢀꢀꢀFigureꢀ20.ꢀInductiveꢀSwitchingꢀEnergyꢀvs.  
DrainꢀCurrentꢀForꢀVDSꢀ=ꢀ800ꢀV,ꢀRGꢀ=ꢀ2.5ꢀΩ  
120  
100  
80  
60  
40  
20  
0
14  
12  
10  
8
Conditions:  
TJ = 25 °C  
ETotal  
V
DD = 600 V  
DS =300 A  
GS = -5/+20 V  
L = 77 μH  
I
V
ETotal  
EOff  
6
EOn  
EOff  
EOn  
Conditions:  
VDD = 600 V  
4
R
G(ext) = 2.5 Ω  
DS =300 A  
GS = -5/+20 V  
L = 77 μH  
I
V
2
0
0
5
10  
15  
20  
25  
30  
35  
40  
45  
0
25  
50  
75  
100  
125  
150  
175  
External Gate Resistor R  
G
(ext) (Ohms)  
Junction Temperature, TJ (°C)  
Figureꢀ21.ꢀꢀInductiveꢀSwitchingꢀEnergyꢀvs.ꢀRG(ext)  
Figureꢀ22.ꢀInductiveꢀSwitchingꢀEnergyꢀvs.ꢀTemperature  
1200  
1000  
800  
600  
400  
200  
0
Conditions:  
TJ = 25 °C  
V
DD = 600 V  
DS = 300 A  
GS = -5/+20 V  
I
V
td (off)  
td (on)  
tr  
tf  
0
5
10  
15  
20  
25  
30  
35  
40  
External Gate Resistor, RG(ext) (Ohms)  
Figureꢀ23.ꢀꢀTimingꢀvsꢀRG(ext)  
ꢀꢀꢀꢀFigureꢀ24.ꢀꢀResistiveꢀSwitchingꢀTimeꢀDescription  
WAS300M12BM2 Rev. -, May 2017  
6
Typical Performance  
1800  
1600  
1400  
1200  
1000  
800  
450  
400  
350  
300  
250  
200  
150  
100  
50  
Conditions:  
TJ ≤ 150 °C  
Conditions:  
TJ ≤ 150 °C  
600  
400  
200  
0
0
-40  
-20  
0
20  
40  
60  
80  
100  
120  
140  
160  
-40  
-20  
0
20  
40  
60  
80  
100  
120  
140  
160  
Case Temperature, TC (°C)  
Case Temperature, TC (°C)  
ꢀꢀꢀꢀFigureꢀ25.ꢀMaximumꢀPowerꢀDissipationꢀ(MOSFET)ꢀDe- ꢀꢀꢀꢀFigureꢀ26.ꢀꢀContinuousꢀDrainꢀCurrentꢀDeratingꢀvsꢀCaseꢀ  
ratingꢀvsꢀCaseꢀTemperature  
Temperature  
100E-3  
10E-3  
1E-3  
100E-3  
10E-3  
1E-3  
0.5  
0.5  
0.3  
0.1  
0.3  
0.1  
0.05  
0.02  
0.05  
0.02  
SinglePulse  
SinglePulse  
0.01  
0.01  
100E-6  
10E-6  
100E-6  
10E-6  
1E-6  
10E-6  
100E-6  
1E-3  
Time, tp (s)  
10E-3  
100E-3  
1
1E-6  
10E-6  
100E-6  
1E-3  
Time, tp (s)  
10E-3  
100E-3  
1
Figureꢀ28.ꢀDiodeꢀJunctionꢀtoꢀCaseꢀThermalꢀImpedance  
Figureꢀ27.ꢀMOSFETꢀJunctionꢀtoꢀCaseꢀThermalꢀImpedance  
1000.00  
10 µs  
100 µs  
Limited by RDS  
On  
1 ms  
100.00  
100 ms  
10.00  
1.00  
0.10  
Conditions:  
TC = 25 °C  
D = 0,  
Parameter: tp  
0.01  
0.1  
1
10  
100  
1000  
Drain-Source Voltage, VDS (V)  
Figureꢀ29.ꢀSafeꢀOperatingꢀArea  
WAS300M12BM2 Rev. -, May 2017  
7
Schematic  
Package Dimensions (mm)  
WAS300M12BM2 Rev. -, May 2017  
8
Notes  
•ꢀ RoHSꢀCompliance  
The levels of RoHS restricted materials in this product are below the maximum concentration values (also referred  
to as the threshold limits) permitted for such substances, or are used in an exempted application, in accordance  
with EU Directive 2011/65/EC (RoHS2), as implemented January 2, 2013. RoHS Declarations for this product can  
be obtained from your Cree representative or from the Product Documentation sections of www.cree.com.  
•ꢀ REAChꢀCompliance  
REACh substances of high concern (SVHCs) information is available for this product. Since the European Chemi-  
cal Agency (ECHA) has published notice of their intent to frequently revise the SVHC listing for the foreseeable  
future,please contact a Cree representative to insure you get the most up-to-date REACh SVHC Declaration.  
REACh banned substance information (REACh Article 67) is also available upon request.  
•ꢀ This product has not been designed or tested for use in, and is not intended for use in, applications implanted into  
the human body nor in applications in which failure of the product could lead to death, personal injury or property  
damage, including but not limited to equipment used in the operation of nuclear facilities, life-support machines,  
cardiacꢀdefibrillatorsꢀorꢀsimilarꢀemergencyꢀmedicalꢀequipment,ꢀaircraftꢀnavigationꢀorꢀcommunicationꢀorꢀcontrolꢀ  
systems,ꢀairꢀtrafficꢀcontrolꢀsystems.  
ModuleꢀApplicationꢀNote  
The SiC MOSFET module switches at speeds beyond what is customarily associated with IGBT-based modules.  
Therefore, special precautions are required to realize the best performance. The interconnection between the gate  
driver and module housing needs to be as short as possible. This will aford the best switching time and avoid the  
potential for device oscillation. Also, great care is required to insure minimum inductance between the module and  
link capacitors to avoid excessive VDS overshoots.  
Please refer to application notes: Design Considerations when using Cree SiC Modules Part 1 and Part 2.  
[CPWR-AN12 and CPWR-AN13]  
Cree, Inc.  
4600 Silicon Drive  
Durham, NC 27703  
USA Tel: +1.919.313.5300  
Copyright © 2015 - 2017 Cree, Inc. All rights reserved.  
The information in this document is subject to change without notice.  
Cree, the Cree logo, and Zero Recovery are registered trademarks of Cree, Inc.  
Fax: +1.919.313.5451  
www.wolfspeed.com  
9
WAS300M12BM2 Rev. -, May 2017  

相关型号:

WAS86A-44N

Wire Terminal
AMPHENOL

WAS86A-44NQ

Wire Terminal
AMPHENOL

WAS86A44N

ALUMINUM ALLOY, WIRE TERMINAL
AMPHENOL

WAS86A44NQ

ALUMINUM ALLOY, WIRE TERMINAL
AMPHENOL

WASC14A2N

Ring Terminal
AMPHENOL

WASC14A2NQ

Ring Terminal
AMPHENOL

WASC15A2N

Ring Terminal
AMPHENOL

WASC15A2NQ

Ring Terminal
AMPHENOL

WASC16A2N

Ring Terminal
AMPHENOL

WASC16A34N

Wire Terminal
AMPHENOL

WASC16A34NQ

Wire Terminal
AMPHENOL

WASC17A34NQ

Wire Terminal
AMPHENOL