BCM4325GKWBG [CYPRESS]

Telecom Circuit, 1-Func, PBGA339, WLCSP-339;
BCM4325GKWBG
型号: BCM4325GKWBG
厂家: CYPRESS    CYPRESS
描述:

Telecom Circuit, 1-Func, PBGA339, WLCSP-339

电信 电信集成电路
文件: 总139页 (文件大小:2480K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
The following document contains information on Cypress products. Although the document is marked with the name  
Broadcom”, the company that originally developed the specification, Cypress will continue to offer these products to  
new and existing customers.  
CONTINUITY OF SPECIFICATIONS  
There is no change to this document as a result of offering the device as a Cypress product. Any changes that have  
been made are the result of normal document improvements and are noted in the document history page, where  
supported. Future revisions will occur when appropriate, and changes will be noted in a document history page.  
CONTINUITY OF ORDERING PART NUMBERS  
Cypress continues to support existing part numbers. To order these products, please use only the Ordering Part  
Numbers listed in this document.  
FOR MORE INFORMATION  
Please visit our website at www.cypress.com or contact your local sales office for additional information about  
Cypress products and services.  
OUR CUSTOMERS  
Cypress is for true innovators in companies both large and small.  
Our customers are smart, aggressive, out-of-the-box thinkers who design and develop game-changing products that  
revolutionize their industries or create new industries with products and solutions that nobody ever thought of before.  
ABOUT CYPRESS  
Founded in 1982, Cypress is the leader in advanced embedded system solutions for the world’s most innovative  
automotive, industrial, home automation and appliances, consumer electronics and medical products. Cypress’s  
programmable systems-on-chip, general-purpose microcontrollers, analog ICs, wireless and USB-based connectivity  
solutions and reliable, high-performance memories help engineers design differentiated products and get them to  
market first.  
Cypress is committed to providing customers with the best support and engineering resources on the planet enabling  
innovators and out-of-the-box thinkers to disrupt markets and create new product categories in record time. To learn  
more, go to www.cypress.com.  
Cypress Semiconductor Corporation  
Document Number: 002-15049 Rev. *
198 Champion Court  
San Jose, CA 95134-1709  
408-943-2600  
Revised July 1, 2016  
Revised September 19, 2016  
*E  
PRELIMINARY DATA SHEET  
BCM4325  
IEEE 802.11 a/b/g MAC/Baseband/Radio Plus  
Bluetooth 3.0 + HS and FM Receiver Single-Chip  
Combination  
GENERAL DESCRIPTION  
The Broadcom® BCM4325 single-chip device provides  
the highest level of integration for a mobile or handheld  
wireless systems with integrated IEEE 802.11™ a/b/g  
MAC/baseband/radio, Bluetooth® 3.0 + HS and a FM  
radio receiver.  
InConcert provides the highest possible degree of  
collaboration between Bluetooth® and WLAN using a  
shared 2.4 GHz antenna, along with coexistence support  
for external radio technologies such as GPS, WiMax and  
Ultra Wide-Band (UWB).  
Designed to address the needs of highly mobile devices  
that require minimal power consumption and board area,  
the BCM4325 provides a compact ultra-small form-factor  
solution with minimal external components. This solution  
drives down the costs of mass volumes, while allowing for  
flexibility in the size, form, and function of handheld  
devices.  
As a result, the overall quality of simultaneous voice,  
video, and data transmission on a handheld system is  
enhanced while minimizing the PCB footprint.  
Designed to support flexible power supply topologies,  
including operation directly from the rechargeable battery  
in a mobile platform, the BCM4325 integrates a power  
management unit with five LDOs and two switching  
regulators.  
Utilizing advanced design techniques and process  
technologies to deliver low active and idle power, the  
BCM4325 extends system battery life while maintaining  
consistent connectivity and high throughput.  
The integrated CMOS WLAN 2.4 GHz and 5 GHz power  
amplifiers provide sufficient output power to meet the  
needs of most WLAN devices, without the need for an  
external PA. Furthermore, the integrated buck-boost  
regulator allows the internal power amplifiers to operate  
at optimal performance, even at low Vbatt supply  
voltages. Transmit and receive baluns are also integrated.  
An SDIO system interface (4b, 1b, or SPI) is provided for  
WLAN and an independent, high-speed UART is  
provided for the Bluetooth section.  
A unique feature of the BCM4325 is its implementation of  
highly sophisticated InConcert™ (IEEE 802.15.2) radio  
coexistence algorithms and hardware mechanisms.  
Vbatt  
VIO  
WL_RST_N  
WLAN Host I/F  
5 GHz WLAN Tx  
SW  
5 GHz WLAN Rx  
SDIO  
WL_WAKE_N1  
WL_HOST_WAKE_N1  
BT_RST_N  
UART  
I2S  
2.4 GHz WLAN Tx  
2.4 GHz WLAN/BT Rx  
Bluetooth Tx  
Bluetooth Host I/F  
FM Host I/F  
SW  
CBF  
BCM4325  
PCM  
BT_WAKE1  
BT_HOST_WAKE1  
BSC2  
FM Rx  
FM_IRQ1, 3  
Ref Frequency  
TCXO  
LPO Clock  
32.768 kHz  
Notes: 1. Indication for optional GPIO functions.  
2. BSC is Phillips® I2C-compatible.  
3. For information on the FM_IRQ signal, refer to the following Broadcom documents:  
BCM4325 FM_RDS Block Setup Quick Start Guide (4325-QSG100-X) and  
FM Command and Control Specification (4325-AN400-X).  
Figure 1: Functional Block Diagram  
4325-DS04-R  
6/30/09  
5300 California Avenue • Irvine, CA 92617 • Phone: 949-926-5000 • Fax: 949-926-5203  
BCM4325  
Preliminary Data Sheet  
6/30/09  
FEATURES  
Security  
General Features  
-
-
-
-
-
WPA™ and WPA2™ (Personal) support for powerful  
encryption and authentication  
Supports a battery voltage ranging from 2.3V to  
5.5V with the internal buck-boost switching  
regulator  
AES and TKIP acceleration hardware for faster data  
encryption and 802.11i compatibility  
Cisco® Compatible Extension—(CCX, CCX 2.0, CCX 3.0,  
CCX 4.0) certified  
SecureEasySetup™ for simple Wi-Fi® setup and WPA2/  
WPA security configuration  
Low power consumption and dynamic power  
management maximize battery life of handheld  
devices  
Five LDO regulators and two switching regulators  
with an on-chip, programmable power  
management unit  
Wi-Fi Protected Setup (WPS)  
Supports IEEE 802.11d, e (WMM, QoS, WMM-PS), h, i, j (k, r,  
and w in the future)  
Integrated CMOS power amplifiers deliver greater  
than 20 dBm of linear output power  
Worldwide regulatory support – Global products supported  
with worldwide homologated design  
Supports a single 2.4 GHz antenna shared  
between WLAN and Bluetooth  
Bluetooth Features  
Internal fractional nPLL allows support for a wide  
range of reference clock frequencies.  
Bluetooth Core specification 3.0 + HS compliant when  
combined with Bluetooth 3.0 + HS qualified host software,  
including Alternate MAC/PHY, read encryption key size,  
enhanced power control, and unicast connectionless data.  
2k-bit OTP for storing board parameters  
196-ball flip-chip FBGA package (7.5 mm x  
7.5 mm x 1.05 mm, 0.5 mm pitch) and 339-pin  
WLCSP package (6.51 mm x 5.81 mm x 0.42 mm,  
0.25 mm pitch). Dimensions are nominal, see  
Figure 35 on page 115 and Figure 36 on page 116  
for maximum dimensions)  
Supports extended Synchronous Connections (eSCO), for  
enhanced voice quality by allowing for retransmission of  
dropped packets  
Adaptive Frequency Hopping (AFH) for reducing radio  
frequency interference  
Provides an ultra-small form-factor solution and  
ultra low-power consumption to support low-cost  
requirements  
Bluetooth Class 1 support with PA bias adjust  
Interface support—Host Controller Interface (HCI) using a  
high-speed UART interface and PCM for audio data  
IEEE 802.11x Features  
Integrates the InConcert collaborative WLAN coexistence,  
including the 802.15.2 3-wire coexistence support  
Single-band 2.4 GHz 802.11 b/g or dual-band  
2.4 GHz and 5 GHz 802.11 a/b/g pin-compatible  
options  
Supports dual Advanced Audio Distribution Profile (A2DP) for  
stereo sound  
Integrated WLAN CMOS power amplifiers deliver  
greater than 20 dBm of linear output power.  
Automatic frequency detection for standard crystal and TCXO  
values  
Provides  
external  
coexistence handshake  
interface to support additional wireless  
technologies such as GPS, WiMax, or UWB  
Embedded ARM7 RISC processor and on-chip memory  
FM Radio Features  
Supports SDIO v1.2 (4-bit and 1-bit) and SPI, with  
SDIO clock speeds up to 50 MHz  
FM receiver  
-
-
76 MHz to 108 MHz FM bands  
Integrated ARM7® RISC processor and on-chip  
memory for complete WLAN subsystem  
functionality minimizing the need to wake up the  
applications processor for standard WLAN  
functions. This allows for further minimization of  
power consumption, while maintaining the  
capability to field upgrade with future features.  
European Radio Data Systems (RDS) and  
North American Radio Broadcast Data System (RBDS)  
modulation support  
I2C-compatible BSC communications support  
Stereo analog output  
I2S and PCM interfaces  
Broadcom Corporation  
Page ii  
Document 4325-DS04-R  
Preliminary Data Sheet  
6/30/09  
BCM4325  
REVISION HISTORY  
Revision  
Date  
Description  
4325-DS04-R  
6/30/09  
Updated:  
Title  
“General Decsription: on page i  
“Bluetooth Features” on page ii  
“Overview” on page 1  
Table 2, ”Crystal Interface Signal Characteristics,” on page 6  
Table 3, ”LPO Signal Requirements,on page 9  
“Bluetooth Features” on page 11  
“Bluetooth 2.1 and 3.0 Features” on page 14  
“Bluetooth UART Interface” on page 20  
“One-Time-Programmable (OTP) Memory” on page 33  
“JTAG Interface” on page 34  
Table 8, ”196-Ball FBGA Signal Descriptions,on page 43  
Table 9, ”339-Pin WLCSP Signal Descriptions,on page 52  
Table 14, ”WLAN GPIO Functions and Strapping Options,on page 67  
Table 21, ”ESD Specifications,” on page 75  
Table 22, ”Environmental Ratings,” on page 76  
Table 23, ”Recommended Operating Conditions and DC Characteristics,on page 76  
“WLAN Receiver Blocking Performance” on page 86  
“SDIO Host Timing Requirement” on page 107  
Table 57, ”Ordering Information,on page 120  
4325-DS03-R  
3/11/09  
Updated:  
General Description on page i  
Features on page ii  
“Overview” on page 1  
“Mobile Phone Usage Model” on page 2  
“Power Supply Topology” on page 4  
“Reset Circuits” on page 5  
“Crystal Interface and Clock Generation” on page 6  
Table 2, ”Crystal Interface Signal Characteristics,” on page 6  
Figure 6, ”Recommended Oscillator Configuration,on page 7  
“Frequency Selection” on page 8  
Table 3, ”LPO Signal Requirements,on page 9  
“Broadcom Serial Control (BSC) Bus” on page 23  
Table 6, ”196-Ball FBGA Signal Assignments by Ball Number,” on page 37  
Table 7, ”339-Pin WLCSP Signal Assignments by Pin Number and X- and Y-Coordinates,”  
on page 39  
Table 8, ”196-Ball FBGA Signal Descriptions,on page 43  
Table 9, ”339-Pin WLCSP Signal Descriptions,on page 53  
Table 14, ”WLAN GPIO Functions and Strapping Options,on page 68  
Table 15, ”BT GPIO Signals,on page 69  
Table 17, ”BT/FM Interface I/O Status,on page 72  
Table 18, ”WLAN Interface I/O Status,on page 74  
Table 20, ”Absolute Maximum Ratings,on page 76  
Broadcom Corporation  
Document 4325-DS04-R  
Page iii  
BCM4325  
Preliminary Data Sheet  
6/30/09  
Revision  
Date  
Description  
Section 16 ”Operating Conditions and DC Characteristics” on page 76 (title changed; was  
DC Characteristics)  
Section ”Recommended Operating Conditions” on page 77 (heading changed; was DC  
Characteristics)  
Table 21, ”ESD Specifications,” on page 76  
Table 22, ”Environmental Ratings,” on page 77  
Table 23, ”Recommended Operating Conditions and DC Characteristics,on page 77  
Table 24, ”Bluetooth and FM Current Consumption,” on page 78  
Table 25, ”WLAN Current Consumption using Power Topology #1 (Vbatt with Buck-  
Boost),” on page 79  
Table 26, ”Bluetooth Receiver RF Specifications,on page 80  
Table 27, ”Bluetooth Transmitter RF Specifications,on page 82  
Table 28, ”FM Receiver Specifications,on page 83  
Table 31, ”2.4 GHz Band Local Oscillator Specifications,” on page 87  
Table 32, ”2.4 GHz Band Receiver RF Specifications,on page 88  
Table 34, ”2.4 GHz Band Transmitter RF Specifications,on page 89  
Table 35, ”5 GHz Band Receiver RF Specifications,” on page 90  
Table 39, ”CLDO,on page 93  
Table 40, ”LNLDOi,on page 94  
Table 42, ”Buck-Boost Regulator,on page 96  
Figure 16, ”UART Timing,on page 97  
Table , ”SDIO Host Timing Requirement,” on page 108  
Table , ”Reset and Regulator Control Signal Sequencing,on page 108  
Table , ”Signal and Power-up Sequence Timing Diagrams,on page 108  
“Package Thermal Characteristics” on page 114  
“Miscellaneous Characteristics” on page 115  
Table 57, ”Ordering Information,on page 121  
Added:  
Figure 32, ”Power-Up Timing for WL ON and BT ON (WL REG_ON signal connected to  
WL_RST_N, BT separated),on page 112  
Figure 33, ”Power-Up Timing for WL OFF and BT ON (WL REG_ON signal connected to  
WL_RST_N, BT separated),on page 113  
Figure 34, ”Power-Up Timing for WL ON and BT OFF (WL REG_ON signal connected to  
WL_RST_N, BT separated),on page 113  
Broadcom Corporation  
Page iv  
Document 4325-DS04-R  
Preliminary Data Sheet  
6/30/09  
BCM4325  
Revision  
Date  
Description  
4325-DS02-R  
08/15/08  
Updated:  
Figure 8, ”Power Supply Building Blocks,on page 27.  
Table 3, ”Crystal Interface Signal Characteristics,” on page 31.  
Voltage for integrated LDO pins in Table 7 on page 44 and Table 8 on page 53.  
Table 19, ”Absolute Maximum Ratings,on page 75.  
Table 20, ”Recommended Operating Conditions and DC Characteristics,on page 75.  
Table 28, ”2.4-GHz Band Transmitter RF Specifications,” on page 85.  
Table 30, ”2.4-GHz Receiver Performance Specifications,on page 86.  
Table 49, ”196-Ball FBGA Package Thermal Characteristics,” on page 110.  
Figure 28, ”339-Pin WLCSP Mechanical Information,on page 113.  
Table 52, ”Ordering Information,on page 118.Added:  
Figure 9, ”Power Topology Example,” on page 28.  
Table 15, ”Pin Default Pull-Up/Pull-Down,” on page 69.  
Table 16, ”BT/FM Interface I/O Status,” on page 71.  
Table 17, ”WLAN Interface I/O Status,” on page 72.  
Table 21, ”Bluetooth and FM Current,” on page 76.  
“SDIO Timing” on page 102.  
Section 21 ”Power-Up Sequence and Timing” on page 105.  
Figure 24, ”Power-Up Timing for WL Off and BT Off (VDDC Provided Externally),” on  
page 108.  
Table 51, ”Miscellaneous Characteristics,” on page 111.  
Figure 30, ”WLAN Section Second Metal Keepout Area,” on page 115.  
4325-DS01-R  
12/14/07  
Updated:  
General Description on page i  
Features on page ii  
Figure 2, ”BCM4325 Block Diagram,” on page 1  
Section 2 ”Bluetooth + FM Subsystem Overview” on page 2  
Integrated Section 3 into Section 2 ”Bluetooth + FM Subsystem Overview” on page 2  
Section 4 ”Microprocessor and Memory Unit for Bluetooth”: “External Reset” on page 11  
Section 6 ”FM Receiver Subsystem”:  
- RDS/RBDS” on page 18  
- Other Features” on page 18  
Section 8 ”WLAN 802.11 Radio Subsystem”: “Transmitter Path” on page 25  
Section 12 ”BCM4325 On-Chip Power Supplies”:  
- Figure 8, ”BCM4325 Power Supply Building Blocks,” on page 28  
- BCM4325 Example Power Supply Topology” on page 29  
- Removed “BCM4325 Power Supply Applications–Power Efficiency  
Section 13 ”Frequency References”:  
- Table 3, ”Crystal Interface Signal Characteristics,” on page 32  
- Figure 11, ”Recommended Oscillator Configuration,” on page 33  
- Figure 12, ”Recommended TCXO Connection,” on page 33  
Broadcom Corporation  
Document 4325-DS04-R  
Page v  
Revision  
Date  
Description  
4325-DS01-R  
(Cont.)  
12/14/07  
Added:  
Section 14 ”Pinout and Signal Descriptions”:  
- Table 6, ”339-Pin WLCSP Signal Assignments by Pin Number and X- and Y-  
Coordinates,” on page 38  
- Table 7, ”196-Ball FBGA Signal Descriptions,” on page 42  
- Table 8, ”339-Pin WLCSP Signal Descriptions,” on page 51  
- Table 9, ”BT_VDDO Domain (1.8V to 3.3V),” on page 63  
- Table 10, ”VDDIO Domain (1.8V to 3.3V),” on page 64  
- Table 11, ”VDDIO_RF Domain (1.8V to 3.3V),” on page 65  
- Table 12, ”VDDIO_SD Domain (1.8V to 3.3V),” on page 65  
“WLAN GPIO Signals” on page 66  
Section 17 ”WLAN RF Specifications”  
- Table 24, ”2.4-GHz Band Transmitter RF Specifications,” on page 81  
- Table 26, ”2.4-GHz Receiver Performance Specifications,” on page 82  
- Table 29, ”5-GHz Band Local Oscillator Frequency Generator Specifications,” on page  
83  
Section 18 ”BCM4325 Internal Regulator Electrical Specifications”:  
- Table 31, ”CLDO,” on page 85  
- Table 32, ”LNLDOi,” on page 86  
- Table 34, ”Core Buck Regulator,” on page 87  
- Table 35, ”Buck-Boost Regulator,” on page 88  
- Added: “Regulator Current” on page 89  
- Removed Analog/RF Buck Regulator section  
Section 22 ”Mechanical Information”: “339-Pin WLCSP Mechanical Information” on page  
107  
Table 46, ”Environmental Characteristics,” on page 105  
Section 24 ”WLCSP Keepout Area”  
4325-DS00-R  
03/22/07  
Initial release  
Broadcom Corporation  
5300 California Avenue  
Irvine, CA 92617  
© 2009 by Broadcom Corporation  
All rights reserved  
Printed in the U.S.A.  
Broadcom®, the pulse logo, Connecting everything®, and the Connecting everything logo are among the registered  
trademarks of Broadcom Corporation and/or its subsidiaries in the United States, certain other countries, and/or the EU.  
Bluetooth® is a trademark of the Bluetooth SIG. Any other trademarks or trade names mentioned are the property of their  
respective owners.  
Confidential and Proprietary Information: This document and the software are proprietary properties of Broadcom  
Corporation. This software package may only be used in accordance with the Broadcom Corporation license agreement.  
Preliminary Data Sheet  
6/30/09  
BCM4325  
TABLE OF CONTENTS  
Section 1: BCM4325 Overview............................................................................................1  
Overview ....................................................................................................................................................... 1  
Mobile Phone Usage Model......................................................................................................................... 2  
Section 2: On-Chip Power Supplies and Reset.................................................................3  
Power Supply Topology .............................................................................................................................. 4  
Reset Circuits............................................................................................................................................... 5  
Section 3: Frequency References......................................................................................6  
Crystal Interface and Clock Generation..................................................................................................... 6  
Crystal Oscillator ......................................................................................................................................... 7  
External Frequency Reference ................................................................................................................... 7  
Frequency Selection.................................................................................................................................... 8  
Frequency Trimming.................................................................................................................................... 8  
LPO Clock Interface..................................................................................................................................... 9  
Section 4: Bluetooth + FM Subsystem Overview ...........................................................10  
Features ...................................................................................................................................................... 11  
Bluetooth Features................................................................................................................................ 11  
FM Radio Features ............................................................................................................................... 12  
Bluetooth Radio ......................................................................................................................................... 12  
Transmit ................................................................................................................................................ 12  
Digital Modulator............................................................................................................................ 12  
Power Amplifier.............................................................................................................................. 13  
Receive................................................................................................................................................. 13  
Digital Demodulator and Bit Synchronizer ..................................................................................... 13  
Receiver Signal Strength Indicator ................................................................................................ 13  
Local Oscillator Generation................................................................................................................... 13  
Calibration............................................................................................................................................. 13  
Section 5: Bluetooth Baseband Core...............................................................................14  
Bluetooth 2.1 and 3.0 Features ................................................................................................................. 14  
Frequency Hopping Generator ................................................................................................................. 14  
Link Control Layer ..................................................................................................................................... 14  
Broadcom Corporation  
Document 4325-DS04-R  
Page vii  
BCM4325  
Preliminary Data Sheet  
6/30/09  
Test Mode Support .....................................................................................................................................15  
Bluetooth Power Management Unit ..........................................................................................................15  
RF Power Management.........................................................................................................................16  
Host Controller Power Management .....................................................................................................16  
BBC Power Management......................................................................................................................16  
FM Power Management ........................................................................................................................16  
Adaptive Frequency Hopping....................................................................................................................17  
Advanced Bluetooth/WLAN Coexistence.................................................................................................17  
Fast Connection (Interlaced Page and Inquiry Scans)............................................................................17  
Section 6: Microprocessor and Memory Unit for Bluetooth ......................................... 18  
RAM, ROM, and Patch Memory .................................................................................................................18  
Section 7: Bluetooth Peripheral Transport Unit............................................................. 19  
PCM Interface for Bluetooth and SCO Audio...........................................................................................19  
Slot Mapping..........................................................................................................................................20  
Frame Sync ...........................................................................................................................................20  
Data Formatting.....................................................................................................................................20  
PCM Interface for FM Audio..................................................................................................................20  
Bluetooth UART Interface..........................................................................................................................20  
Auto-Baudrate Detection .......................................................................................................................22  
I2S Interface ................................................................................................................................................22  
Section 8: FM Receiver Subsystem................................................................................. 23  
Sensitivity....................................................................................................................................................23  
PLL Tuning..................................................................................................................................................23  
Digital FM Output........................................................................................................................................23  
Analog FM Output.......................................................................................................................................23  
Broadcom Serial Control (BSC) Bus.........................................................................................................23  
RDS/RBDS...................................................................................................................................................24  
Other Features ............................................................................................................................................24  
Section 9: Wireless LAN Functional Description........................................................... 25  
Introduction to IEEE Std 802.11 ................................................................................................................25  
IEEE 802.11a/g MAC Features ...................................................................................................................25  
IEEE 802.11a/g MAC Description ..............................................................................................................26  
IEEE 802.11a/g PHY Features....................................................................................................................27  
Broadcom Corporation  
Page viii  
Document 4325-DS04-R  
Preliminary Data Sheet  
6/30/09  
BCM4325  
IEEE 802.11a/g PHY Description............................................................................................................... 28  
Section 10: WLAN 802.11 Radio Subsystem...................................................................30  
Receiver Path ............................................................................................................................................. 31  
Transmitter Path......................................................................................................................................... 31  
Calibration .................................................................................................................................................. 31  
Section 11: WLAN Power Management ...........................................................................32  
Section 12: WLAN System Interfaces ..............................................................................33  
SDIO V1.2.................................................................................................................................................... 33  
GPIO Interface ............................................................................................................................................ 33  
One-Time-Programmable (OTP) Memory................................................................................................. 33  
External Coexistence Interface................................................................................................................. 34  
JTAG Interface............................................................................................................................................ 34  
WLAN UART Debug Interface ................................................................................................................... 34  
Section 13: Software Architecture ...................................................................................35  
Host Software Architecture....................................................................................................................... 35  
Device Software Architecture ................................................................................................................... 35  
Remote Downloader ............................................................................................................................. 36  
Wireless Configuration Utility................................................................................................................... 36  
Section 14: Pinout and Signal Descriptions....................................................................37  
Signal Assignments................................................................................................................................... 37  
196-Ball FBGA Pinout........................................................................................................................... 37  
339-Pin WLCSP Pinout......................................................................................................................... 39  
Section 15: Signal Descriptions .......................................................................................43  
196-Ball FBGA Package....................................................................................................................... 43  
339-Pin WLCSP Package..................................................................................................................... 52  
Pin Voltage Domains ............................................................................................................................ 64  
WLAN GPIO Signals and Strapping Options ........................................................................................ 67  
Bluetooth GPIO Signals ........................................................................................................................ 68  
Pin Default Pull-Up/Pull-Down .............................................................................................................. 69  
Interface I/O Status............................................................................................................................... 71  
SDIO Pin Description................................................................................................................................. 74  
Broadcom Corporation  
Document 4325-DS04-R  
Page ix  
BCM4325  
Preliminary Data Sheet  
6/30/09  
Section 16: Operating Conditions and DC Characteristics........................................... 75  
Absolute Maximum Ratings.......................................................................................................................75  
Electrostatic Discharge Specifications ....................................................................................................75  
Environmental Ratings...............................................................................................................................76  
Recommended Operating Conditions ......................................................................................................76  
Bluetooth and FM Current Consumption...............................................................................................77  
WLAN Current Consumption.................................................................................................................78  
Section 17: Bluetooth RF Specifications ........................................................................ 79  
Section 18: FM Receiver Specifications.......................................................................... 82  
Section 19: WLAN RF Specifications .............................................................................. 85  
Introduction.................................................................................................................................................85  
Cellular Blocking ........................................................................................................................................85  
WLAN Receiver Blocking Performance.................................................................................................86  
2.4 GHz Band General RF Specifications.................................................................................................86  
2.4 GHz Band Local Oscillator Specifications .........................................................................................86  
2.4 GHz Band Receiver RF Specifications ...............................................................................................87  
2.4 GHz Receiver Performance Specifications ........................................................................................87  
2.4 GHz Band Transmitter RF Specifications...........................................................................................88  
5 GHz Band Receiver RF Specifications ..................................................................................................89  
5 GHz Band Transmitter RF Specifications..............................................................................................90  
5 GHz Band Local Oscillator Frequency Generator Specifications.......................................................90  
5 GHz Receiver Performance Specifications ...........................................................................................91  
Section 20: Internal Regulator Electrical Specifications............................................... 92  
CLDO............................................................................................................................................................92  
LNLDOi (i = 1, 2, or 4) .................................................................................................................................93  
Core Buck Regulator..................................................................................................................................94  
Buck-Boost Regulator................................................................................................................................95  
Section 21: Interface Timing and AC Characteristics.................................................... 96  
Bluetooth Peripheral Transport Unit Timing Specifications ..................................................................96  
Bluetooth UART Timing.........................................................................................................................96  
PCM Interface Timing............................................................................................................................97  
Short Frame Sync, Master Mode ...................................................................................................97  
Broadcom Corporation  
Page x  
Document 4325-DS04-R  
Preliminary Data Sheet  
6/30/09  
BCM4325  
Short Frame Sync, Slave Mode..................................................................................................... 98  
Long Frame Sync, Master Mode ................................................................................................... 99  
Long Frame Sync, Slave Mode ................................................................................................... 100  
FM I2S Timing........................................................................................................................................... 101  
FM I2C-Compatible Timing...................................................................................................................... 103  
SPROM Timing ......................................................................................................................................... 103  
JTAG Timing............................................................................................................................................. 104  
SDIO Timing.............................................................................................................................................. 104  
Section 22: Power-Up Sequence and Timing................................................................107  
SDIO Host Timing Requirement.............................................................................................................. 107  
Reset and Regulator Control Signal Sequencing ................................................................................. 107  
Signal and Power-up Sequence Timing Diagrams ............................................................................. 108  
Section 23: Package Information ...................................................................................113  
Package Thermal Characteristics........................................................................................................... 113  
Junction Temperature Estimation and PSIjt Versus Thetajc............................................................... 113  
Environmental Characteristics ............................................................................................................... 113  
Miscellaneous Characteristics................................................................................................................ 114  
Section 24: Mechanical Information...............................................................................115  
196-Ball FBGA Package........................................................................................................................... 115  
339-Pin WLCSP Package......................................................................................................................... 116  
Section 25: WLCSP Keepout Area .................................................................................117  
Section 26: Ordering Information...................................................................................120  
Broadcom Corporation  
Document 4325-DS04-R  
Page xi  
BCM4325  
Preliminary Data Sheet  
6/30/09  
LIST OF FIGURES  
Figure 1: Functional Block Diagram ................................................................................................................... i  
Figure 2: BCM4325 Block Diagram...................................................................................................................1  
Figure 3: BCM4325 System Block Diagram......................................................................................................2  
Figure 4: Power Supply Building Blocks............................................................................................................3  
Figure 5: Power Topology Example ..................................................................................................................4  
Figure 6: Recommended Oscillator Configuration ............................................................................................7  
Figure 7: Recommended TCXO Connection.....................................................................................................7  
Figure 8: PCM Interface with Linear PCM Codec ...........................................................................................19  
Figure 9: IEEE 802.11a/g MAC Block Diagram...............................................................................................26  
Figure 10: IEEE 802.11a/g PHY Block Diagram ...............................................................................................28  
Figure 11: Radio Functional Block Diagram......................................................................................................30  
Figure 12: Device Software Architecture...........................................................................................................36  
Figure 13: Signal Connections to SDIO Card (SD 4-Bit Mode).........................................................................74  
Figure 14: Signal Connections to SDIO Card (SD 1-Bit Mode).........................................................................74  
Figure 15: Signal Connections to SDIO Card (SPI Mode) ................................................................................74  
Figure 16: UART Timing....................................................................................................................................96  
Figure 17: PCM (Short Frame Sync, Master Mode) Timing..............................................................................97  
Figure 18: PCM (Short Frame Sync, Slave Mode) Timing ................................................................................98  
Figure 19: PCM (Long Frame Sync, Master Mode) Timing...............................................................................99  
Figure 20: PCM (Long Frame Sync, Slave Mode) Timing...............................................................................100  
Figure 21: I2S Transmitter Timing...................................................................................................................101  
Figure 22: I2S Receiver Timing.......................................................................................................................101  
Figure 23: SDIO Bus Timing (Default Mode)...................................................................................................104  
Figure 24: SDIO Bus Timing (High-Speed Mode)...........................................................................................105  
Figure 25: Power-Up Timing for WL On and BT On........................................................................................108  
Figure 26: Power-Up Timing for WL On and BT Off........................................................................................108  
Figure 27: Power-Up Timing for WL Off and BT On........................................................................................109  
Figure 28: Power-Up Timing for WL Off and BT Off (VDDC Provided by BCM4325).....................................109  
Figure 29: Power-Up Timing for WL Off and BT Off (VDDC Provided Externally) ..........................................110  
Figure 30: Power-Up Timing for WL On and BT On (REG_ON signals are  
connected to RST_N signals) ........................................................................................................110  
Figure 31: Power-Up Timing for WL Off and BT On (REG_ON signals are  
connected to RST_N signals) ........................................................................................................111  
Broadcom Corporation  
Page xii  
Document 4325-DS04-R  
Preliminary Data Sheet  
6/30/09  
BCM4325  
Figure 32: Power-Up Timing for WL ON and BT ON (WL REG_ON signal  
connected to WL_RST_N, BT separated) ..................................................................................... 111  
Figure 33: Power-Up Timing for WL OFF and BT ON (WL REG_ON signal  
connected to WL_RST_N, BT separated) ..................................................................................... 112  
Figure 34: Power-Up Timing for WL ON and BT OFF (WL REG_ON signal  
connected to WL_RST_N, BT separated) ..................................................................................... 112  
Figure 35: 196-Ball FBGA Mechanical Information......................................................................................... 115  
Figure 36: 339-Pin WLCSP Mechanical Information ...................................................................................... 116  
Figure 37: WLAN Section Top Metal Keepout Area ....................................................................................... 117  
Figure 38: WLAN Section Second Metal Keepout Area ................................................................................. 118  
Figure 39: BT and FM Keepout Area.............................................................................................................. 119  
Figure 40: BT and FM first and Second Keepout Area Enlargement.............................................................. 119  
Broadcom Corporation  
Document 4325-DS04-R  
Page xiii  
BCM4325  
Preliminary Data Sheet  
6/30/09  
LIST OF TABLES  
Table 1: Reset Control Signals ........................................................................................................................5  
Table 2: Crystal Interface Signal Characteristics .............................................................................................6  
Table 3: LPO Signal Requirements..................................................................................................................9  
Table 4: Power Control Pin Description .........................................................................................................16  
Table 5: Common Baud Rate Examples........................................................................................................21  
Table 6: 196-Ball FBGA Signal Assignments by Ball Number.......................................................................37  
Table 7: 339-Pin WLCSP Signal Assignments by Pin Number and X- and Y-Coordinates...........................39  
Table 8: 196-Ball FBGA Signal Descriptions .................................................................................................43  
Table 9: 339-Pin WLCSP Signal Descriptions ...............................................................................................52  
Table 10: BT_VDDO Domain (1.8V to 3.3V)....................................................................................................64  
Table 11: VDDIO Domain (1.8V to 3.3V) .........................................................................................................65  
Table 12: VDDIO_RF Domain (1.8V to 3.3V) ..................................................................................................66  
Table 13: VDDIO_SD Domain (1.8V to 3.3V) ..................................................................................................66  
Table 14: WLAN GPIO Functions and Strapping Options ...............................................................................67  
Table 15: BT GPIO Signals..............................................................................................................................68  
Table 16: Pin Default Pull-Up/Pull-Down .........................................................................................................69  
Table 17: BT/FM Interface I/O Status ..............................................................................................................71  
Table 18: WLAN Interface I/O Status...............................................................................................................73  
Table 19: SDIO Pin Description .......................................................................................................................74  
Table 20: Absolute Maximum Ratings .............................................................................................................75  
Table 21: ESD Specifications...........................................................................................................................75  
Table 22: Environmental Ratings.....................................................................................................................76  
Table 23: Recommended Operating Conditions and DC Characteristics........................................................76  
Table 24: Bluetooth and FM Current Consumption..........................................................................................77  
Table 25: WLAN Current Consumption using Power Topology #1 (Vbatt with Buck-Boost) ..........................78  
Table 26: Bluetooth Receiver RF Specifications..............................................................................................79  
Table 27: Bluetooth Transmitter RF Specifications .........................................................................................81  
Table 28: FM Receiver Specifications..............................................................................................................82  
Table 29: Blocking Signals from Embedded Cellular Transmitter at Cellular Antenna Port.............................85  
Table 30: 2.4 GHz Band General RF Specifications........................................................................................86  
Table 31: 2.4 GHz Band Local Oscillator Specifications..................................................................................86  
Table 32: 2.4 GHz Band Receiver RF Specifications ......................................................................................87  
Table 33: 2.4 GHz Receiver Performance Specifications................................................................................87  
Broadcom Corporation  
Page xiv  
Document 4325-DS04-R  
Preliminary Data Sheet  
6/30/09  
BCM4325  
Table 34: 2.4 GHz Band Transmitter RF Specifications.................................................................................. 88  
Table 35: 5 GHz Band Receiver RF Specifications ........................................................................................ 89  
Table 36: 5 GHz Band Transmitter RF Specifications..................................................................................... 90  
Table 37: 5 GHz Band Local Oscillator Frequency Generator Specifications ................................................. 90  
Table 38: 5 GHz Receiver Performance Specifications................................................................................... 91  
Table 39: CLDO............................................................................................................................................... 92  
Table 40: LNLDOi............................................................................................................................................ 93  
Table 41: Core Buck Regulator ....................................................................................................................... 94  
Table 42: Buck-Boost Regulator...................................................................................................................... 95  
Table 43: UART Timing Speicifications ........................................................................................................... 96  
Table 44: PCM (Short Frame Sync, Master Mode) Timing Specifications ...................................................... 97  
Table 45: PCM (Short Frame Sync, Slave Mode) Timing Specifications ........................................................ 98  
Table 46: TPCM (Long Frame Sync, Master Mode) Timing Specifications..................................................... 99  
Table 47: PCM (Long Frame Sync, Slave Mode) Timing Specifications....................................................... 100  
Table 48: Timing for I2S Transmitters and Receivers ................................................................................... 102  
Table 49: FM I2C-Compatible Interface Timing............................................................................................. 103  
Table 50: SPROM Timing Characteristics..................................................................................................... 103  
Table 51: JTAG Timing Characteristics......................................................................................................... 104  
Table 52: SDIO Bus Timing Parameters (Default Mode).............................................................................. 105  
Table 53: SDIO Bus Timing Parameters (High-Speed Mode)...................................................................... 106  
Table 54: Control Signal Descriptions ........................................................................................................... 107  
Table 55: Thermal Characteristics (Values in Still Air) ................................................................................. 113  
Table 56: Miscellaneous Characteristics ....................................................................................................... 114  
Table 57: Ordering Information...................................................................................................................... 120  
Broadcom Corporation  
Document 4325-DS04-R  
Page xv  
BCM4325  
Preliminary Data Sheet  
6/30/09  
Broadcom Corporation  
Page xvi  
Document 4325-DS04-R  
Preliminary Data Sheet  
6/30/09  
BCM4325  
Section 1: BCM4325 Overview  
OVERVIEW  
The Broadcom® BCM4325 single-chip device provides the highest level of integration for a mobile or handheld wireless  
system, with integrated IEEE 802.11™ a/b/g (MAC/baseband/radio), Bluetooth® 3.0 + HS, and an FM receiver. Designed to  
address the needs of highly mobile devices that require minimal power consumption and board area, the BCM4325 provides  
a compact ultra-small form-factor solution with minimal external components. This solution drives down the costs for mass  
volumes, while allowing for flexibility in size, form, and function of handheld devices. It is targeted at addressing the needs  
of highly mobile devices that require minimal power consumption and reliable operation.  
Figure 2 shows the interconnects for the major physical blocks in the BCM4325 and associated external interfaces, which  
are described in greater detail in subsequent sections of this document.  
BCM4325  
SW Reg.  
LDO  
FM Radio  
Radio Control  
Common Logic Block (CLB)  
Antenna  
Ext. PA Control  
RF Switch Control  
Regulator Control  
Clock Control  
LPO  
Sleep Clock  
Xtal  
FM Demod, MDX,  
RDX Decode  
Enhanced  
Ext/Shared  
Coexistence Control  
LNA Control  
Xtal OSC.  
POR  
Analog Stereo  
DACs  
POR  
Bluetooth  
UART  
BT-PLL  
Wireless LAN  
Dig I/O  
Dbg-UART  
BB-PLL  
PCM, BSC*, I2S  
ARM7TDMI  
RAM  
ROM  
PMU Control  
ARM7TDMI  
SDIO Dev  
SDIO/SPI  
SDROM IF  
WDog timer  
OTP  
SROM IF  
JTAG  
Intr Ctrl  
Addr Decoder  
Bus Arbiter  
GPIO  
GPIO  
UART  
JTAG  
RAM (384 KB)  
ROM (80 KB)  
PMU Ctrl  
AHB2EBI  
DMA  
UART  
JTAG  
BT clk/Hopper  
RX/TX  
802.11 abg  
AHB2APB  
LCU  
MAC  
APU  
PHY  
Blue RF IF  
WDog timer  
Remap/Pause  
GPIO  
Radio  
Dig I/O  
2.4 GHz  
Shared LNA  
5 GHz  
Modem  
Radio  
SW Timer  
PA  
(Int)  
PA  
(Int)  
TX  
* BSC (Broadcom Serial Control) is I2C-compatible.  
BPF  
Figure 2: BCM4325 Block Diagram  
Broadcom Corporation  
Document 4325-DS04-R  
BCM4325 Overview  
Page 1  
BCM4325  
Preliminary Data Sheet  
6/30/09  
MOBILE PHONE USAGE MODEL  
The BCM4325 incorporates a number of unique features to simplify integration into mobile phone platforms. Its flexible PCM  
and UART interfaces enable it to transparently connect with the existing circuits. In addition, the TCXO and LPO inputs allow  
the use of existing handset features to further minimize the size, power, and cost of the complete system.  
The PCM interface provides multiple modes of operation to support both master and slave as well as hybrid interfacing  
to single or multiple external codec devices.  
The UART interface supports hardware flow control with tight integration to power control side band signaling to support  
the lowest power operation.  
The TCXO interface accommodates any of the typical reference frequencies used by cell phones.  
The BSC and analog FM interfaces are available for legacy systems.  
New FM digital interfaces can use either I2S or PCM.  
The highly linear design of the radio transceiver ensures that the device has the lowest output of spurious emissions  
regardless of the state of operation. It has been fully characterized in the global cellular bands.  
The transceiver design has excellent blocking (eliminating desensitization of the Bluetooth receiver) and inter-  
modulation performance (distortion of the transmitted signal caused by the mixing of the cellular and Bluetooth  
transmissions) in the presence of any cellular transmission (GSM, GPRS, CDMA, WCDMA, or iDEN). Minimal external  
filtering is required for integration inside the handset.  
The BCM4325 is designed to provide direct interface with new and existing handset designs, as shown in Figure 3.  
Vbatt  
VIO  
WL_RST_N  
WLAN Host I/F  
5 GHz WLAN Tx  
5 GHz WLAN Rx  
SDIO  
SW  
SW  
WL_WAKE_N1  
WL_HOST_WAKE_N1  
BT_RST_N  
UART  
I2S  
2.4 GHz WLAN Tx  
2.4 GHz WLAN/BT Rx  
Bluetooth Tx  
Bluetooth Host I/F  
FM Host I/F  
CBF  
BCM4325  
PCM  
BT_WAKE1  
BT_HOST_WAKE1  
BSC2  
FM Rx  
FM_IRQ1, 3  
Ref Frequency  
TCXO  
LPO Clock  
32.768 kHz  
Notes: 1. Indication for optional GPIO functions.  
2. BSC is Phillips® I2C-compatible.  
3. For information on the FM_IRQ signal, refer to the following Broadcom documents:  
BCM4325 FM_RDS Block Setup Quick Start Guide (4325-QSG100-X) and  
FM Command and Control Specification (4325-AN400-X).  
Figure 3: BCM4325 System Block Diagram  
Broadcom Corporation  
Page 2  
Mobile Phone Usage Model  
Document 4325-DS04-R  
Preliminary Data Sheet  
6/30/09  
BCM4325  
Section 2: On-Chip Power Supplies and Reset  
The BCM4325 contains power supply building blocks, including one buck-boost switching regulator, one buck switching  
regulator, and five low-noise LDOs to simplify power supply design for Bluetooth and WLAN interfaces in embedded designs.  
From a single host power supply, power configurations can be implemented using the BCM4325 on-chip power elements to  
create a self contained design. All of the regulators are available with the 339-pin WLCSP package. The 196-ball FBGA  
package does not provide access to LNLDO4.  
Figure 4 shows available voltage and current from each integrated regulator.  
Low Noise LDOs  
Switchers  
BBOOST  
(Buck-Boost Regulator)  
2.3V – 5.5V Input (VBAT)  
3.3V Output  
300 mA  
1.4 MHz Switching Frequency  
CLDO  
(Core LDO)  
1.4V – 2V Input  
1.25V Output  
200 mA  
CBUCK  
(Core Buck Regulator)  
2.3V – 5.5V Input (VBAT)  
1.25V / 1.5V Output  
300 mA  
LNLDO1  
(Low Noise LDO1)  
1.4V – 2V Input  
1.25V Output  
130 mA  
2.8 MHz Switching Frequency  
LNLDO2  
(Low Noise LDO2)  
Programmable:  
1.4V – 2V Input / 1.25V  
Output (Default)  
3.3V Input / 2.5V Output  
80 mA  
Available in 196-ball FBGA  
and 339-pin WLCSP  
packages.  
LNLDO4  
(Low Noise LDO4)  
1.5 / 3.3V Input  
1.25 / 2.5V Output  
80 mA  
Only available in 339-pin  
WLCSP packages.  
Figure 4: Power Supply Building Blocks  
Broadcom Corporation  
Document 4325-DS04-R  
On-Chip Power Supplies and Reset  
Page 3  
BCM4325  
Preliminary Data Sheet  
6/30/09  
POWER SUPPLY TOPOLOGY  
At least seven different power supply topologies can be supported by the voltage regulators available on the BCM4325.  
Figure 5 shows one example of a power topology for an application with Bluetooth Class 1 PA, FM and WLAN supplied by  
a variable battery voltage (Vbatt).  
To achieve maximum performance from the integrated WLAN Power Amplifiers (PAs), the VDDPA power supply voltages  
must remain within the recommended operating voltage range. If the supply voltage to the PA deviates outside this range,  
the linearity of the PA will be degraded, resulting in lower throughput and shorter range. To avoid this condition, the buck-  
boost regulator can be used to provide a constant 3.3V supply to the PA over the full range of the Vbatt voltage variation.  
The trade-off is the additional components required for the buck-boost regulator versus the impaired performance if it is not  
used.  
Complete details of all seven power supply topologies are provided in the BCM4325 Power Supply Topologies application  
note (document number 4325-AN60X-R), available on docSAFE.  
VDDIO, VDDIO_SD  
VDDIO = 1.8V – 3.3V  
CLD0  
Digital Logic and  
Noise Insensitive  
Blocks  
1.5V  
1.25V  
1.5V Input  
1.25V Output  
200 mA  
CBUCK  
2.3V – 5.5V Input  
1.5V Output  
300 mA  
LNLD01  
1.5V Input  
1.25V Output  
130 mA  
Vbatt = 2.3V – 5.5V  
1.25V  
1.25V  
Noise Sensitive  
Blocks (Radios, AFE,  
LNA, Block etc.)  
LNLD02  
1.5V Input  
1.25V Output  
80 mA  
VDD_FM  
2.5V  
3.3V  
Bluetooth PA  
VDD_BTTF  
VDD_BTPA = 2.5V  
Vbatt = 2.3V – 5.5V  
BBOOST  
2.3V – 5.5V Input  
3.3V Output  
300 mA  
WLAN PA  
VDDIO_RF  
2.5V  
Internal LDO  
sr_avdd2p5  
OTP  
Figure 5: Power Topology Example  
Broadcom Corporation  
Page 4  
Power Supply Topology  
Document 4325-DS04-R  
Preliminary Data Sheet  
6/30/09  
BCM4325  
RESET CIRCUITS  
The BCM4325 has four signals (see Table 1) that enable or disable the Bluetooth and WLAN circuits, and the internal  
regulator blocks, allowing the host to control power consumption.  
Table 1: Reset Control Signals  
Signal  
Description  
WL_REG_ON  
This signal is used by the PMU (with BT_REG_ON) to decide whether or not to power down the  
internal BCM4325 regulators. If BT_REG_ON and WL_REG_ON are low, the regulators will be  
disabled. If WL_RST_N is low (regardless of the BT_RST_N state), the WLAN core is powered off.  
BT_REG_ON  
This signal is used by the PMU (with WL_REG_ON) to decide whether or not to power down the  
internal BCM4325 regulators. If BT_REG_ON and WL_REG_ON are low, the regulators will be  
disabled.  
WL_RST_N  
BT_RST_N  
Low asserting reset for the WLAN core. This pin must be driven high or low (not left floating).  
Low asserting reset for the Bluetooth core. This pin must be driven high or low (not left floating).  
Note: WL_REG_ON and BT_REG_ON are OR gated together in the BCM4325.  
For detailed timing diagrams of these signals and the required power-up sequences, see Section 22: “Power-Up Sequence  
and Timing” on page 107.  
Broadcom Corporation  
Document 4325-DS04-R  
Reset Circuits  
Page 5  
BCM4325  
Preliminary Data Sheet  
6/30/09  
Section 3: Frequency References  
The BCM4325 uses the following external frequency references for normal and low-power operational modes:  
An external crystal or external frequency reference driven by a temperature-compensated crystal oscillator (TCXO)  
signal for generating all radio frequencies and normal operation clocking.  
An external 32.768-kHz Low Power Oscillator (LPO) for low-power mode timing.  
CRYSTAL INTERFACE AND CLOCK GENERATION  
The BCM4325 uses a fractional-N synthesizer to generate the radio frequencies, clocks, and data/packet timing that enables  
it to operate using a wide range of frequency references. An external source, such as a TCXO or a crystal interfaced directly  
to the BCM4325, can be used. The default frequency reference setting is a 26 MHz crystal or TCXO. Table 2 list the  
requirements and characteristics for the crystal or frequency reference.  
Table 2: Crystal Interface Signal Characteristics  
Parameter  
Crystal  
External Freq. Reference  
Units  
Frequency range  
12–52 MHz in 2 ppm stepsd  
12–52 MHz, in 2-ppm steps b  
Crystal load capacitance  
ESR (maximum)  
12 e  
N/A  
pF  
Ω
60  
Power dissipation, max  
Input signal AC amplitude  
Signal type  
200  
N/A  
N/A  
N/A  
uW  
mVp-p  
400 to 1200 f  
Square wave or sine wave  
Input impedance  
1  
4.7  
MΩ  
pF  
Phase noise (maximum for f = 26 MHz a)  
1 kHz  
–100  
–115  
–120  
–140  
dBc/Hz  
dBc/Hz  
dBc/Hz  
dBc/Hz  
10 kHz  
100 kHz  
1 MHz  
Auto-detection frequencies when using LPO b, c 12, 13, 14.4, 15.36, 16.2, 16.8, 12, 13, 14.4, 15.36, 16.2, 16.8, MHz  
18, 19.2, 19.44, 19.68, 19.8,  
20, 24, 26, 38.4  
18, 19.2, 19.44, 19.68, 19.8,  
20, 24, 26, 38.4  
Frequency tolerance plus over temperature  
without trimming  
20  
20  
ppm  
Initial frequency tolerance trimming range  
50  
50  
ppm  
ms  
Time for stable system clock after power up or  
XTAL_PU assertion  
Warm-up time < 6 ms  
Maximum hold time for host  
< 6 ms  
a. For a clock reference other than 26 MHz, 20*log10(f/26) dB should be added to the limits, where f = the reference clock  
frequency in MHz.  
b. Auto-detection of frequencies requires that the crystal or external frequency reference have less than 50 ppm of variation,  
and the external LPO frequency have less than 200 ppm of variation at the time of auto-detection.  
c. 52 MHz frequency reference is also supported. The BT_TM6 signal should be pulled low for 52 MHz clock reference.  
d. The frequency step size is approximately 80 Hz resolution.  
e. The precise value of load capacitance to center the frequency tolerance is dependent on board layout; see Broadcom  
reference schematics for exact values.  
Broadcom Corporation  
Page 6  
Frequency References  
Document 4325-DS04-R  
Preliminary Data Sheet  
6/30/09  
BCM4325  
f. If the input signal amplitude is below 800 mV p-p, contact your Broadcom representative for applications assistance. DC  
coupled digital clock with swing less than 1.32V is supported.  
CRYSTAL OSCILLATOR  
The BCM4325 can use an external crystal to provide a frequency reference. The recommended configuration for the crystal  
oscillator including all external components is shown in Figure 6.  
C
O SCIN  
10 – 33 pF  
Note: The precise value of load capacitance to center  
the frequency tolerance depends on the board layout.  
Refer to Broadcom reference schematics for typical  
starting values.  
C
O SCO UT  
221 Ohms  
10 – 33 pF  
Note : The value of the series resistor can be lower in  
some designs. Refer to Broadcom reference schematics  
for the exact value.  
Figure 6: Recommended Oscillator Configuration  
EXTERNAL FREQUENCY REFERENCE  
As an alternative to a crystal, an external frequency reference, such as a TCXO signal, can be connected to the OSCIN pin  
on the BCM4325 via a D.C. blocking capacitor, as shown in Figure 7. The external frequency reference input is designed to  
not change the loading on the TCXO when the BCM4325 is powered up or powered down.  
TCXO  
OSCIN  
Consult the reference  
schematics for the best  
value for this capacitor.  
OSOUT  
No Connect  
Figure 7: Recommended TCXO Connection  
Broadcom Corporation  
Document 4325-DS04-R  
Crystal Oscillator  
Page 7  
BCM4325  
Preliminary Data Sheet  
6/30/09  
FREQUENCY SELECTION  
Any frequency within the ranges specified for the crystal and TCXO reference may be used. These include not only the  
standard handset references frequencies of 12, 13, 14.4, 16.2, 16.8, 18, 19.2, 19.44, 19.68, 19.8, 20, 24, 26, 38.4, and  
52 MHz, but any other frequency between these as desired by the system designer. The BCM4325 must have the reference  
frequency set correctly in order for any of the UART or PCM interfaces to function correctly, since all bit timing is derived  
from the reference frequency.  
The reference frequency for the BCM4325 may be set in one of the following ways:  
Specify the frequency in the nvram.txt file.  
Auto-detect the standard handset reference frequencies using an external LPO clock.  
The BCM4325 is set at the factory to a default frequency of 26 MHz. For a typical design using a crystal it is recommended  
that the default frequency be used.  
For applications such as handsets and portable smart communication devices, where the reference frequency is one of the  
standard frequencies commonly used, the BCM4325 automatically detects the reference frequency and programs itself to  
the correct reference frequency. In order for auto-frequency detection to work correctly, the BCM4325 must have a valid and  
stable 32.768-kHz LPO clock present during power-on reset.  
FREQUENCY TRIMMING  
The BCM4325 uses a fractional-N synthesizer to digitally fine tune the frequency reference input to within 2 ppm tuning  
accuracy. This trimming function can be applied to either the crystal or an external frequency source such as a TCXO. Unlike  
the typical crystal trimming methods used, the BCM4325 changes the frequency using a fully digital implementation and is  
much more stable and unaffected by either the crystal characteristics or the temperature. The input impedance and loading  
characteristics remain unchanged on either the TCXO or the crystal during the trimming process and are unaffected by  
process and temperature variations.  
The option of whether to use frequency trimming would be determined by a cost trade-off between the cost of the crystal and  
the added manufacturing cost associated with frequency trimming. Frequency trimming value can be stored in the host and  
written back to the BCM4325.  
Broadcom Corporation  
Page 8  
Frequency Selection  
Document 4325-DS04-R  
Preliminary Data Sheet  
6/30/09  
BCM4325  
LPO Clock Interface  
An additional frequency reference is the LPO clock that the BCM4325 uses to provide low-power mode timing for park, hold,  
and sniff. The LPO clock should be provided externally to the device from a stable and accurate 32.768-kHz source.  
Table 3: LPO Signal Requirements  
Parameter  
LPO Clock  
Units  
Nominal input frequency  
Frequency accuracy  
Duty cycle  
32.768  
200 a  
kHz  
ppm  
30% to 70%  
less than 1  
Jitter (when FM is used)  
Input signal amplitude  
Signal type  
Hz (integrated from 300 Hz to 15 kHz)  
200 to 1800  
Square wave or sine wave  
mV, p-p  
Input impedanceb  
>100k  
< 5  
Ω
pF  
®
a. +150 if FM is used. See Broadcom Bluetooth SoC Crystal, TCXO, RFIC, and LPO User Guide (43XX_20XX-1xx-R) for  
details.  
b. When power is applied, or switched off.  
Broadcom Corporation  
Document 4325-DS04-R  
LPO Clock Interface  
Page 9  
BCM4325  
Preliminary Data Sheet  
6/30/09  
Section 4: Bluetooth + FM Subsystem Overview  
The Broadcom BCM4325 includes a Bluetooth® 3.0 + HS compliant standalone baseband processor with an integrated 2.4  
GHz transceiver, integrated FM and RDS/RBDS receiver, and an integrated FM baseband processor. It features the highest  
level of integration and eliminates all critical external components, thus minimizing the footprint and system cost of  
implementing a Bluetooth and FM solution. The BCM4325 is firmware upgradable for future specifications.  
The BCM4325 is the optimal solution for any voice or data application that requires the Bluetooth SIG standard Host  
Controller Interface (HCI) using a high-speed UART and PCM. The BCM4325 incorporates all Bluetooth 2.1 + EDR features  
including eSCO, AFH, Fast Connect, all EDR packet types and lengths, and all errata. The BCM4325 also includes  
InConcert and other industry-collaborative coexistence solutions.  
Note: The BCM4325 is designed to be firmware upgradable to any foreseeable future enhancements to the  
Bluetooth specification by the Bluetooth SIG.  
The Bluetooth radio transceiver provides enhanced radio performance to meet the most stringent industrial temperature  
applications and the tightest integration into mobile handsets and portable devices. It is fully compatible with all standard  
TCXO frequencies and provides full radio compatibility to operate simultaneously with GPS and cellular radios.  
The BCM4325 also integrates a complete FM and RDS/RBDS solution. The integrated solution saves power and board  
space, minimizes the BOM, and maximizes interface flexibility over a separate Bluetooth and FM solution. The FM  
subsystem can operate independently of Bluetooth and achieve full performance while Bluetooth is operating. It is designed  
to cover from 76 MHz, up to 108 MHz, bands (US, Europe, Japan) and to operate from a 32 kHz LPO input. The FM  
subsystem supports an I2C-compliant Broadcom Serial Control (BSC) interface and analog outputs for legacy systems, as  
well as digital interface options, such as I2S and PCM. The I2S and PCM interfaces support 48 kHz operation and can be  
configured as either master or slave. The analog interface consists of high-quality, line-level stereo DACs.  
The BCM4325 FM subsystem includes advanced RDS/RBDS capability. The BCM4325 synchronizes, demodulates, and  
decodes RDS/RBDS signals including CRC processing, post data filter detection, signal quality estimation, and buffering  
thus making it easy for an external application to read and process the RDS/RBDS data.  
The FM radio provides excellent reception, with 1 μV for 26 dB (S+N)/N typical sensitivity and greater than 60 dB SNDR  
capability, allowing easier system integration and antenna design. The FM subsystem includes many sought after features,  
including signal-dependant mono/stereo blend, soft mute, and signal bandwidth control. The system has digital RSSI, signal  
quality, and IF frequency error indicators for system monitoring. The FM subsystem contains embedded automatic search  
and scan features, and large RDS data buffers to simplify the interface with an external host.  
Broadcom Corporation  
Page 10  
Bluetooth + FM Subsystem Overview  
Document 4325-DS04-R  
Preliminary Data Sheet  
6/30/09  
BCM4325  
FEATURES  
BLUETOOTH FEATURES  
Major Bluetooth features of the BCM4325 include:  
Supports key features of upcoming Bluetooth standards  
Class 1 support with PA bias adjust  
Support for BT v3.0 + HS features combined with Broadcom’s v3.0 + HS qualified host software, including alternate  
MAC/PHY, read encryption key size, enhanced power control, and unicast connectionless data.  
Fully supports Bluetooth Core Specification version 2.1 + EDR features:  
-
-
-
-
-
-
-
-
-
Adaptive Frequency Hopping (AFH)  
Quality of Service (QoS)  
Extended Synchronous Connections (eSCO)—Voice Connections  
Fast Connect  
Secure Simple Pairing (SSP)  
Sniff Subrating (SSR)  
Encryption Pause Resume (EPR)  
Extended Inquiry Response (EIR)  
Link Supervision Timeout (LST)  
Maximum UART baud rates up to four Mbps  
Supports Bluetooth Enhanced Data Rate (EDR)  
Supports maximum Bluetooth data rates over HCI UART  
Multipoint operation with up to seven active slaves  
-
-
Maximum of seven simultaneous active ACL links  
Maximum of three simultaneous active SCO and eSCO with scatternet support  
Scatternet operation with up to four active piconets with background scan and support for scatter mode  
High-speed HCI UART transport support with low-power out-of-band BT_WAKE and HOST_WAKE signaling (see “Host  
Controller Power Management” on page 16)  
Channel quality driven data rate and packet type selection  
Standard Bluetooth test modes  
Extended radio and production test mode features  
Full support for power savings modes  
-
-
-
Bluetooth clock request  
Bluetooth standard park, hold, and sniff  
Deep sleep modes and software regulator shutdown  
TCXO input and auto-detection of all standard handset clock frequencies. Also supports a low-power oscillator (LDO),  
which can be used during power save mode for better timing accuracy  
Broadcom Corporation  
Document 4325-DS04-R  
Features  
Page 11  
BCM4325  
Preliminary Data Sheet  
6/30/09  
FM RADIO FEATURES  
Major FM Radio features include:  
76 MHz to 108 MHz FM bands supported (US, Europe, and Japan)  
Excellent FM radio performance with 1 μV sensitivity for 26 dB (S+N)/N  
FM subsystem control using the BSC bus or through the Bluetooth HCI interface  
Signal dependent stereo/mono blending  
Signal dependent soft mute  
Auto search and tuning modes  
Audio silence detection  
RSSI, IF frequency, status indicators  
RDS and RBDS demodulator and decoder with filter and buffering functions  
Automatic frequency jump  
FM subsystem operates from 32 kHz low-power oscillator (LPO) or reference clock inputs  
Improved audio interface capabilities with full-featured PCM, I2S, and analog stereo DAC  
I2S can be master or slave  
BLUETOOTH RADIO  
The BCM4325 includes an integrated radio transceiver, optimized for use in 2.4 GHz Bluetooth wireless systems. Its design  
provides low-power, low-cost, robust communications for applications operating in the globally available, 2.4 GHz,  
unlicensed ISM band. The radio transceiver is fully compliant with Bluetooth radio and EDR specifications and meets or  
exceeds the requirements to provide the highest communication link quality of service.  
Note: Sharing a single 2.4 GHz antenna between the Bluetooth and WLAN sections is supported when an  
appropriate SP3T switch is used in the external RF signal path.  
TRANSMIT  
The BCM4325 features a fully integrated zero-IF transmitter. The baseband transmit data is digitally GFSK-modulated in the  
modem block and upconverted to the 2.4 GHz ISM band in the transmitter path. The transmitter path consists of signal  
filtering, I/Q upconversion, output power amplifier (PA), and RF filtering. The transmitter path also incorporates new  
modulation schemes π/4-DQPSK for 2 Mbps and 8-DPSK for 3 Mbps to support EDR.  
Digital Modulator  
The digital modulator performs the data modulation and filtering required for the GFSK, Π/4DQPSK, and 8-DPSK signal. The  
fully digital modulator minimizes any frequency drift or anomalies in the modulation characteristics of the transmitted signal  
and is much more stable than direct VCO modulation schemes.  
Broadcom Corporation  
Page 12  
Bluetooth Radio  
Document 4325-DS04-R  
Preliminary Data Sheet  
6/30/09  
BCM4325  
Power Amplifier  
The fully integrated PA provides a maximum output signal level (see Table 27: “Bluetooth Transmitter RF Specifications,”  
on page 81) using a highly linearized, temperature compensated design. This provides greater flexibility in front-end  
matching and filtering. Due to the linear nature of the PA combined with some integrated filtering, no external filters are  
required for meeting Bluetooth and regulatory harmonic and spurious requirements. For integrated mobile handset  
applications where the Bluetooth is integrated next to the cellular radio minimal external filtering can be applied to achieve  
near thermal noise levels for spurious and radiated noise emissions.  
The integrated power amplifier is Bluetooth Class 2 compliant and includes power control adjustment with a 28 dB range  
and 4 dB nominal step size. The integrated power amplifier can be configured as a PA driver to an external power amplifier  
for full Bluetooth Class 1 compliance.  
RECEIVE  
The receiver path uses a low-IF scheme to down convert the received signal for demodulation in the digital demodulator and  
bit synchronizer. The receiver path provides a high degree of linearity, an extended dynamic range, and high-order on-chip  
channel filtering to ensure reliable operation in the noisy 2.4 GHz ISM band. The front end topology with built-in out-of-band  
attenuation enables the BCM4325 to be used in most applications with no off-chip filtering. For integrated handset operation  
where the Bluetooth function is integrated close to the cellular transmitter, minimal external filtering is required to eliminate  
the desensitization of the receiver by the cellular transmit signal.  
Digital Demodulator and Bit Synchronizer  
The digital demodulator and bit synchronizer takes the low-IF received signal and performs an optimal frequency tracking  
and bit synchronization algorithm.  
Receiver Signal Strength Indicator  
The radio portion of the BCM4325 provides an Receiver Signal Strength Indicator (RSSI) signal to the baseband so that the  
controller can take part in a Bluetooth power-controlled link by providing a metric of its own receiver signal strength to  
determine whether the transmitter should increase or decrease its output power.  
LOCAL OSCILLATOR GENERATION  
Local Oscillator generation provides fast frequency hopping (1600 hops/second) across the 79 maximum available  
channels. The local oscillator generation subblock employs an architecture for high immunity to local oscillation pulling  
during PA operation. The BCM4325 uses an internal RF and IF loop filter.  
CALIBRATION  
The BCM4325 radio transceiver features an automated calibration scheme that is fully self contained in the radio. No user  
interaction is required during normal operation or during manufacturing to provide the optimal performance. Calibration  
optimizes the performance of all the major blocks within the radio to within 2% of optimal conditions, including gain and phase  
characteristics of filters, matching between key components, and key gain blocks. This takes into account process variation  
and temperature variation. Calibration occurs transparently during normal operation during the settling time of the hops and  
calibrates for temperature variations as the device cools and heats during normal operation in its environment.  
Broadcom Corporation  
Document 4325-DS04-R  
Bluetooth Radio  
Page 13  
BCM4325  
Preliminary Data Sheet  
6/30/09  
Section 5: Bluetooth Baseband Core  
The Bluetooth Baseband Core (BBC) implements all of the time critical functions required for high performance Bluetooth  
operation. The BBC manages the buffering, segmentation, and routing of data for all connections. It also buffers data that  
passes through it, handles data flow control, schedules SCO/ACL TX/RX transactions, monitors Bluetooth slot usage,  
optimally segments and packages data into baseband packets, manages connection status indicators, and composes and  
decodes HCI packets. In addition to these functions, it independently handles HCI event types, and HCI command types.  
The following transmit and receive functions are also implemented in the BBC hardware to increase reliability and security  
of the TX/RX data before sending over the air:  
Symbol timing recovery, data deframing, forward error correction (FEC), header error control (HEC), cyclic redundancy  
check (CRC), data decryption, and data dewhitening in the receiver.  
Data framing, FEC generation, HEC generation, CRC generation, key generation, data encryption, and data whitening  
in the transmitter.  
BLUETOOTH 2.1 AND 3.0 FEATURES  
The BBC supports the following Bluetooth 2.1 features:  
Extended Inquiry Response (EIR) Shortens the time to retrieve device name, specific profile and mode.  
Encryption Pause Resume (EPR)  
Sniff Subrating (SSR)  
Enables the use of Bluetooth technology in a much more secure environment.  
Optimizes power consumption for low duty cycle asymmetrical data flow, which  
subsequently extends battery life.  
Simple Pairing (SP)  
Reduces the number of steps with minimal or no user interaction when connecting  
two devices.  
Link Supervision Timeout (LST)  
In addition, the BBC is compliant with the Bluetooth Core specification 3.0 + HS when combined with Bluetooth 3.0 + HS  
qualified host software—including Alternate MAC/PHY, read encryption key size, enhanced power control, and unicast  
connectionless data.  
FREQUENCY HOPPING GENERATOR  
The frequency hopping sequence generator selects the correct hopping channel number depending on the link controller  
state, Bluetooth clock, and the device address.  
LINK CONTROL LAYER  
The link control layer is part of the Bluetooth link control functions that are implemented in dedicated logic in the Link Control  
Unit (LCU). This layer consists of the command controller that takes commands from the software and other controllers that  
are either activated or configured by the command controller to perform the link control tasks.  
Broadcom Corporation  
Page 14  
Bluetooth Baseband Core  
Document 4325-DS04-R  
Preliminary Data Sheet  
6/30/09  
BCM4325  
Each task performs a different state function in the Bluetooth link controller.  
Major states  
-
-
Standby  
Connection  
Substates  
-
-
-
-
-
-
-
Page  
Page Scan  
Inquiry  
Inquiry Scan  
Park  
Sniff  
Hold  
TEST MODE SUPPORT  
The BCM4325 fully supports Bluetooth Test mode as described in Part 1 of the Specification of the Bluetooth System  
Version 2.1. This includes the transmitter tests, normal and delayed loopback tests, and reduced hopping sequence.  
In addition to the standard Bluetooth Test Mode, the BCM4325 also supports enhanced testing features to simplify RF  
debugging and qualification and type approval testing. These features include:  
Fixed frequency carrier wave (unmodulated) transmission  
-
-
Simplifies some type approval measurements (Japan)  
Aids in transmitter performance analysis  
Fixed frequency constant receiver mode  
-
-
-
Receiver output directed to I/O pin  
Allows for direct BER measurements using standard RF test equipment  
Facilitates spurious emissions testing for receive mode  
Fixed frequency constant transmission  
-
-
8-bit fixed pattern or PRBS-9  
Enables modulated signal measurements with standard RF test equipment  
BLUETOOTH POWER MANAGEMENT UNIT  
The Bluetooth Power Management Unit (PMU) provides power management features that can be invoked by either software  
through power management registers, or packet handling in the baseband core.  
The power management functions provided by the BCM4325 are:  
RF Power Management  
Host Controller Power Management  
BBC Power Management  
FM Power Management  
Broadcom Corporation  
Document 4325-DS04-R  
Test Mode Support  
Page 15  
BCM4325  
Preliminary Data Sheet  
6/30/09  
RF POWER MANAGEMENT  
The BBC generates power-down control signals for the transmit path, receive path, PLL, and power amplifier to the 2.4 GHz  
transceiver. The transceiver then processes the power-down functions accordingly.  
HOST CONTROLLER POWER MANAGEMENT  
When running in UART mode, the BCM4325 may be configured so that dedicated signals are used for power management  
hand shaking between the BCM4325 and the host. The basic power saving functions supported by those handshaking  
signals include the standard Bluetooth defined power savings modes and standby modes of operation.  
An alternative to using the BT_WAKE and HOST_WAKE signalling uses the CTS and RTS as a combination of UART  
handshake signals during normal operation and as BT_WAKE and HOST_WAKE when the device is in a power saving  
mode.  
Table 4 describes the power control handshake signals used with the UART interface.  
Table 4: Power Control Pin Description  
Mapped to  
Signal  
Type Description  
Pin  
BT_WAKE  
BT_GPIO_0  
I
Bluetooth device wakeup. Signal from the host to the BCM4325 indicating that the  
host requires attention.  
Asserted: Bluetooth device must wakeup or remain awake.  
Deasserted: Bluetooth device may sleep when sleep criteria are met.  
The polarity of this signal is software configurable and can be asserted high or low.  
HOST_WAKE BT_GPIO_1  
O
Host wake up. Signal from the BCM4325 to the host indicating that the BCM4325  
requires attention.  
Asserted: Host device must wakeup or remain awake.  
Deasserted: Host device may sleep when sleep criteria are met.  
The polarity of this signal is software configurable and can be asserted high or low.  
Note: Successful operation of the power management handshaking signals requires coordination between the  
BCM4325 firmware and the host software.  
BBC POWER MANAGEMENT  
The following are low power operations for the BBC:  
Physical layer packet handling turns RF on and off dynamically within packet TX and RX.  
Bluetooth-specified low-power connection modes are sniff, hold, and park. While in these modes, the BCM4325 runs on  
the low-power oscillator and wakes up after a predefined time period.  
FM POWER MANAGEMENT  
The BCM4325 FM subsystem can operate independently of, or in tandem with, the Bluetooth RF and BBC subsystems. The  
FM subsystem power management scheme operates in conjunction with the Bluetooth RF and BBC subsystems.  
Broadcom Corporation  
Page 16  
Bluetooth Power Management Unit  
Document 4325-DS04-R  
Preliminary Data Sheet  
6/30/09  
BCM4325  
ADAPTIVE FREQUENCY HOPPING  
The BCM4325 gathers link quality statistics on a channel by channel basis to facilitate channel assessment and channel  
map selection. The link quality is determined using both RF and baseband signal processing to provide a more accurate  
frequency-hop map.  
ADVANCED BLUETOOTH/WLAN COEXISTENCE  
The BCM4325 includes advanced coexistence technologies that are only possible with a Bluetooth/WLAN integrated die  
solution. These coexistence technologies are targeted at small form factor platforms such as cell phones and media players,  
including applications such as VoWLAN + SCO and Video-over-WLAN + High-Fidelity BT stereo. Support is provided for  
platforms that share a single antenna between Bluetooth and 802.11g. Dual antenna applications are also supported. The  
BCM4325 radio architecture allows for lossless simultaneous Bluetooth and WLAN reception for shared antenna  
applications. This is possible only via an integrated solution (shared LNA and joint AGC algorithm). It has superior  
performance versus implementations that need to arbitrate between Bluetooth and WLAN reception.  
The BCM4325 integrated solution enables MAC-layer signaling (firmware) and a greater degree of sharing via an enhanced  
coexistence interface. The Packet Traffic Scheduler (PTS) can suitably schedule future packet transmissions (versus merely  
supporting arbitration on a packet-by-packet basis as employed in discrete Bluetooth/WLAN solutions) and can factor in  
beacon arrival times, duration of upcoming packet transmissions, etc. Information is exchanged between the Bluetooth and  
WLAN cores without host processor involvement.  
The BCM4325 also supports Transmit Power Control (TPC) on the STA together with standard Bluetooth TPC to limit mutual  
interference and receiver desensitization. Preemption mechanisms are utilized to prevent AP transmissions from colliding  
with Bluetooth frames. Improved channel classification techniques have been implemented in Bluetooth for faster and more  
accurate detection and elimination of interferers (including non-WLAN 2.4 GHz interference).  
FAST CONNECTION (INTERLACED PAGE AND INQUIRY SCANS)  
The BCM4325 supports page scan and inquiry scan modes that significantly reduce the average inquiry response and  
connection times. These scanning modes are compatible with the Bluetooth version 2.1 page and inquiry procedures.  
Broadcom Corporation  
Document 4325-DS04-R  
Adaptive Frequency Hopping  
Page 17  
BCM4325  
Preliminary Data Sheet  
6/30/09  
Section 6: Microprocessor and Memory Unit for  
Bluetooth  
The Bluetooth microprocessor core is based on ARM7TDMIS® 32 bit RISC processor with embedded ICE-RT debug and  
JTAG interface units. It runs software from the link control layer, up to the Host Controller Interface (HCI).  
The ARM core is paired with a memory unit that contains 256 KB of ROM memory for program storage and boot ROM, 48 KB  
of RAM for data scratchpad and patch RAM code. The internal boot ROM allows for flexibility during power-on reset to enable  
the same device to be used in various configurations. At power-up, the lower layer protocol stack is executed from the  
internal ROM memory.  
External patches may be applied to the ROM-based firmware to provide flexibility for bug fixes or features additions. These  
patches may be downloaded from the host to the BCM4325 through the UART transports. The mechanism for downloading  
via UART is identical to the proven interface of the BCM2045 device.  
RAM, ROM, AND PATCH MEMORY  
The BCM4325 Bluetooth core has 48 KB of internal RAM which is mapped between general purpose scratch pad memory  
and patch memory and 256 KB of ROM used for the lower layer protocol stack, test mode software, and boot ROM. The  
patch memory capability enables the addition of code changes for purposes of feature additions and bug fixes to the ROM  
memory.  
Broadcom Corporation  
Page 18  
Microprocessor and Memory Unit for Bluetooth  
Document 4325-DS04-R  
Preliminary Data Sheet  
6/30/09  
BCM4325  
Section 7: Bluetooth Peripheral Transport Unit  
PCM INTERFACE FOR BLUETOOTH AND SCO AUDIO  
The PCM Interface on the BCM4325 can connect to linear PCM Codec devices in master or slave mode. In master mode,  
the BCM4325 generates the BT_PCM_CLK and BT_PCM_SYNC signals, and in slave mode, these signals are provided by  
another master on the PCM interface and are inputs to the BCM4325.  
The BCM4325 supports up to three SCO or eSCO channels through the PCM Interface and each channel can be  
independently mapped to any of the available slots in a frame.  
The configuration of the PCM interface may be adjusted by the host through the use of Vendor Specific HCI Commands.  
Figure 8 shows three options for connecting a BCM4325 to a PCM codec device as either a master or slave connection.  
PCM_IN  
PCM_OUT  
PCM_BCLK  
PCM_SYNC  
PCM Codec  
(Master)  
BCM4325  
(Slave)  
PCM Interface Slave Mode  
PCM_IN  
PCM_OUT  
PCM_BCLK  
PCM_SYNC  
BCM4325  
(Master)  
PCM Codec  
(Slave)  
PCM Interface Master Mode  
PCM_IN  
PCM_OUT  
PCM_BCLK  
PCM_SYNC  
PCM Codec  
(Hybrid)  
BCM4325  
(Hybrid)  
PCM Interface Hybrid Mode  
Figure 8: PCM Interface with Linear PCM Codec  
Broadcom Corporation  
Document 4325-DS04-R  
Bluetooth Peripheral Transport Unit  
Page 19  
BCM4325  
Preliminary Data Sheet  
6/30/09  
SLOT MAPPING  
The BCM4325 supports up to three simultaneous full-duplex SCO or eSCO channels. These three channels are time  
multiplexed onto the single PCM interface by using a time slotting scheme where the 8-kHz audio sample interval is divided  
into up to 16 slots. The number of slots is dependant on the selected interface rate of 128 kHz, 256 kHz, 512 kHz, 1024 kHz,  
or 2048 kHz. The corresponding number of slots for these interface rates is one, two, four, eight and 16, respectively.  
Transmit and receive PCM data from an SCO channel is always mapped to the same slot. The PCM data output driver  
tristates its output on unused slots to allow other devices to share the same PCM interface signals. The data output driver  
tristates its output after the falling edge of the PCM clock during the last bit of the slot.  
FRAME SYNC  
The BCM4325 supports both short and long frame sync types in both master and slave configurations. In the short frame  
sync mode, the frame sync signal is an active-high pulse at the 8 kHz audio frame rate that is a single-bit period in width and  
synchronized to the rising edge of the bit clock. The PCM slave looks for a high on the falling edge of the bit clock and expects  
the first bit of the first slot to start at the next rising edge of the clock. In the long frame sync mode, the frame sync signal is  
again an active-high pulse at the 8 kHz audio frame rate; however, the duration is three bit periods and the pulse starts  
coincident with the first bit of the first slot.  
DATA FORMATTING  
The BCM4325 may be configured to generate and accept several different data formats. The BCM4325 uses 13 of the 16  
bits in each PCM frame. The location and order of these 13 bits is configurable to support various data formats on the PCM  
interface. The remaining three bits are ignored on the input, and may be filled with 0s, 1s, sign bit, or a programmed value  
on the output. The default format is 13-bit, 2’s complement data, left-justified, and clocked MSB first.  
PCM INTERFACE FOR FM AUDIO  
The BCM4325 also supports a mode where the FM stereo audio is output over the PCM Interface in master or slave mode.  
A BT_PCM_SYNC sample rate of 48 kHz is supported with associated BT_PCM_CLK rate of 1.536 MHz. The  
BT_PCM_SYNC signal follows the short frame sync format. In this FM audio mode, the BT_PCM_IN signal is ignored and  
FM audio is output on the BT_PCM_OUT signal. The FM stereo audio is presented MSB first onto the BT_PCM_OUT signal  
with the 16 bits of left-channel data first followed by the 16 bits of right-channel data.  
BLUETOOTH UART INTERFACE  
The Bluetooth UART physical interface is a standard, 4-wire interface (RX, TX, RTS, CTS) with adjustable baud rates from  
9600 bps to 4.0 Mbps. The interface features an automatic baud rate detection capability that returns a baud rate selection.  
Alternatively, the baud rate may be selected via a vendor specific UART HCI command. The BCM4325 has a 480-byte  
receive FIFO and a 480-byte transmit FIFO to support EDR. The interface supports the Bluetooth 3.0 UART HCI  
specification.  
The BCM4325 has the added capability to perform wake-on-activity, where it can be asleep and have activity on the RX or  
CTS inputs to wake up the chip.  
Broadcom Corporation  
Page 20  
Bluetooth UART Interface  
Document 4325-DS04-R  
Preliminary Data Sheet  
6/30/09  
BCM4325  
In order to support both high and low baud rates efficiently, the UART clock can be selected as either 24 or 48 MHz.  
Generally, the higher speed clock is needed for baud rates over 3 Mbaud, however a lower speed clock may be used to  
achieve a more accurate baud rate under 3 Mbaud. The baud rate of the BCM4325 UART is controlled by two values. The  
first is a UART clock divisor (also called the DLBR register) that divides the UART clock by an integer multiple of 16. The  
second is a baud rate adjustment (also called the DHBR register) that is used to specify a number of UART clock cycles to  
stuff in the first or second half of each bit time. Up to eight UART cycles can be inserted into the first half of each bit time,  
and up to eight UART clock cycles can be inserted into the end of each bit time.  
When setting the baud rate manually, the UART clock divisor is an 8-bit value that is stored as a 256 desired divisor. For  
example, a desired divisor of 13 is stored as 256 – 13 = 243 = 0xF3.  
The baud rate adjustment is also an 8-bit value, of which the four MSBs are the number of additional clock cycles to insert  
in the first half of each bit time, and the four LSBs are the number of clock cycles to insert in the second half of each bit time.  
If either of these two values is over eight, it is rounded to eight.  
To program the baud rate for high-rate mode (greater than 1.5 Mbaud), divide UART clock by the desired rate to compute  
the number of UART clock cycles per bit. This number must be from eight to 15 for the high-rate mode, and is programmed  
into the DLBR as 256 minus the number of clocks. For three Mbaud, the calculation would be as follows:  
24,000,000/3,000,000 = 8 and 256 – 8 = 248 = 0xF8.  
To compute normal 2048 baud rate mode (<1.5 Mbaud), the calculation is expressed as:  
24 MHz/((16xUART clock divisor) + total inserted 24 MHz clock cycles)  
Table 5 contains example values to generate common baud rates.  
Table 5: Common Baud Rate Examples  
Baud Rate Adjustment  
High Nibble Low Nibble  
0x00 0x00  
UART Clock  
Divisora  
Desired Baud  
Rate (bps)  
Actual Baud Rate  
(bps)  
Error (%)  
4000000  
3692000  
3000000  
2000000  
1500000  
1444444  
921600  
460800  
230400  
115200  
57600  
0xF4  
0xF3  
0xF8  
0xF4  
0xFF  
0xFE  
0xFF  
0xFD  
0xFA  
0xF3  
0xE6  
0xD9  
0xCC  
0xB2  
0x98  
0x64  
4000000  
3692308  
3000000  
2000000  
1500000  
1454544  
923077  
461538  
230796  
115385  
57692  
0.00  
0.01  
0.00  
0.00  
0.00  
0.70  
0.16  
0.16  
0.17  
0.16  
0.16  
0.00  
0.16  
0.00  
0.16  
0.00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x05  
0x02  
0x04  
0x00  
0x00  
0x01  
0x00  
0x01  
0x00  
0x02  
0x00  
0x00  
0x00  
0x00  
0x01  
0x05  
0x02  
0x04  
0x00  
0x00  
0x00  
0x00  
0x01  
0x00  
0x02  
38400  
38400  
28800  
28846  
19200  
19200  
14400  
14423  
9600  
9600  
a. The value in this column is 256 minus the desired divisor.  
Broadcom Corporation  
Document 4325-DS04-R  
Bluetooth UART Interface  
Page 21  
BCM4325  
Preliminary Data Sheet  
6/30/09  
Normally, the UART baud rate is set by a configuration record downloaded after reset or automatic baud rate detection and  
the host does not need to adjust the baud rate. Support for changing the baud rate during normal HCI UART operation is  
provided through a vendor-specific command that allows the host to adjust the contents of the baud rate registers. The  
BCM4325 UART operates correctly with the host UART, if the combined baud rate error of the two devices is within 5%.  
AUTO-BAUDRATE DETECTION  
The BCM4325 may be put into a state where it attempts to automatically detect the baud rate. This is done by holding the  
BT_UART_CTS_N signal low during reset or power up. An auto-baud character A (0x41) or the HCI_RESET command  
{0x01, 0x03, 0x0C, 0x00} can be sent from the host to train the BCM4325 UART when this feature is used.  
The corresponding successful returns from BCM4325 auto-baud response are:  
{0x41, 0x30, 0x34, 0x31} for the autobaud character  
{0x04, 0x0E, 0x04, 0x01, 0x03, 0x0C, 0x00, 0x34, 0x31} for the HCI_RESET command  
The run-time configuration download through the vendor specified commands is required to further configure the BCM4325  
for normal operations. The BCM4325 can automatically detect baud rates up to the external crystal frequency divided by 16.  
I2S INTERFACE  
The 3-wire I2S interface for FM audio supports both master and slave modes. Input reference clock frequencies of 13 MHz,  
19.2 MHz, 26 MHz, and 38.4 MHz are supported.  
The three I2S signals are:  
I2S Clock:  
I2S Word Select: I2S_WS  
I2S Data Out:  
I2S_SDO  
I2S_SCK  
I2S_SCK and I2S_WS become outputs in Master mode and inputs in Slave mode, while I2S_SDO always stays as an  
output. I2S data input is not supported. The channel word length is 16 bits and the data is justified so that the MSB of the left  
channel data is aligned with the MSB of the I2S bus, per the I2S specification. The MSB of each data word is transmitted one  
bit clock cycle after the I2S_WS transition, synchronous with the falling edge of bit clock. Left channel data is transmitted  
when I2S_WS is low, and right channel data is transmitted when I2S_WS is high. Data bits sent by the BCM4325 are  
synchronized with the falling edge of I2S_SCK and should be sampled by the receiver on the rising edge of I2S_SSCK.  
The clock rate in master mode is either of the following:  
48 kHz x 32 bits per frame = 1.536 MHz  
48 kHz x 50 bits per frame = 2.400 MHz  
The master clock is generated from the input reference clock using a N/M clock divider. In Slave mode, any clock rate is  
supported to a maximum of 3.072 MHz.  
The I2S_SCK interface is available as multiplexed signals onto:  
PCM interface  
Class 1 control signals  
Broadcom Corporation  
Page 22  
I2S Interface  
Document 4325-DS04-R  
Preliminary Data Sheet  
6/30/09  
BCM4325  
Section 8: FM Receiver Subsystem  
The BCM4325 includes a completely integrated FM radio receiver with RDS/RBDS, covering all FM bands from 76 MHz to  
108 MHz. The receiver is controlled through commands on the BSC bus or the HCI. FM audio is available as stereo analog  
output or in digital form through I2S or PCM. The FM subsystem can operate independently or in tandem with the Bluetooth  
subsystem and can be powered up or down separately.  
SENSITIVITY  
The internal LNA has a noise figure (NF) of 6 dB, which helps achieve excellent sensitivity of –107 dBm, or 1 μV in 50Ω.  
PLL TUNING  
Clocks are locked to a reference clock or a 32.768 kHz external LPO, and no factory alignment is required.  
DIGITAL FM OUTPUT  
The FM radio audio is available digitally through the shared PCM and I2S pins and the sampling rate is nominally at 48 kHz.  
The PCM interface runs off either the FM or the Bluetooth clock. The BCM4325 supports 3-wire I2S audio interface in either  
master or slave configuration. The master or slave configuration is selected via HCI commands. In addition, multiple  
sampling rates are supported, derived from either the FM or Bluetooth clocks.  
ANALOG FM OUTPUT  
The demodulated FM audio signal is available as line-level analog stereo output, generated by twin internal 16-bit DACs.  
BROADCOM SERIAL CONTROL (BSC) BUS  
The BCM4325 implements an I2C-compatible BSC slave bus interface to control the FM subsystem. The BSC bus interface  
depends on the reference clock input being active. The interface supports a clock rate up to 400 kHz. The BSC slave address  
is programmable using the UART HCI interface and requires a configuration download. The interface supports 7-bit  
addressing mode and may require external pull-ups. Initial BSC communication has to be conducted at 100 kHz.  
Broadcom Corporation  
Document 4325-DS04-R  
FM Receiver Subsystem  
Page 23  
BCM4325  
Preliminary Data Sheet  
6/30/09  
RDS/RBDS  
The BCM4325 integrates a RDS/RBDS demodulator and decoder with programmable filtering and buffering functions. The  
RDS/RBDS data can be read out through either the HCI or BSC interfaces.  
In addition, the RDS/RBDS functionality supports the following:  
Block decoding, error correction and synchronization  
Storage capability up to 126 blocks of RDS data  
Full or partial block B match detect and interrupt to host  
Audio pause detection with programmable parameters  
Program Identification (PI) code detection and interrupt to host  
Automatic frequency jump  
Block E filtering  
Soft mute  
Signal dependant mono/stereo blend  
Programmable de-emphasis  
OTHER FEATURES  
Single-ended or differential FM RF input  
Auto search and tuning  
Digital-level indicator (RSSI, IF Frequency)  
Low current consumption  
Broadcom Corporation  
Page 24  
RDS/RBDS  
Document 4325-DS04-R  
Preliminary Data Sheet  
6/30/09  
BCM4325  
Section 9: Wireless LAN Functional Description  
INTRODUCTION TO IEEE STD 802.11  
IEEE Std 802.11 defines two different ways to configure a wireless network: ad hoc mode and infrastructure mode. In ad  
hoc mode, nodes are brought together to form a network on the fly, whereas infrastructure mode uses fixed access points  
through which mobile nodes can communicate. These network access points are sometimes connected to wired networks  
through bridging or routing functions.  
The medium access control (MAC) layer is a contention-resolution protocol that is responsible for maintaining order in the  
use of a shared wireless medium. IEEE 802.11 specifies both contention-based and contention-free channel access  
mechanisms. The contention-based scheme is also called the distributed coordination function and the contention-free  
scheme is also called the point coordination function.  
The distributed coordination function employs a carrier sense multiple access with collision avoidance (CSMA/CA) protocol.  
In this protocol, when the MAC receives a packet to be transmitted from its higher layer, the MAC first listens to ensure that  
no other node is transmitting. If the channel is clear, it then transmits the packet. Otherwise, it chooses a random backoff  
factor that determines the amount of time the node must wait until it is allowed to transmit its packet. During periods in which  
the channel is clear, the MAC waiting to transmit decrements its backoff counter, and when the channel is busy, it does not  
decrement its backoff counter. When the backoff counter reaches zero, the MAC transmits the packet. Because the  
probability that two nodes will choose the same backoff factor is low, collisions between packets are minimized. Collision  
detection, as employed in Ethernet, cannot be used for the radio frequency transmissions of devices following IEEE 802.11.  
The IEEE 802.11 nodes are half-duplex—when a node is transmitting, it cannot hear any other node in the system that is  
transmitting because its own signal drowns out any others arriving at the node.  
Optionally, when a packet is to be transmitted, the transmitting node can first send out a short request to send (RTS) packet  
containing information on the length of the packet. If the receiving node hears the RTS, it responds with a short clear to send  
(CTS) packet. After this exchange, the transmitting node sends its packet. When the packet is received successfully, as  
determined by a cyclic redundancy check (CRC), the receiving node transmits an acknowledgment (ACK) packet. This back  
and forth exchange is necessary to avoid the hidden node problem. Hidden node is a situation where node A can  
communicate with node B, node B can communicate with node C, but node A cannot communicate with node C. For  
instance, although node A can sense that the channel is clear, node C can be transmitting to node B. This protocol alerts  
node A that node B is busy, and that it must wait before transmitting its packet.  
IEEE 802.11A/G MAC FEATURES  
The IEEE 802.11a/g MAC features include:  
Programmable independent basic service set (IBSS), or infrastructure mode  
Passive scanning  
Network allocation vector (NAV), inter-frame space (IFS), and timing synchronization function (TSF) functionality  
Backoff  
RTS/CTS procedure  
Transmission of response frames (ACK/CTS)  
Address filtering of RX frames as specified by IBSS rules  
Broadcom Corporation  
Document 4325-DS04-R  
Wireless LAN Functional Description  
Page 25  
BCM4325  
Preliminary Data Sheet  
6/30/09  
Multirate support  
Frame-bursting and afterburner  
Programmable target beacon transmission time (TBTT), beacon transmission/cancellation and programmable  
announcement traffic indication message (ATIM) window  
CF conformance: setting NAV for neighborhood point coordination function operation  
Privacy through a variety of Wired Equivalent Privacy (WEP) encryption schemes and dynamically programmable WEP  
keys  
Power management  
Statistics counters for MIB support  
IEEE 802.11A/G MAC DESCRIPTION  
The MAC core provides the support required for the transmission and reception of sequences of packets, together with  
related timing, without any packet-by-packet driver interaction. Time critical tasks requiring response times of only a few  
milliseconds are handled in the MAC core. This achieves the required timing on the medium while keeping the host driver  
easier to write and maintain. Also, incoming packets are buffered in the MAC core, which allows the MAC driver to process  
them in bursts as and when it gets access to the buffers.  
The MAC driver interacts with the MAC core to prepare queues of packets to transmit and to analyze and forward received  
packets. The internal blocks of the MAC core are connected to a Programmable State Machine (PSM) through an internal  
bus. See Figure 9.  
Control/Status Registers and Interface to ARM7  
4 Tx FIFOs  
Template  
Tx Status FIFO  
Tx FIFO  
Code Memory  
Programmable  
State Machine  
(PSM)  
Wireless Security Engine  
Power  
management  
Tx Engine  
Rx Engine  
Timing and  
Control  
Data Memory  
PHY Interface  
Figure 9: IEEE 802.11a/g MAC Block Diagram  
Broadcom Corporation  
Page 26  
IEEE 802.11a/g MAC Description  
Document 4325-DS04-R  
Preliminary Data Sheet  
6/30/09  
BCM4325  
There are registers for controlling and monitoring the status of the MAC core and interfacing with the TX/RX FIFOs. There  
are four transmit FIFOs: asynchronous, priority, Broadcast/Multicast (BC/MC) and ATIM. Each transmit FIFO is 3 KB deep.  
In addition to the transmit FIFOs, there is a 1-KB template area for response frames. Whenever the CPU has a frame to  
transmit, the CPU queues the frame into one of the transmit FIFOs with a TX descriptor containing TX control information.  
The PSM schedules the transmission on the medium depending on the frame type, transmission rules in IEEE 802.11  
protocol, and the current medium occupancy scenario. After the transmission is completed and an ACK is received, a TX  
status is returned to the host confirming the same in the TX status FIFO.  
The MAC contains a single 4.5 KB RX FIFO. Whenever a frame is received, the frame is sent to the ARM processor along  
with an RX descriptor that contains additional information about the frame reception conditions.  
The Power Management block maintains the information regarding the power management state of the core to help in  
dynamic decisions by the core regarding frame transmission.  
The WEP block performs the required WEP operation on the TX/RX frames. The WEP block supports separate transmit and  
receive keys with four shared keys and 50 link-specific keys. The link-specific keys are used to establish a secure link  
between any two STAs, with the required key being shared between only those two STAs and hence excluding all the other  
STAs in the same network from deciphering the communication between those two STAs. The WEP block supports the  
following encryption schemes that can be selected on a per destination basis:  
None: The WEP block acts as a passthrough  
WEP: 40-bit secure key and 24-bit IV as defined in IEEE Std 802.11-1999  
WEP128: 104-bit secure key and 24-bit IV  
WEP2: 128-bit secure key and 128-bit IV  
TKIP: 802.11i  
AES: 802.11i  
The transmit engine is responsible for the byte flow from the TX FIFO to the PHY interface through the WEP block and the  
addition of an FCS (CRC-32) as required by IEEE 802.11. Similarly, the receive engine is responsible for byte flow from the  
PHY interface to the RX FIFO through the WEP block and for detection of errors in the RX frame.  
The timing block performs the TSF, NAV, and IFS functionality as described in IEEE 802.11-1999.  
The Programmable State Machine (PSM) coordinates the operation of different hardware blocks required for both  
transmission and reception. The PSM also maintains the statistics counters required for MIB support.  
IEEE 802.11A/G PHY FEATURES  
The integrated IEEE 802.11a/g physical layer device (PHY) features include:  
Data rates of 1, 2, 5.5, 6, 9, 11, 12, 18, 24, 36, 48, and 54 Mbit/s  
Programmable antenna selection  
Automatic gain control (AGC)  
Available per packet channel quality and signal strength measurements  
Dual antenna support with single weight combiner  
Broadcom Corporation  
Document 4325-DS04-R  
IEEE 802.11a/g PHY Features  
Page 27  
BCM4325  
Preliminary Data Sheet  
6/30/09  
IEEE 802.11A/G PHY DESCRIPTION  
The Wireless Local Area Network (WLAN) PHY integrated in this IC provides baseband processing at data rates of 1, 2, 5.5,  
6, 9, and 11, 12, 18, 24, 36, 48, and 54 Mbit/s, as specified in the direct sequence spread spectrum (DSSS) and orthogonal  
frequency division multiplexing (OFDM) portions of IEEE 802.11a/g. This core acts as an intermediary between the MAC on  
the one hand, and the integrated 2.4 GHz/5 GHz radio integrated circuit on the other, converting back and forth between  
packets and baseband waveforms.  
An overview of the operations carried out by the PHY is shown on Figure 10. Upon transmission, physical layer framing is  
first added to a packet received from the MAC. The resulting bits are then scrambled, modulated, filtered, and finally sent to  
the radio through a pair of 80 MHz, 9-bit Digital-to-Analog Converters (DACs). Modulation is selected per packet as either  
differential binary phase shift keying (DBPSK), differential quadrature phase shift keying (DQPSK), complementary code  
keying (CCK), or OFDM. The first two types of modulation provide data rates of 1 Mbps and 2 Mbps, respectively, and  
require spreading the modulated symbols with a length 11 Barker code. CCK modulation is used for data rates of 5.5 Mbps  
and 11 Mbps and inherently includes the spreading. OFDM modulation is used for data rates of 6, 9, 12, 18, 24, 36, 48, and  
54 Mbps. A high data rate is achieved by using multiple carriers that are modulated using binary or quadrature phase shift  
keying (BPSK or QPSK) or using 16- or 64-quadrature amplitude modulation (16 QAM or 64 QAM).  
MAC Interface  
Descramble and  
Frame and Scramble  
Deframe  
RX FSM  
TX FSM  
Rake Receiver and  
DPSK Demodulation  
Equalizer and CCK  
Demodulation  
Modulate/Spread  
PHY Registers  
Timing and Frequency Correction  
TX Filter  
DAC  
COFDM  
Sync/AGC  
ADC  
2.4-GHz/5-GHz Dual-Band Radio Interface  
Figure 10: IEEE 802.11a/g PHY Block Diagram  
Broadcom Corporation  
Page 28  
IEEE 802.11a/g PHY Description  
Document 4325-DS04-R  
Preliminary Data Sheet  
6/30/09  
BCM4325  
On reception, the reverse operations are performed. The inphase (I) and quadrature (Q) baseband waveforms coming from  
a pair of 40 MHz, 9-bit ADCs are demodulated into bits and then descrambled and deframed. To improve the likelihood of  
correct reception, however, the waveforms are subjected to timing and frequency offset corrections (adapted throughout  
packet reception) prior to demodulation.  
Additionally, the receiver must perform synchronization at the start of packet reception, which includes automatic gain control  
(AGC), antenna selection, and frequency offset and timing estimation. A state machine coordinates all of these activities  
(using information from the PHY framing) to decide how to handle the packet body.  
A register interface accessible from both the MAC and the host allows programming of the PHY parameters, although  
information generally needed per packet is passed as part of the packet itself. For example, this is true of preamble type and  
data rate on transmission, as well as the channel metrics signal quality (SQ) and signal strength on reception. The internal  
radio registers are accessed indirectly through the PHY registers.  
Broadcom Corporation  
Document 4325-DS04-R  
IEEE 802.11a/g PHY Description  
Page 29  
BCM4325  
Preliminary Data Sheet  
6/30/09  
Section 10:WLAN 802.11 Radio Subsystem  
The BCM4325 includes an integrated dual-band WLAN RF transceiver that has been optimized for use in 2.4 GHz or 5 GHz  
Wireless LAN systems. It is designed to provide low-power, low-cost, and robust communications for applications operating  
in the globally available 2.4 GHz unlicensed ISM or 5 GHz U-NII bands. With an external transmit power amplifier, it develops  
full output power per the IEEE 802.11a/g Specification. The transmit and receive sections include all on-chip filtering, mixing,  
and gain control functions.  
Note: Sharing a single 2.4 GHz antenna between the Bluetooth and WLAN sections is supported when an  
appropriate SP3T switch is used in the external RF signal path.  
Phase  
Shifter  
5-GHz  
RF Input  
LNA  
Rx I  
LPF  
LPF  
To Baseband  
5-GHz  
RF Input  
Phase  
Shifter  
LNA  
LNA  
MUX  
Rx Q  
2.4-GHz  
RF Input  
Phase  
Shifter  
2.4-GHz  
RF Input  
Phase  
Shifter  
LNA  
5 GHz  
2.4 GHz  
2.4 GHz  
LO  
Generation  
Reference Clock  
To Bluetooth  
PLL  
5 GHz  
5-GHz  
RF Output  
Tx I  
LPF  
LPF  
AMP  
AMP  
From Baseband  
Tx Q  
MUX  
2.4-GHz  
RF Output  
Control Interface  
Control  
Interface  
Calibration  
Figure 11: Radio Functional Block Diagram  
Broadcom Corporation  
Page 30  
WLAN 802.11 Radio Subsystem  
Document 4325-DS04-R  
Preliminary Data Sheet  
6/30/09  
BCM4325  
RECEIVER PATH  
The BCM4325 has a wide dynamic range, direct conversion receiver. It employs high order on-chip channel filtering to  
ensure reliable operation in the noisy 2.4 GHz ISM band or the entire 5 GHz U-NII band. The excellent noise figure of the  
receiver makes an external LNA unnecessary.  
TRANSMITTER PATH  
A linear, on-chip power amplifier is included. This power amplifier is capable of delivering 20 dBm of nominal output power  
and adheres to IEEE 802.11a and 802.11g specifications. The Tx gain has a 32 dB range with a resolution of 0.25 dB.  
Baseband data is modulated and upconverted to the 2.4 GHz ISM or 5 GHz U-NII bands, respectively.  
CALIBRATION  
The BCM4325 features dynamic on-chip calibration, eliminating process variation across components. This enables the  
BCM4325 to be used in high volume applications, because calibration routines are not required during manufacturing  
testing. These calibration routines are performed periodically in the course of normal radio operation. An example of this is  
automatic calibration of the baseband filters for optimum transmit and receive performance.  
Broadcom Corporation  
Document 4325-DS04-R  
Receiver Path  
Page 31  
BCM4325  
Preliminary Data Sheet  
6/30/09  
Section 11: WLAN Power Management  
The BCM4325 has been designed with the stringent power consumption requirements of mobile devices in mind. All areas  
of the chip design are optimized to minimize power consumption. Silicon processes and cell libraries were chosen to reduce  
leakage current and supply voltages. Additionally, the BCM4325 integrated RAM is a high Vt memory with dynamic clock  
control. The dominant supply current consumed by the RAM is leakage current only.  
Additionally, the BCM4325 includes an advanced WLAN power management unit (PMU). The PMU provides significant  
power savings by putting the BCM4325 into various power management states appropriate to the current environment and  
activities that are being performed. The power management unit enables and disables internal regulators, switches, and  
other blocks based on a computation of the required resources and a table that describes the relationship between resources  
and the time needed to enable and disable them. Power up sequences are fully programmable. Configurable, free running  
counters (running at 32 kHz LPO clock) in the PMU are used to turn on/turn off individual regulators and power switches.  
Clock speeds are dynamically changed (or gated altogether) for the current mode. Slower clock speeds are used wherever  
possible.  
The BCM4325 WLAN power states are described as follows:  
Power-down mode The BCM4325 is effectively powered off by shutting down all internal regulators. The chip is  
brought out of this mode by external logic reenabling the internal regulators.  
Active mode  
All BCM4325 WLAN functions are powered up and fully functional with active carrier sensing and  
frame transmission and receiving. All required regulators are enabled and put in the most efficient  
mode (PWM or Burst) based on the load current. Clock speeds are dynamically adjusted by the  
PMU.  
Sleep mode  
The WLAN radio, AFE, PLLs, and the ROMs are powered down. The rest of the BCM4325  
remains powered up in an IDLE state. All main clocks are shut down. The 32 kHz LPO clock is  
available only for the PMU. This condition is necessary to allow the PMU to wake up the chip and  
transition to active mode. In Sleep mode, the primary power consumed is due to leakage current.  
The external switcher and internal baseband switcher are put into Burst mode (for better efficiency  
at low load currents).  
Broadcom Corporation  
Page 32  
WLAN Power Management  
Document 4325-DS04-R  
Preliminary Data Sheet  
6/30/09  
BCM4325  
Section 12: WLAN System Interfaces  
SDIO V1.2  
The BCM4325 WLAN section supports SDIO version 1.2 for both the 1-bit (25 Mbps), 4-bit (100 Mbps) modes, and high  
speed 4-bit (50 MHz clocks – 200 Mbps). It has the ability to stop the SDIO clock and map the interrupt signal into a GPIO  
pin. This out-of-band interrupt signal notifies the host when the WLAN device needs to turn on the SDIO interface.  
The ability to force control of the gated clocks from within the WLAN chip is also provided.  
Three SDIO functions are supported:  
Function 0—Standard SDIO function (Max BlockSize/ByteCount = 32B)  
Function 1—Backplane Function to access the internal System On Chip (SOC) address space (Max BlockSize/  
ByteCount = 64B)  
Function 2—WLAN Function for efficient WLAN packet transfer through DMA (Max BlockSize/ByteCount = 512B)  
Detailed SDIO pin description and signal connection block diagrams are provided in Section 14: “Pinout and Signal  
Descriptions” on page 37.  
GPIO INTERFACE  
There are five General Purpose I/O (GPIO) pins available on the FBGA package and 15 on the WLCSP package, which can  
be used to connect to various external devices. Upon power up and reset, these pins become tri-stated. Subsequently, they  
can be programmed to be either input or output pins via the GPIO control register. An internal pull-up resistor is included on  
each GPIO. If a GPIO output enable is not asserted, and the corresponding GPIO signal is not being driven externally, the  
GPIO is read as high.  
ONE-TIME-PROGRAMMABLE (OTP) MEMORY  
Various hardware configuration parameters may be stored in an internal 2k-bit OTP memory, which is read by system  
software after device reset. In addition, customer-specific parameters, including the System Vendor ID and the MAC address  
can be stored, depending on the specific board design.  
The initial state of all bits in an unprogrammed OTP device is 0. Once any bits are programmed to a 1, they can never be  
reprogrammed back to 0. The entire OTP array can be programmed in a single write cycle using a utility provided with  
Broadcom's WLAN manufacturing test tools. Alternatively multiple write cycles can be used to selectively program specific  
bytes, but only bits which are still in the 0 state can be altered during each programming cycle.  
Prior to OTP programming, all values should be verified using the appropriate editable nvram.txt file, which is provided with  
the reference board design package. Documentation on the OTP development process is available at Broadcom’s Customer  
Support Portal (CSP) at http://www.broadcom.com/support.  
As an alternative to using the internal OTP, an external 4-wire SPROM interface can be enabled.  
Broadcom Corporation  
Document 4325-DS04-R  
WLAN System Interfaces  
Page 33  
BCM4325  
Preliminary Data Sheet  
6/30/09  
EXTERNAL COEXISTENCE INTERFACE  
An external handshake interface is provided to enable signaling between the device and an external co-located wireless  
device, such as GPS, WiMax or UWB, to manage wireless medium sharing for optimum performance. The provided signals  
are:  
ERCX_STATUS  
ERCX_RF_ACTIVE  
ERCX_TX_FREQ  
ERCX_TX_PRISEL (WLCSP package only)  
ERCX_TXCONF (WLCSP package only)  
JTAG INTERFACE  
The BCM4325 supports the IEEE 1149.1 JTAG boundary scan standard for performing device package and PCB assembly  
testing during manufacturing. In addition, the JTAG interface allows Broadcom to assist customers by using proprietary  
debug and characterization test tools during board bringup. Therefore, it is highly recommended to provide access to the  
JTAG pins by means of test points or a header on all PCB designs.  
WLAN UART DEBUG INTERFACE  
Two universal asynchronous receiver/transmitter (UART) interfaces are provided for the 339-pin WLCSP package (one  
UART interface for the 196-ball FBGA package) that can be attached to RS-232 data termination equipment (DTE) for  
exchanging and managing data with other serial devices. These UART interfaces are primarily used for debugging during  
development. Each interface is compatible with the industry standard 16550 UART. One UART provides TX and RX signals  
only. The other UART provides a full set of control signals. Hardware assisted flow control is provided. FIFO size is 64 × 8.  
Broadcom Corporation  
Page 34  
External Coexistence Interface  
Document 4325-DS04-R  
Preliminary Data Sheet  
6/30/09  
BCM4325  
Section 13:Software Architecture  
HOST SOFTWARE ARCHITECTURE  
The host driver provides a transparent connection between the host operating system and the BCM4325 media (for example,  
WLAN) by presenting a network driver interface to the host operating system and communicating with the BCM4325 over  
an interface-specific bus (SPI, SDIO, and so on) to:  
Forward transmit and receive frames between the host network stack and the BCM4325 device, and  
Pass control requests from the host to the BCM4325 device, returning the BCM4325 device responses  
The driver communicates with the BCM4325 over the bus using a control channel and a data channel to pass control  
messages and data messages. The actual message format is based on the BDC protocol.  
DEVICE SOFTWARE ARCHITECTURE  
The wireless device, protocol, and bus drivers are run on the embedded ARM® processor and a Broadcom-defined operating  
system called HNDRTE that enables the transfer of 1500-byte Ethernet frames and control frames (using BDC message  
sets) over the SDIO interface between the host and the device.  
This transfer requires a message-oriented (framed) interconnect between the host and device. The SDIO bus is an  
addressed bus—each host-initiated bus operation contains an explicit device target address—and does not natively support  
a higher level data frame concept. Broadcom has implemented a hardware/software message encapsulation scheme that  
ignores the bus operation code address and prefixes each frame with a 4-byte length tag for framing. The device presents  
a packet level interface over which data, control and asynchronous event (from the device) packets are supported.  
The data and control packets received from the bus are initially processed by the bus driver and then passed on to the  
protocol driver. If the packets are data packets, they are transferred to the wireless device driver (and out through its  
medium), and a data packet received from the device medium follows the same path in the reverse direction. If the packets  
are control packets, the protocol header is decoded by the protocol driver. If the packets are wireless IOCTL packets, the  
IOCTL API of the wireless driver is called to configure the wireless device. The microcode running in the D11 core processes  
all time critical tasks.  
Broadcom Corporation  
Document 4325-DS04-R  
Software Architecture  
Page 35  
BCM4325  
Preliminary Data Sheet  
6/30/09  
REMOTE DOWNLOADER  
The remote downloader is used to download the BCM4325 firmware image into the device from the host. When the  
BCM4325 device powers up, it is ready to receive the firmware image from the host system.  
SPI/SDIO  
BDC Protocol  
Wireless Device Driver  
D11 Core  
Figure 12: Device Software Architecture  
WIRELESS CONFIGURATION UTILITY  
The device driver that supports the Broadcom IEEE 802.11 family of wireless solutions provides an input/output control  
(IOCTL) interface for making advanced configuration settings. The IOCTL interface makes it possible to make settings that  
are normally not possible when using just the native operating system-specific IEEE 802.11 configuration mechanisms. The  
utility uses IOCTLs to query or set a number of different driver/chip operating properties.  
Broadcom Corporation  
Page 36  
Wireless Configuration Utility  
Document 4325-DS04-R  
Preliminary Data Sheet  
6/30/09  
BCM4325  
Section 14: Pinout and Signal Descriptions  
SIGNAL ASSIGNMENTS  
196-BALL FBGA PINOUT  
Table 6: 196-Ball FBGA Signal Assignments by Ball Number  
Ball Signal  
Ball Signal  
Ball Signal  
Ball Signal  
C9  
WRF_AFE_TEST_ONI  
F3  
ERCX_STATUS  
H11  
H12  
H13  
H14  
J1  
WRF_GPIO_OUT2  
A1  
A2  
A3  
A4  
A5  
A6  
A7  
A8  
A9  
A10  
A11  
A12  
A13  
A14  
B1  
B2  
B3  
B4  
B5  
B6  
B7  
B8  
B9  
SR_VFB1  
C10  
C11  
C12  
C13  
C14  
D1  
WRF_AFE_TSSI_A  
AVSS  
F4  
VDDIO  
WRF_VDDVCO_1P2  
WRF_VDDPFDCP_1P2  
AVSS  
SR_VBAT1B  
F5  
TCK  
SR_VLX1  
AVSS  
F6  
AMODE_RX_PU  
GMODE_RX_PU  
VSS  
WL_RST_N  
AVSS  
F7  
VDDIO_SD  
RF_SW_CTRL_N_3  
AMODE_TX_PU  
RF_SW_CTRL_N_0  
WRF_DISABLE_N  
WRF_EXTCOUPLE_AIN  
WRF_EXTCOUPLE_GIN  
WRF_VDDPAG_3P3  
WRF_RFOUTP_G  
AVSS  
AVSS  
F8  
J2  
WL_GPIO_2  
SDIO_DATA_2  
WL_UART_TX0  
WL_GPIO_7  
SPROM_CS  
BT_PCM_CLK  
BT_TM6  
SR_VFBBB  
F9  
VDDIO_RF  
VDDIO_RF  
WRF_AFE_TEST_QN  
AVSS  
J3  
D2  
WL_REG_ON  
SR_AVSS  
F10  
F11  
F12  
F13  
F14  
G1  
G2  
G3  
G4  
G5  
G6  
G7  
G8  
G9  
G10  
G11  
G12  
G13  
G14  
H1  
J4  
D3  
J5  
D4  
TMS  
J6  
D5  
LV_TESTMODE  
GMODE_EXT_LNA_GAIN  
WRF_AFE_AVDD_TXDAC  
WRF_AFE_TEST_ONQ  
WRF_AFE_TEST_OPQ  
WRF_AFE_AVDD_AUX  
WRF_AFE_TEST_IP  
WRF_VDDTX_1P2  
AVSS  
WRF_PA_100UA  
WRF_RFINP_G1  
SR_VOUTBB  
WL_GPIO_6  
WL_GPIO_1  
ERCX_RF_ACTIVE  
WL_GPIO_0  
VDDIO  
J7  
D6  
J8  
D7  
J9  
BT_GPIO_0  
BT_VSSC_0  
BT_VDDC  
D8  
J10  
J11  
J12  
J13  
J14  
K1  
WRF_RFOUTP_A  
SR_AVDD2P5  
D9  
D10  
D11  
D12  
D13  
D14  
E1  
WRF_VDDD_1P2  
WRF_VDDCAB_1P2  
BT_RFION  
SR_PLDO  
SR_VBAT1A  
JTAG_TRST_N  
RF_SW_CTRL_P_3  
RF_SW_CTRL_N_1  
RF_SW_CTRL_P_0  
GMODE_TX_PU  
VSS  
SDIO_CLK  
WRF_RFINP_A1  
SR_VLX1BB  
BT_VDDO  
K2  
XTAL_PU  
VDDC  
K3  
SPROM_CLK  
SDIO_CMD  
E2  
SR_VBATBB  
AVSS  
K4  
E3  
BT_REG_ON  
WRF_GPIO_OUT1  
WRF_VDDLO_1P2  
AVSS  
K5  
BT_PCM_IN  
BT_GPIO_4  
BT_GPIO_5  
BT_GPIO_7  
BT_TM1  
WRF_AFE_AVDD_RXAD  
C
E4  
VSS  
K6  
B10  
B11  
B12  
B13  
B14  
C1  
WRF_AFE_TEST_IN  
AVSS  
E5  
TDI  
K7  
E6  
TAP_SEL  
WRF_RFINN_G1_XFMR  
SPROM_DOUT  
SDIO_DATA_1  
WL_UART_RX0  
VDDC  
K8  
AVSS  
E7  
RF_SW_CTRL_P_1  
VSS  
K9  
WRF_VDDPAA_3P3  
AVSS  
E8  
H2  
K10  
K11  
K12  
K13  
K14  
L1  
BT_GPIO_2  
WRF_VDDA_1P2  
BT_VDDRF  
E9  
WRF_AFE_TSSI_G  
WRF_BBPLL_VDD_1P2  
WRF_AFE_TEST_QP  
WRF_AFE_IQADC_VREF  
WRF_VDDRX_1P2  
WRF_RFINN_A1_XFMR  
SR_VLX2BB  
H3  
SR_VNLDO  
SR_TESTSWG  
SR_PVSS  
E10  
E11  
E12  
E13  
E14  
F1  
H4  
C2  
H5  
OTP_VDD25  
VDDIO  
BTFM_VSS  
C3  
H6  
BT_RFIOP  
C4  
TDO  
H7  
ERCX_TX_FREQ  
SPROM_DIN  
BT_GPIO_1  
VDDC  
VOUT_CLDO  
SDIO_DATA_0  
VDDIO_SD  
C5  
TEST_SE  
H8  
L2  
C6  
VDDIO_RF  
H9  
L3  
C7  
WRF_AFE_DIGIT_TEST1  
WRF_AFE_TEST_OPI  
F2  
SR_PVSSB  
H10  
L4  
BT_SDA  
C8  
Broadcom Corporation  
Document 4325-DS04-R  
Pinout and Signal Descriptions  
Page 37  
BCM4325  
Preliminary Data Sheet  
6/30/09  
Ball Signal  
Ball Signal  
L5  
BT_PCM_OUT  
P10  
P11  
P12  
P13  
P14  
FM_VDDRF  
L6  
BT_GPIO_6  
BT_UART_RXD  
BT_TM2  
FM_RXP  
L7  
FM_RXN  
L8  
FM_VDDIF  
BT_VDDPLL  
L9  
FM_ADVSS  
VDD_XTAL  
L10  
L11  
L12  
L13  
L14  
M1  
M2  
M3  
M4  
M5  
M6  
M7  
M8  
M9  
M10  
M11  
M12  
M13  
M14  
N1  
WRF_RES_EXT  
WRF_EXTREFIN  
BT_VDDIFIFP  
BT_VDDTF  
VOUT_LNLDO1  
VIN_CLDO  
VIN_LNLDO1  
BT_VSSC_0  
BT_PCM_SYNC  
BT_GPIO_3  
FM_AUDIO_OUT1  
FM_ADVDD  
FM_AUDIO_OUT2  
FM_VDDVCO  
FM_CVAR  
BTFM_VSS  
BT_VDDVCO  
BTFM_VSS  
VIN_LNLDO2  
BT_VDDO  
N2  
N3  
AVDD2P5_LDO  
BT_VDDC  
N4  
N5  
BT_SCL  
N6  
BT_UART_RTS_N  
BT_COEX_OUT0  
BT_TM0  
N7  
N8  
N9  
BT_RST_N  
N10  
N11  
N12  
N13  
N14  
P1  
FM_VDDPLL  
BTFM_VSS  
N/C  
N/C  
BTFM_VSS  
VREF_LDO  
P2  
AVSS1_LDO  
VOUT_LNLDO2  
BT_UART_TXD  
BT_UART_CTS_N  
SDIO_DATA_3  
BT_COEX_OUT1  
OSCIN  
P3  
P4  
P5  
P6  
P7  
P8  
P9  
OSCOUT  
Broadcom Corporation  
Page 38  
Signal Assignments  
Document 4325-DS04-R  
Preliminary Data Sheet  
6/30/09  
BCM4325  
339-PIN WLCSP PINOUT  
Note: The X- and Y-coordinate orientation is looking at the silicon face (i.e., looking up at the bottom of the die at the bumps,  
as opposed to top down). Refer to Figure 36 on page 116 for X- and Y-coordinate origin information.  
Note: The WLCSP package was optimized and eight pins were removed (originally 347-pin WLCSP package). However, the  
CSP package pin out was not renumbered. The following pins were removed: Pin 1 WRF_PA_BYPGND_3P3, Pin 154  
VOUT_LNLDO3, Pin 157 VIN_LNLDO3, Pin 258 usb20d_ulpi_stp, Pin 282 usb20d_ulpi_data_6, Pin 283 usb20d_ulpi_data_5,  
Pin 295 usb20d_ulpi_data_7, and Pin 307 usb20d_ulpi_nxt  
Table 7: 339-Pin WLCSP Signal Assignments by Pin Number and X- and Y-Coordinates  
Pin # Signal Name  
X-Coord Y-Coord  
211.8 4063.055  
Pin # Signal Name  
X-Coord Y-Coord  
36  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
49  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60  
61  
62  
63  
64  
65  
66  
67  
68  
69  
70  
WRF_RFINP_A1  
WRF_EXTCOUPLE_GIN  
WRF_BBPLL_GND_1P2  
WRF_GNDLO_1P2  
WRF_RFINN_A1_XFMR  
WRF_VDDRX_1P2  
WRF_GNDRX_1P2  
WRF_VDDLO_1P2  
WRF_GPIO_OUT1  
WRF_GPIO_OUT2  
WRF_RFINN_G2_XFMR  
WRF_PA_100UA  
WRF_RFINP_G2  
WRF_RFINP_G1  
WRF_VDDVCO_1P2  
WRF_GNDVCO_1P2  
WRF_RFINN_G1_XFMR  
WRF_GNDD_1P2  
WRF_VDDD_1P2  
WRF_GNDPFDCP_1P2  
WRF_VDDPFDCP_1P2  
WRF_GNDA_1P2  
WRF_VDDA_1P2  
WRF_VDDCAB_1P2  
WRF_GNDCAB_1P2  
WRF_EXTREFIN  
WRF_RES_EXT  
2
WRF_RFOUTN_A  
184.63  
684.63  
5538.005  
5538.005  
5538.005  
5538.005  
5538.005  
5538.005  
5538.005  
5538.005  
5254.51  
2676.285 4051.17  
2926.285 4036.35  
1544.575 3877.305  
3
WRF_VDDPAA_3P3  
WRF_VDDPAA_3P3  
WRF_RFOUTP_A  
WRF_RFOUTN_G  
WRF_VDDPAG_3P3  
WRF_VDDPAG_3P3  
WRF_RFOUTP_G  
4
434.63  
5
934.63  
1184.63  
1684.63  
1434.63  
1934.63  
2186.84  
211.8  
461.8  
711.8  
3784.06  
3784.06  
3605.83  
6
7
8
1544.575 3627.305  
1794.575 3627.305  
2044.575 3627.305  
9
10  
WRF_AFE_pad_AVSS_  
RXADC  
11  
12  
WRF_AFE_AVDD_RXADC 2523.96  
5254.245  
5254.245  
211.8  
461.8  
211.8  
211.8  
3534.045  
3534.045  
3244.045  
2956.455  
WRF_AFE_pad_AVSS_  
TXDAC  
2773.96  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
WRF_AFE_AVDD_TXDAC 3073.81  
5254.245  
4933.17  
4822.4  
WRF_GNDPAA_3P3  
WRF_GNDTX_1P2  
WRF_GNDPAA_3P3  
WRF_GNDPAG_3P3  
WRF_GNDPAG_3P3  
WRF_AFE_test_In  
184.63  
1305.455 2993.545  
1555.455 2993.545  
419.98  
934.63  
4933.17  
4902.645  
4902.645  
4954.545  
5004.235  
5004.235  
4704.5  
211.8  
711.8  
961.8  
211.8  
461.8  
711.8  
961.8  
211.8  
461.8  
2666.455  
2655  
2655  
2405  
2405  
2405  
2405  
2155  
2155  
1184.63  
1934.63  
2182.26  
2823.81  
3073.81  
2182.26  
2573.81  
2823.81  
3073.81  
211.8  
WRF_AFE_test_opI  
WRF_AFE_test_onQ  
WRF_AFE_test_Ip  
WRF_AFE_TSSI_A  
WRF_AFE_test_onI  
WRF_AFE_test_opQ  
WRF_RFINN_A2_XFMR  
WRF_VDDTX_1P2  
WRF_AFE_iqadc_VREF  
WRF_AFE_AVDD_AUX  
WRF_AFE_TSSI_G  
WRF_RFINP_A2  
4779.235  
4754.235  
4754.235  
4663.165  
1818.185 2155  
2068.185 2155  
1551.915 4506.545  
BT_RFION  
202  
452  
893  
202  
452  
202  
452  
202  
1875  
1875  
1847  
1625  
1625  
1375  
1375  
1125  
2182.26  
2573.81  
3073.81  
211.8  
4453.92  
4529.235  
4504.235  
4384.17  
BT_VDDRF  
BT_VSSRF  
BT_RFIOP  
BT_VSSPA  
WRF_EXTCOUPLE_AIN  
WRF_BBPLL_VDD_1P2  
WRF_AFE_test_Qp  
WRF_AFE_test_Qn  
2676.285 4301.17  
2926.285 4301.17  
BT_VDDTF  
BT_VSSIF  
2196.31  
2446.31  
4202.195  
4202.195  
BT_VDDIF  
Broadcom Corporation  
Document 4325-DS04-R  
Signal Assignments  
Page 39  
BCM4325  
Preliminary Data Sheet  
6/30/09  
Pin # Signal Name  
X-Coord Y-Coord  
Pin # Signal Name  
X-Coord Y-Coord  
71  
72  
73  
74  
75  
76  
77  
78  
79  
80  
81  
82  
83  
84  
85  
86  
87  
88  
89  
90  
91  
92  
93  
94  
95  
96  
97  
98  
99  
FM_ADVSS  
FM_ADVDD  
BT_VDDVCO  
FM_VSSVCO  
FM_AUDIO_OUT2  
FM_AUDIO_OUT1  
BT_VDDPLL  
BT_VSSVCO  
BT_VSSPLL  
No Connect (NC)  
No Connect (NC)  
FM_VSSRX  
FM_CVAR  
2468  
2839  
202  
935  
935  
748  
744  
685  
685  
435  
435  
435  
435  
435  
435  
435  
435  
435  
435  
185  
185  
185  
185  
185  
185  
185  
185  
185  
185  
150  
5548  
5548  
5548  
5548  
5548  
5548  
5548  
117 SR_AVSS  
4872.985 4895.4  
5122.985 4895.4  
5622.985 4895.4  
6122.985 4895.4  
118 SR_VBAT1A  
119 SR_AVSS  
1492  
2468  
2839  
150  
120 SR_VDDNLDO  
121 BT_REG_ON  
122 SR_VBATBB  
123 SR_VBATBB  
124 SR_VFBBB  
125 WL_REG_ON  
126 SR_VBATBB  
127 SR_VBATBB  
128 SR_VBATBB  
129 SR_VLX1BB  
130 SR_VLX1BB  
131 SR_VLX1BB  
132 SR_VLX1BB  
133 SR_PVSSB  
134 SR_PVSSB  
135 SR_PVSSB  
136 SR_PVSSB  
137 SR_VLX2BB  
138 SR_VLX2BB  
139 SR_VLX2BB  
140 SR_VLX2BB  
141 SR_VOUTBB  
142 SR_VOUTBB  
143 SR_VOUTBB  
144 SR_VOUTBB  
145 VIN_CLDO  
5498  
5748  
5998  
6248  
4676  
4676  
4676  
4676  
400  
650  
5372.985 4459.4  
5622.985 4459.4  
5872.985 4459.4  
6122.985 4459.4  
900  
1150  
1400  
1650  
1900  
2150  
2400  
150  
5498  
5748  
5998  
6248  
4240  
4240  
4240  
4240  
FM_VSSPLL  
VSS_XTAL  
VDD_XTAL  
DUMMY_BUMP  
FM_VSSIF  
5372.985 4023.4  
5622.985 4023.4  
5872.985 4023.4  
6122.985 4023.4  
400  
FM_VDDIF  
650  
FM_RXN  
900  
FM_RXP  
1150  
1400  
1650  
1900  
2150  
2400  
2650  
4748  
4998  
5248  
5498  
5748  
5998  
6248  
5498  
5748  
5998  
6248  
3804  
3804  
3804  
3804  
FM_VDDRX  
FM_VDDVCO  
FM_VDDPLL  
oscin  
5372.985 3587.4  
5622.985 3587.4  
5872.985 3587.4  
6122.985 3587.4  
oscout  
BT_RST_N  
SR_VFB2  
SR_VLX2  
5497.96  
5747.96  
1118.285  
1118.285  
100 SR_VBAT1A  
101 SR_VLX1  
146 VIN_CLDO  
147 VOUT_CLDO  
148 VOUT_CLDO  
149 VIN_LNLDO1  
150 VIN_LNLDO1  
151 VOUT_LNLDO1  
152 VOUT_LNLDO1  
153 AVSS1_LDO  
155 VIN_LNLDO2  
156 VOUT_LNLDO2  
158 VIN_LNLDO4  
159 VOUT_LNLDO4  
160 AVDD2P5_LDO  
161 AVSS2_LDO  
162 VREF_LDO  
163 packageoption_0  
164 rf_sw_ctrl_n_0  
5997.965 1118.285  
102 SR_PVSS1  
103 SR_VFB1  
6247.97  
5497.96  
5747.96  
1118.285  
868.285  
868.285  
104 SR_VBAT1B  
105 SR_PVSS2  
106 SR_VLX2  
4872.985 5331.4  
5122.985 5331.4  
5372.985 5331.4  
5622.985 5331.4  
5872.985 5331.4  
6122.985 5331.4  
5997.965 868.285  
6247.97  
5497.96  
868.285  
618.285  
107 SR_VBAT1A  
108 SR_VLX1  
5997.965 618.285  
6247.97 618.285  
5997.965 368.285  
109 SR_PVSS1  
110 SR_VSSPLDO  
111 SR_PVSS2  
112 SR_VBAT1A  
113 SR_VLX1  
4998  
5248  
5498  
5748  
5998  
6248  
5112  
5112  
5112  
5112  
5112  
5112  
6247.97  
5747.96  
368.285  
118.285  
5997.965 118.285  
114 SR_PVSS1  
115 SR_TESTSWG  
116 SR_AVDD2P5  
6247.97  
3325  
118.285  
5400  
3575  
5400  
Broadcom Corporation  
Page 40  
Signal Assignments  
Document 4325-DS04-R  
Preliminary Data Sheet  
6/30/09  
BCM4325  
Pin # Signal Name  
X-Coord Y-Coord  
Pin # Signal Name  
X-Coord Y-Coord  
165 VDDIO_RF  
166 test_se  
4075  
4325  
3325  
3575  
3825  
4075  
4325  
4575  
3325  
3575  
3825  
4075  
4325  
4575  
3325  
3575  
3825  
4075  
4325  
4575  
3275  
3525  
3775  
4025  
4275  
4525  
4775  
5025  
3525  
3775  
4025  
4275  
4525  
4775  
5025  
3275  
3525  
3775  
4025  
4275  
4525  
4775  
5025  
3275  
3525  
3775  
5400  
5400  
5150  
5150  
5150  
5150  
5150  
5150  
4900  
4900  
4900  
4900  
4900  
4900  
4650  
4650  
4650  
4650  
4650  
4650  
4150  
4400  
4400  
4400  
4400  
4400  
4400  
4400  
4150  
4150  
4150  
4150  
4150  
4150  
4150  
3900  
3900  
3900  
3900  
3900  
3900  
3900  
3900  
3650  
3650  
3650  
211 VDD  
4025  
4275  
4525  
4775  
5025  
3775  
4025  
4275  
4525  
4775  
5025  
4025  
4275  
4525  
4775  
5025  
5275  
5525  
5775  
6025  
3025  
3775  
4275  
4525  
4775  
5025  
5275  
5525  
5775  
6025  
3025  
3275  
3525  
3775  
4025  
4275  
5025  
5275  
5525  
5775  
6025  
3025  
3275  
3525  
3775  
4025  
3650  
3650  
3650  
3650  
3650  
3400  
3400  
3400  
3400  
3400  
3400  
3150  
3150  
3150  
3150  
3150  
3150  
3150  
3150  
3150  
2900  
2900  
2900  
2900  
2900  
2900  
2900  
2900  
2900  
2900  
2650  
2650  
2650  
2650  
2650  
2650  
2650  
2650  
2650  
2650  
2650  
2400  
2400  
2400  
2400  
2400  
212 VSS  
167 packageoption_1  
168 rf_sw_ctrl_p_0  
169 wrf_afe_digit_test1  
170 rf_sw_ctrl_p_2  
171 tdo  
213 WL_GPIO_0  
214 sflash_d  
215 ercx_rf_active  
216 VDDIO  
217 VDD  
172 jtag_trst_n  
173 packageoption_2  
174 rf_sw_ctrl_n_1  
175 gmode_ext_lna_gain  
176 rf_sw_ctrl_n_2  
177 tap_sel  
218 VSS  
219 ercx_tx_freq  
220 VDD  
221 VDD  
222 VSS  
223 VDDIO  
178 WL_RST_N  
179 packageoption_3  
180 wrf_disable_n  
181 rf_sw_ctrl_p_1  
182 amode_tx_pu  
183 lv_testmode  
184 tck  
224 WL_GPIO_13  
225 WL_GPIO_7  
226 VDDIO  
227 VDDIO  
228 sflash_c  
229 sflash_s  
230 ercx_txconf  
231 BT_VDDO  
232 VDD  
185 VDDIO_RF  
186 gmode_rx_pu  
187 gmode_tx_pu  
188 amode_ext_lna_gain  
189 rf_sw_ctrl_n_3  
190 tdi  
233 sprom_din  
234 otp_vdd25  
235 WL_GPIO_14  
236 WL_GPIO_9  
237 WL_GPIO_5  
238 WL_GPIO_4  
239 WL_GPIO_2  
240 WL_GPIO_1  
241 BT_VSSC_0  
242 BT_VDDO  
243 BT_VDDO  
244 VDD  
191 tms  
192 VSS  
193 VDDIO_RF  
194 VDDIO_RF  
195 wrf_afe_digit_test2  
196 amode_rx_pu  
197 rf_sw_ctrl_p_3  
198 VDDIO_RF  
199 ercx_prisel  
200 VDD  
245 VSS  
246 sprom_cs  
247 wl_uart_rx0  
248 WL_GPIO_12  
249 WL_GPIO_10  
250 WL_GPIO_8  
251 WL_GPIO_6  
252 BT_GPIO_1  
253 BT_VSSC_0  
254 BT_VSSC_0  
255 BT_VSSC_0  
256 VSS  
201 VDD  
202 VDD  
203 VDD  
204 VSS  
205 VDDIO_RF  
206 sflash_q  
207 ercx_status  
208 VSS  
209 VSS  
210 VDDIO  
Broadcom Corporation  
Document 4325-DS04-R  
Signal Assignments  
Page 41  
BCM4325  
Preliminary Data Sheet  
6/30/09  
Pin # Signal Name  
X-Coord Y-Coord  
Pin # Signal Name  
X-Coord Y-Coord  
257 VDDIO_SD  
259 wl_uart_tx0  
260 wl_uart_tx1  
261 WL_GPIO_15  
262 WL_GPIO_11  
263 BT_XA_18  
4525  
5275  
5525  
5775  
6025  
2525  
2775  
3025  
3275  
3525  
3775  
4025  
4275  
4525  
4775  
2400  
2400  
2400  
2400  
2400  
2150  
2150  
2150  
2150  
2150  
2150  
2150  
2150  
2150  
2150  
2150  
2150  
2150  
1900  
1900  
1900  
1900  
1900  
1900  
1900  
1900  
1900  
1900  
1650  
1650  
1650  
1650  
1650  
1650  
1650  
1650  
1650  
1400  
1400  
1400  
1400  
1400  
1400  
1400  
1400  
1400  
308 BT_XCS_N  
309 BT_TM0  
3255  
3505  
3755  
4005  
4255  
4505  
4755  
5005  
3255  
3505  
3755  
4005  
4255  
4505  
4755  
5005  
3255  
3505  
3755  
4005  
4255  
4505  
4755  
5005  
3525  
3775  
4025  
4275  
4525  
4775  
5025  
3525  
3775  
4025  
4275  
4525  
4775  
5025  
5275  
5525  
1150  
1150  
1150  
1150  
1150  
1150  
1150  
1150  
900  
900  
900  
900  
900  
900  
900  
900  
650  
650  
650  
650  
650  
650  
650  
650  
400  
400  
400  
400  
400  
400  
400  
150  
150  
150  
150  
150  
150  
150  
150  
240  
310 BT_XA_5  
311 BT_XA_9  
312 BT_XA_13  
313 BT_XD_1  
314 BT_XD_7  
315 BT_XD_13  
316 BT_TM2  
264 BT_GPIO_0  
265 BT_XA_17  
266 BT_VDDC  
267 BT_VDDC  
317 BT_XA_2  
318 BT_GPIO_6  
319 BT_GPIO_3  
320 BT_VDDC  
321 BT_UART_TXD  
322 BT_VSSC_0  
323 BT_VSSC_0  
324 BT_XWE_N  
325 BT_TM6  
268 BT_PCM_CLK  
269 BT_UART_RXD  
270 SDIO_DATA_3  
271 SDIO_DATA_2  
272 SDIO_DATA_1  
273 WRF_AFE_DIGIT_TEST0 5025  
274 xtal_pu  
5775  
6025  
3275  
3525  
3775  
4025  
4275  
4525  
5275  
5525  
5775  
6025  
3275  
3525  
3775  
4025  
4275  
4525  
4775  
5275  
5525  
3275  
3525  
3775  
4025  
4275  
4525  
4775  
5025  
6000  
275 wl_uart_rx1  
276 BT_XOE_N  
277 BT_COEX_OUT0  
278 BT_XA_7  
326 BT_XA_6  
327 BT_XA_10  
328 BT_PCM_SYNC  
329 BT_XA_16  
330 BT_VDDC  
331 BT_XD_12  
332 BT_XA_4  
333 BT_GPIO_5  
334 BT_XA_11  
335 BT_XA_14  
336 BT_SCL  
279 BT_XA_15  
280 BT_XD_3  
281 SDIO_CMD  
284 SDIO_DATA_0  
285 SDIO_CLK  
286 sprom_clk  
287 sprom_dout  
288 BT_TM1  
289 BT_XA_3  
337 BT_XD_6  
338 BT_VDDO  
339 BT_GPIO_7  
340 BT_GPIO_4  
341 BT_PCM_IN  
342 BT_UART_CTS_N  
343 BT_XD_0  
344 BT_XD_5  
345 BT_XD_11  
346 BT_XD_14  
347 BT_XD_15  
290 BT_XA_8  
291 BT_UART_RTS_N  
292 BT_XD_2  
293 BT_XD_4  
294 BT_XD_9  
296 VDDIO_SD  
297 VDDIO_SD  
298 BT_GPIO_2  
299 BT_XA_1  
300 BT_COEX_OUT1  
301 BT_XA_12  
302 BT_PCM_OUT  
303 BT_SDA  
304 BT_XD_8  
305 BT_XD_10  
306 VDD  
Broadcom Corporation  
Page 42  
Signal Assignments  
Document 4325-DS04-R  
Preliminary Data Sheet  
6/30/09  
BCM4325  
Section 15: Signal Descriptions  
196-BALL FBGA PACKAGE  
Table 8: 196-Ball FBGA Signal Descriptions  
Type Description  
Ball  
Signal Name  
Number  
WLAN RF  
A12  
A14  
F14  
D14  
G14  
E14  
L11  
L12  
A10  
A9  
WRF_RFOUTP_G  
WRF_RFOUTP_A  
O
O
I
WLAN 802.11g Internal Power Amplifier output (50Ω)  
WLAN 802.11a Internal Power Amplifier output (50Ω)  
WLAN 802.11g Internal LNA RX input (50Ω)  
WRF_RFINP_G1  
WRF_RFINP_A1  
I
WLAN 802.11a Internal LNA RX Positive input (100Ω)  
WLAN 802.11g RX transformer ground  
WRF_RFINN_G1_XFMR  
WRF_RFINN_A1_XFMR  
WRF_RES_EXT  
O
I
WLAN 802.11a Internal LNA RX Negative input (100Ω)  
Connect to external 15 kΩ resistor to ground  
32.768 kHz LPO clock input. Used for low-power mode timing  
WLAN directional coupler input for 802.11g (50Ω)  
WLAN directional coupler input for 802.11a (50Ω)  
Transmit signal strength indicator for external 802.11g Power Amplifier  
Transmit signal strength indicator for external 802.11a Power Amplifier  
Disables WLAN radio when low.  
I
WRF_EXTREFIN  
I
WRF_EXTCOUPLE_GIN  
WRF_EXTCOUPLE_AIN  
WRF_AFE_TSSI_G  
WRF_AFE_TSSI_A  
WRF_DISABLE_N  
I
I
E9  
I
C10  
A8  
I
I
Integrated LDOs  
P1  
M1  
P3  
VREF_LDO  
O
O
O
Vref bypass. Connect to external capacitor.  
1.25V output for LNLDO1, 130 mA  
VOUT_LNLDO1  
VOUT_LNLDO2  
1.25V output for LNLDO2, 80 mA. It can be programmed to output 2.5V  
after reset (LNLDO2 is OFF by default. Software can program it to 1.25V or  
2.5V before enabling it).  
M3  
N1  
VIN_LNLDO1  
VIN_LNLDO2  
I
I
1.5V input for LNLDO1, 130 mA.  
Note: If LNLDO1 is not used, this pin must be connected to ground.  
3.3V or 1.5V input (which could be the output of CBUCK), 80 mA current.  
Note: If LNLDO2 is not used, this pin must be connected to ground.  
1.25V output for CLDO, 200 mA  
L1  
VOUT_CLDO  
VIN_CLDO  
O
I
M2  
1.5V input for CLDO, 200 mA.  
Note: If CLDO is not used, this pin must be connected to ground.  
Broadcom Corporation  
Document 4325-DS04-R  
Signal Descriptions  
Page 43  
BCM4325  
Preliminary Data Sheet  
6/30/09  
Table 8: 196-Ball FBGA Signal Descriptions (Cont.)  
Type Description  
Ball  
Number  
Signal Name  
Integrated Switching Regulators  
G1  
C1  
F1  
E1  
A3  
D1  
SR_VOUTBB  
SR_VNLDO  
SR_VLX2BB  
SR_VLX1BB  
SR_VLX1  
O
O
O
O
O
I
Buck Boost Regulator. 3.3V output  
NLDO Output. 220 nF external compensating capacitor  
Buck Boost Regulator. Inductor –ve terminal  
Buck Boost Regulator. Inductor +ve terminal  
Core Buck Regulator. Output to inductor  
SR_VFBBB  
Buck Boost Regulator. Voltage feedback.  
Note: If not used, this pin should be connected to ground.  
Core Buck Regulator. Output voltage feedback.  
Note: This pin should be connected to ground if CBUCK is not used.  
Buck Boost Regulator. Battery voltage Input.  
A1  
E2  
SR_VFB1  
I
I
SR_VBATBB  
Note: This pin must be connected to VBAT (or an external 3.3V supply  
even if the BBOOST and CBUCK regulators are not used.  
A2  
B3  
C2  
SR_VBAT1B  
SR_VBAT1A  
SR_TESTSWG  
I
I
Clean VBAT supply for LDOs and Bandgap.  
Note: This pin must be connected to VBAT (or an external 3.3V supply)  
even if the BBOOST and CBUCK regulators are not used.  
Core Buck Regulator. Battery voltage input.  
Note: This pin must be connected to VBAT (or an external 3.3V supply)  
even if the BBOOST and CBUCK regulators are not used.  
I/O Connect to 2.5V VDD (which could be SR_AVDD2P5) with or without 0Ω  
stuffing option.  
F2  
C3  
D3  
B2  
B1  
N3  
SR_PVSSB  
SR_PVSS  
I
I
Buck Boost Regulator. Power Switch Ground  
Core Buck Regulator. Power Switch Ground  
Analog Ground  
SR_AVSS  
I
SR_PLDO  
O
O
I
PLDO Output. 220 nF external compensating capacitor  
2.5V LDO Output  
SR_AVDD2P5  
AVDD2P5_LDO  
2.5V Supply for Internal LDO. Connect to SR_AVDD2P5  
SDIO Bus Interface  
K4  
L2  
H2  
J3  
SDIO_CMD  
I/O SDIO Command Line.  
See Table 18 on page 73 and Table 19 on page 74 for additional details.  
I/O SDIO Data Line 0.  
SDIO_DATA_0  
SDIO_DATA_1  
SDIO_DATA_2  
SDIO_DATA_3  
SDIO_CLK  
See Table 18 on page 73 and Table 19 on page 74 for additional details.  
I/O SDIO Data Line 1.  
See Table 18 on page 73 and Table 19 on page 74 for additional details.  
I/O SDIO Data Line 2.  
See Table 18 on page 73 and Table 19 on page 74 for additional details.  
I/O SDIO Data Line 3.  
P6  
K1  
See Table 18 on page 73 and Table 19 on page 74 for additional details.  
I
SDIO Clock.  
This is an input pin driven by the SDIO clock signal. It remains high  
impedance when WL_RST_N is low. See Table 18 on page 73 and  
Table 19 on page 74 for additional details.  
Broadcom Corporation  
Page 44  
Signal Descriptions  
Document 4325-DS04-R  
Preliminary Data Sheet  
6/30/09  
BCM4325  
Table 8: 196-Ball FBGA Signal Descriptions (Cont.)  
Type Description  
Ball  
Signal Name  
Number  
WLAN UART  
J4  
WL_UART_TX0  
WL_UART_RX0  
I/O Serial output for WLAN UART.  
Connect to RS-232 DTE for exchanging data with other serial devices. If not  
used, it may be left unconnected.  
H3  
I/O Serial Input for WLAN UART.  
Connect to RS-232 DTE for exchanging data with other serial devices. If not  
used, it may be left unconnected.  
JTAG Interface (test only)  
D4  
TMS  
I
For normal operation, connect as described in the JTAG specification  
(IEEE Std 1149.1). Otherwise, if JTAG is not used, this pin can be left  
unconnected (NC) as it has an internal pull-up resistor.  
C4  
E5  
TDO  
TDI  
O
I
For normal operation, connect as described in the JTAG specification  
(IEEE Std 1149.1). Otherwise, if JTAG is not used, this pin can be left NC.  
For normal operation, connect as described in the JTAG specification  
(IEEE Std 1149.1). Otherwise, if JTAG is not used, this pin can be left NC,  
as it has an internal pull-up resistor.  
F5  
E6  
TCK  
I
I
For normal operation, connect as described in the JTAG specification  
(IEEE Std 1149.1). Otherwise, if JTAG is not used, this pin can be left NC,  
as it has an internal pull-up resistor.  
TAP_SEL  
WLAN JTAG Tap Select.  
Drive low to connect the JTAG interface with the main tap controller; drive  
high to connect with the ARM tap controller. This pin has an internal pull-  
down. For normal operation, the pin can be left as a NC.  
B4  
JTAG_TRST_N  
I
For normal operation, connect as described in the JTAG specification  
(IEEE Std 1149.1). Otherwise, if JTAG is not used, this pin can be left NC,  
as it has an internal pull-up resistor.  
SPROM  
H1  
SPROM_DOUT  
SPROM_DIN  
SPROM_CS  
I/O SPROM Data Out.  
Must be connected to DIN signal of the SPROM.  
I/O SPROM Data In.  
H8  
J6  
Must be connected to DOUT signal of the SPROM.  
I/O SPROM Chip Select.  
Must be connected to the chip select input of the SPROM (typically called  
CS). This pin has an internal pull-down.  
K3  
SPROM_CLK  
I/O SPROM Data Clock.  
Must be connected to the serial clock input of the SPROM (typically called  
SK).  
Broadcom Corporation  
Document 4325-DS04-R  
Signal Descriptions  
Page 45  
BCM4325  
Preliminary Data Sheet  
6/30/09  
Table 8: 196-Ball FBGA Signal Descriptions (Cont.)  
Type Description  
Ball  
Number  
Signal Name  
RF Control Lines  
A7  
RF_SW_CTRL_N_0  
I/O RF Switch Control Line.  
Connect to the BT TX port of the front-end switch.  
I/O RF Switch Control Line.  
B6  
RF_SW_CTRL_N_1  
Connect to the WLAN TX port of the front-end switch.  
I/O Programmable RF switch control line  
I/O RF Switch Control Line.  
A5  
B7  
RF_SW_CTRL_N_3  
RF_SW_CTRL_P_0  
Connect to the RX port (for both WLAN and BT) of the front-end switch.  
I/O Programmable RF switch control line  
I/O Programmable RF switch control line  
I/O 802.11a external PA control  
E7  
B5  
A6  
F6  
B8  
C7  
D6  
RF_SW_CTRL_P_1  
RF_SW_CTRL_P_3  
AMODE_TX_PU  
AMODE_RX_PU  
I/O 802.11a external LNA power supply control  
I/O 802.11g external PA control  
GMODE_TX_PU  
WRF_AFE_DIGIT_TEST1  
GMODE_EXT_LNA_GAIN  
I/O BT/WLAN external LNA power up control  
I/O BT/WLAN external LNA gain control  
WLAN GPIO  
G5  
G3  
J2  
WL_GPIO_0  
I/O WLAN general purpose interface pins.  
These pins ae high impedance on power up and reset. Subsequently, they  
become an input or output under software control. These pins have a  
programmable pull-up/down. See Table 18 on page 73 and Table 19 on  
page 74 for additional details.  
WL_GPIO_1  
WL_GPIO_2  
WL_GPIO_6  
WL_GPIO_7  
G2  
J5  
FM Receiver  
P11  
P12  
M11  
M9  
FM_RXP  
I
I
FM radio RF antenna port  
FM_RXN  
FM radio RF antenna port  
FM_CVAR  
I
Bypass node for FM VCO  
FM_AUDIO_OUT2  
FM_AUDIO_OUT1  
O
O
FM analog audio output channel 2  
FM analog audio output channel 1  
M7  
External Coexistence  
H7  
ERCX_TX_FREQ  
I
Transmit frequency overlap signal from the external radio.  
Used to indicate that the external radio is about to transmit on a restricted  
channel defined by the coexistence mechanism.  
F3  
ERCX_STATUS  
I
I
Coexistence Status from external radio.  
Used to signal external radio priority status and receive/transmit direction.  
G4  
ERCX_RF_ACTIVE  
Indicates external radio is active. This pin is asserted prior to an external  
radio transaction and remains active for the duration of the transaction.  
Broadcom Corporation  
Page 46  
Signal Descriptions  
Document 4325-DS04-R  
Preliminary Data Sheet  
6/30/09  
BCM4325  
Table 8: 196-Ball FBGA Signal Descriptions (Cont.)  
Type Description  
Ball  
Signal Name  
Number  
Bluetooth UART  
P4  
BT_UART_TXD  
O
Bluetooth UART Serial Output. Serial data output for the HCI UART  
Interface.  
L7  
BT_UART_RXD  
I
Bluetooth UART Series Input. Serial data input for the HCI UART Interface.  
N6  
BT_UART_RTS_N  
O
Bluetooth UART Request to Send. Active-low request to send signal for the  
HCI UART interface.  
P5  
BT_UART_CTS_N  
I
Bluetooth UART Clear to Send. Active-low clear to send signal for the HCI  
UART interface.  
Bluetooth Test Mode  
N8  
K9  
BT_TM0  
BT_TM1  
I
I
TM0 and TM1 are used for XTAL_PU polarity.  
Valid settings are TM[1:0] = 00 for high assertion and 01 for low assertion.  
See XTAL_PU signal description for more details.  
Bluetooth test mode pin  
L8  
J8  
BT_TM2  
BT_TM6  
I
I
TM6 is pulled low for the 52-MHz Xtal or TCXO clock and pulled high for all  
other frequencies.  
Bluetooth  
L4  
N5  
N9  
BT_SDA  
I/O Bluetooth BSC data  
I/O Bluetooth BSC clock  
BT_SCL  
BT_RST_N  
I
Low asserting reset for Bluetooth core. This pin must be driven high or low  
(not left floating).  
This pin needs 100 ms delay from BT_REG_ON or WL_REG_ON while the  
BCM4325 is powered up. See Section 22: “Power-Up Sequence and  
Timing” for more details.  
K14  
BT_RFIOP  
O
RF I/O Tuning Port.  
For Class 2 operation, connect directly to ground. Trace lengths from the  
ball to ground must be kept short (parasitic inductance < 0.5 nH). If trace  
lengths need to be longer due to board constraints, add 1.8 pF capacitor to  
GND. For Class 1 operation, connect to external PA input.  
J14  
E3  
BT_RFION  
O
I
RF I/O Antenna Port.  
For Class 2 operation, connect to antenna or BPF. For Class 1 operation,  
connect to T/R switch Receive pin.  
BT_REG_ON  
Used by PMU (along with WL_REG_ON) to decide whether or not to power  
down internal BCM4325 regulators. If BT_REG_ON and WL_REG_ON are  
low, the regulators will be disabled. BT_REG_ON needs about 70 μs delay  
(approx. two 32 kHz clock cycles) after VBAT and VDDIO is up. See Section  
22: “Power-Up Sequence and Timing” for details.  
Bluetooth PCM  
M5  
L5  
K5  
J7  
BT_PCM_SYNC  
I/O PCM sync signal, can be master (output) or slave (input)  
I/O PCM data output  
BT_PCM_OUT  
BT_PCM_IN  
I/O PCM data input  
BT_PCM_CLK  
I/O PCM clock, can be master (output) or slave (input)  
Broadcom Corporation  
Document 4325-DS04-R  
Signal Descriptions  
Page 47  
BCM4325  
Preliminary Data Sheet  
6/30/09  
Table 8: 196-Ball FBGA Signal Descriptions (Cont.)  
Type Description  
Ball  
Number  
Signal Name  
Bluetooth GPIO  
J9  
BT_GPIO_0  
I/O Bluetooth general purpose interface pins.  
These pins are high-impedance on power up and reset. Subsequently, they  
become an input or output through software control. See Table 15 on  
page 68 and Table 17 on page 71 for more information.  
H9  
K10  
M6  
K6  
K7  
L6  
BT_GPIO_1  
BT_GPIO_2  
BT_GPIO_3  
BT_GPIO_4  
BT_GPIO_5  
BT_GPIO_6  
BT_GPIO_7  
K8  
Miscellaneous  
D2  
WL_REG_ON  
I
I
This signal is used by PMU (along with BT_REG_ON) to decide whether or  
not to power down the internal BCM4325 regulators. If BT_REG_ON and  
WL_REG_ON are low, the regulators will be disabled. Also note that if  
WL_RST_N is low (regardless of BT_RST_N state), the WLAN core will be  
powered off. WL_REG_ON needs about 70 μs delay (approx. two 32 kHz  
clock cycles) after VBAT and VDDIO is up. See Section 22: “Power-Up  
Sequence and Timing” for more details.  
A4  
WL_RST_N  
Low Asserting Reset for WLAN Core. This pin must be driven high or low  
(not left floating). See Section 22: “Power-Up Sequence and Timing” for  
more details.  
P8  
P9  
K2  
OSCIN  
I
XTAL oscillator input  
XTAL oscillator output  
OSCOUT  
XTAL_PU  
O
O
The BCM4325 asserts this signal when it wants the host to turn on the  
crystal circuit/reference clock (e.g., TCXO).  
The XTAL_PU assertion polarity is programmable based on BT_TM0 and  
BT_TM1. If BT_TM0 and BT_TM1 connect to ground, XTAL_PU is high  
asserting (i.e., the BCM4325 drives XTAL_PU high when it wants the clock  
turned on). If TM0 connects to VDDIO and BT_TM1 connects to ground,  
XTAL_PU is low asserting.  
Bluetooth Supplies  
M13  
L14  
BT_VDDVCO  
BT_VDDTF  
I
I
1.25V Bluetooth VCO power supply  
Bluetooth internal PA power supply.  
For Class3 Pout < 0 dBm:  
Connect it to 1.25V.  
For Class2 0 dBm < Pout<3 dBm: Connect it to 1.5V.  
For Class1 Pout > 3 dBm:  
Connect it to 2.5V.  
K12  
P14  
G8  
BT_VDDRF  
BT_VDDPLL  
BT_VDDO  
I
I
I
1.25V Bluetooth RF power supply  
1.25V Bluetooth PLL power supply  
Bluetooth digital I/O supply (1.8V to 3.3V)  
N2  
L13  
J11  
N4  
BT_VDDIFIFP  
BT_VDDC  
I
I
1.25V Bluetooth IF and IF PLL power supply  
1.25V Bluetooth baseband core supply  
Broadcom Corporation  
Page 48  
Signal Descriptions  
Document 4325-DS04-R  
Preliminary Data Sheet  
6/30/09  
BCM4325  
Table 8: 196-Ball FBGA Signal Descriptions (Cont.)  
Type Description  
Ball  
Signal Name  
Number  
WLAN Supplies  
H12  
D12  
E13  
H13  
A11  
B13  
G12  
J12  
J13  
K11  
E10  
D7  
WRF_VDDVCO_1P2  
WRF_VDDTX_1P2  
I
I
I
I
I
I
I
I
I
I
I
I
I
I
1.25V supply for WLAN PLL  
1.25V supply for WLAN transmitters  
1.25V supply tor WLAN receivers  
1.25V supply for WLAN PLL  
3.3V for the internal power amplifiers  
3.3V for the internal power amplifiers  
1.25V supply for WLAN LO generator  
1.25V supply for WLAN PLL  
1.25V supply for WLAN CAB  
1.25V supply for WLAN PLL  
1.25V supply for WLAN Baseband PLL  
1.25V supply for DAC  
WRF_VDDRX_1P2  
WRF_VDDPFDCP_1P2  
WRF_VDDPAG_3P3  
WRF_VDDPAA_3P3  
WRF_VDDLO_1P2  
WRF_VDDD_1P2  
WRF_VDDCAB_1P2  
WRF_VDDA_1P2  
WRF_BBPLL_VDD_1P2  
WRF_AFE_AVDD_TXDAC  
WRF_AFE_AVDD_RXADC  
WRF_AFE_AVDD_AUX  
B9  
1.25V supply for ADC  
D10  
1.25V supply for AUX ADC  
Miscellaneous Supplies  
J1  
VDDIO_SD  
I
I
SDIO I/O supply (1.8V to 3.3V)  
RF I/O supply (1.8V to 3.3V)  
L3  
C6  
F10  
F9  
VDDIO_RF  
VDDIO_RF  
VDDIO  
I
I
RF I/O supply (1.8V to 3.3V)  
H6  
F4  
Digital I/O supply (1.8V to 3.3V)  
G6  
G9  
H10  
H4  
L10  
H5  
VDDC  
I
1.25V digital supply for core  
VDD_XTAL  
I
I
1.25V XTAL Power Supply  
2.5V OTP Power Supply  
OTP_VDD25  
FM Receiver Supplies  
M8  
FM_ADVDD  
FM_VDDVCO  
FM_VDDRF  
FM_VDDPLL  
FM_VDDIF  
I
I
I
I
I
1.25V FM supply  
M10  
P10  
N10  
P13  
1.25V FM receiver VCO power supply  
1.25V FM receiver RF power supply  
1.25V FM receiver PLL power supply  
1.25V FM receiver IF block power supply  
Broadcom Corporation  
Document 4325-DS04-R  
Signal Descriptions  
Page 49  
BCM4325  
Preliminary Data Sheet  
6/30/09  
Table 8: 196-Ball FBGA Signal Descriptions (Cont.)  
Type Description  
Ball  
Number  
Signal Name  
Ground  
E4  
VSS  
I
Ground  
E8  
F8  
G7  
L9  
FM_ADVSS  
BTFM_VSS  
I
I
Ground  
Ground  
K13  
M12  
M14  
N11  
N14  
J10  
M4  
BT_VSSC_0  
I
Ground  
P2  
AVSS1_LDO  
AVSS  
I
I
Ground  
Ground  
A13  
B11  
B12  
B14  
C11  
C12  
C13  
C14  
D13  
F12  
G13  
H14  
G10  
D5  
LV_TESTMODE  
TEST_SE  
I
I
Connect to Ground  
C5  
Scan enable input. Connect to Ground  
Broadcom Corporation  
Page 50  
Signal Descriptions  
Document 4325-DS04-R  
Preliminary Data Sheet  
6/30/09  
BCM4325  
Table 8: 196-Ball FBGA Signal Descriptions (Cont.)  
Type Description  
Ball  
Signal Name  
Number  
No Connect  
H11  
G11  
F13  
E11  
F11  
D9  
WRF_GPIO_OUT2  
WRF_GPIO_OUT1  
WRF_PA_100UA  
WRF_AFE_TEST_QP  
WRF_AFE_TEST_QN  
WRF_AFE_TEST_OPQ  
WRF_AFE_TEST_OPI  
WRF_AFE_TEST_ONQ  
WRF_AFE_TEST_ONI  
WRF_AFE_TEST_IP  
WRF_AFE_TEST_IN  
WRF_AFE_IQADC_VREF  
GMODE_RX_PU  
O
O
O
I
No Connect  
No Connect  
No Connect  
No Connect  
No Connect  
No Connect  
No Connect  
No Connect  
No Connect  
No Connect  
No Connect  
No Connect  
I
O
O
O
O
I
C8  
D8  
C9  
D11  
B10  
E12  
F7  
I
O
I/O No connect  
I/O No Connect  
I/O No Connect  
P7  
BT_COEX_OUT1  
BT_COEX_OUT0  
N/C  
N7  
N12  
N13  
O
O
No Connect  
No Connect  
N/C  
Broadcom Corporation  
Document 4325-DS04-R  
Signal Descriptions  
Page 51  
BCM4325  
Preliminary Data Sheet  
6/30/09  
339-PIN WLCSP PACKAGE  
Table 9: 339-Pin WLCSP Signal Descriptions  
Type Description  
Pin # Signal Name  
WLAN RF  
14  
16  
17  
18  
15  
2
WRF_GNDPAA_3P3  
WRF_GNDPAA_3P3  
WRF_GNDPAG_3P3  
WRF_GNDPAG_3P3  
WRF_GNDTX_1P2  
I
I
Internal power amplifier ground  
Internal power amplifier ground  
Internal power amplifier ground  
Internal power amplifier ground  
Radio transmitter ground  
I
I
I
WRF_RFOUTN_A  
O
O
O
O
I
A-band PA transformer primary side ground (need short and solid ground).  
WLAN 802.11a Internal Power Amplifier output (50Ω)  
G-band PA transformer primary side ground (need short and solid ground).  
WLAN 802.11g Internal Power Amplifier output (50Ω)  
ADC Ground  
5
WRF_RFOUTP_A  
6
WRF_RFOUTN_G  
9
WRF_RFOUTP_G  
10  
12  
23  
26  
WRF_AFE_PAD_AVSS_RXADC  
WRF_AFE_PAD_AVSS_TXDAC  
WRF_AFE_TSSI_A  
I
DAC Ground  
I
Transmit signal strength indicator for external 802.11a Power Amplifier  
WRF_RFINN_A2_XFMR  
O
Ground of the primary side of the A-band RX transformer #2. Need  
short and solid ground  
30  
31  
32  
36  
37  
38  
39  
40  
42  
46  
WRF_AFE_TSSI_G  
WRF_RFINP_A2  
I
I
Transmit signal strength indicator for external 802.11g Power Amplifier  
WLAN 802.11a Internal LNA #2 RX input (50Ω)  
WLAN directional coupler input for 802.11a (50Ω)  
WLAN 802.11a Internal LNA RX Positive input (100Ω)  
WLAN directional coupler input for 802.11g (50Ω)  
WLAN Baseband PLL Ground  
WRF_EXTCOUPLE_AIN  
WRF_RFINP_A1  
I
I
WRF_EXTCOUPLE_GIN  
WRF_BBPLL_GND_1P2  
WRF_GNDLO_1P2  
I
I
I
WLAN LO Generator Ground  
WRF_RFINN_A1_XFMR  
WRF_GNDRX_1P2  
I
WLAN 802.11a Internal LNA RX Negative input (100Ω)  
WLAN RX Ground  
I
WRF_RFINN_G2_XFMR  
O
Ground of the primary side of the G-band RX transformer #2. Need  
short and solid ground  
48  
49  
51  
52  
WRF_RFINP_G2  
I
I
WLAN 802.11g Internal LNA #2 RX input (50Ω)  
WLAN 802.11g and BT Shared LNA RX input (50Ω)  
WLAN PLL Ground  
WRF_RFINP_G1  
WRF_GNDVCO_1P2  
WRF_RFINN_G1_XFMR  
I
O
Ground of the primary side of the Shared RX transformer. Need short and  
solid ground  
53  
55  
57  
60  
61  
WRF_GNDD_1P2  
WRF_GNDPFDCP_1P2  
WRF_GNDA_1P2  
WRF_GNDCAB_1P2  
WRF_EXTREFIN  
I
I
I
I
I
WLAN PLL Ground  
WLAN PLL Ground  
WLAN PLL Ground  
WLAN CAB Ground  
32.768 kHz LPO clock input. Used for low-power mode timing. This pin  
needs be driven high or low (not left floating).  
62  
WRF_RES_EXT  
I
I
I
Connect to external 15 kΩ (1% tolerance) resistor to ground.  
Disables WLAN radio when low  
180 WRF_DISABLE_N  
178 WL_RST_N  
Low asserting reset for WLAN core. This pin must be driven high or low (not  
left floating). See Section 22: “Power-Up Sequence and Timing”.  
Broadcom Corporation  
Page 52  
Signal Descriptions  
Document 4325-DS04-R  
Preliminary Data Sheet  
6/30/09  
BCM4325  
Table 9: 339-Pin WLCSP Signal Descriptions (Cont.)  
Type Description  
Pin # Signal Name  
Integrated LDOs  
145 VIN_CLDO  
146  
I
O
I
1.5V input for CLDO, 200 mA  
Note: If CLDO is not used, these pins must be connected to ground.  
147 VOUT_CLDO  
148  
1.25V output for CLDO, 200 mA  
149 VIN_LNLDO1  
150  
1.5V input for LNLDO1, 130 mA  
Note: If LNLDO1 is not used, these pins must be connected to ground.  
3.3V or 1.5V input (which could be the output of CBUCK), 80 mA current.  
Note: If LNLDO2 is not used, this pin must be connected to ground.  
1.5V/3.3V Programmable input for LNLDO4  
155 VIN_LNLDO2  
I
158 VIN_LNLDO4  
I
Note: If LNLDO4 is not used, this pin must be connected to ground.  
1.25V output for LNLDO1, 130 mA  
151 VOUT_LNLDO1  
152  
O
O
156 VOUT_LNLDO2  
1.25V output for LNLDO2, 80 mA. It can be programmed to output 2.5V  
after reset (LNLDO2 is off by default. Software can program it to 1.25V or  
2.5V before enabling it).  
159 VOUT_LNLDO4  
160 AVDD2P5_LDO  
162 VREF_LDO  
O
I
1.25V/2.5V programmable output for LNLDO4, 80 mA  
2.5V supply for internal LDO. Connect to SR_AVDD2P5  
Vref bypass. Connect to external capacitor.  
Ground  
O
I
153 AVSS1_LDO  
161 AVSS2_LDO  
I
Ground for band-gap reference  
Integrated Switching Regulators  
101 SR_VLX1  
108  
O
Core buck regulator: Output to inductor  
113 SR_VLX1  
100 SR_VBAT1A  
107  
O
I
Core buck regulator: Output to inductor  
Core buck regulator: Shared battery voltage input  
Note: These pins must be connected to VBAT (or an external 3.3V  
supply) even if the BBOOST and CBUCK regulators are not used.  
102 SR_PVSS1  
103 SR_VFB1  
I
I
Core buck regulator: Power switch ground  
Core buck regulator: Output voltage feedback  
Note: This pin should be connected to ground if CBUCK is not used.  
Clean VBAT supply for LDOs and Bandgap  
104 SR_VBAT1B  
I
Note: This pin must be connected to VBAT (or an external 3.3V supply)  
even if the BBOOST and CBUCK regulators are not used.  
109 SR_PVSS1  
110 SR_VSSPLDO  
112 SR_VBAT1A  
I
I
I
Core buck regulator: Power switch ground  
Tracks battery voltage: Connect to 220 nF external capacitor to battery  
Core buck regulator: Shared battery voltage input  
Note: This pin must be connected to VBAT (or an external 3.3V supply)  
even if the BBOOST and CBUCK regulators are not used.  
114 SR_PVSS1  
I
Core buck regulator: Power switch ground  
115 SR_TESTSWG  
I/O Connect to 2.5V VDD (which could be SR_AVDD2P5) with or without 0Ω  
stuffing option.  
116 SR_AVDD2P5  
117 SR_AVSS  
O
I
2.5V LDO output  
Analog Ground  
Broadcom Corporation  
Document 4325-DS04-R  
Signal Descriptions  
Page 53  
BCM4325  
Preliminary Data Sheet  
6/30/09  
Table 9: 339-Pin WLCSP Signal Descriptions (Cont.)  
Type Description  
Pin # Signal Name  
118 SR_VBAT1A  
I
Core buck regulator: Shared battery voltage input  
Note: This pin must be connected to VBAT (or an external 3.3V supply)  
even if the BBOOST and CBUCK regulators are not used.  
119 SR_AVSS  
120 SR_VDDNLDO  
122 SR_VBATBB  
123  
I
O
I
Analog Ground  
NLDO output: Connect to 220 nF external to capacitor to ground  
Buck boost regulator: Battery voltage Input  
Note: These pins must be connected to VBAT (or an external 3.3V  
supply) even if the BBOOST and CBUCK regulators are not used.  
124 SR_VFBBB  
I
I
Buck boost regulator: Voltage feedback  
Note: This pin should be connected to ground if BBOOST is not used.  
Buck boost regulator: Battery voltage input  
126 SR_VBATBB  
127  
Note: These pins must be connected to VBAT (or an external 3.3V  
supply) even if the BBOOST and CBUCK regulators are not used.  
128  
129 SR_VLX1BB  
O
I
Buck boost regulator: Inductor +ve terminal  
Buck boost regulator: Power switch ground  
Buck boost regulator: Inductor –ve terminal  
Buck boost regulator: 3.3V output  
130  
131  
132  
133 SR_PVSSB  
134  
135  
136  
137 SR_VLX2BB  
O
O
138  
139  
140  
141 SR_VOUTBB  
142  
143  
144  
SDIO Bus Interface  
284 SDIO_DATA_0  
I/O SDIO Data Line 0. See Table 18 on page 73 and Table 19 on page 74 for  
more information.  
272 SDIO_DATA_1  
271 SDIO_DATA_2  
270 SDIO_DATA_3  
281 SDIO_CMD  
285 SDIO_CLK  
I/O SDIO Data Line 1. See Table 18 on page 73 and Table 19 on page 74 for  
more information.  
I/O SDIO Data Line 2. See Table 18 on page 73 and Table 19 on page 74 for  
more information.  
I/O SDIO Data Line 3. See Table 18 on page 73 and Table 19 on page 74 for  
more information.  
I/O SDIO Command Line. See Table 18 on page 73 and Table 19 on page 74  
for more information.  
I
SDIO Clock. See Table 18 on page 73 and Table 19 on page 74 for more  
information.  
Broadcom Corporation  
Page 54  
Signal Descriptions  
Document 4325-DS04-R  
Preliminary Data Sheet  
6/30/09  
BCM4325  
Table 9: 339-Pin WLCSP Signal Descriptions (Cont.)  
Type Description  
Pin # Signal Name  
WLAN UART  
247 WL_UART_RX0  
I
Serial Input for WLAN UART. Connect to RS-232 DTE for exchanging data  
with other serial devices. If not used it may be left unconnected.  
259 WL_UART_TX0  
260 WL_UART_TX1  
I/O Serial Output for WLAN UART. Connect to RS-232 DTE for exchanging  
data with other serial devices. If not used it may be left unconnected.  
I/O Serial Output for second WLAN UART. Connect to RS-232 DTE for  
exchanging data with other serial devices. If not used it may be left  
unconnected.  
275 WL_UART_RX1  
I
Serial Input for second WLAN UART. Connect to RS-232 DTE for  
exchanging data with other serial devices. If not used it may be left  
unconnected.  
JTAG Interface (test only)  
190 TDI  
I
For normal operation, connect as described in the JTAG specification (IEEE  
Std 1149.1). Otherwise, if JTAG is not used, these pins can be left  
unconnected (NC) as they have internal pull-up resistors.  
171 TDO  
191 TMS  
O
I
For normal operation, connect as described in the JTAG specification (IEEE  
Std 1149.1). Otherwise, if JTAG is not used, this pin can be left NC.  
For normal operation, connect as described in the JTAG specification (IEEE  
Std 1149.1). Otherwise, if JTAG is not used, these pins can be left NC as  
they have internal pull-up resistors.  
184 TCK  
I
I
I
For normal operation, connect as described in the JTAG specification (IEEE  
Std 1149.1). Otherwise, if JTAG is not used, these pins can be left NC as  
they have internal pull-up resistors.  
172 JTAG_TRST_N  
177 TAP_SEL  
For normal operation, connect as described in the JTAG specification (IEEE  
Std 1149.1). Otherwise, if JTAG is not used, these pins can be left NC as  
they have internal pull-up resistors.  
WLAN JTAG tap select: Drive low to connect the JTAG interface with the  
main tap controller; drive high to connect with the ARM tap controller. This  
pin has an internal pull-down. For normal operation the pin can be left as  
NC.  
SPROM  
233 SPROM_DIN  
246 SPROM_CS  
I
SPROM Data In. Must be connected to DOUT signal of the SPROM.  
I/O SPROM Chip Select. Must be connected to the chip select input of the  
SPROM (typically called CS). This pin has an internal pull-down.  
286 SPROM_CLK  
I/O SPROM Data Clock. Must be connected to the serial clock input of the  
SPROM (typically called SK).  
287 SPROM_DOUT  
I/O SPROM Data Out. Must be connected to DIN signal of the SPROM.  
SFLASH  
206 SFLASH_Q  
214 SFLASH_D  
228 SFLASH_C  
229 SFLASH_S  
I
Data input from serial flash (active low)  
Output data to serial flash  
O
O
O
Serial flash clock  
Serial flash chip select (active low)  
Broadcom Corporation  
Document 4325-DS04-R  
Signal Descriptions  
Page 55  
BCM4325  
Preliminary Data Sheet  
6/30/09  
Table 9: 339-Pin WLCSP Signal Descriptions (Cont.)  
Type Description  
Pin # Signal Name  
RF Control Lines  
168 RF_SW_CTRL_P_0  
O
RF Switch Control Line. Connect to the RX port (for both WLAN and BT) of  
the front-end switch.  
181 RF_SW_CTRL_P_1  
170 RF_SW_CTRL_P_2  
197 RF_SW_CTRL_P_3  
164 RF_SW_CTRL_N_0  
174 RF_SW_CTRL_N_1  
176 RF_SW_CTRL_N_2  
189 RF_SW_CTRL_N_3  
169 WRF_AFE_DIGIT_TEST1  
182 AMODE_TX_PU  
O
O
O
O
O
O
O
Programmable RF switch control line  
Programmable RF switch control line  
Programmable RF switch control line  
RF switch control line. Connect to the BT TX port of the front-end switch.  
RF switch control line. Connect to the WLAN TX port of the front-end switch.  
Programmable RF switch control line  
Programmable RF switch control line  
I/O BT/WLAN external LNA power up control  
O
O
O
O
O
802.11a external PA control  
196 AMODE_RX_PU  
802.11a external LNA power supply control  
802.11a external LNA gain control  
802.11g external PA control  
188 AMODE_EXT_LNA_GAIN  
187 GMODE_TX_PU  
175 GMODE_EXT_LNA_GAIN  
BT/WLAN external LNA gain control  
WLAN GPIO  
213 WL_GPIO_0  
240 WL_GPIO_1  
239 WL_GPIO_2  
238 WL_GPIO_4  
237 WL_GPIO_5  
251 WL_GPIO_6  
225 WL_GPIO_7  
250 WL_GPIO_8  
236 WL_GPIO_9  
249 WL_GPIO_10  
262 WL_GPIO_11  
248 WL_GPIO_12  
224 WL_GPIO_13  
235 WL_GPIO_14  
261 WL_GPIO_15  
I/O WLAN general purpose interface pins.  
These pins are high impedance on power up and reset. Subsequently, they  
become an input or output under software control. Each pin has a  
programmable pull-up/down, see Table 14 on page 67 and Table 18 on  
page 73 for more information.  
Broadcom Corporation  
Page 56  
Signal Descriptions  
Document 4325-DS04-R  
Preliminary Data Sheet  
6/30/09  
BCM4325  
Table 9: 339-Pin WLCSP Signal Descriptions (Cont.)  
Type Description  
Pin # Signal Name  
FM Receiver  
76  
75  
83  
90  
91  
FM_AUDIO_OUT1  
FM_AUDIO_OUT2  
FM_CVAR  
O
O
I
FM analog audio output channel 1  
FM analog audio output channel 2  
Bypass node for FM VCO  
FM_RXN  
I
FM radio RF antenna port  
FM_RXP  
I
FM radio RF antenna port  
External Coexistence  
199 ERCX_PRISEL  
207 ERCX_STATUS  
O
I
External Radio Coexistence. Priority Select.  
Coexistence status from external radio. Used to signal external radio  
priority status and receive/transmit direction.  
215 ERCX_RF_ACTIVE  
219 ERCX_TX_FREQ  
I
I
Indicates external radio is active. This pin is asserted prior to an external  
radio transaction and remains active for the duration of the transaction.  
Transmit frequency overlap signal from the external radio. Used to indicate  
that the external radio is about to transmit on a restricted channel defined  
by the coexistence mechanism.  
230 ERCX_TXCONF  
O
External Radio Coexistence. Transmit Confirmation.  
Bluetooth UART  
269 BT_UART_RXD  
321 BT_UART_TXD  
I
Bluetooth UART Serial Input. Serial data input for the HCI UART Interface.  
O
Bluetooth UART Serial Output. Serial data output for the HCI UART  
Interface.  
342 BT_UART_CTS_N  
291 BT_UART_RTS_N  
I
Bluetooth UART Clear to Send. Active-low clear to send signal for the HCI  
UART interface.  
O
Bluetooth UART Request to Send. Active-low request to send signal for the  
HCI UART interface.  
Bluetooth Test Mode  
309 BT_TM0  
288 BT_TM1  
I
I
M0 and TM1 are used for XTAL_PU polarity. Valid settings are TM[1:0] =  
00 for high assertion; and 01 for low assertion.  
See XTAL_PU signal description for more details.  
Bluetooth test mode pin  
316 BT_TM2  
325 BT_TM6  
I
I
TM6 is pulled low for the 52 MHz Xtal or TCXO clock and pulled high for all  
other frequencies.  
Bluetooth  
63  
66  
BT_RFION  
BT_RFIOP  
O
O
RF I/O antenna port. For Class 2 operation, connect to antenna or BPF.  
RF I/O tuning port. For Class 2 operation, connect directly to ground. Trace  
lengths from the ball to ground must be kept short (parasitic inductance <  
0.5 nH). If trace lengths need to be longer due to board constraints, add a  
0.9pF capacitor to GND.  
97  
BT_RST_N  
I
Low asserting reset for Bluetooth core. This pin needs be driven high or low  
(not left floating).  
This pin needs 100 ms delay from BT_REG_ON or WL_REG_ON while  
BCM4325 is powered up. See Section 22: “Power-Up Sequence and  
Timing” for more details.  
336 BT_SCL  
303 BT_SDA  
308 BT_XCS_N  
I/O Bluetooth BSC Clock  
I/O Bluetooth BSC Data  
O
Active low chip select for external code space in Flash memory  
Broadcom Corporation  
Document 4325-DS04-R  
Signal Descriptions  
Page 57  
BCM4325  
Preliminary Data Sheet  
6/30/09  
Table 9: 339-Pin WLCSP Signal Descriptions (Cont.)  
Type Description  
Pin # Signal Name  
276 BT_XOE_N  
324 BT_XWE_N  
299 BT_XA_1  
317 BT_XA_2  
289 BT_XA_3  
332 BT_XA_4  
310 BT_XA_5  
326 BT_XA_6  
278 BT_XA_7  
290 BT_XA_8  
311 BT_XA_9  
327 BT_XA_10  
334 BT_XA_11  
301 BT_XA_12  
312 BT_XA_13  
335 BT_XA_14  
279 BT_XA_15  
329 BT_XA_16  
265 BT_XA_17  
263 BT_XA_18  
343 BT_XD_0  
313 BT_XD_1  
292 BT_XD_2  
280 BT_XD_3  
293 BT_XD_4  
344 BT_XD_5  
337 BT_XD_6  
314 BT_XD_7  
304 BT_XD_8  
294 BT_XD_9  
305 BT_XD_10  
345 BT_XD_11  
331 BT_XD_12  
315 BT_XD_13  
346 BT_XD_14  
347 BT_XD_15  
322 BT_VSSC_0  
323  
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
Active low output enable output for dataspace  
Active low write enable output for dataspace  
Address bit 1 for Bluetooth Flash ROM/External SRAM  
Address bit 2 for Bluetooth Flash ROM/External SRAM  
Address bit 3 for Bluetooth Flash ROM/External SRAM  
Address bit 4 for Bluetooth Flash ROM/External SRAM  
Address bit 5 for Bluetooth Flash ROM/External SRAM  
Address bit 6 for Bluetooth Flash ROM/External SRAM  
Address bit 7 for Bluetooth Flash ROM/External SRAM  
Address bit 8 for Bluetooth Flash ROM/External SRAM  
Address bit 9 for Bluetooth Flash ROM/External SRAM  
Address bit 10 for Bluetooth Flash ROM/External SRAM  
Address bit 11 for Bluetooth Flash ROM/External SRAM  
Address bit 12 for Bluetooth Flash ROM/External SRAM  
Address bit 13 for Bluetooth Flash ROM/External SRAM  
Address bit 14 for Bluetooth Flash ROM/External SRAM  
Address bit 15 for Bluetooth Flash ROM/External SRAM  
Address bit 16 for Bluetooth Flash ROM/External SRAM  
Address bit 17 for Bluetooth Flash ROM/External SRAM  
Address bit 18 for Bluetooth Flash ROM/External SRAM  
I/O Bidirectional data bus bit 0 for Flash ROM  
I/O Bidirectional data bus bit 1 for Flash ROM  
I/O Bidirectional data bus bit 2 for Flash ROM  
I/O Bidirectional data bus bit 3 for Flash ROM  
I/O Bidirectional data bus bit 4 for Flash ROM  
I/O Bidirectional data bus bit 5 for Flash ROM  
I/O Bidirectional data bus bit 6 for Flash ROM  
I/O Bidirectional data bus bit 7 for Flash ROM  
I/O Bidirectional data bus bit 8 for Flash ROM  
I/O Bidirectional data bus bit 9 for Flash ROM  
I/O Bidirectional data bus bit 10 for Flash ROM  
I/O Bidirectional data bus bit 11 for Flash ROM  
I/O Bidirectional data bus bit 12 for Flash ROM  
I/O Bidirectional data bus bit 13 for Flash ROM  
I/O Bidirectional data bus bit 14 for Flash ROM  
I/O Bidirectional data bus bit 15 for Flash ROM  
I
Ground  
Broadcom Corporation  
Page 58  
Signal Descriptions  
Document 4325-DS04-R  
Preliminary Data Sheet  
6/30/09  
BCM4325  
Table 9: 339-Pin WLCSP Signal Descriptions (Cont.)  
Type Description  
Pin # Signal Name  
Bluetooth PCM  
268 BT_PCM_CLK  
302 BT_PCM_OUT  
341 BT_PCM_IN  
I/O PCM clock, can be master (output) or slave (input).  
I/O PCM data output  
I/O PCM data input  
328 BT_PCM_SYNC  
I/O PCM sync signal, can be master (output) or slave (input).  
Bluetooth GPIO  
264 BT_GPIO_0  
252 BT_GPIO_1  
298 BT_GPIO_2  
319 BT_GPIO_3  
340 BT_GPIO_4  
333 BT_GPIO_5  
318 BT_GPIO_6  
339 BT_GPIO_7  
I/O Bluetooth general purpose interface pin.  
These pins are high-impedance on power up and reset. Subsequently, they  
become an input or output through software control. See Table 15 on  
page 68 and Table 17 on page 71 for more information.  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
Miscellaneous  
95  
96  
OSCIN  
I
XTAL oscillator input  
XTAL oscillator output  
OSCOUT  
O
O
274 XTAL_PU  
The BCM4325 asserts this signal when it wants the host to turn on the  
crystal circuit/ reference clock like TCXO. Note that the XTAL_PU assertion  
polarity is programmable based on BT_TM0 and BT_TM1. If BT_TM0 and  
BT_TM1 connect to ground, XTAL_PU is high asserting (i.e., the BCM4325  
drives XTAL_PU high when it wants the clock turned on). If TM0 connects  
to VDDIO and BT_TM1 connects to ground, XTAL_PU is low asserting.  
121 WL_REG_ON  
I
I
Used by PMU (along with BT_REG_ON) to decide whether or not to power  
down internal BCM4325 regulators. If both BT_REG_ON and  
WL_REG_ON are low, the regulators will be disabled. Also note that if  
WL_RST_N is low (regardless of BT_RST_N state) the WLAN core will be  
powered off. WL_REG_ON needs about 70 μs delay (approx. two 32-kHz  
clock cycles) after VBAT and VDDIO is up. See Section 22: “Power-Up  
Sequence and Timing”.  
123 BT_REG_ON  
Used by PMU (along with WL_REG_ON) to decide whether or not to power  
down internal BCM4325 regulators. If BT_REG_ON and WL_REG_ON are  
low, the regulators will be disabled. BT_REG_ON needs about 70 μs delay  
(approx. two 32-kHz clock cycles) after VBAT and VDDIO is up. See  
Section 22: “Power-Up Sequence and Timing” for more details.  
Broadcom Corporation  
Document 4325-DS04-R  
Signal Descriptions  
Page 59  
BCM4325  
Preliminary Data Sheet  
6/30/09  
Table 9: 339-Pin WLCSP Signal Descriptions (Cont.)  
Type Description  
Pin # Signal Name  
Bluetooth Supplies  
64  
68  
BT_VDDRF  
BT_VDDTF  
I
I
1.25V Bluetooth RF power supply  
Bluetooth Internal PA power supply.  
For Class3 Pout < 0 dBm:  
Connect to 1.25V  
For Class2 0 dBm < Pout < 3 dBm: Connect to 1.5V  
For Class1 Pout > 3 dBm: Connect to 2.5V  
70  
73  
77  
BT_VDDIF  
I
I
I
I
I
1.25V Bluetooth IF block power supply  
1.25V Bluetooth VCO power supply  
BT_VDDVCO  
BT_VDDPLL  
1.25V Bluetooth PLL power supply  
231 BT_VDDO  
242 BT_VDDO  
243  
Bluetooth Digital I/O supply (from 1.8V to 3.3V)  
Bluetooth Digital I/O supply (1.8V to 3.3V)  
266 BT_VDDC  
267  
I
1.25V Bluetooth baseband core supply  
320  
338 BT_VDDO  
330 BT_VDDC  
I
I
Bluetooth Digital I/O supply (1.8V to 3.3V)  
1.25V Bluetooth baseband core supply  
WLAN Supplies  
3
WRF_VDDPAA_3P3  
I
I
3.3V for the internal power amplifiers  
3.3V for the internal power amplifiers  
4
7
WRF_VDDPAG_3P3  
8
11  
13  
27  
29  
33  
41  
43  
50  
54  
56  
58  
59  
WRF_AFE_AVDD_RXADC  
WRF_AFE_AVDD_TXDAC  
WRF_VDDTX_1P2  
I
I
I
I
I
I
I
I
I
I
I
I
1.25V supply for ADC  
1.25V supply for DAC  
1.25V supply for WLAN transmitters  
1.25V supply for AUX ADC  
WRF_AFE_AVDD_AUX  
WRF_BBPLL_VDD_1P2  
WRF_VDDRX_1P2  
1.25V supply for WLAN baseband PLL  
1.25V supply tor WLAN receivers  
1.25V supply for WLAN LO generator  
1.25V supply for WLAN PLL  
1.25V supply for WLAN PLL  
1.25V supply for WLAN PLL  
1.25V supply for WLAN PLL  
1.25V supply for WLAN CAB  
WRF_VDDLO_1P2  
WRF_VDDVCO_1P2  
WRF_VDDD_1P2  
WRF_VDDPFDCP_1P2  
WRF_VDDA_1P2  
WRF_VDDCAB_1P2  
FM Receiver Supplies  
72  
89  
92  
93  
94  
FM_ADVDD  
FM_VDDIF  
I
I
I
I
I
1.25V FM supply  
1.25V FM receiver IF block power supply  
FM receiver power supply  
FM_VDDRX  
FM_VDDVCO  
FM_VDDPLL  
1.25V FM receiver VCO power supply  
1.25V FM receiver PLL power supply  
Broadcom Corporation  
Page 60  
Signal Descriptions  
Document 4325-DS04-R  
Preliminary Data Sheet  
6/30/09  
BCM4325  
Table 9: 339-Pin WLCSP Signal Descriptions (Cont.)  
Type Description  
Pin # Signal Name  
Miscellaneous Supplies  
86  
VDD_XTAL  
I
I
1.25V XTAL power supply  
1.25V digital supply  
200 VDD  
201  
202  
203  
217  
220  
221  
232  
211  
244  
306  
210 VDDIO  
I
Digital I/O supply (1.8V to 3.3V)  
216  
223  
226  
227  
257 VDDIO_SD  
I
I
SDIO I/O supply (1.8V to 3.3V)  
RF I/O supply (1.8V to 3.3V)  
296  
297  
185 VDDIO_RF  
165  
193  
194  
205  
198  
234 OTP_VDD25  
167 PACKAGEOPTION_1  
I
I
2.5V OTP power supply  
Connect to VDDIO_RF (1.8V to 3.3V)  
Broadcom Corporation  
Document 4325-DS04-R  
Signal Descriptions  
Page 61  
BCM4325  
Preliminary Data Sheet  
6/30/09  
Table 9: 339-Pin WLCSP Signal Descriptions (Cont.)  
Type Description  
Pin # Signal Name  
Ground  
65  
67  
69  
71  
74  
78  
79  
82  
84  
85  
88  
98  
BT_VSSRF  
BT_VSSPA  
BT_VSSIF  
I
I
I
I
I
I
I
I
I
I
I
Bluetooth RF ground  
Bluetooth internal PA ground  
Bluetooth IF block ground  
Ground  
FM_ADVSS  
FM_VSSVCO  
BT_VSSVCO  
BT_VSSPLL  
FM_VSSRX  
FM_VSSPLL  
VSS_XTAL  
FM_VSSIF  
SR_VFB2  
FM receiver VCO ground  
Bluetooth VCO ground  
Bluetooth PLL ground  
FM receiver ground  
FM receiver PLL ground  
XTAL ground  
FM IF block ground  
Connect to ground  
Connect to ground  
Ground  
I
282 Ground  
I
I
204 VSS  
245  
192  
179 PACKAGEOPTION_3  
I
I
I
Connect to ground  
Connect to ground  
Ground  
173 PACKAGEOPTION_2  
208 VSS  
209  
212  
218  
222  
253 BT_VSSC_0  
254  
I
Ground  
255  
256 VSS  
I
I
I
I
I
Ground  
241 BT_VSSC_0  
163 PACKAGEOPTION_0  
183 LV_TESTMODE  
166 TEST_SE  
Ground  
Connect to ground  
Connect to ground  
Scan Enable Input. Connect to ground.  
Broadcom Corporation  
Page 62  
Signal Descriptions  
Document 4325-DS04-R  
Preliminary Data Sheet  
6/30/09  
BCM4325  
Table 9: 339-Pin WLCSP Signal Descriptions (Cont.)  
Type Description  
Pin # Signal Name  
No Connect  
19  
20  
21  
22  
24  
25  
28  
34  
35  
44  
45  
47  
80  
81  
87  
99  
WRF_AFE_TEST_IN  
WRF_AFE_TEST_OPI  
WRF_AFE_TEST_ONQ  
WRF_AFE_TEST_IP  
WRF_AFE_TEST_ONI  
WRF_AFE_TEST_OPQ  
WRF_AFE_IQADC_VREF  
WRF_AFE_TEST_QP  
WRF_AFE_TEST_QN  
WRF_GPIO_OUT1  
I
No Connect  
No Connect  
No Connect  
No Connect  
No Connect  
No Connect  
No Connect  
No Connect  
No Connect  
No Connect  
No Connect  
No Connect  
No Connect  
O
O
I
O
O
O
I
I
O
O
O
O
WRF_GPIO_OUT2  
WRF_PA_100UA  
NO CONNECT (NC)  
DUMMY_BUMP  
SR_VLX2  
N/A No Connect  
O
O
O
No Connect  
No Connect  
No connect  
106 SR_VLX2  
186 GMODE_RX_PU  
273 WRF_AFE_DIGIT_TEST0  
195 WRF_AFE_DIGIT_TEST2  
300 BT_COEX_OUT1  
277 BT_COEX_OUT0  
I/O No Connect  
I/O No Connect  
I/O No Connect  
I/O No Connect  
Broadcom Corporation  
Document 4325-DS04-R  
Signal Descriptions  
Page 63  
BCM4325  
Preliminary Data Sheet  
6/30/09  
PIN VOLTAGE DOMAINS  
Table 10: BT_VDDO Domain (1.8V to 3.3V)  
FBGA Pin#  
Signal  
WLCSP Pin #  
Type  
BT_REG_ON  
BT_GPIO_1  
BT_PCM_CLK  
BT_TM6  
E3  
H9  
J7  
J8  
J9  
K10  
K5  
K6  
K7  
K8  
K9  
L4  
L5  
L6  
N8  
L8  
M5  
M6  
N5  
N6  
N7  
L7  
N9  
P4  
P5  
P7  
121  
252  
268  
325  
264  
298  
341  
340  
333  
339  
288  
303  
302  
318  
309  
316  
328  
319  
336  
291  
277  
269  
97  
I
I/O  
I/O  
I
BT_GPIO_0  
BT_GPIO_2  
BT_PCM_IN  
BT_GPIO_4  
BT_GPIO_5  
BT_GPIO_7  
BT_TM1  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I
BT_SDA  
I/O  
I/O  
I/O  
I
BT_PCM_OUT  
BT_GPIO_6  
BT_TM0  
BT_TM2  
I
BT_PCM_SYNC  
BT_GPIO_3  
BT_SCL  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I
BT_UART_RTS_N  
BT_COEX_OUT0  
BT_UART_RXD  
BT_RST_N  
BT_UART_TXD  
BT_UART_CTS_N  
BT_COEX_OUT1  
BT_XCS_N  
321  
342  
300  
308  
276  
324  
Note  
Note  
I/O  
I/O  
I/O  
O
BT_XOE_N  
O
BT_XWE_N  
BT_XA[18:1]  
BT_XD[15:0]  
O
O
I/O  
Note: For FBGA pin numbers see Table 8: “196-Ball FBGA Signal Descriptions,” on page 43.  
Note: For WLCSP pin numbers, see Table 9: “339-Pin WLCSP Signal Descriptions,” on page 52.  
Broadcom Corporation  
Page 64  
Signal Descriptions  
Document 4325-DS04-R  
Preliminary Data Sheet  
6/30/09  
BCM4325  
Table 11: VDDIO Domain (1.8V to 3.3V)  
FBGA Pin#  
Signal  
WLCSP Pin#  
Type  
WL_RST_N  
A4  
D2  
F3  
G2  
G3  
G4  
G5  
H1  
H3  
H7  
H8  
J2  
J4  
J5  
J6  
K3  
K12  
K2  
178  
125  
207  
251  
240  
215  
213  
287  
247  
219  
233  
239  
259  
225  
246  
286  
61  
I
WL_REG_ON  
ERCX_STATUS  
WL_GPIO_6  
I
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I
WL_GPIO_1  
ERCX_RF_ACTIVE  
WL_GPIO_0  
SPROM_DOUT  
WL_UART_RX0  
ERCX_TX_FREQ  
SPROM_DIN  
WL_GPIO_2  
WL_UART_TX0  
WL_GPIO_7  
SPROM_CS  
SPROM_CLK  
WRF_EXTREFIN  
XTAL_PU  
274  
260  
275  
206  
214  
228  
229  
238  
237  
250  
236  
249  
262  
248  
224  
235  
261  
199  
230  
O
WL_UART_TX1  
WL_UART_RX1  
SFLASH_Q  
I/O  
I
I
SFLASH_D  
O
SFLASH_C  
O
SFLASH_S  
O
WL_GPIO_4  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
O
WL_GPIO_5  
WL_GPIO_8  
WL_GPIO_9  
WL_GPIO_10  
WL_GPIO_11  
WL_GPIO_12  
WL_GPIO_13  
WL_GPIO_14  
WL_GPIO_15  
ERCX_PRISEL  
ERCX_TXCONF  
O
Broadcom Corporation  
Document 4325-DS04-R  
Signal Descriptions  
Page 65  
BCM4325  
Preliminary Data Sheet  
6/30/09  
Table 12: VDDIO_RF Domain (1.8V to 3.3V)  
FBGA Pin#  
Signal  
WLCSP Pin#  
Type  
RF_SW_CTRL_N_3  
AMODE_TX_PU  
RF_SW_CTRL_N_0  
WRF_DISABLE_N  
JTAG_TRST_N  
RF_SW_CTRL_P_3  
RF_SW_CTRL_N_1  
RF_SW_CTRL_P_0  
GMODE_TX_PU  
TDO  
A5  
A6  
A7  
A8  
B4  
B5  
B6  
B7  
B8  
C4  
C5  
C7  
D4  
D5  
D6  
E5  
E6  
E7  
F5  
F6  
F7  
189  
182  
164  
180  
172  
197  
174  
168  
187  
171  
166  
169  
191  
183  
175  
190  
177  
181  
184  
196  
186  
170  
176  
188  
I/O  
I/O  
I/O  
I/O  
I
I/O  
I/O  
I/O  
I/O  
I/O  
I
TEST_SE  
WRF_AFE_DIGIT_TEST1  
TMS  
I/O  
I
LV_TESTMODE  
GMODE_EXT_LNA_GAIN  
TDI  
I
I/O  
I
TAP_SEL  
I
RF_SW_CTRL_P_1  
TCK  
I/O  
I
AMODE_RX_PU  
GMODE_RX_PU  
RF_SW_CTRL_P_2  
RF_SW_CTRL_N_2  
AMODE_EXT_LNA_GAIN  
I/O  
I/O  
O
O
O
Table 13: VDDIO_SD Domain (1.8V to 3.3V)  
FBGA Pin#  
Signal  
WLCSP Pin#  
Type  
SDIO_CMD  
K4  
L2  
H2  
J3  
P6  
K1  
281  
284  
272  
271  
270  
285  
273  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
SDIO_DATA_0  
SDIO_DATA_1  
SDIO_DATA_2  
SDIO_DATA_3  
SDIO_CLK  
WRF_AFE_DIGIT_TEST0  
Broadcom Corporation  
Page 66  
Signal Descriptions  
Document 4325-DS04-R  
Preliminary Data Sheet  
6/30/09  
BCM4325  
WLAN GPIO SIGNALS AND STRAPPING OPTIONS  
The pins listed in Table 14 are sampled at Power-On Reset (POR) to determine the various operating modes. Sampling  
occurs within a few milliseconds following an internal POR or deassertion of the external POR. After POR, each pin assumes  
the GPIO or alternative function specified in the signal descriptions table. Each strapping option pin has an internal pull-up  
(PU) or pull-down (PD) resistor that determines the default mode.  
To change the mode, connect an external PU resistor to VDDIO or a PD resistor to GND, using a 10 kΩ resistor or less.  
Note: Refer to the reference board schematics for more information.  
Table 14: WLAN GPIO Functions and Strapping Options  
Pin Name  
FBGA WLCSP Default Function  
Description  
Pin #  
Pin #  
WL_GPIO_0  
WL_GPIO_1  
WL_GPIO_2  
WL_GPIO_4  
WL_GPIO_5  
WL_GPIO_6  
WL_GPIO_7  
G5  
G3  
J2  
213  
240  
239  
238  
237  
251  
225  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
WL_GPIO[2:0] can be used to set out-of-band signals like  
WL_WAKE_N, WL_HOST_WAKE_N, and WL_STANDBY.  
G2  
J5  
High  
Low  
GPIO[7:6]a [7:6] = 00: OTP powered ON, OTP source of Chip ID, CIS  
source: Default  
[7:6] = 01: OTP powered ON, OTP source of Chip ID, CIS  
source: SROM  
[7:6] = 10: OTP powered ON, OTP source of Chip ID, CIS  
source: OTP  
[7:6] = 11: OTP powered OFF, default chip ID, CIS source:  
SROM  
[7:6] = ZZ: Same as 01: OTP powered, OTP source of Chip ID,  
CIS source SROM  
WL_GPIO_8  
250  
High  
Sets SDIO 0: SDIO in reset, ARM held in reset.  
and ARM  
core status  
Z: Same as 1: SDIO active and ARM in reset  
1: SDIO active and ARM in reset  
WL_GPIO_9  
WL_GPIO_10  
236  
249  
Low  
Low  
Boot up  
status  
[10:9] = 00: Default is set to boot from SRAM and ARM held in  
reset.  
[10:9] = 01: ARM running (out of reset), boot from ROM.  
[10:9] = 10: ARM running (out of reset), boot from flash.  
[10:9] = 11: invalid.  
WL_GPIO_11  
262  
Low  
Internal  
debug  
option  
0: Pin must be kept at 0 or Z  
WL_GPIO_12  
WL_GPIO_13  
248  
224  
Low  
Low  
GPIO  
Sets clock 0: External clock  
that can be  
used for low  
power clock  
Z: Same as 0  
1: Internal 32 kHz LPO clock (this is only available in the WLCSP  
package)  
Broadcom Corporation  
Document 4325-DS04-R  
Signal Descriptions  
Page 67  
BCM4325  
Preliminary Data Sheet  
6/30/09  
Table 14: WLAN GPIO Functions and Strapping Options (Cont.)  
Pin Name  
FBGA WLCSP Default Function  
Description  
Pin #  
Pin #  
WL_GPIO_14  
235  
Low  
Internal  
power up  
mode  
[15:14] = 00: Chip powers up in the lowest power mode with all  
clock sources shut down except for the internal 32 kHz LPO  
clock that runs the PMU controller.  
[15:14] = 01: Chip powers up to ILP request.  
WL_GPIO_15  
261  
High  
[15:14] = 10: Chip powers up with the crystal oscillator turned on  
(default).  
[15:14] = 11: Chip powers up with PLL turned on by default.  
[15:14] = ZZ: Same as 10  
a. These pins select the use of SPROM, OTP or the default CIS in the SDIO core.  
b. WL_GPIO_3 does not exist.  
BLUETOOTH GPIO SIGNALS  
Table 15: BT GPIO Signals  
Pin Name  
FBGA Pin#  
WLCSP Pin # Type  
Description  
BT_GPIO_0  
BT_GPIO_1  
BT_GPIO_2  
BT_GPIO_3  
BT_GPIO_4  
BT_GPIO_5  
BT_GPIO_6  
BT_GPIO_7  
BT_PCM_IN  
BT_PCM_OUT  
BT_PCM_SYNC  
BT_PCM_CLK  
BT_SCL  
J9  
264  
252  
298  
319  
340  
333  
318  
339  
314  
302  
328  
268  
336  
303  
277  
300  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I
Commonly set as BT_WAKEUP  
H9  
K10  
M6  
K6  
K7  
L6  
Commonly set as HOST_WAKEUP  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
K8  
K5  
L5  
GPIO  
PCM data input  
O
PCM data output  
M5  
J7  
I/O  
I/O  
I
PCM sync signal, can be master (output) or slave (input)  
PCM clock, can be master (output) or slave (input)  
BSC clock  
N5  
L4  
BT_SDA  
I/O  
O
BSC bidirectional data  
BT_COEX_OUT0  
BT_COEX_OUT1  
N7  
P7  
BT_ACTIVITY  
O
BT_PRIORITY_AND_STATUS  
Broadcom Corporation  
Page 68  
Signal Descriptions  
Document 4325-DS04-R  
Preliminary Data Sheet  
6/30/09  
BCM4325  
PIN DEFAULT PULL-UP/PULL-DOWN  
Table 16: Pin Default Pull-Up/Pull-Down  
196-Ball FBGA Ball # 339-Pin WLCSP Pin # Default Pin State  
Signal Name  
For No Connect  
RF_SW_CTRL_N_3  
AMODE_TX_PU  
RF_SW_CTRL_N_0  
WRF_DISABLE_N  
JTAG_TRST_N  
RF_SW_CTRL_P_3  
RF_SW_CTRL_N_1  
RF_SW_CTRL_P_0  
GMODE_TX_PU  
SR_TESTSWG  
TDO  
A5  
A6  
A7  
A8  
B4  
B5  
B6  
B7  
B8  
C2  
C4  
C7  
D4  
D6  
E5  
E6  
E7  
F3  
F5  
F6  
F7  
G2  
G4  
H1  
H3  
H7  
H8  
J4  
J5  
J6  
K1  
K3  
189  
182  
164  
180  
172  
197  
174  
168  
187  
115  
171  
169  
191  
175  
190  
177  
181  
207  
184  
196  
186  
251  
215  
287  
247  
219  
233  
259  
225  
246  
285  
286  
260  
275  
206  
228  
229  
230  
199  
No Pull Control  
No Pull Control  
No Pull Control  
High  
IPU  
IPU  
High  
No Pull Control  
No Pull Control  
No Pull Control  
No Pull Control  
High  
IPU  
No Pull Control  
No Pull Control  
High  
WRF_AFE_DIGIT_TEST1  
TMS  
IPU  
GMODE_EXT_LNA_GAIN  
TDI  
No Pull Control  
High  
IPU  
IPD  
TAP_SEL  
Low  
RF_SW_CTRL_P_1  
ERCX_STATUS  
TCK  
No Pull Control  
No Pull Control  
High  
IPU  
AMODE_RX_PU  
GMODE_RX_PU  
WL_GPIO_6  
No Pull Control  
No Pull Control  
High  
ERCX_RF_ACTIVE  
SPROM_DOUT  
WL_UART_RX0  
ERCX_TX_FREQ  
SPROM_DIN  
Low  
IPD  
No Pull Control  
High  
IPU  
No Pull Control  
No Pull Control  
No Pull Control  
Low  
WL_UART_TX0  
WL_GPIO_7  
SPROM_CS  
Low  
IPD  
SDIO_CLK  
No Pull Control  
No Pull Control  
No Pull Control  
High  
SPROM_CLK  
WL_UART_TX1  
WL_UART_RX1  
SFLASH_Q  
IPU  
No Pull Control  
No Pull Control  
High  
SFLASH_C  
SFLASH_S  
IPU  
ERCX_TXCONF  
ERCX_PRISEL  
No Pull Control  
No Pull Control  
Broadcom Corporation  
Document 4325-DS04-R  
Signal Descriptions  
Page 69  
BCM4325  
Preliminary Data Sheet  
6/30/09  
Table 16: Pin Default Pull-Up/Pull-Down (Cont.)  
196-Ball FBGA Ball # 339-Pin WLCSP Pin # Default Pin State  
Signal Name  
For No Connect  
RF_SW_CTRL_P_2  
RF_SW_CTRL_N_2  
AMODE_EXT_LNA_GAIN  
PACKAGEOPTION_0  
PACKAGEOPTION_1  
PACKAGEOPTION_2  
PACKAGEOPTION_3  
170  
176  
188  
163  
167  
173  
179  
No Pull Control  
No Pull Control  
No Pull Control  
No Pull Control  
No Pull Control  
No Pull Control  
No Pull Control  
Note: No Connect: Internal Pull Up/Down (IPU/IPD)  
Broadcom Corporation  
Page 70  
Signal Descriptions  
Document 4325-DS04-R  
Preliminary Data Sheet  
6/30/09  
BCM4325  
INTERFACE I/O STATUS  
Table 17: BT/FM Interface I/O Status  
HW Default  
(REG_ON High,  
WL and  
Internal Pull-Up  
Resistor Range Down Resistor  
(ohm) Range (ohm)  
Internal Pull-  
REG_ON Held  
LOW (WL and  
BT RST_N held  
LOW) a  
Low Power  
Status / Sleep (all  
supplies present)  
Signal Name  
I/O  
On status  
Power rail  
Comment  
BT_RST_N high;  
no SW loaded) a  
3.3V  
1.8V  
3.3V  
1.8V  
BT_GPIO_0, 1, 2, I/O  
3, 4, 6, 7  
Programmable Programmable(In, No internal pull, No internal pull,  
BT_VDDO 58K to 58K to 58K to 58K to Internal pull-up/down are  
(In, Out, PD, Out, PD, PU)  
PU)  
disabled input disabled input  
63K  
63K  
63K  
63K  
programmable and can be  
enabled/disabled by S/W.  
BT_GPIO_5  
I/O  
Programmable Programmable(In, No internal pull, Output  
BT_VDDO 58K to 58K to 58K to 58K to Internal pull-up/down are  
(In, Out, PD, Out, PD, PU)  
disabled input  
63K  
63K  
63K  
63K  
programmable and can be  
PU)  
enabled/disabled by S/W.  
BT_UART_CTS  
BT_UART_RTS  
I
No internal pull No internal pull,  
No internal pull, No internal pull,  
BT_VDDO  
needs to be High Z disabled input disabled input  
O
No internal pull No internal pull,  
No internal pull, No internal pull,  
BT_VDDO 58K to 58K to 58K to 58K to Pull-up required which can be  
needs to be High Z disabled input disabled input  
63K  
63K  
63K  
63K  
internal or external. This can  
be programmed  
BT_UART_RXD  
BT_UART_TXD  
I
No internal pull No internal pull,  
No internal pull, No internal pull,  
needs to be driven disabled input disabled input  
low  
BT_VDDO  
O
No internal pull No internal pull,  
No internal pull, No internal pull,  
BT_VDDO 58K to 58K to 58K to 58K to Pull-up required which can be  
needs to be High Z disabled input disabled input  
63K  
63K  
63K  
63K  
internal or external. This can  
be programmed  
BT HOST_WAKE O  
(BT_GPIO_0)  
No internal pull No internal pull  
No internal pull, No internal pull,  
disabled input disabled input  
BT_VDDO 58K to 58K to 58K to 58K to Pull-up required which can be  
63K  
63K  
63K  
63K  
internal or external. This can  
be programmed. Note: the  
level on HOST WAKE should  
be ignored by the host during  
power-up.  
BT WAKE  
(BT_GPIO_1)  
I
I
I
No internal pull No internal pull  
No internal pull No internal pull  
No internal pull No internal pull  
No internal pull, No internal pull,  
disabled input disabled input  
BT_VDDO n/a  
BT_VDDO n/a  
BT_VDDO n/a  
n/a  
n/a  
n/a  
n/a  
n/a  
n/a  
n/a  
n/a  
n/a  
BT_PCM_CLK  
BT_PCM_IN  
No internal pull, No internal pull,  
disabled input disabled input  
No internal pull, No internal pull,  
disabled input disabled input  
Broadcom Corporation  
Document 4325-DS04-R  
SignalDescriptions  
Page 71  
BCM4325  
Preliminary Data Sheet  
6/30/09  
Table 17: BT/FM Interface I/O Status (Cont.)  
HW Default  
(REG_ON High,  
WL and  
Internal Pull-Up  
Internal Pull-  
REG_ON Held  
LOW (WL and  
BT RST_N held  
LOW) a  
Resistor Range Down Resistor  
Low Power  
Status / Sleep (all  
supplies present)  
(ohm)  
1.8V  
Range (ohm)  
Signal Name  
I/O  
On status  
Power rail  
Comment  
BT_RST_N high;  
no SW loaded) a  
3.3V  
3.3V  
1.8V  
BT_PCM_OUT  
BT_PCM_SYNC  
BT_SCL  
O
No internal pull No internal pull  
No internal pull No internal pull  
No internal pull No internal pull  
No internal pull No internal pull  
Programmable  
No internal pull, No internal pull,  
disabled input disabled input  
BT_VDDO n/a  
BT_VDDO n/a  
BT_VDDO n/a  
BT_VDDO n/a  
n/a  
n/a  
n/a  
n/a  
n/a  
n/a  
n/a  
n/a  
n/a  
I
No internal pull, No internal pull,  
disabled input disabled input  
n/a  
n/a  
n/a  
I/O  
I/O  
O
No internal pull, No internal pull,  
disabled input disabled input  
BT_SDA  
No internal pull, No internal pull,  
disabled input disabled input  
XTAL_PU  
High-Z  
Output  
VDDIO  
58K to 58K to 58K to 58K to  
63K 63K 63K 63K  
Default: BCM4325 drives to the  
asserted state when it needs the  
clock. Otherwise, the pin is pulled  
to the deasserted state. Polarity is  
set by the BT_TM0 pin  
Polarity set by the  
BT_TM0 pin.  
a. REG_ON Held LOW = Both WL_REG_ON and BT_REG_ON held low. REG_ON is WL_REG_ON OR'd internal to the 4325 with BT_REG_ON.  
Broadcom Corporation  
Page 72  
Signal Descriptions  
Document 4325-DS04-R  
Preliminary Data Sheet  
6/30/09  
BCM4325  
Table 18: WLAN Interface I/O Status  
HW Default  
(REG_ON High,  
WL and  
BT_RST_N high;  
no SW loaded) b  
Internal Pull-Up  
Resistor Range Down Resistor  
(ohm) Range (ohm)  
Internal Pull-  
REG_ON Held  
LOW (WL and  
BT RST_N held  
LOW) b  
Low Power  
Status / Sleep  
(all supplies  
present)  
Signal Name  
I/O  
On Status  
Power rail  
Comment  
3.3V  
1.8V  
3.3V  
1.8V  
WRF_EXTREFIN I  
No internal pull. No internal pull. High-Z  
Must be driven. Must be driven.  
No internal pull.  
Needs to be driven.  
VDDIO  
VDDIO/  
n/a  
n/a  
n/a  
n/a  
WL_REG_ON  
WL_RST_N  
BT_RST_N  
BT_REG_ON  
WL_GPIO  
I
No internal pull. No internal pull. No internal pull, No internal pull.  
n/a  
n/a  
n/a  
n/a  
n/a  
n/a  
n/a  
n/a  
must be driven Needs to be driven. BT_VDDO  
Low  
Must be driven. Must be driven.  
I
No internal pull. No internal pull. No internal pull, No internal pull.  
VDDIO  
n/a  
n/a  
n/a  
n/a  
n/a  
n/a  
must be driven Needs to be driven.  
Low  
Must be driven. Must be driven.  
I
No internal pull. No internal pull. No internal pull, No internal pull.  
BT_VDDO n/a  
must be driven Needs to be driven.  
Low  
Must be driven. Must be driven.  
I
No internal pull. No internal pull. No internal pull, No internal pull.  
VDDIO/  
n/a  
must be driven Needs to be driven. BT_VDDO  
Low  
Must be driven. Must be driven.  
I/O  
Programmable Programmable High-Z, No pull High-Z  
VDDIO  
58K to 58K to 58K to 58K to  
Internal pull-up/down are  
programmable and can be  
enabled/disabled by S/W.  
(In, Out, PD, PU) (In, Out, PD, PU)  
63K  
63K  
63K  
63K  
No pull  
SDIO Data [3:0] a I/O  
Pull-up  
Pull-up  
Pull-up  
Pull-up  
High-Z, No pull Pull-up  
High-Z, No pull Pull-up  
VDDIO_SD 15K to 30K to n/a  
35K 82K  
n/a  
PD not available, PU by  
default, can be disabled by  
SW.  
SDIO CMD a  
SDIO_CLK  
I/O  
I
VDDIO_SD 15K to 30K to n/a  
n/a  
n/a  
PD not available, PU by  
default, can be disabled by  
SW.  
35K  
82K  
No internal pull. No internal pull. High-Z  
Must be driven. Must be driven.  
High-Z  
VDDIO_SD n/a  
n/a  
n/a  
a. Section 6 of the SDIO physical layer specification states that the SDIO host must provide a 10k to 100k ohm pull-up resistor on each CMD and DAT(3:0) signal line. To properly operate the  
BCM4325, this requirement must be met by either programming internal PU resistors on the host or device side or adding discrete resistors.  
b. REG_ON Held LOW = Both WL_REG_ON and BT_REG_ON held low. REG_ON is WL_REG_ON OR’d with BT_REG_ON in the BCM4325.  
Broadcom Corporation  
Document 4325-DS04-R  
SignalDescriptions  
Page 73  
BCM4325  
Preliminary Data Sheet  
6/30/09  
SDIO PIN DESCRIPTION  
Table 19: SDIO Pin Description  
SD 1-Bit Mode  
SD 4-Bit Mode  
SPI Mode  
SDIO_DATA_0  
SDIO_DATA_1  
SDIO_DATA_2  
SDIO_DATA_3  
SDIO_CLK  
Data line 0  
DATA  
IRQ  
Data line  
Interrupt  
DO  
IRQ  
NC  
Data output  
Interrupt  
Data line 1 or Interrupt  
Data line 2 or Read Wait  
Data line 3  
RW  
Read Wait  
Not used  
Clock  
Not used  
Card select  
Clock  
N/C  
CS  
Clock  
CLK  
CMD  
SCLK  
DI  
SDIO_CMD  
Command line  
Command line  
Data input  
CLK  
CMD  
SD Host  
BCM4325  
DAT [3:0]  
Figure 13: Signal Connections to SDIO Card (SD 4-Bit Mode)  
CLK  
CMD  
SD Host  
DATA  
IRQ  
BCM4325  
RW  
Figure 14: Signal Connections to SDIO Card (SD 1-Bit Mode)  
SCLK  
DI  
SD Host  
DO  
IRQ  
CS  
BCM4325  
Figure 15: Signal Connections to SDIO Card (SPI Mode)  
Broadcom Corporation  
Page 74  
SDIO Pin Description  
Document 4325-DS04-R  
Preliminary Data Sheet  
6/30/09  
BCM4325  
Section 16: Operating Conditions and DC  
Characteristics  
ABSOLUTE MAXIMUM RATINGS  
Caution! These specifications indicate levels where permanent damage to the device can occur. Functional  
operation is not guaranteed under these conditions. Operation at absolute maximum conditions for extended  
periods can adversely affect long-term reliability of the device.  
Table 20: Absolute Maximum Ratings  
Rating  
Symbol  
Value  
Unit  
DC supply voltage for VBATT  
DC supply voltage for I/O  
VBATT  
–0.5 to 6.5  
–0.5 to 4.1  
–0.5 to 4.1  
V
V
V
VDDIO  
DC supply voltage for WLAN PAs  
VDDPAG  
VDDPAA  
VDDTF  
DC supply voltage for BT PA  
DC supply voltage for RF  
–0.5 to 2.9  
–0.5 to 1.32  
–0.5 to 1.32  
–0.5  
V
All 1.25V analog  
VDDC  
V
DC supply voltage for core  
V
Maximum undershoot voltage for I/O  
Maximum junction temperature  
Vundershoot  
Tj  
V
125  
°C  
ELECTROSTATIC DISCHARGE SPECIFICATIONS  
Use extreme caution to avoid damage due to electrostatic discharge (ESD). Proper use of wrist and heel grounding straps  
to discharge static electricity is required when handling microprocessor devices. When storing a device, place it in antistatic  
packaging.  
Table 21: ESD Specifications  
Pin Type  
Symbol  
Condition  
ESD Rating  
Unit  
ESD, Handling Reference:  
NQY00083, Section 3.4, Group D9,  
Table B  
ESD_HAND_HBM  
Human Body Model Contact  
Discharge per JEDEC EID/  
JESD22-A114  
+1500  
V
Either HBM or MM to be tested.  
CDM to be tested  
ESD_HAND_MM  
ESD_HAND_CDM  
Machine Model Contact  
+50  
V
V
ChargedDeviceModelContact +200  
Discharge per JEDEC EIA/  
JESD22-C101  
Broadcom Corporation  
Document 4325-DS04-R  
Operating Conditions and DC Characteristics  
Page 75  
BCM4325  
Preliminary Data Sheet  
6/30/09  
ENVIRONMENTAL RATINGS  
Table 22: Environmental Ratings  
Characteristic  
Value  
Units  
Conditions/Comments  
Ambient Temperature (TA)  
Storage Temperature  
Relative Humidity  
–30 to 85  
oC  
oC  
%
Operation  
–40 to 125  
Less than 60  
Less than 85  
Storage  
Operation  
%
RECOMMENDED OPERATING CONDITIONS  
Table 23: Recommended Operating Conditions and DC Characteristics  
Value  
Element  
Symbol  
Unit  
Minimum  
Typical  
Maximum  
DC supply voltage for VBATT a  
DC supply voltage for I/O a  
DC supply voltage for WLAN PAsa  
VDDBATT  
VDDIO  
2.3  
3.3  
5.5  
V
V
V
1.62  
3.3 or 1.8  
3.3  
3.63  
3.63  
WRF_VDDPAG 2.97  
WRF_VDDPAA  
VDDTF  
2.38  
DC Supply for BT PAa:  
Class1  
2.5  
1.5  
1.25  
1.25  
2.63  
1.6  
V
V
V
V
V
V
V
V
V
V
Class2  
1.4  
Class3  
1.19  
1.31  
1.31  
0.8  
DC supply voltage for core a  
Input low voltage (VDDIO = 3.3V)  
Input high voltage (VDDIO = 3.3V)  
Input low voltage (VDDIO = 1.8V)  
Input high voltage (VDDIO = 1.8V)  
Output low voltage  
VDDC  
VIL  
1.19  
VIH  
2.0  
VDDIO  
0.6  
VIL  
VIH  
1.1  
VDDIO  
0.4  
VOL  
VOH  
Output high voltage  
VDDIO –  
0.4V  
Input low current  
IIL  
0.3  
0.3  
μA  
μA  
Input high current  
IIH  
Output low current (VDDIO = 3.3V, VOL = 0.4V)  
Output high current (VDDIO = 3.3V, VOH = 2.9V)  
SDIO input/output current  
IOL  
IOH  
Isdio  
3.0  
3.0  
12  
mA  
mA  
mA  
a. Caution: Functional operation is not guaranteed outside specified limits. Operation outside these limits for extended periods  
may adversely affect the long-term reliability of the device.  
Broadcom Corporation  
Page 76  
Environmental Ratings  
Document 4325-DS04-R  
Preliminary Data Sheet  
6/30/09  
BCM4325  
BLUETOOTH AND FM CURRENT CONSUMPTION  
Note: WLAN_RST_N is low for all measurements.  
Note: For Class 1, VDDTF is supplied 2.5V externally separate from VBATT. For FM, the Bluetooth is in reset.  
The current consumption numbers are measured based on typical output power specified in the  
Table 27: “Bluetooth Transmitter RF Specifications,” on page 81.  
Table 24: Bluetooth and FM Current Consumption  
Class 1  
Vbat=3.6V and Vddio=3.3V  
VDDTF  
Class 2  
Test  
Item  
Vbat=3.6V and Vddio=3.3V  
Operating Mode  
Unit  
VBAT  
VDDIO  
VBAT  
VDDIO  
=2.5V  
1
Sleep  
0.18  
0.41  
0.30  
0.41  
0.61  
0.50  
0.41  
0.41  
1.01  
0.001  
0.004  
0.002  
0.004  
0.01  
0.005  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
2
Standard 1.28s Inquiry Scan  
Standard 2.56s Inquiry Scan  
R1 Standard Page Scan  
Standard page and 1.28s Inquiry Scan  
Standard page and 2.56s Inquiry Scan  
500 ms Sniff Master  
3
4
5
6
0.005  
0.06  
7
8
500 ms Sniff Slave  
0.06  
13  
500 ms Sniff Master Page and  
1.28s Inquiry Scan  
0.06  
17  
18  
19  
22  
23  
24  
25  
DM1/DH1 Master  
DM3/DH3 Master  
DM5/DH5 Master  
HV3 Master a  
18.10  
19.20  
19.28  
10.54  
9.50  
22.24  
26.84  
25.08  
7.42  
23.26  
25.10  
24.78  
12.31  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
FM I2S Audio  
FM Analog Audio  
BT_Reset + WL_Reset  
11.00  
0.02  
0.001  
0.005  
0.005  
a. Includes sniff.  
Broadcom Corporation  
Document 4325-DS04-R  
Recommended Operating Conditions  
Page 77  
BCM4325  
Preliminary Data Sheet  
6/30/09  
WLAN CURRENT CONSUMPTION  
Note: BT_RST_N is low for all measurements.  
Table 25: WLAN Current Consumption using Power Topology #1 (Vbatt with Buck-Boost) a  
VBATT = 3.6V, VDDIO = 3.3V  
Typical Units  
Operational State  
Leakage (WLAN and BT/FM in reset) b, c, d  
Sleep with Buck-Boost in burst mode (driver controlled)  
Sleep with Buck-Boost shutdown (driver controlled)  
Idle between beacons  
20  
uA  
250  
160  
152  
1.3  
553  
78  
uA  
uA  
uA  
IEEE PS@DTIM = 100 ms  
mA  
uA  
IEEE PS@DTIM = 300 ms  
Beacon reception  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
Rx 1 Mbps  
79  
Rx 11 Mbps  
79  
Rx 6 Mbps  
81  
Rx 54 Mbps  
83  
TX 1 Mbps, 18 dBm at chip Tx output e  
TX 1 Mbps, 21 dBm at chip Tx output e  
TX 11 Mbps, 18 dBm at chip Tx output e  
TX 11 Mbps, 21 dBm at chip Tx output e  
TX 6 Mbps, 17 dBm at chip Tx output e  
TX 6 Mbps, 20 dBm at chip Tx output e  
TX 54 Mbps, 17 dBm at chip Tx output e  
TX 54 Mbps, 20 dBm at chip Tx output e  
245  
288  
249  
295  
240  
276  
241  
277  
a. For details, refer to the BCM4325 Power Supply Topologies application note (document number 4325-AN60X-R).  
b. Additional leakage current may occur at the board level, depending on factors such as the power topology and external PU/  
PD resistors, etc.  
c. All measurements include VDDIO current with VDDIO = 3.3V.  
d. All measurements exclude current drawn by the external 32.768 KHz oscillator, which is required for operation.  
e. Chip Tx output power is based on Broadcom reference board measurements and backward calculation from antenna test  
port.  
Broadcom Corporation  
Page 78  
Recommended Operating Conditions  
Document 4325-DS04-R  
Preliminary Data Sheet  
6/30/09  
BCM4325  
Section 17: Bluetooth RF Specifications  
Note: Unless otherwise stated, all specifications in this section apply to the operating temperature and voltage  
ranges specified in Table 20 and Table 22 on page 76 and Table 23 on page 76. Functional operation outside  
these limits is not guaranteed.  
Table 26: Bluetooth Receiver RF Specifications  
Parameter  
General  
Conditions  
Minimum Typical d Maximum Unit  
Frequency range  
RX sensitivity a  
2402  
2480  
–84.0  
–84.0  
–80.0  
MHz  
dBm  
dBm  
dBm  
dBm  
dBm  
GFSK, 0.1% BER, 1 Mbps  
–88.0  
–90.0  
–85.0  
π/4-DQPSK, 0.01% BER, 2 Mbps –  
8-DPSK, 0.01% BER, 3 Mbps  
Input IP3  
–16  
Maximum input  
–20.0  
Interference Performance  
C/I cochannel  
GFSK, 0.1% BER  
GFSK, 0.1% BER  
GFSK, 0.1% BER  
GFSK, 0.1% BER  
GFSK, 0.1% BER  
11.0  
0.0  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
C/I 1 MHz adjacent channel  
C/I 2 MHz adjacent channel  
C/I 3-MHz adjacent channel  
C/I image channel  
–30.0  
–40.0  
–9.0  
–20.0  
13.0  
0.0  
C/I 1 MHz adjacent to image channel GFSK, 0.1% BER  
C/I co-channel  
π/4-DQPSK, 0.1% BER  
π/4-DQPSK, 0.1% BER  
π/4-DQPSK, 0.1% BER  
8-DPSK, 0.1% BER  
C/I 1 MHz adjacent channel  
C/I 2 MHz adjacent channel  
C/I 3 MHz adjacent channel  
C/I image channel  
–30.0  
–40.0  
–7.0  
–20.0  
21.0  
5.0  
π/4-DQPSK, 0.1% BER  
C/I 1 MHz adjacent to image channel π/4-DQPSK, 0.1% BER  
C/I cochannel  
8-DPSK, 0.1% BER  
8-DPSK, 0.1% BER  
8-DPSK, 0.1% BER  
8-DPSK, 0.1% BER  
8-DPSK, 0.1% BER  
C/I 1 MHz adjacent channel  
C/I 2 MHz adjacent channel  
C/I > = 3 MHz adjacent channel  
C/I Image channel  
–25.0  
–33.0  
0.0  
C/I 1 MHz adjacent to image channel 8-DPSK, 0.1% BER  
–13.0  
Out-of-Band Blocking Performance (CW)  
30 MHz – 2000 MHz  
2000 – 2399 MHz  
0.1% BER  
0.1% BER  
0.1% BER  
0.1% BER  
–10.0  
–27  
dBm  
dBm  
dBm  
dBm  
2498 – 3000 MHz  
–27  
3000 MHz – 12.75 GHz  
–10.0  
Broadcom Corporation  
Document 4325-DS04-R  
Bluetooth RF Specifications  
Page 79  
BCM4325  
Preliminary Data Sheet  
6/30/09  
Table 26: Bluetooth Receiver RF Specifications (Cont.)  
Minimum Typical d Maximum Unit  
Parameter  
Conditions  
Out-of-Band Blocking Performance, Modulated Interferer b  
824 – 849 MHz, CDMA  
–10  
–2  
dBm  
dBm  
dBm  
dBm  
dBm  
dBm  
dBm  
dBm  
dBm  
824 – 849 MHz, EDGE/GSM  
880 – 915 MHz, EDGE/GSM  
1710 – 1785 MHz, EDGE/GSM  
1850 – 1910 MHz, EDGE/GSM  
1850 – 1910 MHz, CDMA  
1850 – 1910 MHz, WCDMA  
1920 – 1980 MHz, WCDMA  
776 – 794 MHz, CDMA  
–2  
–5  
–5  
–15  
–20  
–20  
–10  
Spurious Emissions c  
30 MHz – 1 GHz  
–80  
–51  
–57  
–47  
dBm  
dBm  
1 GHz – 12.75 GHz  
Cell-band Noise Floor  
824 – 850 MHz, EDGE/GSM  
880 – 915 MHz, EDGE/GSM  
1710 – 1785 MHz, EDGE/GSM  
1850 – 1910 MHz, EDGE/GSM  
1920 – 1980 MHz, WCDMA  
–145  
–145  
–145  
–145  
–145  
dBm/Hz  
dBm/Hz  
dBm/Hz  
dBm/Hz  
dBm/Hz  
a. The receiver sensitivity is measured at a BER of 0.1% on the device interface.  
b. Bluetooth reference level of –82 dBm.  
c. Includes baseband-radiated emissions.  
d. Typical operating conditions are 1.25V operating voltage and 25°C ambient temperature.  
Note: The maximum value represents the actual Bluetooth specification required for Bluetooth qualification as  
defined in the version 2.1 specification.  
Broadcom Corporation  
Page 80  
Bluetooth RF Specifications  
Document 4325-DS04-R  
Preliminary Data Sheet  
6/30/09  
BCM4325  
Table 27: Bluetooth Transmitter RF Specifications a  
Parameter  
General  
Minimum  
Typical  
Maximum  
Unit  
Frequency range  
2402  
2480  
MHz  
dBm  
dBm  
dBm  
dBm  
dB  
Class1, TX max powerBT_VDDTF = 2.5V (max. up to 3.1V)  
Class2, TX max powerBT_VDDTF = 1.5V  
Class1, TX min powerBT_VDDTF = 2.5V (max. up to 3.1V)  
Class2, TX min powerBT_VDDTF = 1.5V  
Gain step  
4.5  
0
7.5  
4b  
6
–18  
–20  
4
2
In-Band Spurious Emissions  
+500 kHz  
–20.0  
–26.0  
–40.0  
–60.0  
dBc  
dBc  
dBm  
dBm  
1.0 MHz < |M – N| < 1.5 MHz  
1.5 MHz < |M – N| < 2.5 MHz  
|M – N| 2.5 MHz  
Out-of-Band Spurious Emissions  
30 MHz to 1 GHz  
–36.0 c, d  
–30.0 a  
–37.0  
dBm  
dBm  
dBm  
dBm  
1 GHz to 12.75 GHz  
1.8 GHz to 1.9 GHz  
5.15 GHz to 5.3 GHz  
–37.0  
GPS Band Spurious Emissions  
Without SAW filter  
–150  
dBm/Hz  
Out-of-Band Noise Floor  
746 MHz to 764 MHz  
–145  
–145  
–145  
–145  
–145  
–145  
dBm/Hz  
dBm/Hz  
dBm/Hz  
dBm/Hz  
dBm/Hz  
dBm/Hz  
851 MHz to 894 MHz  
925 MHz to 960 MHz  
1805 MHz to 1880 MHz  
1930 MHz to 1990 MHz  
2110 MHz to 2170 MHz  
a. The RF characteristics are measured at the device interface.  
b. Actual output power can be adjusted to a lower level based on product requirements.  
c. The maximum value represents the value required for Bluetooth qualification as defined in the version 2.1 specification.  
d. The spurious emissions during Idle mode are the same as specified in Table 26 on page 79.  
Broadcom Corporation  
Document 4325-DS04-R  
Bluetooth RF Specifications  
Page 81  
BCM4325  
Preliminary Data Sheet  
6/30/09  
Section 18: FM Receiver Specifications  
Note: Unless otherwise stated, all specifications in this section apply to the operating temperature and voltage  
ranges specified in Table 20 and Table 22 on page 76 and Table 23 on page 76. Functional operation outside  
these limits is not guaranteed.  
Table 28: FM Receiver Specifications  
Parameter  
Conditions  
Minimum Typical Maximum Units  
RF Parameters  
Operating frequency  
Frequencies inclusive  
76  
108  
MHz  
dBm  
Sensitivity, V  
RF  
FM only, fmod = 1kHz  
–105  
–102  
Δf = 22.5 kHz (S+N)/N=26 dB  
BAF = 300 Hz to 15 kHz  
A-weighted de-emphasis = 50 μs, fIN = 76 to  
108 MHz  
RDS. For an RDS deviation of 1.2 kHz. 95% of  
blocks decoded with no errors, over a sample of  
5000 blocks. b  
23  
19  
28  
24  
dBuV  
dBuV  
dB  
RDS. For an RDS deviation of 2 kHz. 95% of blocks –  
decoded with no errors, over a sample of 5000  
blocks. b  
Receiver adjacent channel At 200 kHz. fIN = 76 to 108 MHz, Measured for  
16  
selectivity  
40 dB SNR at the audio output.  
At 300 kHz (as above)  
25  
dB  
dB  
Image response (assuming At fwanted 2f IF depending on LO injection relative 25  
image frequency ≥  
300 kHz), mono  
to Fwanted. Should be 40 dB SNR at the audio output  
Image response (assuming  
image frequency ≥  
0
dB  
dB  
dB  
dB  
300 kHz), stereo  
Min S/N for in band blocking Wanted level set to –90 dBm, Δf = 75 kHz, Interferer 35  
for offsets > 400 KHz and < level set to –55 dBm, Δf = 40 kHz,  
1 MHz, mono  
1-kHz tone, AGC on  
Min S/N for in band blocking Wanted level set to –72 dBm, Δf = 75 kHz,  
for offsets > 400 KHz and < 1-kHz tone. Interferer level set to –37 dBm  
1 MHz, stereo  
35  
Intermediate S/N in the  
Overall third-order intercept point, for tones 400 40  
presence of intermodulation and 800 kHz, 4 and 8 MHz. Reference level is –  
82 dBm, tone levels set at –50 dBm.  
fIN = 76 to 108 MHz. AGC enabled  
AM suppression, mono  
AM suppression, stereo  
Vin = –90 dBm, fmod = 1 kHz, Δf = 22.5 kHz,  
m = 0.3, BAF = 300 Hz to 15 kHz, L = R,  
de-emphasis = 75 μs  
40  
40  
dB  
dB  
Vin = –47 dBm, fmod = 1 kHz, Δf = 22.5 kHz,  
m = 0.3, BAF = 300 Hz to 15 kHz, L = R,  
de-emphasis = 75 μs  
Broadcom Corporation  
Page 82  
FM Receiver Specifications  
Document 4325-DS04-R  
Preliminary Data Sheet  
6/30/09  
BCM4325  
Table 28: FM Receiver Specifications (Cont.)  
Conditions Minimum Typical Maximum Units  
Parameter  
Intermediate S/N  
Vin = –90 dBm, fmod = 1 kHz, Δf = 22.5 kHz,  
m = 0.3, BAF = 300 Hz to 15 kHz A-weighted,  
MONO, de-emphasis = 50 μs  
45  
dB  
RF Input  
RF input impedance  
Single-ended input with optional external matching –  
circuitry  
50  
Ω
RF input level  
Maximum on-channel input level 76–108 MHz.  
–10  
–6  
dBm  
dB  
RF input impedance return With external matching circuitry  
loss  
RF conducted emissions  
Local oscillator breakthrough measured on the  
reference port  
–55  
–90  
0
dBm  
dBm  
dBm  
dBm  
dBm  
925–960 MHz, 1805 –1880 MHz and 1930–  
1990 MHz  
RF blocking levels at the FM 824–915 MHz, GSM 200 kHz BW,  
antenna input. (Assumes  
presence of an external  
matching circuit.)  
CDMA 1.2 MHz BW  
1710–1980 MHz, GSM 200 kHz BW,  
CDMA 1.2 MHz BW, WCDMA 4 MHz BW  
–5  
2.4–2.4835 GHz, BT 1 MHz BW,  
WLAN 20 MHz BW  
–20  
PLL  
Frequency step  
Settling time  
Channel offset  
5
50  
kHz  
ms  
Single frequency switch in any direction to a  
frequency within the bands 88–108 MHz or 76–  
90 MHz. Time measured to within 5 kHz of the final  
frequency.  
Sweep time  
Total time for an automatic search to sweep from  
88–108 MHz or 76–90 MHz (and reverse direction)  
assuming no channels found.  
8
sec  
Soft Mute  
Soft mute start level a  
Mute attenuation = 3 dB  
3
5
10  
30  
uV  
dB  
Soft mute attenuation  
Vin = 1 μV, Δf = 22.5 kHz, L = R fmod = 1 kHz,  
BAF = 300 Hz to 15 kHz, de-emphasis = 75 μs  
10  
20  
General Audio  
Audio output level  
Vin = 1 mV, Δf = 22.5 kHzp fmod = 1 kHz, L = R,  
de-emphasis = 75 μs. Δf Pilot = 6.75 kHzp,  
Rload > 30 kΩ  
60  
75  
90  
mV,  
rms  
Maximum audio output level Vin = 1 mV, Δf = 100 kHzp fmod = 1 kHz, L = R, de- –  
emphasis = 75 μs. Δf Pilot = 6.75 kHzp,  
360  
mV,  
rms  
Rload > 30 kΩ  
Audio output level difference Vin = 1 mV, Δf = 22.5 kHz, fmod = 1 kHz, L = R,  
de-emphasis = 75 μs  
–1  
1
dB  
dB  
dB  
Max signal plus noise to  
noise ratio (S+N)/N, mono de-emphasis = 50 μs, L = R, BAF = 300 Hz to  
Vin = 1 mV, Δf = 22.5 kHz, fmod = 1 kHz,  
53  
48  
57  
53  
15 kHz (A-Weighted) fIN = 76 to 108 MHz  
Max signal plus noise to  
noise ratio (S+N)/N, stereo  
Broadcom Corporation  
Document 4325-DS04-R  
FM Receiver Specifications  
Page 83  
BCM4325  
Preliminary Data Sheet  
6/30/09  
Table 28: FM Receiver Specifications (Cont.)  
Parameter  
Conditions  
Minimum Typical Maximum Units  
Total harmonic distortion,  
mono  
Vin = 1 mV, Δf = 75 kHz, L = R, fmod = 400 Hz, de- –  
emphasis = 50 μs.  
0.4  
0.4  
0.5  
0.9  
0.8  
0.8  
1.0  
1.5  
–60  
%
Vin = 1 mV, Δf = 75 kHz, L = R, fmod = 1 kHz,  
de-emphasis = 50 μs.  
%
Vin = 1 mV, Δf = 100 kHz, L = R, fmod = 1 kHz, de- –  
emphasis = 50 μs.  
%
Total harmonic distortion,  
stereo  
Vin = 1 mV, Δf = 75 kHz, L = R, fmod = 3 kHz,  
de-emphasis = 50 μs.  
%
Audio spurious products  
Vin = 1 mV, Δf = 22.5 kHz, fmod = 1 kHz,  
de-emphasis = 50 μs, L = R, BAF = 300 Hz to  
15 kHz (A-Weighted), fIN = 76 to 108 MHz,  
With respect to 1 kHz tone.  
dBc  
Audio bandwidth, upper  
(–3 dB point)  
Vin = 1 mV, Δf = 22.5 kHz, for both 50 and 75 μs  
15  
KHz  
Hz  
de-emphasis, pre-emphasis applied.  
Audio bandwidth, lower  
(–3 dB point)  
20  
0.5  
Deviation of the audio  
response from an ideal  
de-emphasis curve  
100 Hz to 13 kHz, Vin = 1 mV, Δf = 22.5 kHz, for  
both 50 and 75 μs de-emphasis, pre-emphasis  
applied.  
dB  
De-emphasis time constant With respect to 50 and 75 μs.  
5
%
tolerance  
Audio output impedance  
When FM function is disabled, or when left or right 50  
channels are hard-muted via the bus.  
KΩ  
Audio output impedance  
Left and right AC_mute  
When FM function is enabled and in any of the  
following modes: autosearch, AC-muted by  
software, or RF soft-mute is active.  
50  
Ω
60  
80  
dB  
dB  
Right audio output hard  
muting attenuation  
Left audio output hard  
muting attenuation  
80  
dB  
Pause Detection  
Audio level at which a pause Relative to 1 kHz tone, 22.5 kHz deviation, 50 μs  
is detected  
de-emphasis  
Four values in 3 dB steps  
Four values  
–21  
20  
–12  
40  
dB  
ms  
Audio pause duration  
Stereo Decoder  
Stereo channel separation SNC OFF, increasing RF input, switched from mono 27  
to stereo Δf = 75 kHz, fmod = 1 kHz, 30 μV input  
30  
dB  
dB  
level, R = 0, L = 1 including 9% pilot  
Pilot suppression  
Measured at audio outputs. Δf = 75 kHz,  
fmod = 1 kHz, de-emphasis = 75 μs  
46  
a. Start level is configurable.  
b. RDS sensitivity range is only from 87.5 MHz to 108 MHz.  
Broadcom Corporation  
Page 84  
FM Receiver Specifications  
Document 4325-DS04-R  
Preliminary Data Sheet  
6/30/09  
BCM4325  
Section 19: WLAN RF Specifications  
INTRODUCTION  
The BCM4325 includes an integrated dual-band direct conversion radio that supports either the 2.4 GHz IEEE 802.11g band  
or the 5 GHz IEEE 802.11a band. The BCM4325 does not provide simultaneous 2.4 GHz and 5 GHz operation. This section  
describes the RF characteristics of the 2.4 GHz and 5 GHz portions of the radio.  
Note: Unless otherwise stated, all specifications in this section apply to the operating temperature and voltage  
ranges specified in Table 20 and Table 22 on page 76 and Table 23 on page 76. Functional operation outside these  
limits is not guaranteed.  
CELLULAR BLOCKING  
WLAN and cellular transceivers have separate antennas. The isolation between the antennas is 20 dB in all cases (for  
example, the maximum EGSM900 signal power at the WLAN RF port is +13 dBm).  
Table 29: Blocking Signals from Embedded Cellular Transmitter at Cellular Antenna Port  
System  
Frequency (MHz)  
Maximum Power Output  
Modulation  
GSM  
824–849  
+33 dBm  
+27  
GMSK  
EDGE  
QPSK  
GMSK  
EDGE  
GMSK  
EDGE  
GMSK  
EDGE  
QPSK  
QPSK  
CDMA  
824–849  
880–915  
+25  
EGSM900  
+33  
+27  
DCS1800  
PCS1900  
1710–1785  
1850–1910  
+30  
+26  
+30  
+26  
CDMA  
1850–1910  
1920–1980  
2400–2500  
+24  
WDCMA FDD  
+21  
Wideband noise from  
cellular TX  
–150 dBm/Hz  
Note: GMSK and EDGE transmissions have duty cycle of 1/8 or 1/4. Nominal repetition rate of transmission is about 217  
Hz. QPSK transmissions for (W)CDMA have a duty cycle of 1.  
Broadcom Corporation  
Document 4325-DS04-R  
WLAN RF Specifications  
Page 85  
BCM4325  
Preliminary Data Sheet  
6/30/09  
WLAN RECEIVER BLOCKING PERFORMANCE  
The total contribution of out-of-band signals from a cellular band transmitter and wideband noise falling on the WLAN band  
does not reduce the sensitivity of the WLAN receiver more than 1 dB compared to the performance without interference.  
Only one cellular transmitter is active at a time.  
The cited specifications assume the use of an external cellular blocking filter that has the following characteristics:  
(NdBa) TiO3 (Er = 88/TCf = 0 10 ppm/K) with a coating of copper (10 μm thick) and tin (>5 μm thick)  
Operating temperature = –30°C to +85°C  
Center frequency = 2.450 GHz  
Insertion loss = 0.7 dB (typical), 1.0 dB (maximum)  
Pass band (2400–2500) = 100 MHz (minimum)  
Amplitude ripple (peak-to-peak) = 0.4 dB (typical), 0.8 dB (maximum)  
SWR = 1.5 (typical), 2.0 (maximum)  
Impedance = 50Ω (typical)  
Attenuation:  
-
-
-
-
@ DC to 880 MHz — 50 dB (minimum), 55 dB (typical)  
@ 880 to 960 MHz — 45 dB (minimum), 50 dB (typical)  
@ 960 to 1990 MHz — 40 dB (minimum), 45 dB (typical)  
@ 1990 to 2100 MHz — 25 dB (minimum), 30 dB (typical)  
2.4 GHZ BAND GENERAL RF SPECIFICATIONS  
Table 30: 2.4 GHz Band General RF Specifications  
Item  
Condition  
Minimum Typical  
Maximum  
Unit  
TX/RX Switch Time  
RX/TX Switch Time  
Including TX ramp down  
Including TX ramp up  
5
5
10  
5
μs  
μs  
2.4 GHZ BAND LOCAL OSCILLATOR SPECIFICATIONS  
Table 31: 2.4 GHz Band Local Oscillator Specifications  
Characteristic  
Condition  
Minimum  
Typical  
Maximum  
Unit  
VCO Frequency Range  
Reference Input Frequency Range  
Reference Spurs  
2412  
2484  
MHz  
MHz  
Various a  
–34  
–86.5  
dBc  
Local Oscillator Phase Noise, single-sided from 1  
to 300 kHz offset  
dBc/Hz  
Clock Frequency Tolerance  
20  
ppm  
a. Reference supported frequencies range from 13 MHz to 52 MHz.  
Broadcom Corporation  
Page 86  
2.4 GHz Band General RF Specifications  
Document 4325-DS04-R  
Preliminary Data Sheet  
6/30/09  
BCM4325  
2.4 GHz BAND RECEIVER RF SPECIFICATIONS  
Table 32: 2.4 GHz Band Receiver RF Specifications  
Characteristic  
Condition  
Minimum Typical  
Maximum  
Unit  
Cascaded Noise Figure  
4
dB  
Maximum Receive Level (when using a @ 1, 2 Mbps  
–4  
dBm  
dBm  
dBm  
MHz  
suitable external switch)  
@ 5.5, 11 Mbps  
–10  
–10  
@ 54 Mbps  
PGA DC Rejection Servo Loop  
Bandwidth  
WB mode  
1
NB mode  
120 Hz  
230 kHz  
LPF DC Rejection Servo Loop  
Bandwidth  
WB mode  
500  
kHz  
NB mode  
120 Hz  
35  
230 kHz  
Adjacent Channel Power Rejection  
(DSSS at 11Mbps a)  
Rx = –70 dBm b  
dB  
Maximum Receiver Gain  
>100  
dB  
a. The difference between the interfering and desired signal (> 25 MHz apart) at 8% PER for 1024 octet PSDU with desired  
signal level, as specified.  
b. Values are measured at the input to the BCM4325. Accordingly, they include insertion losses from the integrated baluns, but  
these values do not include the insertion loss of the external RF path. Reference sensitivity (10% PER for OFDM and 8%  
PER for DSSS for 1000-octet PSDU) at chip input.  
2.4 GHZ RECEIVER PERFORMANCE SPECIFICATIONS  
Table 33: 2.4 GHz Receiver Performance Specifications  
Typical Receive Sensitivity a  
Rate/Modulation  
1 Mbps DSSS  
2 Mbps DSSS  
5.5 Mbps DSSS  
11 Mbps DSSS  
6 Mbps OFDM  
9 Mbps OFDM  
12 Mbps OFDM  
18 Mbps OFDM  
24 Mbps OFDM  
36 Mbps OFDM  
48 Mbps OFDM  
54 Mbps OFDM  
–96.0 dBm  
–95.0 dBm  
–93.0 dBm  
–90.5 dBm  
–91.5 dBm  
–91.0 dBm  
–90.5 dBm  
–89.0 dBm  
–85.5 dBm  
–82.5 dBm  
–77.0 dBm  
–75.5 dBm  
a. Values are measured at the input to the BCM4325. Accordingly, they include insertion losses from the integrated baluns, but  
these values do not include the insertion loss of the external RF path. Reference sensitivity (10% PER for OFDM and 8%  
PER for DSSS for 1000-octet PSDU) at chip input.  
Broadcom Corporation  
Document 4325-DS04-R  
2.4 GHz Band Receiver RF Specifications  
Page 87  
BCM4325  
Preliminary Data Sheet  
6/30/09  
2.4 GHZ BAND TRANSMITTER RF SPECIFICATIONS  
Table 34: 2.4 GHz Band Transmitter RF Specifications  
Characteristic  
Condition  
Minimum Typical Maximum Unit  
RF Output Frequency Range  
Output Power (EVM Compliant)  
Gain Flatness  
2400  
2500  
+22 c  
2
MHz  
dBm  
dB  
Maximum gain  
Maximum gain  
Output IP3  
Maximum gain  
37  
27  
dBm  
dBm  
dBr  
dBr  
dBr  
dBr  
dBc  
dBr  
dBr  
Output P1dB  
Carrier Suppression  
15  
TX Spectrum mask @ maximum gain fc – 22 MHz < f < fc – 11 MHz  
–30  
–30  
–50  
–26  
–35  
–40  
35%  
5%  
CCK  
fc + 11 MHz < f< fc + 22 MHz  
f < fc – 22 MHz; and f > fc + 22 MHz  
f < fc – 11 MHz and f > fc + 11 MHz  
f < fc – 20 MHz and f > fc + 20 MHz  
f < fc – 30 MHz and f > fc + 30 MHz  
IEEE 802.11b mode  
TX Spectrum mask  
(chip output power = 16 dBm)  
OFDM  
TX Modulation Accuracy (EVM) at  
maximum gain  
IEEE 802.11g mode QAM64  
54 Mbps  
Gain Control Step Size  
Amplitude Balance a  
Phase Balance a  
NA  
0.25 dB  
dB/step  
dB  
DC input  
–1  
–1.5  
1
DC input  
1.5  
° (degrees)  
Vpp  
Baseband Differential Input Voltage  
TX Power Ramp Up  
Shaped pulse  
90% of final power  
10% of final power  
0.6  
2
μsec  
TX Power Ramp Down  
2
μsec  
Out-of-Band Noise and Spurious Emissions  
100 kHz to 1930 MHz  
1930 to 2170 MHz  
2170 to 2300 MHz  
2300 to 2390 MHz  
2484 to 2655 MHz  
2655 to 4700 MHz  
4700 to 12750 MHz  
21 dBm at Chip Tx output b  
–145  
–135  
–125  
–115  
–115  
–125  
–135  
dBm/Hz  
dBm/Hz  
dBm/Hz  
dBm/Hz  
dBm/Hz  
dBm/Hz  
dBm/Hz  
21 dBm at Chip Tx output b  
21 dBm at Chip Tx output b  
21 dBm at Chip Tx output b  
21 dBm at Chip Tx output b  
21 dBm at Chip Tx output b  
21 dBm at Chip Tx output b  
a. At a 3 MHz offset from the carrier frequency.  
b. +21 dBm Chip Tx output power is based on Broadcom reference board level measurements and backward calculation from  
antenna test port.  
c. Referred to the chip output. The maximum output power at the antenna test port depends on board layout and output  
matching.  
Broadcom Corporation  
Page 88  
2.4 GHz Band Transmitter RF Specifications  
Document 4325-DS04-R  
Preliminary Data Sheet  
6/30/09  
BCM4325  
5 GHZ BAND RECEIVER RF SPECIFICATIONS  
Table 35: 5 GHz Band Receiver RF Specifications a  
Characteristic  
Condition  
Minimum Typical  
Maximum Unit  
Cascaded Noise Figure  
Maximum Receive Level a(5.24 GHz)  
Maximum RX gain  
@ 6 Mbps  
4.5  
dB  
–10  
–15  
dBm  
dBm  
kHz  
NA  
@ 54 Mbps  
WB mode  
DC Rejection Servo Loop Bandwidth  
(normal operation)  
500  
NB mode  
Rx at –62 dBm d  
120 Hz  
–1  
230 kHz  
Adjacent Channel Power Rejection  
(OFDM at 54 Mbps b)  
dB  
Alternate Adjacent Channel Power  
Rejection (OFDM at 54Mbps c)  
Rx at –61.5 dBm d  
15  
dB  
Minimum RX Gain  
Maximum RX Gain  
IQ Amplitude Balance  
IQ Phase Balance  
15  
dB  
>100  
0.5  
dB  
dB  
1.5  
Degree  
Out-of-Band Blocking Performance without RF Band-Pass Filter (–1dB desensitization)  
CW  
CW  
CW  
30 – 4300 MHz  
–10  
–25  
–25  
dBm  
dBm  
dBm  
4300 – 4800 MHz  
5900 – 6400 MHz  
a. With minimum RF gain.  
b. The difference between the interfering and tehe desired signal (20 MHz apart) at 10% PER for 1000 octet PSDU with the  
desired signal level, as specified.  
c. The difference between the interfering and the desired signal (40 MHz apart) at 10% PER for 1000 octet PSDU with desired  
signal level, as specified.  
d. Values are measured at the input pin of the BCM4325. Accordingly, they include insertion losses from the integrated baluns  
but do not include the insertion loss of the external RF path.  
Broadcom Corporation  
Document 4325-DS04-R  
5 GHz Band Receiver RF Specifications  
Page 89  
BCM4325  
Preliminary Data Sheet  
6/30/09  
5 GHZ BAND TRANSMITTER RF SPECIFICATIONS  
Table 36: 5 GHz Band Transmitter RF Specifications  
Characteristic  
Condition  
Minimum Typical Maximum Unit  
RF Output Frequency Range  
Gain Flatness  
NA  
4920  
5805  
1
MHz  
dB  
Maximum gain  
Output IP3  
Maximum gain  
35  
25  
dBm  
dBm  
dBm  
dBr  
Output P1dB  
Maximum gain  
Output Power (EVM Compliant)  
Carrier Suppression  
TX Spectrum mask  
(chip output power = 16 dBm)  
OFDM  
Minimum gain  
–15  
f < fc – 11 MHz and f > fc + 11 MHz  
–26  
–35  
–40  
dBc  
f < fc – 20 MHz and f > fc + 20 MHz  
dBr  
f < fc – 30 MHz and f > fc + 30 MHz  
dBr  
Gain Control Step Size  
I/Q Baseband 3 dB Bandwidth  
Amplitude Balance  
NA  
0.25  
12  
dB/step  
MHz  
dB  
NA  
DC Input  
DC Input  
–0.5  
–1.5  
0.5  
1.5  
Phase Balance  
° (degree)  
Vpp  
Baseband Differential Input Voltage NA  
0.7  
TX Power Ramp Up  
90% of final power  
10% of final power  
2
μsec  
μsec  
TX Power Ramp Down  
2
5 GHZ BAND LOCAL OSCILLATOR FREQUENCY GENERATOR  
SPECIFICATIONS  
Table 37: 5 GHz Band Local Oscillator Frequency Generator Specifications  
Characteristic  
Condition  
Minimum  
Typical  
Maximum  
Unit  
VCO Frequency Range  
Reference Input Frequency Range  
Reference Spurs  
4920  
5805  
MHz  
various a  
MHz  
–30  
dBc  
Local Oscillator Integrated Phase Noise  
(1–300 kHz)  
4.920–5.700 GHz  
5.725–5.805 GHz  
0.7  
1.4  
degree  
degree  
ppm  
Clock Frequency Tolerance  
20  
a. Reference supported frequencies range from 13 MHz to 52 MHz.  
Broadcom Corporation  
Page 90  
5 GHz Band Transmitter RF Specifications  
Document 4325-DS04-R  
Preliminary Data Sheet  
6/30/09  
BCM4325  
5 GHZ RECEIVER PERFORMANCE SPECIFICATIONS  
Table 38: 5 GHz Receiver Performance Specifications  
Typical Receive Sensitivity a  
Rate/Modulation  
6 Mbps OFDM  
9 Mbps OFDM  
12 Mbps OFDM  
18 Mbps OFDM  
24 Mbps OFDM  
36 Mbps OFDM  
48 Mbps OFDM  
54 Mbps OFDM  
–89.5 dBm  
–89.0 dBm  
–89.0 dBm  
–88.5 dBm  
–84.5 dBm  
–81.5 dBm  
–76.5 dBm  
–74.5 dBm  
a. Values are measured at the BCM4325 input pin. Accordingly, they include insertion losses from the integrated baluns, but do  
not include the insertion loss of the external RF path. Reference sensitivity (10% PER for 1000-octet PSDU) at chip input.  
Broadcom Corporation  
Document 4325-DS04-R  
5 GHz Receiver Performance Specifications  
Page 91  
BCM4325  
Preliminary Data Sheet  
6/30/09  
Section 20: Internal Regulator Electrical  
Specifications  
Note: Functional operation is not guaranteed outside specified limits. Operation outside these limits for extended  
periods may adversely affect the long-term reliability of the device.  
CLDO  
Table 39: CLDO  
Specification  
Notes  
Minimum Typical  
Maximum Unit  
Input supply voltage a  
1.5  
1.25  
1.98  
1.35  
4
Volt  
Volt  
%
Output voltage  
Programmable in 25 mV steps 1.10  
Absolute accuracy  
Output current  
200  
15  
10  
mA  
uA  
LDO quiescent current  
10  
0.1  
80  
40  
Leakage current through output transistor CLDO_pu=0  
uA  
Output noise  
@30 kHz, 200 mA load  
nV/rt Hz  
dB  
Power supply rejection (PSR)  
Dropout voltage  
@1 kHz, 150 mV dropout  
150  
mV  
ms  
Start-up time  
0.5  
a. For good PSRR performance, the input supply should be at least 200 mV higher than the output.  
Broadcom Corporation  
Page 92  
Internal Regulator Electrical Specifications  
Document 4325-DS04-R  
Preliminary Data Sheet  
6/30/09  
BCM4325  
LNLDOI (I = 1, 2, OR 4)  
LNLDO4 is only available in the 339-pin CSP package.  
Table 40: LNLDOi  
Specification  
Notes  
Minimum Typical  
Maximum Unit  
Input supply voltage a  
LNLDOi_vo_sel=0  
LNLDOi_vo_sel=1  
LNLDOi_vo_sel=0  
LNLDOi_vo_sel=1  
1.5  
3.3  
1.25  
2.5  
1.98  
3.6  
1.35  
3.1  
4
Volts  
Output voltage  
1.10  
2.5  
Volts  
Absolute accuracy  
%
Output current for LNLDO1  
Output current for LNLDO2  
Output current for LNLDO4  
Quiescent current for LNLDO1  
130  
80  
80  
44  
206  
42  
202  
mA  
mA  
mA  
uA  
LNLDOi_vo_sel=0  
LNLDOi_vo_sel=1  
LNLDOi_vo_sel=0  
LNLDOi_vo_sel=1  
LNLDO1_pu=0  
LNLDOi_vo_sel=0  
LNLDOi_vo_sel=1  
LNLDO1_pu=0  
LNLDOi_vo_sel=0  
LNLDOi_vo_sel=1  
@30 kHz, 50 mA load  
LNLDOi_vo_sel=0  
LNLDOi_vo_sel=1  
@1 kHz, 150 mV dropout  
31  
110  
29  
108  
Quiescent current for LNLDO2 and 4  
Leakage current for LNLDO1  
uA  
0.1  
0.1  
5
uA  
9
Leakage current for LNLDO2 and 4  
Output noise  
0.1  
0.1  
2
uA  
4
20  
31  
50  
nV/rt Hz  
PSRR  
dB  
Dropout voltage  
Start-up time  
150  
mV  
ms  
0.5  
a. For good PSRR performance, the input supply should be at least 200 mV higher than the output.  
Broadcom Corporation  
Document 4325-DS04-R  
LNLDOi (i = 1, 2, or 4)  
Page 93  
BCM4325  
Preliminary Data Sheet  
6/30/09  
CORE BUCK REGULATOR  
Table 41: Core Buck Regulator  
Specification  
Notes  
Minimum Typical  
Maximum Units  
Input supply voltage  
2.3  
2.24  
5.5  
Volts  
MHz  
PWM mode switching frequency  
PWM output current  
2.8  
3.36  
300  
1.75  
20  
mA  
Output voltage range  
Programmable, 25 mV steps  
1
1.5  
Volts  
mVp-p  
mVp-p  
PWM ripple voltage, static load  
PWM ripple voltage, dynamic load  
200 mA, 1 μs rise/fall current  
step  
85  
Burst mode ripple voltage, static  
PWM mode efficiency  
Burst mode efficiency  
Quiescent current  
80  
mVp-p  
%
200 mA load current  
10 mA load current  
Burst Mode  
80  
70  
90 b  
80 b  
25  
%
μA  
μA  
μA  
μs  
Low Power Burst Mode  
Power Down  
20  
1
Start-up time from power down  
Settling time: burst to PWM mode  
500  
200  
1000  
400  
Ensure light-load (<30 mA)  
during mode-change  
μs  
Settling time: PWM to burst mode  
Ensure light-load (<30 mA)  
during mode-change  
100  
μs  
Input supply voltage ramp-up time 1 a  
Input supply voltage ramp-up time 2 a  
0 to 4.3V  
44  
μs  
μs  
4.3 to 5.5V  
100  
a. The 0 to 4.3V and 4.3 to 5Vramp up assumes a Li-ion insertion causing a max ramp slope  
b. VBAT=3.3V, Vout=1.5V, fsw=2.76 MHz, inductor DCR=160 mOhms.  
Broadcom Corporation  
Page 94  
Core Buck Regulator  
Document 4325-DS04-R  
Preliminary Data Sheet  
6/30/09  
BCM4325  
BUCK-BOOST REGULATOR  
Table 42: Buck-Boost Regulator  
Specification  
Notes  
Minimum Typical  
Maximum Unit  
Input supply voltage  
2.3  
5.5  
Volts  
MHz  
mA  
PWM mode switching frequency  
PWM output current  
1.4  
300  
3.5  
40  
85  
80  
Output voltage range  
Programmable, 50 mV steps  
2.25  
3.3  
Volts  
mVp-p  
mVp-p  
mVp-p  
%
PWM ripple voltage, static  
PWM ripple voltage, dynamic load  
Burst mode ripple voltage, static  
PWM mode efficiency  
100 mA, 1 μs rise/fall current step –  
86 b  
200 mA load current  
70  
Quiescent current  
Burst mode  
No load  
30  
μA  
Start-up time from power down  
500  
200  
1000  
400  
μs  
μs  
Settling time: Burst-to-PWM mode  
Ensure light-load (<30 mA) during –  
mode change  
Settling time: PWM-to-Burst mode  
Ensure light-load (<30 mA) during –  
mode change  
100  
μs  
Input supply voltage ramp-up time 1  
Input supply voltage ramp up time 2  
0 to 4.3V a  
4.3 to 5.5V a  
44  
100  
μs  
μs  
a. The 0 to 4.3V and 4.3 to 5V ramp up assumes a Li-ion insertion causing a max ramp slope.  
b. VBAT=3.65V, Vout=3.3V, fsw=1.38 MHz, inductor DCR=156 mOhms.  
Broadcom Corporation  
Document 4325-DS04-R  
Buck-Boost Regulator  
Page 95  
BCM4325  
Preliminary Data Sheet  
6/30/09  
Section 21: Interface Timing and AC  
Characteristics  
Note: Unless otherwise stated, all specifications in this section apply to the operating temperature and voltage  
ranges specified in Table 20 and Table 22 on page 76 and Table 23 on page 76. Functional operation outside  
these limits is not guaranteed.  
BLUETOOTH PERIPHERAL TRANSPORT UNIT TIMING SPECIFICATIONS  
This section describes the Peripheral Transport Unit (PTU) timing.  
The following conditions apply:  
VDD = 3.3V, VSS = 0V, TA = 0 to 85 oC  
BLUETOOTH UART TIMING  
BT_UART_CTS_N  
1
2
BT_UART_TXD  
Midpoint of stop bit  
Midpoint of stop bit  
3
BT_UART_RXD  
BT_UART_RTS_N  
Figure 16: UART Timing  
Table 43: UART Timing Speicifications  
Reference Description  
Minimum Typical Maximum Unit  
1
2
Delay time, BT_UART_CTS_N low to UART_TXD valid  
24  
10  
Baudout cycles  
ns  
Setup time, BT_UART_CTS_N high before midpoint of  
stop bit  
3
Delay time, midpoint of stop bit to BT_UART_RTS_N high –  
2
Baudout cycles  
Broadcom Corporation  
Page 96  
Interface Timing and AC Characteristics  
Document 4325-DS04-R  
Preliminary Data Sheet  
6/30/09  
BCM4325  
PCM INTERFACE TIMING  
Short Frame Sync, Master Mode  
2
1
3
PCM_BCLK  
4
5
PCM_SYNC  
6
9
HIGH  
IMPEDENCE  
Bit 15 (Previous Frame)  
Bit 15  
Bit 0  
PCM_OUT  
PCM_IN  
7
8
Bit 15 (Previous Fram e)  
Bit 0  
Bit 15  
Figure 17: PCM (Short Frame Sync, Master Mode) Timing  
Table 44: PCM (Short Frame Sync, Master Mode) Timing Specifications  
Reference Description Minimum Typical Maximum Unit  
1
2
3
4
PCM bit clock frequency  
128  
128  
209  
2048  
kHz  
ns  
PCM bit clock high time  
PCM bit clock low time  
ns  
Delay from BT_PCM_CLK rising edge to BT_PCM_SYNC  
high  
50  
ns  
5
6
7
Delay from BT_PCM_CLK rising edge to BT_PCM_SYNC  
low  
50  
50  
ns  
ns  
ns  
Delay from BT_PCM_CLK rising edge to data valid on  
BT_PCM_OUT  
Setup time for BT_PCM_IN before BT_PCM_CLK falling  
edge  
50  
8
9
Hold time for BT_PCM_IN after BT_PCM_CLK falling edge 10  
ns  
ns  
Delay from falling edge of BT_PCM_CLK during last bit period –  
to BT_PCM_OUT becoming high impedance  
50  
Broadcom Corporation  
Document 4325-DS04-R  
Bluetooth Peripheral Transport Unit Timing Specifications  
Page 97  
BCM4325  
Preliminary Data Sheet  
6/30/09  
Short Frame Sync, Slave Mode  
2
1
3
PCM_BCLK  
PCM_SYNC  
4
5
6
9
HIGH  
IMPEDENCE  
Bit 15 (Previous Frame)  
Bit 0  
Bit 15  
PCM_OUT  
PCM_IN  
7
8
Bit 15 (Previous Frame)  
Bit 0  
Bit 15  
Figure 18: PCM (Short Frame Sync, Slave Mode) Timing  
Table 45: PCM (Short Frame Sync, Slave Mode) Timing Specifications  
Reference Description  
Minimum Typical  
Maximum Unit  
1
2
3
4
PCM bit clock frequency  
128  
209  
209  
50  
2048  
kHz  
ns  
PCM bit clock high time  
PCM bit clock low time  
ns  
Setup time for BT_PCM_SYNC before falling edge of  
BT_PCM_BCLK  
ns  
5
Hold time for BT_PCM_SYNC after falling edge of  
BT_PCM_CLK  
10  
ns  
6
7
8
9
Hold time of BT_PCM_OUT after BT_PCM_CLK falling edge  
175  
ns  
ns  
ns  
ns  
Setup time for BT_PCM_IN before BT_PCM_CLK falling edge 50  
Hold time for BT_PCM_IN after BT_PCM_CLK falling edge 10  
Delay from falling edge of BT_PCM_CLK during last bit period to –  
BT_PCM_OUT becoming high impedance  
100  
Broadcom Corporation  
Page 98  
Bluetooth Peripheral Transport Unit Timing Specifications  
Document 4325-DS04-R  
Preliminary Data Sheet  
6/30/09  
BCM4325  
Long Frame Sync, Master Mode  
2
1
3
PCM_BCLK  
4
5
PCM_SYNC  
6
9
HIGH  
IMPEDENCE  
Bit 0  
Bit 1  
Bit 2  
Bit 15  
PCM_OUT  
7
8
Bit 0  
Bit 1  
Bit 2  
Bit 15  
PCM_IN  
Figure 19: PCM (Long Frame Sync, Master Mode) Timing  
Table 46: TPCM (Long Frame Sync, Master Mode) Timing Specifications  
Reference Description Minimum Typical Maximum Unit  
1
2
3
4
PCM bit clock frequency  
PCM bit clock high time  
PCM bit clock low time  
128  
209  
209  
2048  
kHz  
ns  
ns  
Delay from BT_PCM_CLK rising edge to BT_PCM_SYNC  
high during first bit time  
50  
ns  
5
6
Delay from BT_PCM_CLK rising edge to BT_PCM_SYNC low –  
during third bit time  
50  
50  
ns  
ns  
Delay from BT_PCM_CLK rising edge to data valid on  
BT_PCM_OUT  
7
8
9
Setup time for BT_PCM_IN before BT_PCM_CLK falling edge 50  
Hold time for BT_PCM_IN after BT_PCM_CLK falling edge 10  
ns  
ns  
ns  
Delay from falling edge of BT_PCM_CLK during last bit period –  
to BT_PCM_OUT becoming high impedance  
50  
Broadcom Corporation  
Document 4325-DS04-R  
Bluetooth Peripheral Transport Unit Timing Specifications  
Page 99  
BCM4325  
Preliminary Data Sheet  
6/30/09  
Long Frame Sync, Slave Mode  
2
1
PCM_BCLK  
3
4
5
7
PCM_SYNC  
6
10  
HIGH  
Bit 15  
Bit 0  
Bit 1  
PCM_OUT  
IMPEDENCE  
8
9
Bit 0  
Bit 1  
Bit 15  
PCM_IN  
Figure 20: PCM (Long Frame Sync, Slave Mode) Timing  
Table 47: PCM (Long Frame Sync, Slave Mode) Timing Specifications  
Reference Description  
Min  
Typ  
Max  
Unit  
1
2
3
4
PCM bit clock frequency  
128  
209  
209  
50  
2048  
kHz  
ns  
PCM bit clock high time  
PCM bit clock low time  
ns  
Setup time for BT_PCM_SYNC before falling edge of  
BT_PCM_CLK during first bit time  
ns  
5
6
Hold time for BT_PCM_SYNC after falling edge of BT_PCM_CLK 10  
during second bit period. (BT_PCM_SYNC may go low any time  
from second bit period to last bit period)  
ns  
ns  
Delay from rising edge of BT_PCM_CLK or BT_PCM_SYNC  
(whichever is later) to data valid for first bit on BT_PCM_OUT  
50  
7
Hold time of BT_PCM_OUT after BT_PCM_CLK falling edge  
Setup time for BT_PCM_IN before BT_PCM_CLK falling edge  
Hold time for BT_PCM_IN after BT_PCM_CLK falling edge  
175  
ns  
ns  
ns  
ns  
8
50  
10  
9
10  
Delay from falling edge of BT_PCM_CLK or BT_PCM_SYNC  
(whichever is later) during last bit in slot to BT_PCM_OUT  
becoming high impedance  
100  
Broadcom Corporation  
Page 100  
Bluetooth Peripheral Transport Unit Timing Specifications  
Document 4325-DS04-R  
Preliminary Data Sheet  
6/30/09  
BCM4325  
FM I2S TIMING  
The timing illustrated in Figure 21 and Figure 22 are described in Table 48 on page 102.  
Note: The times given in Figure 21 and Figure 22 are determined by the transmitter speed. The specification of  
the receiver must be capable of matching the performance of the transmitter.  
T
tLC 0.35T  
tHC 0.35T  
tRC  
*
VH = 2.0 V  
VL = 0.8 V  
I2S_SCK  
tHTR  
0
tDTR £ 0.8T  
I2S_SDO  
I2S_WS  
Notes:  
T = clock period  
TTR = minimum allowed clock period for transmitter  
T > TTR  
* tRC is only relevant for transmitters in slave mode.  
Figure 21: I2S Transmitter Timing  
T
tHC 0.35T  
tLC 0.35T  
VH = 2.0 V  
VL = 0.8 V  
I2S_SCK  
tSR 0.2T  
tHR  
0
I2S_SDO  
I2S_WS  
Notes:  
T= Clock period  
TR = Minimum allowed clock period for transmitter  
T > TR  
Figure 22: I2S Receiver Timing  
Broadcom Corporation  
Document 4325-DS04-R  
FM I2S Timing Page 101  
BCM4325  
Preliminary Data Sheet  
6/30/09  
Table 48: Timing for I2S Transmitters and Receiversa  
Transmitter  
Lower LImit Upper Limit  
Receiver  
Lower Limit Upper Limit  
Parameter  
Notes  
Min  
Max  
Min  
Max  
Min  
Max  
Min  
Max  
b
Clock Period T  
TTR  
T
a
r
Master Mode: Clock generated by transmitter or receiverc  
High t  
0.35TTR  
0.35TTR  
0.35TTR  
0.35TTR  
b
b
HC  
Low tLC  
Slave Mode: Clock accepted by transmitter or receiverd  
High t  
0.35TTR  
0.35TTR  
0.35TTR  
0.35TTR  
c
c
d
HC  
Low t  
LC  
Rise-time t  
0.15TTR  
RC  
Transmitter  
e
Delay tDTR  
0
0.8T  
e
d
Hold time tHTR  
Receiverf  
Setup time tSR  
Hold time tHR  
0.2TR  
0
f
f
a. All timing values are specified with respect to high and low threshold levels.  
b. The system clock period T must be greater than TTR and T because both the transmitter and receiver must be able to handle  
r
the data transfer rate.  
c. The transmitter or receiver generates a clock signal with a fixed mark/space ratio. For this reason t and t are specified  
HC  
LC  
with respect to T.  
d. The transmitter and receiver need a clock signal with minimum high and low periods so that they can detect the signal. So  
long as the minimum periods are greater than 0.35TR, any clock that meets the requirements can be used.  
e. Because the delay (tDTR) and the maximum transmitter speed (defined by TTR) are related, a fast transmitter driven by a slow  
clock edge can result in tDTR not exceeding t which means tHTR becomes zero or negative. Therefore, the transmitter has to  
RC  
guarantee that tHTR is greater than or equal to zero, provided the clock rise-time t is not more than t  
, where t  
is  
RCmax  
RC  
RCmax  
not less than 0.15TTR. To allow data to be clocked out on a falling edge, the delay is specified with respect to the rising edge  
of the clock signal and T, always giving the receiver sufficient setup time.  
f. The data setup and hold time must not be less than the specified receiver setup and hold time.  
Broadcom Corporation  
Page 102  
FM I2S Timing  
Document 4325-DS04-R  
Preliminary Data Sheet  
6/30/09  
BCM4325  
FM I2C-COMPATIBLE TIMING  
I2C_DA  
t
t
f
t
t
t
t
t
t
t
BUF  
SU;DAT  
LOW  
f
r
HD;STA  
SP  
r
I2C_CK  
t
t
SU;STA  
t
HD;STA  
SU;STO  
t
t
HIGH  
HD;DAT  
P
S
S
Sr  
Table 49: FM I2C-Compatible Interface Timing  
Parameter  
I2C_CK clock frequency  
Symbol  
Minimum  
Maximum Unit  
f
t
t
0
400  
kHz  
μs  
I2C_CK  
BUF  
Bus-free times between a stop and start condition  
1.3  
0.6  
Hold time (repeated) start condition. After this period, the first clock  
pulse is generated.  
μs  
HD,STA  
Low period of the I2C_CK clock  
High period of the I2C_CK clock  
Setup time for a repeater start condition  
Data hold time  
t
t
t
t
t
t
t
t
1.3  
0.6  
0.6  
0
μs  
μs  
μs  
μs  
μs  
ns  
ns  
μs  
LOW  
HIGH  
SU,STA  
HD,DAT  
SU,DAT  
r
0.9  
Data setup time  
a
a
Rise time of both I2C_DA and I2C_CK signals  
Fall time of both I2C_DA and I2C_CK signals  
Setup time for stop condition  
20 + 0.1C  
20 + 0.1C  
0.6  
300  
300  
b
r
b
SU,STO  
a. C = Total capacitance of one bus line in pF. The maximum capacitive load for each bus line is 400 pF.  
b
SPROM TIMING  
Table 50: SPROM Timing Characteristics  
Signal Name  
Period  
Output Max Output Min Setup  
Hold  
SPROM_CLK  
1.92 μs  
SPROM_CLK falling edge to SPROM_DOUT  
SPROM_CLK falling edge to SPROM_CS  
SPROM_CLK rising edge to SPROM_DIN  
0.5 μs  
0.5 μs  
0.3 μs  
0.3 μs  
0.5 μs  
–0.3 μs  
Broadcom Corporation  
Document 4325-DS04-R  
FM I2C-Compatible Timing Page 103  
BCM4325  
Preliminary Data Sheet  
6/30/09  
JTAG TIMING  
Table 51: JTAG Timing Characteristics  
Period  
Signal Name  
Output Max Output Min Setup  
Hold  
TCK  
125 ns  
TDI  
20 ns  
20 ns  
0 ns  
0 ns  
TMS  
TDO  
100 ns  
0 ns  
JTAG_TRST  
250 ns  
SDIO TIMING  
This section describes the SDIO timing in both default and high-speed modes.  
fPP  
tWL  
tWH  
SDIO_CLK  
tTHL  
tTLH  
tIH  
tISU  
SDIO_DATA Input  
SDIO_DATA Output  
tODLY  
tODLY  
(max)  
(min)  
Figure 23: SDIO Bus Timing (Default Mode)  
Broadcom Corporation  
Page 104  
JTAG Timing  
Document 4325-DS04-R  
Preliminary Data Sheet  
6/30/09  
BCM4325  
Table 52: SDIO Bus Timing a Parameters (Default Mode)  
Parameter  
Symbol  
Min  
Typical  
Max  
Unit  
b
Clock: SDIO_CLK (All values are referred to min. VIH and max. VIL )  
Frequency—Data Transfer Mode  
Frequency—Identification Mode  
Clock Low Time  
fPP  
0
25  
400  
MHz  
kHz  
ns  
fOD  
tWL  
tWH  
tTLH  
tTHL  
0
10  
10  
Clock High Time  
ns  
Clock Rise time  
10  
10  
ns  
Clock Low Time  
ns  
Inputs: CMD, DATA (referenced to SDIO_CLK)  
Input Setup Time  
tISU  
tIH  
5
5
ns  
ns  
Input Hold Time  
Outputs: CMD, DATA (referenced to SDIO_CLK)  
Output Delay time—Data Transfer Mode  
Output Delay time—Identification Mode  
tODLY  
tODLY  
0
0
14  
50  
ns  
ns  
a. Timing is based on CL 40pF load on CMD and Data.  
b. min (Vih) = 0.7*Vdd and max (Vil) = 0.2*Vdd  
fPP  
tWL  
tWH  
50% VDD  
SDIO_CLK  
tTHL  
tTLH  
tIH  
tISU  
SDIO_DATA Input  
SDIO_DATA Output  
tODLY  
tOH  
Figure 24: SDIO Bus Timing (High-Speed Mode)  
Broadcom Corporation  
Document 4325-DS04-R  
SDIO Timing Page 105  
BCM4325  
Preliminary Data Sheet  
6/30/09  
Table 53: SDIO Bus Timing a Parameters (High-Speed Mode)  
Symbol Min Typical Max  
Parameter  
Unit  
b
Clock: SDIO_CLK (all values are referred to min. VIH and max. VIL )  
Frequency—Data Transfer Mode  
Frequency—Identification Mode  
Clock Low Time  
fPP  
0
0
7
7
50  
400  
MHz  
kHz  
ns  
fOD  
tWL  
Clock High Time  
tWH  
tTLH  
tTHL  
ns  
Clock Rise time  
3
ns  
Clock Low Time  
3
ns  
Inputs: CMD, DATA (referenced to SDIO_CLK)  
Input Setup Time  
tISU  
tIH  
6
2
ns  
ns  
Input Hold Time  
Outputs: CMD, DATA (referenced to SDIO_CLK)  
Output Delay time—Data Transfer Mode  
Output Hold time  
tODLY  
tOH  
14  
ns  
ns  
pF  
2.5  
Total System Capacitance (each line)  
CL  
40  
a. Timing is based on CL 40pF load on CMD and Data.  
b. Minimum (Vih) = 0.7*Vdd and maximum (Vil) = 0.2*Vdd  
Broadcom Corporation  
Page 106  
SDIO Timing  
Document 4325-DS04-R  
Preliminary Data Sheet  
6/30/09  
BCM4325  
Section 22: Power-Up Sequence and Timing  
SDIO HOST TIMING REQUIREMENT  
The SDIO host must wait a minimum of 150 ms before initiating access to the BCM4325 after the VDDC (1.25V DC supply  
for core) ramps up and settles. The specifics of this requirement depend on the power supply topology being used. For  
example, if the topology shown in Figure 5 on page 4 is being used, reset and host access timing depends on the CLDO and  
CBUCK outputs and the VDDC’s bypass network. For an additional safety margin, a longer delay should be used.  
RESET AND REGULATOR CONTROL SIGNAL SEQUENCING  
The BCM4325 has four signals (see Table 54) that enable or disable the Bluetooth, WLAN, and internal regulator blocks,  
allowing the host to control power consumption. This section contains detailed timing diagrams of these signals and the  
required power-up sequences. These timing diagrams are provided to illustrate proper sequencing of the signals in various  
operational states. The timing values indicated in the diagrams are the minimum requirements. Longer delays are also  
acceptable.  
Table 54: Control Signal Descriptions  
Signal  
Description  
WL_REG_ON  
This signal is used by the PMU (along with BT_REG_ON) to decide whether or not to power down  
the internal BCM4325 regulators. If BT_REG_ON and WL_REG_ON are low, the regulators will be  
disabled. If WL_RST_N is low (regardless of BT_RST_N state), the WLAN core will be powered off.  
BT_REG_ON  
This signal is used by the PMU (along with WL_REG_ON) to decide whether or not to power down  
the internal BCM4325 regulators. If BT_REG_ON and WL_REG_ON are low, the regulators will be  
disabled.  
WL_RST_N  
BT_RST_N  
Low Asserting Reset for WLAN Core This pin must be driven high or low (not left floating).  
Low asserting reset for Bluetooth core. This pin must be driven high or low (not left floating)  
Note: WL_REG_ON and BT_REG_ON are OR gated together in the BCM4325.  
Broadcom Corporation  
Document 4325-DS04-R  
Power-Up Sequence and Timing Page 107  
BCM4325  
Preliminary Data Sheet  
6/30/09  
SIGNAL AND POWER-UP SEQUENCE TIMING DIAGRAMS  
Note: The timing diagrams presented in this section are not to scale and are for illustrative purposes only.  
The timing diagrams show the signals going high at the same time (which is true when both REG signals are controlled by  
a single host GPIO). However, if two independent host GPIOs are used (one for WL_REG_ON and one for BT_REG_ON),  
only one signal has to be high in order to enable the BCM4325’s regulators. Additionally, the reset requirements for the  
Bluetooth core also apply to the FM core. Therefore, if FM is to be used, the Bluetooth core must be enabled.  
32.768 kHz Sleep Clock  
VBAT  
90% of VH  
VDDIO  
~ 2 sleep clock  
cycles  
WL_REG_ON  
BT_REG_ON  
WL_REG_N  
BT_RST_N  
100 ms  
Figure 25: Power-Up Timing for WL On and BT On  
32.768 kHz Sleep Clock  
VBAT  
90% of VH  
VDDIO  
~ 2 sleep clock  
cycles  
WL_REG_ON  
BT_REG_ON  
WL_RST_N  
BT_RST_N  
100 ms  
100 ms  
Figure 26: Power-Up Timing for WL On and BT Off  
Broadcom Corporation  
Page 108  
Reset and Regulator Control Signal Sequencing  
Document 4325-DS04-R  
Preliminary Data Sheet  
6/30/09  
BCM4325  
32.768 kHz Sleep Clock  
VBAT  
90% of VH  
VDDIO  
~ 2 sleep clock  
cycles  
WL_REG_ON  
BT_REG_ON  
WL_RST_N  
BT_RST_N  
100 ms  
Figure 27: Power-Up Timing for WL Off and BT On  
32.768 kHz Sleep Clock  
VBAT  
VDDIO  
WL_REG_ON  
BT_REG_ON  
WL_RST_N  
BT_RST_N  
Figure 28: Power-Up Timing for WL Off and BT Off (VDDC Provided by BCM4325)  
Broadcom Corporation  
Document 4325-DS04-R  
Reset and Regulator Control Signal Sequencing Page 109  
BCM4325  
Preliminary Data Sheet  
6/30/09  
32.768 kHz Sleep Clock  
VBAT  
90% of VH  
VDDIO  
100 ms  
WL_REG_ON  
BT_REG_ON  
WL_RST_N  
BT_RST_N  
100 ms  
Figure 29: Power-Up Timing for WL Off and BT Off (VDDC Provided Externally)  
32.768 kHz Sleep Clock  
VBAT  
90% of VH  
VDDIO  
~ 2 sleep clock  
cycles  
WL_REG_ON and  
WL_RST_N  
BT_REG_ON and  
BT_RST_N  
100 ms  
Note:  
WL_REG_ON and WL_RST_N are tied together.  
BT_REG_ON and BT_RST_N are tied together.  
Figure 30: Power-Up Timing for WL On and BT On (REG_ON signals are connected to RST_N signals)  
Broadcom Corporation  
Page 110  
Reset and Regulator Control Signal Sequencing  
Document 4325-DS04-R  
Preliminary Data Sheet  
6/30/09  
BCM4325  
32.768 kHz Sleep Clock  
VBAT  
90% of VH  
VDDIO  
~ 2 sleep clock  
cycles  
WL_REG_ON and  
WL_RST_N  
~ 2 sleep clock  
cycles  
BT_REG_ON  
and BT_RST_N  
100 ms  
Note:  
WL_REG_ON and WL_RST_N are tied together.  
BT_REG_ON and BT_RST_N are tied together.  
Figure 31: Power-Up Timing for WL Off and BT On (REG_ON signals are connected to RST_N signals)  
32.768 KHz Sleep Clock  
VBATT  
90% of VH  
VDDIO  
~ 2 sleep clock  
cycles  
BT_REG_ON  
WL_REG_ON and WL_RST_N  
BT_RST_N  
100 ms  
Note:  
WL_REG_ON and WL_RST_N are tied together.  
BT_REG_ON and BT_RST_N are separated.  
Figure 32: Power-Up Timing for WL ON and BT ON (WL REG_ON signal connected to WL_RST_N, BT separated)  
Broadcom Corporation  
Document 4325-DS04-R  
Reset and Regulator Control Signal Sequencing Page 111  
BCM4325  
Preliminary Data Sheet  
6/30/09  
32.768 kHz Sleep Clock  
VBAT  
90% of VH  
VDDIO  
~ 2 sleep clock  
cycles  
WL_REG_ON  
BT_REG_ON  
WL_RST_N  
BT_RST_N  
100 ms  
Figure 33: Power-Up Timing for WL OFF and BT ON (WL REG_ON signal connected to WL_RST_N, BT separated)  
32.768 kHz Sleep Clock  
VBAT  
90% of VH  
VDDIO  
~ 2 sleep clock  
cycles  
WL_REG_ON  
BT_REG_ON  
WL_RST_N  
BT_RST_N  
100 ms 100 ms  
Figure 34: Power-Up Timing for WL ON and BT OFF (WL REG_ON signal connected to WL_RST_N, BT separated)  
Broadcom Corporation  
Page 112  
Reset and Regulator Control Signal Sequencing  
Document 4325-DS04-R  
Preliminary Data Sheet  
6/30/09  
BCM4325  
Section 23: Package Information  
PACKAGE THERMAL CHARACTERISTICS  
Table 55: Thermal Characteristics (Values in Still Air) a  
Characteristic  
196-Ball FBGA Package  
339-WLCSP Package  
θJA (°C/W)  
θJB (°C/W)  
θJC (°C/W)  
ΨJT (°C/W)  
36.3  
4.9  
36.7  
1.23  
0.06  
0.27  
125  
10.9  
0.27  
125  
Maximum Junction Temperature T (°C)  
j
a. No heat sink, TA = 70° C. This is an estimate based on a 2-layer PCB and P = 1.2W continuous dissipation.  
JUNCTION TEMPERATURE ESTIMATION AND PSIJT VERSUS THETAJC  
Package thermal characterization parameter PSI-J (Ψ ) yields a better estimation of actual junction temperature (T )  
T
JT  
J
versus using the junction-to-case thermal resistance parameter Theta-J (θ ). The reason for this is θ assumes that all  
C
JC  
JC  
the power is dissipated through the top surface of the package case. In actual applications, some of the power is dissipated  
through the bottom and sides of the package. Ψ takes into account power dissipated through the top, bottom. and sides  
JT  
of the package. The equation for calculating the device junction temperature is as follows:  
TJ = TT + P × ΨJT  
Where:  
T
T
= Junction temperature at steady-state condition (°C)  
= Package case top center temperature at steady-state condition (°C)  
= Device power dissipation (Watts)  
J
T
P
Ψ
= Package thermal characteristics; no airflow (°C/W)  
JT  
ENVIRONMENTAL CHARACTERISTICS  
For environmental characteristics data, see “Environmental Ratings” on page 76.  
Broadcom Corporation  
Document 4325-DS04-R  
Package Information Page 113  
BCM4325  
Preliminary Data Sheet  
6/30/09  
MISCELLANEOUS CHARACTERISTICS  
Table 56: Miscellaneous Characteristics  
Characteristics  
Value  
Units  
Conditions/Comments  
Moisture Sensitivity Level (MSL)  
Ball Metallurgy  
3
SnAg1.0Cu0.5  
E'lytic Ti/Cu/Ni  
SnCu2.5  
260  
Under bump Metallurgy  
With bump Metallurgy  
o
FBGA peak reflow temperature  
C
Broadcom Corporation  
Page 114  
Miscellaneous Characteristics  
Document 4325-DS04-R  
Preliminary Data Sheet  
6/30/09  
BCM4325  
Section 24: Mechanical Information  
196-BALL FBGA PACKAGE  
Figure 35: 196-Ball FBGA Mechanical Information  
Broadcom Corporation  
Document 4325-DS04-R  
Mechanical Information Page 115  
BCM4325  
Preliminary Data Sheet  
6/30/09  
339-PIN WLCSP PACKAGE  
Figure 36: 339-Pin WLCSP Mechanical Information  
Broadcom Corporation  
Page 116  
339-Pin WLCSP Package  
Document 4325-DS04-R  
Preliminary Data Sheet  
6/30/09  
BCM4325  
Section 25: WLCSP Keepout Area  
This section shows the PCB keepout areas of theBCM4325 WLCSP package; there should not be any metal on these layers.  
Figure 37: WLAN Section Top Metal Keepout Area  
Broadcom Corporation  
Document 4325-DS04-R  
WLCSP Keepout Area Page 117  
BCM4325  
Preliminary Data Sheet  
6/30/09  
Figure 38: WLAN Section Second Metal Keepout Area  
Broadcom Corporation  
Page 118  
WLCSP Keepout Area  
Document 4325-DS04-R  
Preliminary Data Sheet  
6/30/09  
BCM4325  
Figure 39: BT and FM Keepout Area  
Note: The shaded area in Figure 39 is enlarged in Figure 40 on page 119.  
Figure 40: BT and FM first and Second Keepout Area Enlargement  
Note: Figure 40 above is an enlargement of the BT and FM keepout area; see Figure 39 on page 119 to view the  
entire layer.  
Broadcom Corporation  
Document 4325-DS04-R  
WLCSP Keepout Area Page 119  
BCM4325  
Preliminary Data Sheet  
6/30/09  
Section 26: Ordering Information  
Table 57: Ordering Information  
Part Number  
Package  
Ambient Temperature  
o
o
BCM4325GKFBG  
Single-band 2.4 GHz WLAN, Bluetooth 3.0 + HS, 196-ball flip-chip FBGA –30 C to +85 C  
(7.5 mm x 7.5 mm x 1.05 mm, 0.50 mm pitch)  
o
o
BCM4325FKFBG  
BCM4325GKWBG  
BCM4325FKWBG  
Single-band 2.4 GHz WLAN, Bluetooth 3.0 + HS, FM Rx, 196-ball flip-chip –30 C to +85 C  
FBGA (7.5 mm x 7.5 mm x 1.05 mm, 0.50 mm pitch)  
o
o
Single-band 2.4 GHz WLAN, Bluetooth 3.0 + HS, 339-pin WLCSP  
(6.51 mm X 5.8 mm X 0.4 mm, 0.250 mm pitch)  
–30 C to +85 C  
o
o
Single-band 2.4 GHz WLAN, Bluetooth 3.0 + HS, FM Rx, 339-pin WLCSP –30 C to +85 C  
(6.51 mm X 5.8 mm X 0.4 mm, 0.250 mm pitch)  
Broadcom Corporation  
Page 120  
Ordering Information  
Document 4325-DS04-R  
Preliminary Data Sheet  
6/30/09  
BCM4325  
Broadcom Corporation  
Document 4325-DS04-R  
Ordering Information Page 121  
BCM4325  
Preliminary Data Sheet  
6/30/09  
Broadcom Corporation  
5300 California Avenue  
Irvine, CA 92617  
Phone: 949-926-5000  
Fax: 949-926-5203  
Broadcom® Corporation reserves the right to make changes without further notice to any products or data herein to improve reliability, function, or design.  
Information furnished by Broadcom Corporation is believed to be accurate and reliable. However, Broadcom Corporation  
does not assume any liability arising out of the application or use of this information, nor the application or use of any product or  
circuit described herein, neither does it convey any license under its patent rights nor the rights of others.  
Document 4325-DS04-R  

相关型号:

BCM4325GKWLG

SINGLE CHIP IEEE 802.11a/b/g MAC/BASEBAND/RADIO WITH INTEGRATED BLUETOOTH 2.1 + EDR AND FM RECEIVER FOR LOW-POWER MOBILE HANDSET
BOARDCOM

BCM4325H

SINGLE CHIP IEEE 802.11a/b/g MAC/BASEBAND/RADIO WITH INTEGRATED BLUETOOTH 2.1 + EDR AND FM RECEIVER FOR LOW-POWER MOBILE HANDSET
BOARDCOM

BCM4325HKFBG

SINGLE CHIP IEEE 802.11a/b/g MAC/BASEBAND/RADIO WITH INTEGRATED BLUETOOTH 2.1 + EDR AND FM RECEIVER FOR LOW-POWER MOBILE HANDSET
BOARDCOM

BCM4325HKWLG

SINGLE CHIP IEEE 802.11a/b/g MAC/BASEBAND/RADIO WITH INTEGRATED BLUETOOTH 2.1 + EDR AND FM RECEIVER FOR LOW-POWER MOBILE HANDSET
BOARDCOM

BCM4326

AirForce One SINGLE-CHIP IEEE 802.11b/g MAC/BASEBAND/RADIO WITH INTEGRATED CPU
BOARDCOM

BCM4328

SINGLE CHIP IEEE 802.11a/b/g MAC/BASEBAND/RADIO WITH INTEGRATED BLUETOOTH 2.1 + EDR AND FM RECEIVER FOR LOW-POWER MOBILE HANDSET
BOARDCOM

BCM4329

Bluetooth 4.0 EDR and Low Energy compliant
CYPRESS

BCM4329EKUBG

Telecom Circuit, 1-Func, PBGA182, WLBGA-182
CYPRESS

BCM4329GKUBG

Telecom Circuit, 1-Func, PBGA182, WLBGA-182
CYPRESS

BCM4329HKUBG

Telecom Circuit, 1-Func, PBGA182, WLBGA-182
CYPRESS

BCM4330

Single Chip IEEE 802.11™ a/b/g/n MAC/Baseband/ Radio with Integrated Bluetooth® 4.0 HS and FM
BOARDCOM

BCM4330

Single-Chip 5G WiFi IEEE 802.11ac 2×2 MAC/Baseband/Radio with Integrated Bluetooth 4.1, FM Receiver, and Wireless Charging
CYPRESS