CY14B116N-Z45XIT [CYPRESS]

16-Mbit (2048K × 8/1024K × 16/512K × 32) nvSRAM;
CY14B116N-Z45XIT
型号: CY14B116N-Z45XIT
厂家: CYPRESS    CYPRESS
描述:

16-Mbit (2048K × 8/1024K × 16/512K × 32) nvSRAM

静态存储器 光电二极管 内存集成电路
文件: 总37页 (文件大小:4072K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
CY14B116L/CY14B116N/CY14B116S  
CY14E116L/CY14E116N/CY14E116S  
16-Mbit (2048K × 8/1024K × 16/512K × 32) nvSRAM  
16-Mbit (2048K  
× 8/1024K × 16/512K × 32) nvSRAM  
Offered speeds  
44-pin TSOP II: 25 ns and 45 ns  
48-pin TSOP I: 30 ns and 45 ns  
54-pin TSOP II: 25 ns and 45 ns  
60-ball FBGA: 25 ns  
Features  
16-Mbit nonvolatile static random access memory (nvSRAM)  
25-ns, 30-ns and 45-ns access times  
Internally organized as 2048K × 8 (CY14X116L),  
1024K × 16 (CY14X116N), 512K × 32 (CY14X116S)  
Hands-off automatic STORE on power-down with only a  
small capacitor  
STORE to QuantumTrap nonvolatile elements is initiated by  
software, device pin, or AutoStore on power-down  
RECALL to SRAM initiated by software or power-up  
165-ball FBGA: 25 ns and 45 ns  
Functional Description  
The Cypress CY14X116L/CY14X116N/CY14X116S is a fast  
SRAM, with a nonvolatile element in each memory cell. The  
memory is organized as 2048K bytes of 8 bits each or 1024K  
words of 16 bits each or 512K words of 32 bits each. The  
embedded nonvolatile elements incorporate QuantumTrap  
technology, producing the world’s most reliable nonvolatile  
memory. The SRAM can be read and written an infinite number  
of times. The nonvolatile data residing in the nonvolatile  
elements do not change when data is written to the SRAM. Data  
transfers from the SRAM to the nonvolatile elements (the  
STORE operation) takes place automatically at power-down. On  
power-up, data is restored to the SRAM (the RECALL operation)  
from the nonvolatile memory. Both the STORE and RECALL  
operations are also available under software control.  
High reliability  
Infinite read, write, and RECALL cycles  
1 million STORE cycles to QuantumTrap  
Data retention: 20 years  
Sleep mode operation  
Low power consumption  
Active current of 75 mA at 45 ns  
Standby mode current of 650 A  
Sleep mode current of 10 A  
Operating voltages:  
CY14B116X: VCC = 2.7 V to 3.6 V  
CY14E116X: VCC = 4.5 V to 5.5 V  
For a complete list of related documentation, click here.  
Industrial temperature: –40 C to +85 C  
Packages  
44-pin thin small-outline package (TSOP II)  
48-pin thin small-outline package (TSOP I)  
54-pin thin small-outline package (TSOP II)  
60-ball fine-pitch ball grid array (FBGA) package  
165-ball fine-pitch ball grid array (FBGA) package  
Restriction of hazardous substances (RoHS) compliant  
Cypress Semiconductor Corporation  
Document Number: 001-67793 Rev. *N  
198 Champion Court  
San Jose, CA 95134-1709  
408-943-2600  
Revised July 22, 2016  
CY14B116L/CY14B116N/CY14B116S  
CY14E116L/CY14E116N/CY14E116S  
Logic Block Diagram[1, 2, 3]  
V
V
CAP  
CC  
POWER CONTROL  
SLEEP MODE  
CONTROL  
ZZ  
QUANTUMTRAP  
4096 X 4096  
STORE / RECALL  
CONTROL  
HSB  
STORE  
RECALL  
STATIC RAM  
ARRAY  
4096 X 4096  
SOFTWARE  
DETECT  
A -A  
11  
0
A -A  
2
14  
OE  
CE  
[4]  
WE  
B
B
B
B
/BLE  
/BHE  
A
B
C
D
ZZ  
COLUMN IO  
DQ -DQ  
0
31  
COLUMN DECODER  
A
-A  
20  
12  
Notes  
1. Address A –A for ×8 configuration, address A –A for ×16 configuration and address A –A for ×32 configuration.  
0
20  
0
19  
0
18  
2. Data DQ –DQ for ×8 configuration, data DQ –DQ for ×16 configuration and data DQ –DQ for ×32 configuration.  
0
7
0
15  
0
31  
3. BLE, BHE are applicable for ×16 configuration and B , B  
B
B are applicable for ×32 configuration only.  
A
B, C, D  
4. TSOP II package is offered in single CE. TSOP I and BGA packages are offered in dual CE options. In this datasheet, for a dual CE device, CE refers to the internal  
logical combination of CE and CE such that when CE is LOW and CE is HIGH, CE is LOW. For all other cases CE is HIGH.  
1
2
1
2
Document Number: 001-67793 Rev. *N  
Page 2 of 37  
CY14B116L/CY14B116N/CY14B116S  
CY14E116L/CY14E116N/CY14E116S  
Contents  
Pinouts ..............................................................................4  
Pin Definitions ..................................................................7  
Device Operation ..............................................................8  
SRAM Read ................................................................8  
SRAM Write .................................................................8  
AutoStore Operation (Power-Down) ............................8  
Hardware STORE (HSB) Operation ............................9  
Hardware RECALL (Power-Up) ..................................9  
Software STORE .........................................................9  
Software RECALL .......................................................9  
Sleep Mode ...............................................................10  
Preventing AutoStore ................................................12  
Data Protection ..........................................................12  
Maximum Ratings ...........................................................13  
Operating Range .............................................................13  
DC Electrical Characteristics ........................................13  
Data Retention and Endurance .....................................14  
Capacitance ....................................................................14  
Thermal Resistance ........................................................14  
AC Test Conditions ........................................................15  
AC Switching Characteristics .......................................16  
AutoStore/Power-Up RECALL Characteristics ............20  
Sleep Mode Characteristics ...........................................21  
Software Controlled STORE  
and RECALL Characteristics .........................................22  
Hardware STORE Characteristics .................................23  
Truth Table For SRAM Operations ................................24  
For ×8 Configuration .................................................24  
For ×8 Configuration .................................................24  
For ×16 Configuration ...............................................24  
For ×16 Configuration ...............................................25  
For ×32 Configuration ...............................................25  
Ordering Information ......................................................26  
Ordering Code Definitions .........................................27  
Package Diagrams ..........................................................28  
Acronyms ........................................................................33  
Document Conventions .................................................33  
Units of Measure .......................................................33  
Document History Page .................................................34  
Sales, Solutions, and Legal Information ......................37  
Worldwide Sales and Design Support .......................37  
Products ....................................................................37  
PSoC®Solutions .......................................................37  
Cypress Developer Community .................................37  
Technical Support .....................................................37  
Document Number: 001-67793 Rev. *N  
Page 3 of 37  
CY14B116L/CY14B116N/CY14B116S  
CY14E116L/CY14E116N/CY14E116S  
Pinouts  
Figure 1. Pin Diagram: 44-Pin TSOP II (×8)  
Figure 2. Pin Diagram: 54-Pin TSOP II (×16)  
NC  
A
19  
1
2
54  
53  
HSB  
NC  
1
2
3
4
44  
43  
42  
41  
HSB  
NC  
A
[5]  
18  
A
20  
A
0
A
3
4
5
52  
51  
50  
49  
48  
17  
A
0
A
19  
A
A
1
16  
A
1
A
18  
A
2
A
15  
A
2
A
5
6
40  
39  
A
3
6
17  
OE  
A
3
A
4
BHE  
BLE  
DQ  
7
A
16  
CE  
8
9
47  
46  
45  
44  
43  
42  
41  
A
4
38  
37  
7
8
A
15  
DQ  
0
15  
CE  
OE  
DQ  
DQ  
10  
11  
12  
13  
14  
15  
16  
DQ  
1
14  
DQ  
44 - TSOP II  
(x8)  
9
10  
36  
35  
0
7
54 - TSOP II  
(x16)  
DQ  
DQ  
V
DQ  
DQ  
V
13  
12  
2
3
DQ  
DQ  
V
1
6
V
11  
12  
13  
14  
34  
33  
32  
31  
CC  
CC  
SS  
SS  
Top View  
(not to scale)  
V
SS  
V
V
CC  
Top View  
(not to scale)  
V
SS  
CC  
DQ  
DQ  
DQ  
40  
39  
38  
37  
36  
35  
34  
33  
32  
31  
DQ  
11  
4
5
DQ  
2
3
5
DQ  
DQ  
DQ  
10  
DQ  
4
DQ  
DQ  
17  
18  
19  
20  
21  
9
6
7
WE  
A
5
15  
16  
17  
18  
19  
20  
21  
22  
30  
29  
V
CAP  
DQ  
8
A
14  
WE  
A
5
V
CAP  
A
6
28  
27  
26  
25  
24  
23  
A
13  
12  
A
14  
A
7
A
A
A
6
A
13  
A
12  
A
8
A
9
22  
23  
24  
25  
26  
27  
A
7
A
8
11  
A
11  
A
10  
A
10  
A
9
NC  
NC  
NC  
30  
29  
28  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
Figure 3. Pin Diagram: 48-Pin TSOP I (×8)  
A16  
48  
A15  
A14  
1
2
47  
HSB  
A13  
A12  
46  
VSS  
A20  
3
45  
4
A11  
A10  
44  
43  
42  
DQ7  
5
6
NC  
A9  
DQ6  
7
A8  
41  
NC  
8
A19  
40  
DQ5  
9
[5]  
39  
38  
37  
36  
35  
34  
33  
32  
31  
10  
11  
NC  
NC  
48 - TSOP I  
(x8)  
DQ4  
VCC  
WE  
CE2  
12  
VCAP  
NC  
13  
Top View  
(not to scale)  
14  
DQ3  
NC  
NC  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
NC  
DQ2  
A18  
A17  
NC  
A7  
A6  
DQ1  
30  
NC  
A5  
A4  
29  
DQ0  
28  
27  
26  
OE  
A3  
A2  
A1  
VSS  
CE  
1
25  
A0  
Note  
5. Address expansion for 32-Mbit. NC pin not connected to die.  
Document Number: 001-67793 Rev. *N  
Page 4 of 37  
CY14B116L/CY14B116N/CY14B116S  
CY14E116L/CY14E116N/CY14E116S  
Pinouts (continued)  
Figure 4. Pin Diagram: 48-Pin TSOP I (×16)  
A16  
A15  
A14  
1
2
48  
47  
46  
45  
44  
43  
42  
HSB  
A13  
A12  
VSS  
3
DQ15  
4
A11  
A10  
DQ7  
5
6
DQ14  
DQ6  
A9  
7
A8  
41  
DQ13  
8
A19  
40  
DQ5  
9
[6]  
39  
38  
37  
36  
35  
34  
33  
32  
31  
10  
11  
NC  
DQ12  
DQ4  
VCC  
48 - TSOP I  
(x16)  
WE  
CE2  
12  
VCAP  
DQ11  
13  
Top View  
(not to scale)  
14  
DQ3  
DQ10  
DQ2  
BHE  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
BLE  
A18  
A17  
DQ9  
DQ1  
DQ8  
DQ0  
A7  
A6  
30  
A5  
A4  
29  
28  
27  
26  
OE  
A3  
A2  
A1  
VSS  
CE  
1
25  
A0  
Figure 5. 60-ball FBGA pinout (× 16)  
60-FBGA  
(x16)  
Top View  
(not to scale)  
7
8
9
10  
1
2
3
4
5
6
VSS  
VSS  
VSS VSS  
VSS  
A
B
VSS  
A0  
A3  
A2  
A1  
CE2  
DQ0  
BLE  
DQ8  
OE  
C
D
E
A4  
BHE  
DQ10  
DQ11  
CE1  
DQ1  
A5  
A6  
DQ9  
VSS  
DQ2  
VCC  
VSS  
A17  
A 7  
F
DQ3  
DQ4  
DQ5  
VCC  
DQ12 HSB  
A16  
A15  
G
H
A 14  
DQ14  
DQ15  
A18  
DQ13  
DQ6  
DQ7  
A19  
A12  
A 13  
A 10  
J
VCAP  
WE  
A 11  
A8  
A9  
K
VSS  
VSS  
VSS  
L
VSS  
VSS  
VSS  
M
Note  
6. Address expansion for 32-Mbit. NC pin not connected to die.  
Document Number: 001-67793 Rev. *N  
Page 5 of 37  
CY14B116L/CY14B116N/CY14B116S  
CY14E116L/CY14E116N/CY14E116S  
Pinouts (continued)  
Figure 6. Pin Diagram: 165-Ball FBGA (×16)  
1
2
3
4
5
6
7
8
9
10  
A3  
11  
NC  
A
B
C
D
E
F
NC  
NC  
ZZ  
A6  
A8  
WE  
A4  
BLE  
BHE  
A0  
CE1  
CE2  
A7  
NC  
OE  
A5  
DQ0  
NC  
DQ1  
NC  
NC  
NC  
NC  
NC  
VCC  
NC  
DQ4  
NC  
NC  
DQ7  
NC  
A15  
NC  
A2  
NC  
NC  
NC  
NC  
NC  
NC  
VCC  
NC  
NC  
NC  
NC  
NC  
NC  
A14  
NC  
NC  
VSS  
VSS  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VSS  
VSS  
A13  
NC  
A1  
VSS  
VSS  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VSS  
VSS  
A12  
DQ15  
NC  
DQ14  
NC  
NC  
NC  
NC  
HSB  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
DQ2  
VCAP  
DQ3  
NC  
VSS  
VSS  
VCC  
VCC  
VCC  
VCC  
VCC  
VSS  
VSS  
A11  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
A10  
NC  
VSS  
VSS  
VCC  
VCC  
VCC  
VCC  
VCC  
VSS  
VSS  
A9  
DQ13  
NC  
NC  
DQ12  
NC  
G
H
J
NC  
NC  
NC  
NC  
NC  
DQ8  
NC  
NC  
K
L
NC  
NC  
DQ5  
NC  
NC  
DQ9  
NC  
M
N
P
R
DQ10  
NC  
DQ6  
NC  
NC  
A19  
A17  
A18  
A16  
DQ11  
NC  
NC  
NC  
NC  
NC[7]  
NC  
Figure 7. Pin Diagram: 165-Ball FBGA (×32)  
1
2
3
4
5
6
7
8
9
10  
A3  
11  
A
B
C
D
E
F
NC  
NC  
ZZ  
A6  
A8  
WE  
A4  
BA  
CE1  
CE2  
A7  
BC  
OE  
A5  
NC  
DQ0  
NC  
DQ1  
DQ4  
DQ5  
DQ6  
DQ7  
DQ12  
VCC  
DQ13  
DQ8  
DQ14  
DQ15  
DQ11  
NC  
BB  
BD  
A2  
NC  
NC  
NC  
NC  
NC  
NC  
VCC  
NC  
NC  
NC  
NC  
NC  
NC  
A14  
NC  
DQ31  
DQ26  
DQ30  
DQ29  
DQ24  
DQ28  
NC  
VSS  
VSS  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VSS  
VSS  
A13  
NC  
A0  
A1  
VSS  
VSS  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VSS  
VSS  
A12  
DQ27  
NC  
NC  
NC  
NC  
HSB  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
DQ2  
VCAP  
DQ3  
NC  
VSS  
VSS  
VCC  
VCC  
VCC  
VCC  
VCC  
VSS  
VSS  
A11  
NC  
A17  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
A10  
NC  
VSS  
VSS  
VCC  
VCC  
VCC  
VCC  
VCC  
VSS  
VSS  
A9  
DQ25  
NC  
G
H
J
NC  
NC  
NC  
NC  
DQ20  
NC  
DQ19  
DQ18  
DQ21  
DQ17  
DQ16  
NC  
K
L
NC  
DQ9  
NC  
NC  
M
N
P
R
DQ22  
NC  
DQ10  
NC  
A18  
A16  
DQ23  
NC  
NC  
A15  
NC  
NC[7]  
NC  
Note  
7. Address expansion for 32-Mbit. NC pin not connected to die.  
Document Number: 001-67793 Rev. *N  
Page 6 of 37  
CY14B116L/CY14B116N/CY14B116S  
CY14E116L/CY14E116N/CY14E116S  
Pin Definitions  
Pin Name  
A0 – A20  
A0 – A19  
A0 – A18  
I/O Type  
Description  
Address inputs. Used to select one of the 2,097,152 bytes of the nvSRAM for the ×8 configuration.  
Address inputs. Used to select one of the 1,048,576 words of the nvSRAM for the ×16 configuration.  
Address inputs. Used to select one of the 524,288 words of the nvSRAM for the ×32 configuration.  
Input  
Bidirectional data I/O lines for the ×8 configuration. Used as input or output lines depending on  
operation.  
DQ0 – DQ7  
Bidirectional data I/O lines for the ×16 configuration. Used as input or output lines depending on  
operation.  
DQ0 – DQ15 Input/Output  
DQ0 – DQ31  
Bidirectional data I/O lines for ×32 configuration. Used as input or output lines depending on  
operation.  
Write Enable input, Active LOW. When selected LOW, data on the I/O pins is written to the specific  
address location.  
WE  
CE  
Input  
Input  
Input  
Chip Enable input in TSOP II package, Active LOW. When LOW, selects the chip. When HIGH,  
deselects the chip.  
Chip Enable input in FBGA package. The device is selected and a memory access begins on the  
falling edge of CE1 (while CE2 is HIGH) or the rising edge of CE2 (while CE1 is LOW).  
CE1, CE2  
OE  
Output Enable, Active LOW. The Active LOW OE input enables the data output buffers during read  
cycles. Deasserting OE HIGH causes the I/O pins to tristate.  
[8]  
Byte Enable, Active LOW. When selected LOW, enables DQ7–DQ0.  
Byte Enable, Active LOW. When selected LOW, enables DQ15–DQ8.  
Input  
Input  
Input  
Input  
BLE/BA  
[8]  
BHE/BB  
[8]  
Byte Enable, Active LOW. When selected LOW, enables DQ23–DQ16  
.
.
BC  
[8]  
Byte Enable, Active LOW. When selected LOW, enables DQ31–DQ24  
BD  
Sleep Mode Enable. When the ZZ pin is pulled LOW, the device enters a low-power Sleep mode and  
consumes the lowest power. Since this input is logically AND’ed with CE, ZZ must be HIGH for normal  
operation.  
ZZ[9]  
Input  
VCC  
VSS  
Power Supply Power supply inputs to the device.  
Power Supply Ground for the device. Must be connected to ground of the system.  
Hardware STORE Busy (HSB).When LOW, this output indicates that a Hardware STORE is in progress.  
When pulled LOW external to the chip it initiates a nonvolatile STORE operation. After each Hardware  
and Software STORE operation, HSB is driven HIGH for a short time (tHHHD) with standard output high  
HSB  
Input/Output  
current and then a weak internal pull-up resistor keeps this pin HIGH (external pull-up resistor connection  
optional).  
AutoStore capacitor. Supplies power to the nvSRAM during power loss to store data from SRAM to  
nonvolatile elements.  
VCAP  
NC  
Power Supply  
NC  
No Connect. Die pads are not connected to the package pin.  
Notes  
8. BLE, BHE are applicable for ×16 configuration and B , B  
B
B are applicable for ×32 configuration only.  
D
A
B, C,  
9. Sleep mode feature is offered in 165-ball FBGA package only.  
Document Number: 001-67793 Rev. *N  
Page 7 of 37  
CY14B116L/CY14B116N/CY14B116S  
CY14E116L/CY14E116N/CY14E116S  
AutoStore Operation (Power-Down)  
Device Operation  
The CY14X116L/CY14X116N/CY14X116S stores data to the  
nonvolatile QuantumTrap cells using one of the three storage  
operations. These three operations are: Hardware STORE,  
activated by the HSB; Software STORE, activated by an address  
sequence; AutoStore, on device power-down. The AutoStore  
operation is a unique feature of nvSRAM and is enabled by  
default on the CY14X116L/CY14X116N/CY14X116S.  
The CY14X116L/CY14X116N/CY14X116S nvSRAM is made up  
of two functional components paired in the same physical cell.  
These are an SRAM memory cell and  
a nonvolatile  
QuantumTrap cell. The SRAM memory cell operates as a  
standard fast static RAM. Data in the SRAM is transferred to the  
nonvolatile cell (the STORE operation) automatically at  
power-down, or from the nonvolatile cell to the SRAM (the  
RECALL operation) on power-up. Both the STORE and RECALL  
operations are also available under software control. Using this  
unique architecture, all cells are stored and recalled in parallel.  
During the STORE and RECALL operations, SRAM read and  
write operations are inhibited. The CY14X116L/CY14X116N/  
CY14X116S supports infinite reads and writes to the SRAM. In  
addition, it provides infinite RECALL operations from the nonvol-  
atile cells and up to 1 million STORE operations. See the Truth  
Table For SRAM Operations on page 24 for a complete  
description of read and write modes.  
During normal operation, the device draws current from VCC to  
charge a capacitor connected to the VCAP pin. This stored  
charge is used by the chip to perform a STORE operation during  
power-down. If the voltage on the VCC pin drops below VSWITCH  
,
the part automatically disconnects the VCAP pin from VCC and a  
STORE operation is initiated with power provided by the VCAP  
capacitor.  
Note If the capacitor is not connected to the VCAP pin, AutoStore  
must be disabled using the soft sequence specified in the section  
Preventing AutoStore on page 12. If AutoStore is enabled without  
a capacitor on the VCAP pin, the device attempts an AutoStore  
SRAM Read  
operation without sufficient charge to complete the STORE. This  
corrupts the data stored in the nvSRAM.  
The CY14X116L/CY14X116N/CY14X116S performs a read  
cycle whenever CE and OE are LOW, and WE, ZZ, and HSB are  
HIGH. The address specified on pins A0–A20 or A0–A19 or  
Figure 8. AutoStore Mode  
V
A0–A18 determines which of the 2,097,152 data bytes or  
CC  
1,048,576 words of 16 bits or 524,288 words of 32 bits each are  
accessed. Byte enables (BLE, BHE) determine which bytes are  
enabled to the output, in the case of 16-bit words and byte  
enables (BA, BB, BC, BD) determine which bytes are enabled to  
0.1 uF  
V
CC  
the output, in the case of 32-bit words. When the read is initiated  
by an address transition, the outputs are valid after a delay of tAA  
(read cycle 1). If the read is initiated by CE or OE, the outputs  
are valid at tACE or at tDOE, whichever is later (read cycle 2). The  
WE  
V
CAP  
data output repeatedly responds to address changes within the  
tAA access time without the need for transitions on any control  
V
CAP  
V
SS  
input pins. This remains valid until another address change or  
until CE or OE is brought HIGH, or WE or HSB is brought LOW.  
SRAM Write  
Figure 8 shows the proper connection of the storage capacitor  
(VCAP) for the automatic STORE operation. Refer to DC  
A write cycle is performed when CE and WE are LOW and HSB  
is HIGH. The address inputs must be stable before entering the  
write cycle and must remain stable until CE or WE goes HIGH at  
the end of the cycle. The data on the common I/O pins  
DQ0–DQ31 is written into the memory if it is valid tSD before the  
Electrical Characteristics on page 13 for the size of the VCAP. The  
voltage on the VCAP pin is driven to VVCAP by a regulator on the  
chip. A pull-up resistor should be placed on WE to hold it inactive  
during power-up. This pull-up resistor is only effective if the WE  
signal is in tristate during power-up. When the nvSRAM comes  
out of power-up-RECALL, the host microcontroller must be  
active or the WE held inactive until the host microcontroller  
comes out of reset.  
end of a WE-controlled write or before the end of a CE-controlled  
write. The Byte Enable inputs (BLE, BHE determine which bytes  
are written, in the case of 16-bit words and Byte Enable inputs  
(BA, BB, BC, BD) determine which bytes are written, in the case  
of 32-bit words. Keep OE HIGH during the entire write cycle to  
avoid data bus contention on the common I/O lines. If OE is left  
LOW, the internal circuitry turns off the output buffers tHZWE after  
To reduce unnecessary nonvolatile STOREs, AutoStore and  
Hardware STORE operations are ignored unless at least one  
write operation has taken place (which sets a write latch) since  
the most recent STORE or RECALL cycle. Software initiated  
STORE cycles are performed regardless of whether a write  
operation has taken place.  
WE goes LOW.  
Document Number: 001-67793 Rev. *N  
Page 8 of 37  
CY14B116L/CY14B116N/CY14B116S  
CY14E116L/CY14E116N/CY14E116S  
STORE cycle, the previous nonvolatile data is first erased,  
followed by a store into the nonvolatile elements. After a STORE  
cycle is initiated, further reads and writes are disabled until the  
cycle is completed.  
Hardware STORE (HSB) Operation  
The CY14X116L/CY14X116N/CY14X116S provides the HSB pin  
to control and acknowledge the STORE operations. The HSB pin  
is used to request a Hardware STORE cycle. When the HSB pin  
is driven LOW, the device conditionally initiates a STORE  
operation after tDELAY. A STORE cycle begins only if a write to  
Because a sequence of reads from specific addresses is used  
for STORE initiation, it is important that no other read or write  
accesses intervene in the sequence. Otherwise, the sequence is  
aborted and no STORE or RECALL takes place.  
the SRAM has taken place since the last STORE or RECALL  
cycle. The HSB pin also acts as an open drain driver (an internal  
100-kweak pull-up resistor) that is internally driven LOW to  
indicate a busy condition when the STORE (initiated by any  
means) is in progress.  
To initiate the Software STORE cycle, the following read  
sequence must be performed:  
1. Read address 0x4E38 Valid Read  
2. Read address 0xB1C7 Valid Read  
3. Read address 0x83E0 Valid Read  
4. Read address 0x7C1F Valid Read  
5. Read address 0x703F Valid Read  
6. Read address 0x8FC0 Initiate STORE cycle  
Note After each Hardware and Software STORE operation, HSB  
is driven HIGH for a short time (tHHHD) with standard output high  
current and then remains HIGH by an internal 100-kpull-up  
resistor.  
SRAM write operations that are in progress when HSB is driven  
LOW by any means are given time (tDELAY) to complete before  
The software sequence may be clocked with CE-controlled  
reads or OE-controlled reads, with WE kept HIGH for all the six  
read sequences. After the sixth address in the sequence is  
entered, the STORE cycle commences and the chip is disabled.  
HSB is driven LOW. After the tSTORE cycle time is fulfilled, the  
the STORE operation is initiated. However, any SRAM write  
cycles requested after HSB goes LOW are inhibited until HSB  
returns HIGH. If the write latch is not set, HSB is not driven LOW  
by the device. However, any of the SRAM read and write cycles  
are inhibited until HSB is returned HIGH by the host microcon-  
troller or another external source.  
SRAM is activated again for the read and write operation.  
During any STORE operation, regardless of how it is initiated,  
the device continues to drive the HSB pin LOW, releasing it only  
when the STORE is complete. Upon completion of the STORE  
operation, the nvSRAM memory access is inhibited for tLZHSB  
Software RECALL  
Data is transferred from the nonvolatile memory to the SRAM by  
a software address sequence. A software RECALL cycle is  
initiated with a sequence of read operations in a manner similar  
to the Software STORE initiation. To initiate the RECALL cycle,  
perform the following sequence of CE or OE controlled read  
operations:  
time after the HSB pin returns HIGH. Leave the HSB uncon-  
nected if it is not used.  
Hardware RECALL (Power-Up)  
1. Read address 0x4E38 Valid Read  
2. Read address 0xB1C7 Valid Read  
3. Read address 0x83E0 Valid Read  
4. Read address 0x7C1F Valid Read  
5. Read address 0x703F Valid Read  
6. Read address 0x4C63 Initiate RECALL cycle  
During power-up or after any low-power condition  
(VCC < VSWITCH), an internal RECALL request is latched. When  
VCC again exceeds the VSWITCH on power-up, a RECALL cycle  
is automatically initiated and takes tHRECALL to complete. During  
this time, the HSB pin is driven LOW by the HSB driver and all  
reads and writes to nvSRAM are inhibited.  
Internally, RECALL is a two-step procedure. First, the SRAM  
data is cleared; then, the nonvolatile information is transferred  
into the SRAM cells. After the tRECALL cycle time, the SRAM is  
Software STORE  
Data is transferred from the SRAM to the nonvolatile memory by  
a software address sequence. A Software STORE cycle is  
initiated by executing sequential CE or OE controlled read cycles  
from six specific address locations in exact order. During the  
again ready for read and write operations. The RECALL  
operation does not alter the data in the nonvolatile elements.  
Document Number: 001-67793 Rev. *N  
Page 9 of 37  
CY14B116L/CY14B116N/CY14B116S  
CY14E116L/CY14E116N/CY14E116S  
When the ZZ pin is de-asserted (HIGH), there is a delay tWAKE  
before the user can access the device. If sleep mode is not used,  
Sleep Mode  
In Sleep mode, the device consumes the lowest power supply  
current (IZZ). The device enters a low-power Sleep mode after  
the ZZ pin should be tied to VCC  
.
asserting the ZZ pin LOW. After the Sleep mode is registered,  
the nvSRAM does a STORE operation to secure the data to the  
nonvolatile memory and then enters the low-power mode. The  
device starts consuming IZZ current after tSLEEP time from the  
Note When nvSRAM enters sleep mode, it initiates a nonvolatile  
STORE cycle, which results in losing one endurance cycle for  
every Sleep mode entry unless data has not been written to the  
nvSRAM since the last nonvolatile STORE/RECALL operation.  
instance when the sleep mode is initiated. When the ZZ pin is  
LOW, all input pins are ignored except the ZZ pin. The nvSRAM  
is not accessible for normal operations while it is in sleep mode.  
Note If the ZZ pin is LOW during power-up, the device will not be  
in Sleep mode. However, the I/Os are in tristate until the ZZ pin  
is de-asserted (HIGH).  
Figure 9. Sleep Mode (ZZ) Flow Diagram  
Power Applied  
After tHRECALL  
After tWAKE  
Device Ready  
CE = LOW  
ZZ = HIGH  
CE = HIGH  
ZZ = HIGH  
CE = LOW; ZZ = HIGH  
CE = HIGH; ZZ = HIGH  
Active Mode  
Standby Mode  
(ISB  
(ICC  
)
)
CE = Don’t Care  
ZZ = HIGH  
ZZ = LOW  
ZZ = LOW  
Sleep Routine  
After tSLEEP  
Sleep Mode  
(IZZ  
)
Document Number: 001-67793 Rev. *N  
Page 10 of 37  
CY14B116L/CY14B116N/CY14B116S  
CY14E116L/CY14E116N/CY14E116S  
Table 1. Mode Selection  
[12]  
[11]  
CE[10]  
H
WE  
X
OE  
X
BLE, BHE / BA, BB, BC, BD  
Mode  
I/O  
Power  
Standby  
Active  
A15 - A0  
X
X
Not selected Output High Z  
L
L
L
H
L
L
X
L
L
L
X
X
X
Read SRAM  
Write SRAM  
Output Data  
Input Data  
Active  
Active[13]  
H
0x4E38  
0xB1C7  
0x83E0  
0x7C1F  
0x703F  
0x8B45  
Read SRAM  
Read SRAM  
Read SRAM  
Read SRAM  
Read SRAM  
AutoStore  
Output Data  
Output Data  
Output Data  
Output Data  
Output Data  
Output Data  
Disable  
L
L
L
H
H
H
L
L
L
X
X
X
0x4E38  
0xB1C7  
0x83E0  
0x7C1F  
0x703F  
0x4B46  
Read SRAM  
Read SRAM  
Read SRAM  
Read SRAM  
Read SRAM  
AutoStore  
Output Data  
Output Data  
Output Data  
Output Data  
Output Data  
Output Data  
Active[13]  
Enable  
[13]  
0x4E38  
0xB1C7  
0x83E0  
0x7C1F  
0x703F  
0x8FC0  
Read SRAM  
Read SRAM  
Read SRAM  
Read SRAM  
Read SRAM  
Nonvolatile  
STORE  
Output Data Active ICC2  
Output Data  
Output Data  
Output Data  
Output Data  
Output High Z  
0x4E38  
0xB1C7  
0x83E0  
0x7C1F  
0x703F  
0x4C63  
Read SRAM  
Read SRAM  
Read SRAM  
Read SRAM  
Read SRAM  
Nonvolatile  
RECALL  
Output Data  
Output Data  
Output Data  
Output Data  
Output Data  
Output High Z  
Active[13]  
Notes  
10. The TSOP II package is offered in single CE. TSOP I, and BGA packages are offered in dual CE options. In this datasheet, for a dual CE device, CE refers to the  
internal logical combination of CE and CE such that when CE is LOW and CE is HIGH, CE is LOW. For all other cases CE is HIGH. Intermediate voltage levels  
1
2
1
2
are not permitted on any of the chip enable pins (CE for the single chip enable device; CE and CE for the dual chip enable device).  
1
2
11. BLE, BHE are applicable for the ×16 configuration and B , B  
B
B are applicable for the ×32 configuration only.  
A
B, C, D  
12. While there are 21 address lines on the CY14X116L (20 address lines on the CY14X116N and 19 address lines on the CY14X116S), only 13 address lines (A –A )  
14  
2
are used to control software modes. The remaining address lines are don’t care.  
13. The six consecutive address locations must be in the order listed. WE must be HIGH during all six cycles to enable a nonvolatile operation.  
Document Number: 001-67793 Rev. *N  
Page 11 of 37  
CY14B116L/CY14B116N/CY14B116S  
CY14E116L/CY14E116N/CY14E116S  
If the AutoStore function is disabled or re-enabled, a manual  
software STORE operation must be performed to save the  
AutoStore state through subsequent power-down cycles. The  
part comes from the factory with AutoStore enabled and 0x00  
written in all cells.  
Preventing AutoStore  
The AutoStore function is disabled by initiating an AutoStore  
disable sequence. A sequence of read operations is performed  
in a manner similar to the Software STORE initiation. To initiate  
the AutoStore disable sequence, the following sequence of CE  
or OE controlled read operations must be performed:  
Data Protection  
1. Read address 0x4E38 Valid Read  
2. Read address 0xB1C7 Valid Read  
3. Read address 0x83E0 Valid Read  
4. Read address 0x7C1F Valid Read  
5. Read address 0x703F Valid Read  
6. Read address 0x8B45 AutoStore Disable  
The CY14X116L/CY14X116N/CY14X116S protects data from  
corruption during low-voltage conditions by inhibiting all  
externally initiated  
STORE and write operations.  
The  
low-voltage condition is detected when VCC is less than  
VSWITCH. If the CY14X116L/CY14X116N/CY14X116S is in a  
write mode at power-up (both CE and WE are LOW), after a  
RECALL or STORE, the write is inhibited until the SRAM is  
enabled after tLZHSB (HSB to output active). This protects against  
AutoStore is re-enabled by initiating an AutoStore enable  
sequence. A sequence of read operations is performed in a  
manner similar to the software RECALL initiation. To initiate the  
AutoStore enable sequence, the following sequence of CE or OE  
controlled read operations must be performed:  
inadvertent writes during power-up or brownout conditions.  
1. Read address 0x4E38 Valid Read  
2. Read address 0xB1C7 Valid Read  
3. Read address 0x83E0 Valid Read  
4. Read address 0x7C1F Valid Read  
5. Read address 0x703F Valid Read  
6. Read address 0x4B46 AutoStore Enable  
Document Number: 001-67793 Rev. *N  
Page 12 of 37  
CY14B116L/CY14B116N/CY14B116S  
CY14E116L/CY14E116N/CY14E116S  
Maximum Ratings  
Exceeding maximum ratings may impair the useful life of the  
device. These user guidelines are not tested.  
Transient voltage (<20 ns) on  
any pin to ground potential .................. –2.0 V to VCC + 2.0 V  
Storage temperature ................................ –65 C to +150 C  
Maximum accumulated storage time  
Package power dissipation capability  
(TA = 25 °C) ................................................................ .1.0 W  
Surface mount lead soldering  
temperature (3 Seconds).......................................... +260 C  
At 150 C ambient temperature ................................. 1000 h  
At 85 C ambient temperature ................................ 20 Years  
Maximum junction temperature ................................. 150 C  
Supply voltage on VCC relative to VSS  
DC output current (1 output at a time, 1s duration) ..... 20 mA  
Static discharge voltage  
(per MIL-STD-883, Method 3015) ......................... > 2001 V  
CY14B116X: ................................................–0.5 V to +4.1 V  
CY14E116X: ................................................–0.5 V to +7.0 V  
Latch-up current .................................................... > 140 mA  
Operating Range  
Voltage applied to outputs  
in high-Z state......................................0.5 V to VCC + 0.5 V  
Ambient  
Temperature (TA)  
Product  
Range  
VCC  
Input voltage ........................................–0.5 V to Vcc + 0.5 V  
CY14B116X  
CY14E116X  
2.7 V to 3.6 V  
4.5 V to 5.5 V  
Industrial –40 C to +85 C  
DC Electrical Characteristics  
Over the Operating Range  
Parameter  
Description  
Power supply  
Test Conditions  
Min  
2.7  
4.5  
Typ[14]  
Max  
3.6  
5.5  
95  
Unit  
VCC  
CY14B116X  
CY14E116X  
3.0  
5.0  
V
V
ICC1  
Average VCC current  
Values obtained without output loads tRC = 25/30 ns  
(IOUT = 0 mA)  
mA  
t
RC = 45 ns  
75  
10  
mA  
mA  
ICC2  
Average VCC current All inputs don’t care, VCC = VCC (max).  
during STORE  
Average current for duration tSTORE  
ICC3  
Average VCC current at All inputs cycling at CMOS Levels.  
50  
6
mA  
mA  
Values obtained without output loads (IOUT = 0 mA).  
tRC = 200 ns,  
VCC (Typ), 25 °C  
[15]  
Average VCAP current All inputs don’t care. Average current for duration tSTORE  
during AutoStore cycle  
ICC4  
ISB  
VCC standby current  
CE > (VCC – 0.2 V). VIN < 0.2 V or > (VCC tRC = 25/30 ns  
– 0.2 V). ‘Standby current level after  
nonvolatile cycle is complete. Inputs are  
static. f = 0 MHz.  
650  
500  
A  
A  
t
RC = 45 ns  
IZZ  
Sleep mode current  
All inputs are static at CMOS Level  
10  
+1  
A  
A  
[16]  
Input leakage current  
(except HSB)  
VCC = VCC (max), VSS < VIN < VCC  
–1  
IIX  
Input leakage current  
(for HSB)  
VCC = VCC (max), VSS < VIN < VCC  
–100  
+1  
A  
Notes  
14. Typical values are at 25 °C, V = V (Typ). Not 100% tested.  
CC  
CC  
15. This parameter is only guaranteed by design and is not tested.  
16. The HSB pin has I  
= -2 uA for V of 2.4 V when both active HIGH and LOW drivers are disabled. When they are enabled standard V and V are valid. This  
OUT  
OH  
OH  
OL  
parameter is characterized but not tested.  
Document Number: 001-67793 Rev. *N  
Page 13 of 37  
CY14B116L/CY14B116N/CY14B116S  
CY14E116L/CY14E116N/CY14E116S  
DC Electrical Characteristics (continued)  
Over the Operating Range  
Parameter  
IOZ  
Description  
Test Conditions  
Min  
Typ[14]  
Max  
Unit  
Off state output  
leakage current  
VCC = VCC(Max), VSS < VOUT < VCC, CE or OE > VIH or  
BLE, BHE/BA, BB, BC, BD > VIH or WE < VIL  
–1  
+1  
A  
VIH  
VIL  
Input HIGH voltage  
Input LOW voltage  
2.0  
VSS – 0.5  
2.4  
VCC + 0.5  
V
V
0.8  
VOH  
VOL  
Output HIGH voltage IOUT = –2 mA  
V
Output LOW voltage  
Storage capacitor  
IOUT = 4 mA  
0.4  
82.0  
V
[17]  
Between VCAP pin and VSS  
19.8  
22.0  
F  
VCAP  
[18, 19]  
Maximum voltage  
driven on VCAP pin by  
VCC = VCC (max)  
5.0  
V
VVCAP  
the device  
Data Retention and Endurance  
Over the Operating Range  
Parameter  
Description  
Data retention  
Nonvolatile STORE operations  
Min  
Unit  
DATAR  
20  
Years  
NVC  
1,000,000  
Cycles  
Capacitance  
In the following table, the capacitance parameters are listed. [19]  
Max  
Max  
(All packages  
except 60-FBGA and  
165-FBGA)  
Parameter  
Description  
Test Conditions  
(60-FBGA package and  
165-FBGA package)  
Unit  
CIN  
Input capacitance  
TA = 25 C, f = 1 MHz,  
VCC = VCC (Typ)  
8
8
8
10  
10  
10  
pF  
pF  
pF  
CIO  
Input/Output capacitance  
Output capacitance  
COUT  
Thermal Resistance  
In the following table, the thermal resistance parameters are listed.[19]  
Parameter  
Description  
Test Conditions  
Test conditions  
44-TSOP II 48-TSOP I 54-TSOP II 60-FBGA 165-FBGA Unit  
JA  
Thermal resistance  
(junction to ambient) follow standard test  
44.6  
35.6  
41.1  
21  
15.6  
C/W  
methods and proce-  
JC  
Thermal resistance  
2.4  
2.33  
4.6  
3
2.9  
C/W  
dures for measuring  
(junction to case)  
thermal impedance,  
in accordance with  
EIA/JESD51.  
Notes  
17. Min V  
value guarantees that there is a sufficient charge available to complete a successful AutoStore operation. Max V  
value guarantees that the capacitor on  
CAP  
CAP  
V
is charged to a minimum voltage during a Power-Up RECALL cycle so that an immediate power-down cycle can complete a successful AutoStore. Therefore it  
CAP  
is always recommended to use a capacitor within the specified min and max limits.  
18. Maximum voltage on V pin (V ) is provided for guidance when choosing the V  
capacitor. The voltage rating of the V capacitor across the operating  
CAP  
CAP  
VCAP  
CAP  
temperature range should be higher than the V  
voltage  
VCAP  
19. These parameters are only guaranteed by design and are not tested.  
Document Number: 001-67793 Rev. *N  
Page 14 of 37  
CY14B116L/CY14B116N/CY14B116S  
CY14E116L/CY14E116N/CY14E116S  
Figure 10. AC Test Loads and Waveforms  
For 3 V (CY14B116X):  
For Tristate specs  
577  
577   
3.0 V  
OUTPUT  
3.0 V  
R1  
R1  
OUTPUT  
R2  
789   
R2  
789   
C
C
L
L
30 pF  
5 pF  
For 5 V (CY14E116X):  
For Tristate specs  
963   
963   
5.0 V  
OUTPUT  
5.0 V  
R1  
R1  
OUTPUT  
R2  
512   
R2  
512   
C
C
L
L
30 pF  
5 pF  
AC Test Conditions  
CY14B116X  
0 V to 3 V  
<3 ns  
CY14E116X  
Input pulse levels  
0 V to 3 V  
<3 ns  
Input rise and fall times (10%–90%)  
Input and output timing reference levels  
1.5 V  
1.5 V  
Document Number: 001-67793 Rev. *N  
Page 15 of 37  
CY14B116L/CY14B116N/CY14B116S  
CY14E116L/CY14E116N/CY14E116S  
AC Switching Characteristics  
Over the Operating Range[20]  
Parameters  
Cypress Parameter Alt Parameter  
SRAM Read Cycle  
25 ns  
30 ns  
45 ns  
Description  
Unit  
Min  
Max  
Min  
Max  
Min  
Max  
t
t
t
Chip enable access time  
Read cycle time  
25  
30  
45  
-
ns  
ns  
ACE  
ACS  
RC  
[22]  
25  
30  
45  
t
RC  
AA  
[23]  
t
Address access time  
25  
30  
45  
ns  
t
t
AA  
t
t
Output enable to data valid  
3
12  
3
14  
3
20  
ns  
ns  
DOE  
OHA  
OE  
[23]  
[24]  
Output hold after address change  
t
t
t
t
t
t
OH  
t
t
t
t
t
t
Chip enable to output active  
Chip disable to output inactive  
Output enable to output active  
Output disable to output inactive  
Chip enable to power active  
Chip disable to power standby  
3
0
0
10  
3
0
0
12  
3
0
0
15  
ns  
ns  
ns  
ns  
ns  
ns  
LZ  
LZCE  
HZCE  
LZOE  
HZOE  
[21, 24]  
[24]  
HZ  
OLZ  
OHZ  
PA  
[21, 24]  
10  
12  
15  
[24]  
PU  
PD  
[24]  
25  
30  
45  
t
t
PS  
Byte enable to data valid  
0
12  
0
14  
0
20  
ns  
ns  
DBE  
[24]  
Byte enable to output active  
t
t
LZBE  
[21, 24]  
Byte disable to output inactive  
10  
12  
15  
ns  
HZBE  
SRAM Write Cycle  
t
t
t
t
t
t
t
t
t
t
t
t
t
t
t
Write cycle time  
25  
20  
20  
10  
0
30  
24  
24  
14  
0
45  
30  
30  
15  
0
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
WC  
PWE  
SCE  
SD  
WC  
WP  
CW  
DW  
DH  
AW  
AS  
Write pulse width  
Chip enable to end of write  
Data setup to end of write  
Data hold after end of write  
Address setup to end of write  
Address setup to start of write  
Address hold after end of write  
HD  
20  
0
24  
0
30  
0
AW  
SA  
0
0
0
WR  
t
t
HA  
[21, 24, 25]  
[24]  
t
t
Write enable to output disable  
Output active after end of write  
Byte enable to end of write  
3
10  
3
12  
-
15  
ns  
ns  
ns  
WZ  
HZWE  
3
t
t
OW  
LZWE  
20  
24  
30  
BW  
Notes  
20. Test conditions assume a signal transition time of 3 ns or less, timing reference levels of V /2, input pulse levels of 0 to V (Typ), and output loading of the specified  
CC  
CC  
I
/I and 30 pF load capacitance as shown in Figure 10.  
OL OH  
21. t  
, t  
, t  
and t  
are specified with a load capacitance of 5 pF. Transition is measured ±200 mV from the steady state output voltage.  
HZWE  
HZCE HZOE HZBE  
22. WE must be HIGH during SRAM read cycles.  
23. Device is continuously selected with CE, OE and BLE, BHE/B , B  
B
B LOW.  
D
A
B, C,  
24. These parameters are only guaranteed by design and are not tested.  
25. If WE is LOW when CE goes LOW, the outputs remain in the high impedance state.  
Document Number: 001-67793 Rev. *N  
Page 16 of 37  
CY14B116L/CY14B116N/CY14B116S  
CY14E116L/CY14E116N/CY14E116S  
Figure 11. SRAM Read Cycle 1: Address Controlled[26, 27, 28]  
tRC  
Address  
Address Valid  
tAA  
Output Data Valid  
Previous Data Valid  
tOHA  
Data Output  
Figure 12. SRAM Read Cycle 2: CE and OE Controlled[26, 28]  
Address  
[30]  
Address Valid  
tRC  
tHZCE  
tACE  
CE  
tAA  
tLZCE  
tHZOE  
tDOE  
OE  
tHZBE  
tLZOE  
[29]  
tDBE  
/B , B , B  
, B  
C
BLE, BHE  
A
B
D
tLZBE  
High Impedance  
Data Output  
Output Data Valid  
tPD  
tPU  
ICC  
Standby  
Active  
Notes  
26. WE must be HIGH during SRAM read cycles.  
27. Device is continuously selected with CE, OE and BLE, BHE/B , B  
A
B
B LOW.  
B, C, D  
28. HSB must remain HIGH during Read and Write cycles.  
29. BLE, BHE are applicable for the ×16 configuration and B , B  
B
B are applicable for the ×32 configuration only.  
A
B, C, D  
30. TSOP II package is offered in single CE and BGA package is offered in dual CE options. In this datasheet, for a dual CE device, CE refers to the internal logical  
combination of CE and CE such that when CE is LOW and CE is HIGH, CE is LOW. For all other cases CE is HIGH. Intermediate voltage levels are not permitted  
1
2
1
2
on any of the chip enable pins (CE for the single chip enable device; CE and CE for the dual chip enable device).  
1
2
Document Number: 001-67793 Rev. *N  
Page 17 of 37  
CY14B116L/CY14B116N/CY14B116S  
CY14E116L/CY14E116N/CY14E116S  
Figure 13. SRAM Write Cycle 1: WE Controlled[32, 34, 36]  
tWC  
Address  
Address Valid  
tSCE  
tHA  
[35]  
CE  
tBW  
[31]  
/B , B , B  
, B  
C
BLE, BHE  
A
B
D
tAW  
tPWE  
WE  
tSA  
tHD  
tSD  
Data Input  
Input Data Valid  
tLZWE  
tHZWE  
High Impedance  
Data Output  
Previous Data  
Figure 14. SRAM Write Cycle 2: CE Controlled[32, 34, 36]  
tWC  
Address Valid  
Address  
tSA  
tSCE  
tHA  
[35]  
CE  
tBW  
[31]  
/B , B , B  
BLE, BHE  
, B  
A
B
C
D
tPWE  
WE  
tHD  
tSD  
Data Input  
Input Data Valid  
High Impedance  
Data Output  
Notes  
31. BLE, BHE are applicable for the ×16 configuration and B , B  
B
B are applicable for the ×32 configuration only.  
D
A
B, C,  
32. If WE is LOW when CE goes LOW, the outputs remain in the high impedance state.  
33. WE must be HIGH during SRAM read cycles.  
34. HSB must remain HIGH during Read and Write cycles.  
35. TSOP II package is offered in single CE. TSOP I and BGA packages are offered in dual CE options. In this datasheet, for a dual CE device, CE refers to the internal  
logical combination of CE and CE such that when CE is LOW and CE is HIGH, CE is LOW. For all other cases CE is HIGH. Intermediate voltage levels are not  
1
2
1
2
permitted on any of the chip enable pins (CE for the single chip enable device; CE and CE for the dual chip enable device).  
1
2
36. CE or WE must be >V during address transitions.  
IH  
Document Number: 001-67793 Rev. *N  
Page 18 of 37  
CY14B116L/CY14B116N/CY14B116S  
CY14E116L/CY14E116N/CY14E116S  
Figure 15. SRAM Write Cycle 3: BHE, BLE/ BA, BB, BC, BDControlled[38, 39, 40]  
tWC  
Address  
[41]  
Address Valid  
tSCE  
CE  
tSA  
tHA  
tBW  
[37]  
/B , B , B  
, B  
C
BLE, BHE  
A
B
D
tAW  
tPWE  
WE  
tSD  
tHD  
Input Data Valid  
High Impedance  
Data Input  
Data Output  
Notes  
37. BLE, BHE are applicable for the ×16 configuration and B , B  
B
B are applicable for the ×32 configuration only.  
D
A
B, C,  
38. If WE is LOW when CE goes LOW, the outputs remain in the high impedance state.  
39. HSB must remain HIGH during Read and Write cycles.  
40. CE or WE must be >V during address transitions.  
IH  
41. TSOP II package is offered in single CE. TSOP I and BGA packages are offered in dual CE options. In this datasheet, for a dual CE device, CE refers to the internal  
logical combination of CE and CE such that when CE is LOW and CE is HIGH, CE is LOW. For all other cases CE is HIGH. Intermediate voltage levels are not  
1
2
1
2
permitted on any of the chip enable pins (CE for the single chip enable device; CE and CE for the dual chip enable device).  
1
2
Document Number: 001-67793 Rev. *N  
Page 19 of 37  
CY14B116L/CY14B116N/CY14B116S  
CY14E116L/CY14E116N/CY14E116S  
AutoStore/Power-Up RECALL Characteristics  
Over the Operating Range  
Parameter  
Description  
Power-Up RECALL duration  
Min  
Max  
Unit  
[42]  
30  
ms  
tHRECALL  
[43]  
STORE cycle duration  
8
ms  
ns  
tSTORE  
[44, 45]  
Time allowed to complete SRAM write cycle  
Low-voltage trigger level  
25  
tDELAY  
VSWITCH  
CY14B116X  
CY14E116X  
2.65  
4.40  
V
V
[45]  
VCC rise time  
150  
s  
tVCCRISE  
[45]  
HSB output disable voltage  
HSB to output active time  
HSB HIGH active time  
1.9  
5
V
VHDIS  
[45]  
s  
ns  
tLZHSB  
[45]  
500  
tHHHD  
Figure 16. AutoStore or Power-Up RECALL[46]  
VCC  
VSWITCH  
VHDIS  
[43]  
Note  
[43]  
Note  
tVCCRISE  
tSTORE  
tSTORE  
tHHHD  
tHHHD  
[47]  
[47]  
Note  
Note  
HSB out  
tDELAY  
tLZHSB  
tLZHSB  
AutoStore  
tDELAY  
Power-Up  
RECALL  
tHRECALL  
tHRECALL  
Read & Write  
Inhibited  
(RWI)  
Read & Write  
Read & Write  
Power-Up  
RECALL  
BROWN  
OUT  
AutoStore  
Power-down  
AutoStore  
Power-Up  
RECALL  
Notes  
42. t  
starts from the time V rises above V  
CC SWITCH.  
HRECALL  
43. If an SRAM write has not taken place since the last nonvolatile cycle, no AutoStore or Hardware STORE takes place.  
44. On a Hardware STORE and AutoStore initiation, SRAM write operation continues to be enabled for time t  
.
DELAY  
45. These parameters are only guaranteed by design and are not tested.  
46. Read and Write cycles are ignored during STORE, RECALL, and while V is below V  
CC  
SWITCH.  
47. During power-up and power-down, HSB glitches when HSB pin is pulled up through an external resistor.  
Document Number: 001-67793 Rev. *N  
Page 20 of 37  
CY14B116L/CY14B116N/CY14B116S  
CY14E116L/CY14E116N/CY14E116S  
Sleep Mode Characteristics  
Over the Operating Range  
Parameter  
Description  
Min  
Max  
Unit  
tWAKE  
tSLEEP  
tZZL  
Sleep mode exit time (ZZ HIGH to first access after wakeup)  
Sleep mode enter time (ZZ LOW to CE don’t care)  
ZZ active LOW time  
30  
ms  
50  
0
8
ms  
ns  
s  
ns  
tWEZZ  
tZZH  
Last write to sleep mode entry time  
ZZ active to DQ Hi-Z time  
70  
Figure 17. Sleep Mode[48]  
V
V
SWITCH  
SWITCH  
V
CC  
ZZ  
t
t
t
HRECALL  
SLEEP  
WAKE  
t
WEZZ  
t
WE  
DQ  
ZZH  
Data  
Read & Write  
Inhibited  
(RWI)  
Power-Up  
RECALL  
Sleep  
Entry  
Sleep  
Exit  
Power-down  
AutoStore  
Read & Write  
Sleep  
Read & Write  
Note  
48. Device initiates sleep routine and enters into Sleep mode after t  
duration.  
SLEEP  
Document Number: 001-67793 Rev. *N  
Page 21 of 37  
CY14B116L/CY14B116N/CY14B116S  
CY14E116L/CY14E116N/CY14E116S  
Software Controlled STORE and RECALL Characteristics  
Over the Operating Range[49, 50]  
25 ns  
30 ns  
45 ns  
Parameter Description  
Unit  
Min  
Max  
Min  
Max  
Min  
Max  
t
t
t
t
t
STORE/RECALL initiation cycle time  
Address setup time  
25  
30  
45  
ns  
ns  
ns  
ns  
s  
s  
RC  
0
20  
0
0
24  
0
0
30  
0
SA  
Clock pulse width  
CW  
Address hold time  
HA  
RECALL duration  
600  
500  
600  
500  
600  
500  
RECALL  
[51, 52]  
Soft sequence processing time  
t
SS  
Figure 18. CE and OE Controlled Software STORE and RECALL Cycle[50]  
tRC  
tRC  
Address  
[53]  
Address #1  
tCW  
Address #6  
tCW  
tSA  
CE  
tHA  
tHA  
tHA  
tSA  
tHA  
OE  
tHHHD  
tHZCE  
HSB (STORE only)  
DQ (DATA)  
[54]  
Note  
tDELAY  
tLZCE  
tLZHSB  
High Impedance  
tSTORE/tRECALL  
RWI  
Figure 19. AutoStore Enable and Disable Cycle  
tRC  
tRC  
Address  
Address #1  
tCW  
Address #6  
tCW  
tSA  
[53]  
CE  
tHA  
tHA  
tHA  
tSA  
tHA  
OE  
tSS  
tHZCE  
[54]  
tLZCE  
tDELAY  
Note  
DQ (DATA)  
RWI  
Notes  
49. The software sequence is clocked with CE controlled or OE controlled reads.  
50. The six consecutive addresses must be read in the order listed in Table 1. WE must be HIGH during all six consecutive cycles.  
51. This is the amount of time it takes to take action on a soft sequence command. Vcc power must remain high to effectively register command.  
52. Commands such as STORE and RECALL lock out I/O until operation is complete which further increases this time. See the specific command.  
53. TSOP II package is offered in single CE. TSOP I and BGA packages are offered in dual CE options. In this datasheet, for a dual CE device, CE refers to the internal  
logical combination of CE and CE such that when CE is LOW and CE is HIGH, CE is LOW. For all other cases CE is HIGH. Intermediate voltage levels are not  
1
2
1
2
permitted on any of the chip enable pins (CE for the single chip enable device; CE and CE for the dual chip enable device).  
1
2
54. DQ output data at the sixth read may be invalid since the output is disabled at t  
time.  
DELAY  
Document Number: 001-67793 Rev. *N  
Page 22 of 37  
CY14B116L/CY14B116N/CY14B116S  
CY14E116L/CY14E116N/CY14E116S  
Hardware STORE Characteristics  
Over the Operating Range  
Parameter  
Description  
Min  
Max  
Unit  
tDHSB  
tPHSB  
HSB to output active time when write latch not set  
Hardware STORE pulse width  
25  
ns  
15  
ns  
Figure 20. Hardware STORE Cycle[55]  
Write Latch set  
t
PHSB  
HSB (IN)  
t
STORE  
t
t
HHHD  
DELAY  
HSB (OUT)  
RWI  
t
LZHSB  
Write Latch not set  
t
PHSB  
HSB (IN)  
HSB pin is driven HIGH to V  
only by internal  
CC  
100 K: resistor, HSB driver is disabled  
SRAM is disabled as long as HSB (IN) is driven LOW.  
HSB (OUT)  
RWI  
t
DELAY  
Figure 21. Soft Sequence Processing[56, 57]  
tSS  
tSS  
Soft Sequence  
Command  
Soft Sequence  
Command  
Address  
Address #1  
tSA  
Address #6  
tCW  
Address #1  
Address #6  
tCW  
[58]  
CE  
VCC  
Notes  
55. If an SRAM write has not taken place since the last nonvolatile cycle, no AutoStore or Hardware STORE takes place.  
56. This is the amount of time it takes to take action on a soft sequence command. Vcc power must remain high to effectively register command.  
57. Commands such as STORE and RECALL lock out I/O until operation is complete which further increases this time. See the specific command.  
58. TSOP II package is offered in single CE. TSOP I and BGA packages are offered in dual CE options. In this datasheet, for a dual CE device, CE refers to the internal  
logical combination of CE and CE such that when CE is LOW and CE is HIGH, CE is LOW. For all other cases CE is HIGH. Intermediate voltage levels are not  
1
2
1
2
permitted on any of the chip enable pins (CE for the single chip enable device; CE and CE for the dual chip enable device).  
1
2
Document Number: 001-67793 Rev. *N  
Page 23 of 37  
CY14B116L/CY14B116N/CY14B116S  
CY14E116L/CY14E116N/CY14E116S  
Truth Table For SRAM Operations  
HSB should remain HIGH for SRAM Operations.  
For ×8 Configuration  
Single chip enable option (44-pin TSOP II package)  
CE  
H
WE  
X
OE  
X
Inputs and Outputs  
High-Z  
Mode  
Deselect/Power-down  
Read  
Power  
Standby  
L
H
L
Data out (DQ0–DQ7)  
Active  
L
L
H
L
H
X
High-Z  
Output disabled  
Write  
Active  
Active  
Data in (DQ0–DQ7)  
For ×8 Configuration  
Dual chip enable option (48-pin TSOP I package)  
CE1  
H
CE2  
X
WE  
X
OE  
X
Inputs and Outputs  
High-Z  
Mode  
Power  
Deselect/Power-down  
Deselect/Power-down  
Read  
Standby  
Standby  
Active  
X
L
X
X
High-Z  
L
H
H
L
Data out (DQ0–DQ7)  
L
L
H
H
H
L
H
X
High-Z  
Output disabled  
Write  
Active  
Active  
Data in (DQ0–DQ7)  
For ×16 Configuration  
Single chip enable option (54-pin TSOP II package)  
CE  
H
WE  
X
OE  
X
BLE  
X
BHE  
Inputs and Outputs  
Mode  
Power  
X
H
L
High-Z  
Deselect/Power-down Standby  
L
X
X
H
High-Z  
Output disabled  
Read  
Active  
Active  
L
H
L
L
Data out (DQ0–DQ15)  
L
H
L
L
H
Data out (DQ0–DQ7);  
DQ8–DQ15 in High-Z  
Read  
Active  
L
H
L
H
L
Data out (DQ8–DQ15);  
DQ0–DQ7 in High-Z  
Read  
Active  
L
L
H
L
H
X
X
L
X
L
High-Z  
Output disabled  
Write  
Active  
Active  
Data in (DQ0–DQ15  
)
L
L
X
L
H
Data in (DQ0–DQ7);  
DQ8–DQ15 in High-Z  
Write  
Active  
L
L
X
H
L
Data in (DQ8–DQ15);  
DQ0–DQ7 in High-Z  
Write  
Active  
Document Number: 001-67793 Rev. *N  
Page 24 of 37  
CY14B116L/CY14B116N/CY14B116S  
CY14E116L/CY14E116N/CY14E116S  
For ×16 Configuration  
Dual chip enable option (48-pin TSOP I package and 165-ball FBGA package)  
CE1  
H
CE2  
X
WE  
X
OE  
X
BLE  
X
BHE  
X
Inputs and Outputs  
High-Z  
Mode  
Deselect/Power-down  
Deselect/Power-down  
Output disabled  
Read  
Power  
Standby  
X
L
X
X
X
X
High-Z  
Standby  
Active  
L
H
X
X
H
H
High-Z  
L
H
H
L
L
L
Data out (DQ0–DQ15  
)
Active  
L
H
H
L
L
H
Data out (DQ0–DQ7);  
DQ8–DQ15 in High-Z  
Read  
Active  
L
H
H
L
H
L
Data out (DQ8–DQ15);  
DQ0–DQ7 in High-Z  
Read  
Active  
L
L
H
H
H
L
H
X
X
L
X
L
High-Z  
Output disabled  
Write  
Active  
Active  
Data in (DQ0–DQ15  
)
L
H
L
X
L
H
Data in (DQ0–DQ7);  
DQ8–DQ15 in High-Z  
Write  
Active  
L
H
L
X
H
L
Data in (DQ8–DQ15);  
DQ0–DQ7 in High-Z  
Write  
Active  
For ×32 Configuration  
Dual chip enable option (165-ball FBGA package)  
CE1 CE2 WE OE BA  
BB  
BC  
BD  
DQ0–DQ7  
DQ8–DQ15  
DQ16–DQ23  
DQ24–DQ31  
Mode Power  
H
X
X
L
X
X
X
X
X
X
X
X
X
High-Z  
High-Z  
High-Z  
High-Z  
deselect/ Standby  
Power  
down  
X
X
X
High-Z  
High-Z  
High-Z  
High-Z  
deselect/ Standby  
Power  
down  
L
L
H
H
X
H
X
L
X
L
X
L
X
L
X
L
High-Z  
High-Z  
High-Z  
High-Z  
Selected Active  
Data out  
Data out  
Data out  
Data out  
Read all Active  
bits  
L
L
L
L
L
H
H
H
H
H
H
H
H
H
L
L
L
L
L
X
L
H
H
H
L
H
L
H
H
L
H
H
H
L
Data out  
High-Z  
High-Z  
High-Z  
Data in  
High-Z  
Data out  
High-Z  
High-Z  
Data in  
High-Z  
High-Z  
Data out  
High-Z  
Data in  
High-Z  
High-Z  
High-Z  
Data out  
Data in  
Read  
Read  
Read  
Read  
Active  
Active  
Active  
Active  
H
H
L
H
L
L
Write all Active  
bits  
L
L
L
L
L
H
H
H
H
H
L
L
L
L
H
X
X
X
X
H
L
H
H
H
X
H
L
H
H
L
H
H
H
L
Data in  
High-Z  
High-Z  
High-Z  
High-Z  
High-Z  
Data in  
High-Z  
High-Z  
High-Z  
High-Z  
High-Z  
Data in  
High-Z  
High-Z  
High-Z  
High-Z  
High-Z  
Data in  
High-Z  
Write  
Write  
Write  
Write  
Active  
Active  
Active  
Active  
H
H
X
H
X
X
Output Active  
disabled  
Document Number: 001-67793 Rev. *N  
Page 25 of 37  
CY14B116L/CY14B116N/CY14B116S  
CY14E116L/CY14E116N/CY14E116S  
Ordering Information  
Speed  
(ns)  
Package  
Diagram  
Operating  
Ordering Code  
Package Type  
Range  
25  
CY14B116L-ZS25XI  
CY14B116L-ZS25XIT  
CY14E116L-ZS25XI  
CY14E116L-ZS25XIT  
CY14B116N-ZSP25XI  
CY14E116N-ZSP25XI  
CY14B116N-BA25XI  
CY14B116N-BA25XIT  
CY14B116N-BZ25XI  
CY14B116N-BZ25XIT  
CY14B116S-BZ25XI  
CY14B116S-BZ25XIT  
CY14E116S-BZ25XI  
CY14E116S-BZ25XIT  
CY14B116L-Z30XI  
51-85087  
51-85087  
51-85087  
51-85087  
51-85160  
51-85160  
44-pin TSOP II  
Industrial  
44-pin TSOP II  
44-pin TSOP II  
44-pin TSOP II  
54-pin TSOP II  
54-pin TSOP II  
002-00193 60-ball FBGA  
002-00193 60-ball FBGA  
51-85195  
51-85195  
51-85195  
51-85195  
51-85195  
51-85195  
51-85183  
51-85183  
51-85183  
51-85183  
51-85183  
51-85183  
51-85183  
51-85183  
51-85087  
51-85087  
51-85087  
51-85087  
51-85183  
51-85183  
51-85183  
51-85183  
51-85183  
51-85183  
51-85160  
51-85160  
51-85183  
51-85183  
51-85195  
51-85195  
51-85195  
51-85195  
165-ball FBGA  
165-ball FBGA  
165-ball FBGA  
165-ball FBGA  
165-ball FBGA  
165-ball FBGA  
48-pin TSOP I  
48-pin TSOP I  
48-pin TSOP I  
48-pin TSOP I  
48-pin TSOP I  
48-pin TSOP I  
48-pin TSOP I  
48-pin TSOP I  
44-pin TSOP II  
44-pin TSOP II  
44-pin TSOP II  
44-pin TSOP II  
48-pin TSOP I  
48-pin TSOP I  
48-pin TSOP I  
48-pin TSOP I  
48-pin TSOP I  
48-pin TSOP I  
54-pin TSOP II  
54-pin TSOP II  
48-pin TSOP I  
48-pin TSOP I  
165-ball FBGA  
165-ball FBGA  
165-ball FBGA  
165-ball FBGA  
30  
CY14B116L-Z30XIT  
CY14E116L-Z30XI  
CY14E116L-Z30XIT  
CY14B116N-Z30XI  
CY14B116N-Z30XIT  
CY14E116N-Z30XI  
CY14E116N-Z30XIT  
CY14B116L-ZS45XI  
CY14B116L-ZS45XIT  
CY14E116L-ZS45XI  
CY14E116L-ZS45XIT  
CY14B116L-Z45XI  
45  
CY14B116L-Z45XIT  
CY14E116L-Z45XI  
CY14E116L-Z45XIT  
CY14B116N-Z45XI  
CY14B116N-Z45XIT  
CY14B116N-ZSP45XI  
CY14B116N-ZSP45XIT  
CY14E116N-Z45XI  
CY14E116N-Z45XIT  
CY14B116N-BZ45XI  
CY14B116N-BZ45XIT  
CY14B116S-BZ45XI  
CY14B116S-BZ45XIT  
All parts are Pb-free. Contact your local Cypress sales representative for availability of these parts.  
Document Number: 001-67793 Rev. *N  
Page 26 of 37  
CY14B116L/CY14B116N/CY14B116S  
CY14E116L/CY14E116N/CY14E116S  
Ordering Code Definitions  
CY14 B 116 L - ZS 25 X I T  
Option:  
T - Tape & Reel  
Blank - Std.  
Temperature:  
I - Industrial (–40 to 85 °C)  
Pb-Free  
Speed:  
25 - 25 ns  
30 - 30 ns  
45 - 45 ns  
Package:  
ZS - 44-TSOP II  
Z- 48-TSOP I  
ZSP - 54-TSOP II  
BAP - 60-FBGA  
BZA - 165-FBGA  
Data Bus:  
L - ×8  
N - ×16  
S - ×32  
Density:  
116 - 16-Mbit  
Voltage:  
B - 3.0 V  
E - 5.0 V  
14 -  
nvSRAM  
Cypress  
Document Number: 001-67793 Rev. *N  
Page 27 of 37  
CY14B116L/CY14B116N/CY14B116S  
CY14E116L/CY14E116N/CY14E116S  
Package Diagrams  
Figure 22. 44-pin TSOP II Package Outline, 51-85087  
51-85087 *E  
Document Number: 001-67793 Rev. *N  
Page 28 of 37  
CY14B116L/CY14B116N/CY14B116S  
CY14E116L/CY14E116N/CY14E116S  
Package Diagrams (continued)  
Figure 23. 48-pin TSOP I (12 × 18.4 × 1.0 mm) Package Outline, 51-85183  
51-85183 *D  
Document Number: 001-67793 Rev. *N  
Page 29 of 37  
CY14B116L/CY14B116N/CY14B116S  
CY14E116L/CY14E116N/CY14E116S  
Package Diagrams (continued)  
Figure 24. 54-pin TSOP II (22.4 × 11.84 × 1.0 mm) Package Outline, 51-85160  
51-85160 *E  
Document Number: 001-67793 Rev. *N  
Page 30 of 37  
CY14B116L/CY14B116N/CY14B116S  
CY14E116L/CY14E116N/CY14E116S  
Package Diagrams (continued)  
Figure 25. 60-ball FBGA (10 × 18 × 1.2 mm) BK60B Package Outline, 002-00193  
002-00193 **  
Document Number: 001-67793 Rev. *N  
Page 31 of 37  
CY14B116L/CY14B116N/CY14B116S  
CY14E116L/CY14E116N/CY14E116S  
Package Diagrams (continued)  
Figure 26. 165-ball FBGA (15 × 17 × 1.40 mm (0.50 Ball Diameter)) Package Outline, 51-85195  
51-85195 *D  
Document Number: 001-67793 Rev. *N  
Page 32 of 37  
CY14B116L/CY14B116N/CY14B116S  
CY14E116L/CY14E116N/CY14E116S  
Acronyms  
Document Conventions  
Units of Measure  
Acronym  
Description  
CMOS  
EIA  
Complementary Metal Oxide Semiconductor  
Electronic Industries Alliance  
Fine-Pitch Ball Grid Array  
Symbol  
°C  
Unit of Measure  
degrees celsius  
hertz  
FBGA  
I/O  
Hz  
Kbit  
kHz  
k  
A  
mA  
F  
Mbit  
MHz  
s  
Input/Output  
kilobit  
JESD  
nvSRAM  
RoHS  
RWI  
JEDEC Standards  
kilohertz  
kilohm  
nonvolatile Static Random Access Memory  
Restriction of Hazardous Substances  
Read and Write Inhibited  
microampere  
milliampere  
microfarad  
megabit  
TSOP II  
Thin Small Outline Package  
megahertz  
microsecond  
millisecond  
nanosecond  
picofarad  
volt  
ms  
ns  
pF  
V
ohm  
W
watt  
All errata for this product are fixed, effective date code 1431 (YY=14, WW=31). For more information, refer to datasheet 001-67793  
Rev. *J, or contact Cypress Technical Support at http://www.cypress.com/support.  
Document Number: 001-67793 Rev. *N  
Page 33 of 37  
CY14B116L/CY14B116N/CY14B116S  
CY14E116L/CY14E116N/CY14E116S  
Document History Page  
Document Title: CY14B116L/CY14B116N/CY14B116S/CY14E116L/CY14E116N/CY14E116S, 16-Mbit (2048K × 8/1024K ×  
16/512K × 32) nvSRAM  
Document Number: 001-67793  
Orig. of  
Change  
Submission  
Date  
Rev.  
ECN No.  
Description of Change  
**  
3186783  
3202367  
GVCH  
GVCH  
03/02/2011 New datasheet.  
*A  
03/22/2011 Updated DC Electrical Characteristics (Changed maximum value of ISB  
parameter from 3 mA to 500 µA).  
*B  
3459888  
GVCH  
12/09/2011 Changed status from “Advance” to “Preliminary”.  
Updated Pinouts (Updated Figure 6 and Figure 7).  
Updated Pin Definitions (Updated ZZ pin description).  
Updated DC Electrical Characteristics (Changed maximum value of ICC1  
parameter from 70 mA to 95 mA for tRC = 25 ns, changed maximum value of  
ICC1 parameter from 50 mA to 75 mA for tRC = 45 ns, changed typical value of  
ICC3 parameter from 35 mA to 50 mA, changed maximum value of ICC4  
parameter from 10 mA to 6 mA, changed maximum value of ISB parameter  
from 500 µA to 650 µA, added VCAP parameter values for CY14C116X,  
changed minimum value of VCAP parameter from 20 µF to 19 µF, changed  
typical value of VCAP parameter from 27 µF to 22 µF respectively, added Note  
16 and referred the same note in VCAP parameter).  
Updated Thermal Resistance (Added values).  
Updated AC Switching Characteristics (Added Note 20 and referred the same  
note in Parameters column).  
Updated AutoStore/Power-Up RECALL Characteristics (Changed maximum  
value of tHRECALL parameter from 40 ms to 60 ms for CY14C116X, changed  
maximum value of tHRECALL parameter from 20 ms to 30 ms for  
CY14B116X/CY14E116X, changed maximum value of tWAKE parameter from  
40 ms to 60 ms for CY14C116X, changed maximum value of tWAKE parameter  
from 20 ms to 30 ms for CY14B116X/CY14E116X).  
Updated Software Controlled STORE and RECALL Characteristics (Changed  
maximum value of tRECALL parameter from 300 µs to 600 µs, changed  
maximum value of tSS parameter from 200 µs to 500 µs).  
Updated Ordering Information (Updated part numbers).  
Updated Package Diagrams (To current revision).  
*C  
*D  
3510173  
3733467  
GVCH  
GVCH  
01/27/2012 Updated Ordering Information (Removed CY14E116N-ZS25XI and added  
CY14B116N-Z25XI part number).  
Updated in new template.  
09/14/2012 Updated Device Operation (Added Figure 9 under Sleep Mode).  
Updated Maximum Ratings (Changed “Ambient temperature with power  
applied” to “Maximum junction temperature”).  
Updated DC Electrical Characteristics (Added VVCAP parameter and its details,  
added Note 18 and referred the same note in VVCAP parameter, also referred  
Note 19 in VVCAP parameter).  
Updated Capacitance (Changed maximum value of CIN and COUT parameters  
from 7 pF to 11.5 pF).  
Added Sleep Mode and Figure 17 (Corresponding to SLEEP Mode).  
Updated Package Diagrams (spec 51-85087 (Changed revision from *D to *E).  
Document Number: 001-67793 Rev. *N  
Page 34 of 37  
CY14B116L/CY14B116N/CY14B116S  
CY14E116L/CY14E116N/CY14E116S  
Document History Page (continued)  
Document Title: CY14B116L/CY14B116N/CY14B116S/CY14E116L/CY14E116N/CY14E116S, 16-Mbit (2048K × 8/1024K ×  
16/512K × 32) nvSRAM  
Document Number: 001-67793  
Orig. of  
Change  
Submission  
Date  
Rev.  
ECN No.  
Description of Change  
*E  
4198509  
GVCH  
01/23/2014 Updated Features:  
Removed 2.5 V operating range voltage support.  
Added 54-pin TSOP II package related information.  
Updated Logic Block Diagram  
Updated Device Operation:  
Updated AutoStore Operation (Power-Down):  
Removed sentence “The HSB signal is monitored by the system to detect if an  
AutoStore cycle is in progress.”  
Updated DC Electrical Characteristics:  
Updated Test Conditions of ISB parameter and also updated the corresponding  
values.  
Changed maximum value of VIH parameter from “VCC + 0.3 V” to “VCC + 0.5 V”.  
Updated VCAP value from 20 uF to 19.8 uF.  
Added Note 20.  
Updated Capacitance:  
Changed maximum value of CIN and COUT parameters from 11.5 pF to 8 pF.  
Updated Sleep Mode:  
Changed maximum value of tZZH parameter from 20 ns to 70 ns.  
Updated Figure 9 and Figure 17 for more clarity.  
Updated Truth Table For SRAM Operations for more clarity.  
Updated Ordering Information (Updated part numbers).  
Updated Package Diagrams:  
Added 54-pin TSOP II package related information (Figure 24).  
*F  
4303589  
4366689  
GVCH  
GVCH  
03/20/2014 Updated Thermal Resistance:  
Updated values of JA and JC parameters.  
Updated to new template.  
Completing Sunset Review.  
*G  
05/01/2014 Updated Device Operation:  
Updated Sleep Mode:  
Updated description.  
Updated Maximum Ratings:  
Added Note 14 and referred the same note in “Static discharge voltage”.  
Updated DC Electrical Characteristics:  
Removed “RTC running on backup power supply” in test conditions of IZZ  
parameter.  
Updated AC Switching Characteristics:  
Added Note 25 and referred the same note in tHA parameter.  
Updated Ordering Information (Updated part numbers (Added Part numbers  
namely CY14B116N-ZSP45XI, CY14B116N-ZSP45XIT, CY14E116S-BZ25XI  
and CY14E116S-BZ25XIT)).  
Added Errata.  
*H  
4409843  
GVCH  
06/17/2014 Updated DC Electrical Characteristics:  
Updated maximum value of VVCAP parameter to 5.0 V for CY14B116X and  
CY14E116X.  
Document Number: 001-67793 Rev. *N  
Page 35 of 37  
CY14B116L/CY14B116N/CY14B116S  
CY14E116L/CY14E116N/CY14E116S  
Document History Page (continued)  
Document Title: CY14B116L/CY14B116N/CY14B116S/CY14E116L/CY14E116N/CY14E116S, 16-Mbit (2048K × 8/1024K ×  
16/512K × 32) nvSRAM  
Document Number: 001-67793  
Orig. of  
Change  
Submission  
Date  
Rev.  
ECN No.  
Description of Change  
*I  
4417851  
GVCH  
06/24/2014 Updated DC Electrical Characteristics:  
Added footnote 15 and referred the same note in ICC4 parameter.  
Updated Capacitance:  
Changed maximum value of CIN and COUT parameters from 8 pF to 10 pF for  
165-ball FBGA package.  
Added CIO parameter.  
Updated Ordering Code Definitions under Ordering Information:  
Added package code for 48-TSOP I package.  
*J  
4432183  
4456803  
GVCH  
ZSK  
07/07/2014 Updated DC Electrical Characteristics:  
Changed maximum value of VCAP parameter from 120.0 F to 82.0 F  
*K  
07/31/2014 Removed Errata section.  
Added a note at the end of the document mentioning when the errata items  
were fixed.  
*L  
4562106  
GVCH  
11/05/2014 Updated Functional Description:  
Added “For a complete list of related documentation, click here.” at the end.  
Updated Package Diagrams:  
spec 51-85160 – Changed revision from *D to *E.  
*M  
*N  
4616093  
5364155  
GVCH  
GVCH  
01/07/2015 Changed status from Preliminary to Final.  
Updated Package Diagrams:  
spec 51-85183 – Changed revision from *C to *D.  
22/07/2016 Added 60-ball FBGA package related information in all instances across the  
document.  
Updated Ordering Information:  
Updated part numbers.  
Updated Ordering Code Definitions.  
Updated Package Diagrams:  
Added spec 002-00193 **.  
spec 51-85195 – Changed revision from *C to *D.  
Updated to new template.  
Document Number: 001-67793 Rev. *N  
Page 36 of 37  
CY14B116L/CY14B116N/CY14B116S  
CY14E116L/CY14E116N/CY14E116S  
Sales, Solutions, and Legal Information  
Worldwide Sales and Design Support  
Cypress maintains a worldwide network of offices, solution centers, manufacturer’s representatives, and distributors. To find the office  
closest to you, visit us at Cypress Locations.  
®
Products  
PSoC Solutions  
ARM® Cortex® Microcontrollers  
cypress.com/arm  
cypress.com/automotive  
cypress.com/clocks  
cypress.com/interface  
cypress.com/powerpsoc  
cypress.com/memory  
cypress.com/psoc  
PSoC 1 | PSoC 3 | PSoC 4 | PSoC 5LP  
Automotive  
Cypress Developer Community  
Clocks & Buffers  
Interface  
Forums | Projects | Video | Blogs | Training | Components  
Technical Support  
Lighting & Power Control  
Memory  
cypress.com/support  
PSoC  
Touch Sensing  
USB Controllers  
Wireless/RF  
cypress.com/touch  
cypress.com/usb  
cypress.com/wireless  
© Cypress Semiconductor Corporation, 2011-2016. This document is the property of Cypress Semiconductor Corporation and its subsidiaries, including Spansion LLC ("Cypress"). This document,  
including any software or firmware included or referenced in this document ("Software"), is owned by Cypress under the intellectual property laws and treaties of the United States and other countries  
worldwide. Cypress reserves all rights under such laws and treaties and does not, except as specifically stated in this paragraph, grant any license under its patents, copyrights, trademarks, or other  
intellectual property rights. If the Software is not accompanied by a license agreement and you do not otherwise have a written agreement with Cypress governing the use of the Software, then Cypress  
hereby grants you a personal, non-exclusive, nontransferable license (without the right to sublicense) (1) under its copyright rights in the Software (a) for Software provided in source code form, to  
modify and reproduce the Software solely for use with Cypress hardware products, only internally within your organization, and (b) to distribute the Software in binary code form externally to end users  
(either directly or indirectly through resellers and distributors), solely for use on Cypress hardware product units, and (2) under those claims of Cypress's patents that are infringed by the Software (as  
provided by Cypress, unmodified) to make, use, distribute, and import the Software solely for use with Cypress hardware products. Any other use, reproduction, modification, translation, or compilation  
of the Software is prohibited.  
TO THE EXTENT PERMITTED BY APPLICABLE LAW, CYPRESS MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS DOCUMENT OR ANY SOFTWARE  
OR ACCOMPANYING HARDWARE, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. To the extent  
permitted by applicable law, Cypress reserves the right to make changes to this document without further notice. Cypress does not assume any liability arising out of the application or use of any  
product or circuit described in this document. Any information provided in this document, including any sample design information or programming code, is provided only for reference purposes. It is  
the responsibility of the user of this document to properly design, program, and test the functionality and safety of any application made of this information and any resulting product. Cypress products  
are not designed, intended, or authorized for use as critical components in systems designed or intended for the operation of weapons, weapons systems, nuclear installations, life-support devices or  
systems, other medical devices or systems (including resuscitation equipment and surgical implants), pollution control or hazardous substances management, or other uses where the failure of the  
device or system could cause personal injury, death, or property damage ("Unintended Uses"). A critical component is any component of a device or system whose failure to perform can be reasonably  
expected to cause the failure of the device or system, or to affect its safety or effectiveness. Cypress is not liable, in whole or in part, and you shall and hereby do release Cypress from any claim,  
damage, or other liability arising from or related to all Unintended Uses of Cypress products. You shall indemnify and hold Cypress harmless from and against all claims, costs, damages, and other  
liabilities, including claims for personal injury or death, arising from or related to any Unintended Uses of Cypress products.  
Cypress, the Cypress logo, Spansion, the Spansion logo, and combinations thereof, PSoC, CapSense, EZ-USB, F-RAM, and Traveo are trademarks or registered trademarks of Cypress in the United  
States and other countries. For a more complete list of Cypress trademarks, visit cypress.com. Other names and brands may be claimed as property of their respective owners.  
Document Number: 001-67793 Rev. *N  
Revised July 22, 2016  
Page 37 of 37  

相关型号:

CY14B116N-ZSP25XI

Non-Volatile SRAM, 1MX16, 25ns, CMOS, PDSO54, ROHS COMPLIANT, TSOP2-54
CYPRESS

CY14B116N-ZSP45XI

16-Mbit (2048K × 8/1024K × 16/512K × 32) nvSRAM
CYPRESS

CY14B116N-ZSP45XIT

16-Mbit (2048K × 8/1024K × 16/512K × 32) nvSRAM
CYPRESS

CY14B116S

16-Mbit (2048K × 8/1024K × 16/512K × 32) nvSRAM
CYPRESS

CY14B116S-BZ25XI

16-Mbit (2048K × 8/1024K × 16/512K × 32) nvSRAM
CYPRESS

CY14B116S-BZ25XIT

16-Mbit (2048K × 8/1024K × 16/512K × 32) nvSRAM
CYPRESS

CY14B116S-BZ45XI

16-Mbit (2048K × 8/1024K × 16/512K × 32) nvSRAM
CYPRESS

CY14B116S-BZ45XIT

16-Mbit (2048K × 8/1024K × 16/512K × 32) nvSRAM
CYPRESS

CY14B256I

256-Kbit (32 K x 8) Serial (I2C) nvSRAM with Real Time Clock Full-featured RTC
CYPRESS

CY14B256I-SFXI

256-Kbit (32 K x 8) Serial (I2C) nvSRAM with Real Time Clock Full-featured RTC
CYPRESS

CY14B256I-SFXI

nvSRAM (non-volatile SRAM)
INFINEON

CY14B256I-SFXIT

256-Kbit (32 K x 8) Serial (I2C) nvSRAM with Real Time Clock Full-featured RTC
CYPRESS