CY14E104L-ZS15XIT [CYPRESS]

4 Mbit (512K x 8/256K x 16) nvSRAM; 4兆位( 512K ×8 / 256K ×16 )的nvSRAM
CY14E104L-ZS15XIT
型号: CY14E104L-ZS15XIT
厂家: CYPRESS    CYPRESS
描述:

4 Mbit (512K x 8/256K x 16) nvSRAM
4兆位( 512K ×8 / 256K ×16 )的nvSRAM

静态存储器
文件: 总22页 (文件大小:632K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
PRELIMINARY  
CY14E104L/CY14E104N  
4 Mbit (512K x 8/256K x 16) nvSRAM  
Features  
Functional Description  
15 ns, 20 ns, 25 ns, and 45 ns access times  
The Cypress CY14E104L/CY14E104N is a fast static RAM with  
a nonvolatile element in each memory cell. The memory is  
Internally organized as 512K x 8 (CY14E104L) or 256K x 16  
(CY14E104N)  
organized as 512K words of 8 bits each or 256K words of 16 bits  
each. The embedded nonvolatile elements incorporate  
QuantumTrap technology producing the world’s most reliable  
nonvolatile memory. The SRAM provides infinite read and write  
cycles, while independent nonvolatile data resides in the reliable  
QuantumTrap cell. Data transfers from the SRAM to the  
nonvolatile elements (the STORE operation) takes place  
automatically at power down. On power up, data is restored to  
the SRAM (the RECALL operation) from the nonvolatile memory.  
Both the STORE and RECALL operations are also available  
under software control.  
Hands off automatic STORE on power down with only a small  
capacitor  
STORE to QuantumTrap® nonvolatile elements is initiated by  
software, device pin, or AutoStore® on power down  
RECALL to SRAM initiated by software or power up  
Infinite read, write, and recall cycles  
200,000 STORE cycles to QuantumTrap  
20 year data retention  
Single 5V +10% operation  
Commercial and industrial temperatures  
48-pin FBGA and 44/54-pin TSOP II packages  
Pb-free and RoHS compliance  
Logic Block Diagram  
V
CC  
V
CAP  
[1]  
18  
A - A  
Address  
0
[1]  
CE  
DQ0 - DQ7  
CY14E104L  
CY14E104N  
OE  
WE  
HSB  
BHE  
BLE  
V
SS  
Note  
1. Address A - A and Data DQ0 - DQ7 for x8 configuration, Address A - A and Data DQ0 - DQ15 for x16 configuration.  
0
18  
0
17  
Cypress Semiconductor Corporation  
Document Number: 001-09603 Rev. *H  
198 Champion Court  
San Jose, CA 95134-1709  
408-943-2600  
Revised June 20, 2008  
[+] Feedback  
CY14E104L/CY14E104N  
PRELIMINARY  
Pinouts  
Figure 1. Pin Diagram - 48 FBGA  
48-FBGA  
48-FBGA  
(x8)  
(x16)  
Top View  
Top View  
(not to scale)  
(not to scale)  
1
2
OE  
NC  
NC  
4
3
5
6
1
2
4
3
5
6
A
A
2
A
NC  
A
A
A
2
NC  
NC  
NC  
OE  
BLE  
DQ8  
0
1
A
B
C
0
1
A
B
C
A
A
4
A
A
4
CE NC  
NC DQ4  
V
BHE  
DQ10  
CE DQ0  
DQ1 DQ2  
3
3
A
A
6
DQ0  
A
A
6
DQ9  
5
5
A
V
A
7
V
DQ3  
A17  
V
DQ5  
DQ6  
NC  
DQ1  
DQ2  
NC  
CC  
D
E
F
A17  
SS  
D
E
F
7
CC  
SS  
DQ11  
DQ12  
DQ13  
A
V
V
SS  
A
V
V
SS  
VCAP  
CC  
VCAP  
16  
CC  
DQ4  
DQ5  
16  
A
A
15  
A
A
15  
DQ3  
DQ7  
DQ14  
DQ15  
DQ6  
14  
14  
[3]  
NC  
A
A
A
G
H
A
13  
G
H
HSB  
WE NC  
HSB  
WE DQ7  
[3]  
13  
12  
12  
[2]  
[2]  
A
A
A
11  
A18  
A
A
10  
A
A
A
10  
NC  
9
8
9
11  
8
NC  
NC  
Figure 2. Pin Diagram - 44 TSOP II  
A
NC  
[3]  
1
2
0
A
17  
44  
43  
42  
41  
1
44  
43  
42  
41  
HSB  
NC  
A
1
NC  
2
3
4
5
6
7
8
9
A
16  
[2]  
A
3
4
5
6
7
8
A
2
A
NC  
A
18  
0
15  
A
3
A
1
OE  
A
4
A
2
BHE  
40  
39  
A
17  
40  
39  
CE  
DQ0  
DQ1  
DQ2  
DQ3  
A
3
BLE  
A
16  
38  
37  
36  
35  
34  
DQ15  
DQ14  
DQ13  
DQ12  
A
4
38  
37  
36  
35  
A
15  
CE  
DQ0  
OE  
DQ7  
44 - TSOP II  
9
10  
44 - TSOP II  
(x16)  
(x8)  
DQ1 10  
DQ6  
V
V
11  
12  
13  
14  
V
CC  
11  
12  
13  
14  
CC  
V
34  
33  
32  
31  
V
SS  
SS  
Top View  
(not to scale)  
Top View  
(not to scale)  
SS  
V
V
V
33  
32  
31  
CC  
SS  
CC  
DQ4  
DQ5  
DQ11  
DQ2  
DQ3  
DQ5  
DQ10  
DQ4  
DQ6  
DQ7  
15  
16  
17  
18  
WE  
A
5
15  
16  
17  
18  
30  
29  
28  
27  
26  
25  
24  
23  
DQ9  
DQ8  
30  
29  
28  
27  
26  
25  
24  
23  
V
A
CAP  
14  
A
6
WE  
A
V
13  
12  
CAP  
A
A
7
5
A
14  
A
A
6
A
19  
20  
21  
22  
19  
20  
21  
22  
A
8
A
13  
11  
A
7
A
9
A
A
12  
10  
A
NC  
NC  
8
A
NC  
NC  
11  
A
9
A
10  
Notes  
2. Address expansion for 8 Mbit. NC pin is not connected to the die.  
3. Address expansion for 16 Mbit. NC pin is not connected to the die.  
Document Number: 001-09603 Rev. *H  
Page 2 of 22  
[+] Feedback  
CY14E104L/CY14E104N  
PRELIMINARY  
Pinouts (continued)  
Figure 3. Pin Diagram - 54 TSOP II (x16)  
NC  
[3]  
54  
53  
52  
51  
50  
49  
HSB  
NC  
1
2
3
[2]  
NC  
A
0
A
17  
A
1
A
4
5
6
16  
A
2
A
15  
OE  
A
3
48  
47  
46  
45  
A
BHE  
BLE  
DQ15  
DQ14  
DQ13  
DQ12  
7
8
9
10  
11  
12  
13  
14  
4
CE  
DQ0  
DQ1  
54 - TSOP II  
(x16)  
DQ2  
DQ3  
44  
43  
42  
41  
40  
39  
V
CC  
V
SS  
V
SS  
Top View  
(not to scale)  
V
CC  
DQ4  
DQ5  
DQ11  
DQ10  
DQ9  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
38  
37  
36  
35  
DQ6  
DQ7  
WE  
DQ8  
VCAP  
A
A
5
14  
34  
33  
32  
31  
30  
29  
28  
A
6
A
13  
A
A
12  
7
A
11  
A
8
A
10  
A9  
NC  
NC  
NC  
25  
26  
27  
NC  
NC  
NC  
Pin Definitions  
Pin Name  
A0 – A18  
A0 – A17  
IO Type  
Description  
Input  
Address Inputs Used to Select one of the 524, 288 bytes of the nvSRAM for x8 Configuration.  
Address Inputs Used to Select one of the 262,144 bytes of the nvSRAM for x16 Configuration.  
DQ0 – DQ7 Input/Output Bidirectional Data IO Lines for x8 Configuration. Used as input or output lines depending on  
operation.  
DQ0 – DQ15  
Bidirectional Data IO Lines for x16 Configuration. Used as input or output lines depending on  
operation.  
NC  
BHE  
BLE  
No Connect No Connects. This pin is not connected to the die.  
Input  
Input  
Input  
Byte High Enable, Active LOW. Controls DQ15 - DQ8.  
Byte Low Enable, Active LOW. Controls DQ7 - DQ0.  
Write Enable Input, Active LOW. When selected LOW, data on the IO pins is written to the address  
location latched by the falling edge of CE.  
WE  
Input  
Input  
Chip Enable Input, Active LOW. When LOW, selects the chip. When HIGH, deselects the chip.  
CE  
OE  
Output Enable, Active LOW. The active LOW OE input enables the data output buffers during read  
cycles. IO pins are tri-stated on deasserting OE HIGH.  
VSS  
VCC  
Ground  
Ground for the Device. Must be connected to ground of the system.  
Power Supply Power Supply Inputs to the Device.  
Input/Output Hardware Store Busy (HSB). When LOW this output indicates that a hardware store is in progress.  
When pulled LOW external to the chip it initiates a nonvolatile STORE operation. A weak internal pull  
up resistor keeps this pin HIGH if not connected (connection optional).  
HSB  
VCAP  
Power Supply AutoStore Capacitor. Supplies power to the nvSRAM during power loss to store data from SRAM to  
nonvolatile elements.  
Document Number: 001-09603 Rev. *H  
Page 3 of 22  
[+] Feedback  
CY14E104L/CY14E104N  
PRELIMINARY  
Figure 4. AutoStore Mode  
Device Operation  
The CY14E104L/CY14E104N nvSRAM is made up of two  
functional components paired in the same physical cell. They are  
an SRAM memory cell and a nonvolatile QuantumTrap cell. The  
SRAM memory cell operates as a standard fast static RAM. Data  
in the SRAM is transferred to the nonvolatile cell (the STORE  
operation), or from the nonvolatile cell to the SRAM (the RECALL  
operation). Using this unique architecture, all cells are stored and  
recalled in parallel. During the STORE and RECALL operations,  
the SRAM read and write operations are inhibited. The  
CY14E104L/CY14E104N supports infinite reads and writes  
similar to a typical SRAM. In addition, it provides infinite RECALL  
operations from the nonvolatile cells and up to 200K STORE  
operations.  
Vcc  
0.1uF  
Vcc  
WE  
VCAP  
VCAP  
SRAM Read  
VSS  
The CY14E104L/CY14E104N performs a read cycle when CE  
and OE are LOW and WE and HSB are HIGH. The address  
specified on pins A0-18 or A0-17 determines which of the 524,288  
data bytes or 262,144 words of 16 bits each are accessed. When  
the read is initiated by an address transition, the outputs are valid  
after a delay of tAA (read cycle #1). If the read is initiated by CE  
or OE, the outputs are valid at tACE or at tDOE, whichever is later  
(read cycle #2). The data output repeatedly responds to address  
changes within the tAA access time without the need for transi-  
tions on any control input pins. This remains valid until another  
address change or until CE or OE is brought HIGH, or WE or  
HSB is brought LOW.  
Figure 4 shows the proper connection of the storage capacitor  
(VCAP) for automatic store operation. Refer to DC Electrical  
Characteristics on page 7 for the size of VCAP  
.
To reduce unnecessary nonvolatile stores, AutoStore and  
hardware store operations are ignored unless at least one write  
operation has taken place since the most recent STORE or  
RECALL cycle. Software initiated STORE cycles are performed  
regardless of whether a write operation has taken place. The  
HSB signal is monitored by the system to detect if an AutoStore  
cycle is in progress.  
SRAM Write  
A write cycle is performed when CE and WE are LOW and HSB  
is HIGH. The address inputs must be stable before entering the  
write cycle and must remain stable until CE or WE goes HIGH at  
the end of the cycle. The data on the common IO pins DQ0-15 are  
written into the memory if the data is valid tSD before the end of  
a WE controlled write or before the end of an CE controlled write.  
It is recommended that OE be kept HIGH during the entire write  
cycle to avoid data bus contention on common IO lines. If OE is  
left LOW, internal circuitry turns off the output buffers tHZWE after  
WE goes LOW.  
Hardware STORE (HSB) Operation  
The CY14E104L/CY14E104N provides the HSB pin to control  
and acknowledge the STORE operations. The HSB pin is used  
to request a hardware STORE cycle. When the HSB pin is driven  
LOW, the CY14E104L/CY14E104N conditionally initiates a  
STORE operation after tDELAY. An actual STORE cycle begins  
only if a write to the SRAM has taken place since the last STORE  
or RECALL cycle. The HSB pin also acts as an open drain driver  
that is internally driven LOW to indicate a busy condition when  
the STORE (initiated by any means) is in progress.  
AutoStore Operation  
SRAM read and write operations that are in progress when HSB  
is driven LOW by any means are given time to complete before  
the STORE operation is initiated. After HSB goes LOW, the  
CY14E104L/CY14E104N continues SRAM operations for  
The CY14E104L/CY14E104N stores data to the nvSRAM using  
one of the following three storage operations: Hardware Store  
activated by HSB; Software Store activated by an address  
sequence; AutoStore activated on device power down. The  
AutoStore operation is a unique feature of QuantumTrap  
t
DELAY. During tDELAY, multiple SRAM read operations may take  
place. If a write is in progress when HSB is pulled LOW it is  
allowed a time, tDELAY, to complete. However, any SRAM write  
cycles requested after HSB goes LOW are inhibited until HSB  
returns HIGH.  
technology  
and  
is  
enabled  
by  
default  
on  
the  
CY14E104L/CY14E104N.  
During a normal operation, the device draws current from VCC to  
charge a capacitor connected to the VCAP pin. This stored  
charge is used by the chip to perform a single STORE operation.  
If the voltage on the VCC pin drops below VSWITCH, which is  
below the minimum specified operating voltage, the part  
automatically disconnects the VCAP pin from VCC. A STORE  
operation is initiated with power provided by the VCAP capacitor.  
During any STORE operation, regardless of how it is initiated,  
the CY14E104L/CY14E104N continues to drive the HSB pin  
LOW, releasing it only when the STORE is complete. Upon  
completion  
of  
the  
STORE  
operation,  
the  
CY14E104L/CY14E104N remains disabled until the HSB pin  
returns HIGH. Leave the HSB unconnected if it is not used.  
Document Number: 001-09603 Rev. *H  
Page 4 of 22  
[+] Feedback  
CY14E104L/CY14E104N  
PRELIMINARY  
The software sequence may be clocked with CE controlled reads  
or OE controlled reads. After the sixth address in the sequence  
is entered, the STORE cycle commences and the chip is  
disabled. It is important to use read cycles and not write cycles  
in the sequence, although it is not necessary that OE be LOW  
for a valid sequence. After the tSTORE cycle time is fulfilled, the  
SRAM is activated again for a read and write operation.  
Hardware RECALL (Power Up)  
During power up or after any low power condition (VCC  
<
VSWITCH), an internal RECALL request is latched. When VCC  
exceeds the sense voltage of VSWITCH, a RECALL cycle is  
automatically initiated and takes tHRECALL to complete.  
Software STORE  
Software RECALL  
Data is transferred from the SRAM to the nonvolatile memory by  
a software address sequence. The CY14E104L/CY14E104N  
software STORE cycle is initiated by executing sequential CE  
controlled read cycles from six specific address locations in  
exact order. During the STORE cycle an erase of the previous  
nonvolatile data is first performed, followed by a program of the  
nonvolatile elements. After a STORE cycle is initiated, further  
input and output are disabled until the cycle is completed.  
Data is transferred from the nonvolatile memory to the SRAM by  
a software address sequence. A software RECALL cycle is  
initiated with a sequence of read operations in a manner similar  
to the software STORE initiation. To initiate the RECALL cycle,  
the following sequence of CE controlled read operations must be  
performed.  
1. Read address 0x4E38 Valid READ  
2. Read address 0xB1C7 Valid READ  
3. Read address 0x83E0 Valid READ  
4. Read address 0x7C1F Valid READ  
5. Read address 0x703F Valid READ  
6. Read address 0x4C63 Initiate RECALL cycle  
Because a sequence of reads from specific addresses is used  
for STORE initiation, it is important that no other read or write  
accesses intervene in the sequence, or the sequence is aborted  
and no STORE or RECALL takes place.  
To initiate the software STORE cycle, the following read  
sequence must be performed.  
1. Read address 0x4E38 Valid READ  
2. Read address 0xB1C7 Valid READ  
3. Read address 0x83E0 Valid READ  
4. Read address 0x7C1F Valid READ  
5. Read address 0x703F Valid READ  
6. Read address 0x8FC0 Initiate STORE cycle  
Internally, RECALL is a two step procedure. First, the SRAM data  
is cleared; then, the nonvolatile information is transferred into the  
SRAM cells. After the tRECALL cycle time, the SRAM is again  
ready for read and write operations. The RECALL operation  
does not alter the data in the nonvolatile elements.  
Table 1. Mode Selection  
A15 - A0  
Mode  
IO  
Power  
Standby  
Active  
CE  
H
WE  
X
OE  
X
X
X
X
Not Selected  
Read SRAM  
Write SRAM  
Output High Z  
Output Data  
Input Data  
L
L
L
H
L
L
X
L
Active  
Active[4,5,6]  
H
0x4E38  
0xB1C7  
0x83E0  
0x7C1F  
0x703F  
0x8B45  
Read SRAM  
Read SRAM  
Read SRAM  
Read SRAM  
Read SRAM  
AutoStore  
Output Data  
Output Data  
Output Data  
Output Data  
Output Data  
Output Data  
Disable  
L
H
L
0x4E38  
0xB1C7  
0x83E0  
0x7C1F  
0x703F  
0x4B46  
Read SRAM  
Read SRAM  
Read SRAM  
Read SRAM  
Read SRAM  
AutoStore Enable  
Output Data  
Output Data  
Output Data  
Output Data  
Output Data  
Output Data  
Active[4,5,6]  
Notes  
4. The six consecutive address locations must be in the order listed. WE must be HIGH during all six cycles to enable a nonvolatile cycle.  
5. While there are 19 address lines on the CY14E104L/CY14E104N, only the lower 16 lines are used to control software modes.  
6. IO state depends on the state of OE, BHE, and BLE. The IO table shown assumes OE, BHE, and BLE LOW.  
Document Number: 001-09603 Rev. *H  
Page 5 of 22  
[+] Feedback  
CY14E104L/CY14E104N  
PRELIMINARY  
Table 1. Mode Selection (continued)  
A15 - A0  
Mode  
IO  
Power  
CE  
WE  
OE  
[4,5,6]  
L
H
L
0x4E38  
0xB1C7  
0x83E0  
0x7C1F  
0x703F  
0x8FC0  
Read SRAM  
Read SRAM  
Read SRAM  
Read SRAM  
Read SRAM  
Output Data  
Output Data  
Output Data  
Output Data  
Output Data  
Active ICC2  
Nonvolatile Store Output High Z  
L
H
L
0x4E38  
0xB1C7  
0x83E0  
0x7C1F  
0x703F  
0x4C63  
Read SRAM  
Read SRAM  
Read SRAM  
Read SRAM  
Read SRAM  
Nonvolatile  
Recall  
Output Data  
Output Data  
Output Data  
Output Data  
Output Data  
Output High Z  
Active[4,5,6]  
If the AutoStore function is disabled or re-enabled, a manual  
STORE operation (hardware or software) must be issued to save  
the AutoStore state through subsequent power down cycles. The  
part comes from the factory with AutoStore enabled.  
Preventing AutoStore  
The AutoStore function is disabled by initiating an AutoStore  
disable sequence. A sequence of read operations is performed  
in a manner similar to the software STORE initiation. To initiate  
the AutoStore disable sequence, the following sequence of CE  
controlled read operations must be performed:  
Data Protection  
The CY14E104L/CY14E104N protects data from corruption  
during low voltage conditions by inhibiting all externally initiated  
STORE and write operations. The low voltage condition is  
detected when VCC < VSWITCH. If the CY14E104L/ CY14E104N  
is in a write mode (both CE and WE are LOW) at power up, after  
a RECALL or STORE, the write is inhibited until a negative  
transition on CE or WE is detected. This protects against  
inadvertent writes during power up or brown out conditions.  
1. Read address 0x4E38 Valid READ  
2. Read address 0xB1C7 Valid READ  
3. Read address 0x83E0 Valid READ  
4. Read address 0x7C1F Valid READ  
5. Read address 0x703F Valid READ  
6. Read address 0x8B45 AutoStore Disable  
The AutoStore is re-enabled by initiating an AutoStore enable  
sequence. A sequence of read operations is performed in a  
manner similar to the software RECALL initiation. To initiate the  
AutoStore enable sequence, the following sequence of CE  
controlled read operations must be performed:  
Noise Considerations  
Refer CY application note AN1064.  
1. Read address 0x4E38 Valid READ  
2. Read address 0xB1C7 Valid READ  
3. Read address 0x83E0 Valid READ  
4. Read address 0x7C1F Valid READ  
5. Read address 0x703F Valid READ  
6. Read address 0x4B46 AutoStore Enable  
Document Number: 001-09603 Rev. *H  
Page 6 of 22  
[+] Feedback  
CY14E104L/CY14E104N  
PRELIMINARY  
Package Power Dissipation  
Capability (TA = 25°C) ................................................... 1.0W  
Maximum Ratings  
Exceeding maximum ratings may impair the useful life of the  
device. These user guidelines are not tested.  
Surface Mount Pb Soldering  
Temperature (3 Seconds).......................................... +260°C  
Output Short Circuit Current [7].................................... 15 mA  
Storage Temperature ................................. –65°C to +150°C  
Ambient Temperature with  
Power Applied ............................................ –55°C to +150°C  
Static Discharge Voltage.......................................... > 2001V  
(per MIL-STD-883, Method 3015)  
Supply Voltage on VCC Relative to GND ..........–0.5V to 7.0V  
Latch Up Current ................................................... > 200 mA  
Voltage Applied to Outputs  
in High-Z State.......................................0.5V to VCC + 0.5V  
Operating Range  
Input Voltage.............................................–0.5V to Vcc+0.5V  
Range  
Commercial  
Industrial  
Ambient Temperature  
0°C to +70°C  
VCC  
Transient Voltage (<20 ns) on  
Any Pin to Ground Potential ..................2.0V to VCC + 2.0V  
4.5V to 5.5V  
4.5V to 5.5V  
–40°C to +85°C  
DC Electrical Characteristics  
Over the Operating Range (VCC = 4.5V to 5.5V) [9]  
Parameter  
Description  
Test Conditions  
Min  
Max  
Unit  
ICC1  
Average VCC Current tRC = 15 ns  
tRC = 20 ns  
Commercial  
Industrial  
70  
65  
65  
50  
mA  
mA  
mA  
t
t
RC = 25 ns  
RC = 45 ns  
Dependent on output loading and cycle rate.Values  
obtained without output loads. IOUT = 0 mA  
75  
70  
70  
52  
mA  
mA  
mA  
ICC2  
Average VCC Current All Inputs Don’t Care, VCC = Max.  
during STORE Average current for duration tSTORE  
6
mA  
mA  
[8]  
ICC3  
AverageVCC Currentat WE > (VCC – 0.2). All other I/P cycling.  
RC= 200 ns, 5V, 25°C Dependent on output loading and cycle rate. Values obtained  
typical without output loads.  
35  
t
ICC4  
ISB  
Average VCAP Current All Inputs Don’t Care, VCC = Max.  
during AutoStore Cycle Average current for duration tSTORE  
6
3
mA  
mA  
VCC Standby Current CE > (VCC – 0.2). All others VIN < 0.2V or > (VCC – 0.2V). Standby  
current level after nonvolatile cycle is complete.  
Inputs are static. f = 0 MHz.  
IIX  
Input Leakage Current VCC = Max, VSS < VIN < VCC  
(except HSB)  
–1  
–100  
–1  
+1  
+1  
+1  
μA  
μA  
μA  
Input Leakage Current VCC = Max, VSS < VIN < VCC  
(for HSB)  
IOZ  
Off-State Output  
Leakage Current  
VCC = Max., VSS < VIN < VCC, CE or OE > VIH  
VIH  
Input HIGH Voltage  
Input LOW Voltage  
2.2  
Vss – 0.5  
2.4  
VCC + 0.5  
0.8  
V
V
VIL  
VOH  
VOL  
VCAP  
Output HIGH Voltage IOUT = –2 mA  
V
Output LOW Voltage  
Storage Capacitor  
IOUT = 4 mA  
0.4  
82  
V
Between VCAP pin and VSS, 5V Rated  
61  
μF  
Notes  
7. Outputs shorted for no more than one second. Only one output shorted at a time.  
8. Typical conditions for the active current shown on the front page of the data sheet are average values at 25°C (room temperature), and V = 5V. Not 100% tested.  
CC  
9. The HSB pin has I  
=-10 uA for V of 2.4V.This parameter is characterized but not tested.  
OUT  
OH  
Document Number: 001-09603 Rev. *H  
Page 7 of 22  
[+] Feedback  
CY14E104L/CY14E104N  
PRELIMINARY  
Capacitance  
In the following table, the capacitance parameters are listed.[10]  
Parameter Description  
Input Capacitance  
Output Capacitance  
Test Conditions  
TA = 25°C, f = 1 MHz,  
CC = 0 to 3.0V  
Max  
7
Unit  
pF  
CIN  
V
COUT  
7
pF  
Thermal Resistance  
In the following table, the thermal resistance parameters are listed.[10]  
Parameter  
Description  
Test Conditions  
48-FBGA 44-TSOP II 54-TSOP II Unit  
ΘJA  
Thermal Resistance Test conditions follow standard test methods and  
(Junction to Ambient) procedures for measuring thermal impedance, in  
28.82  
31.11  
30.73  
°C/W  
accordance with EIA/JESD51.  
ΘJC  
Thermal Resistance  
(Junction to Case)  
7.84  
5.56  
6.08  
°C/W  
Figure 5. AC Test Loads  
963Ω  
for tri-state specs  
963Ω  
5.0V  
5.0V  
OUTPUT  
R1  
R1  
OUTPUT  
R2  
512Ω  
30 pF  
R2  
512Ω  
5 pF  
AC Test Conditions  
Input Pulse Levels ....................................................0V to 3V  
Input Rise and Fall Times (10% - 90%)........................ <5 ns  
Input and Output Timing Reference Levels .................... 1.5V  
AC Switching Characteristics  
Parameters  
Description  
Parameters Parameters  
15 ns  
20 ns  
25 ns  
45 ns  
Unit  
Cypress  
Alt  
Min Max  
Min  
Max Min  
Max Min Max  
SRAM Read Cycle  
tACE  
tACS  
tRC  
tAA  
tOE  
tOH  
tLZ  
Chip Enable Access Time  
Read Cycle Time  
15  
20  
25  
20  
10  
3
25  
45  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
[11]  
tRC  
15  
15  
10  
3
20  
45  
[12]  
tAA  
Address Access Time  
25  
12  
45  
20  
tDOE  
tOHA  
tLZCE  
tHZCE  
Output Enable to Data Valid  
Output Hold After Address Change  
Chip Enable to Output Active  
Chip Disable to Output Inactive  
3
3
3
3
[13]  
[13]  
3
3
tHZ  
7
8
10  
15  
Notes  
10. These parameters are guaranteed but not tested.  
11. WE must be HIGH during SRAM read cycles.  
12. Device is continuously selected with CE and OE both LOW.  
13. Measured ±200 mV from steady state output voltage.  
Document Number: 001-09603 Rev. *H  
Page 8 of 22  
[+] Feedback  
CY14E104L/CY14E104N  
PRELIMINARY  
AC Switching Characteristics (continued)  
Parameters  
15 ns  
20 ns  
25 ns  
45 ns  
Description  
Unit  
Cypress  
Alt  
Min Max  
Min  
Max Min  
Max Min Max  
Parameters Parameters  
[13]  
tLZOE  
tOLZ  
tOHZ  
tPA  
tPS  
-
Output Enable to Output Active  
Output Disable to Output Inactive  
Chip Enable to Power Active  
Chip Disable to Power Standby  
Byte Enable to Data Valid  
0
0
0
15  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
[13]  
tHZOE  
7
8
10  
15  
[10]  
tPU  
0
0
0
0
0
[10]  
tPD  
15  
10  
0
20  
10  
0
25  
12  
45  
20  
tDBE  
tLZBE  
tHZBE  
-
Byte Enable to Output Active  
Byte Disable to Output Inactive  
0
-
7
8
10  
15  
SRAM Write Cycle  
tWC  
tPWE  
tSCE  
tSD  
tWC  
tWP  
tCW  
tDW  
tDH  
tAW  
tAS  
tWR  
tWZ  
tOW  
-
Write Cycle Time  
15  
10  
15  
5
20  
15  
15  
8
25  
45  
30  
30  
15  
0
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
Write Pulse Width  
20  
Chip Enable To End of Write  
Data Setup to End of Write  
Data Hold After End of Write  
Address Setup to End of Write  
Address Setup to Start of Write  
Address Hold After End of Write  
Write Enable to Output Disable  
Output Active after End of Write  
Byte Enable to End of Write  
20  
10  
tHD  
0
0
0
tAW  
10  
0
15  
0
20  
30  
0
tSA  
0
tHA  
0
0
0
0
[13,14]  
[13]  
tHZWE  
tLZWE  
tBW  
7
8
10  
15  
3
3
3
3
15  
15  
20  
30  
AutoStore/Power Up RECALL  
CY14E104L/CY14E104N  
Parameters  
Description  
Unit  
Min  
Max  
20  
[15]  
tHRECALL  
Power Up RECALL Duration  
ms  
ms  
V
[16]  
tSTORE  
STORE Cycle Duration  
Low Voltage Trigger Level  
VCC Rise Time  
15  
VSWITCH  
tVCCRISE  
4.4  
150  
μs  
Notes  
14. If WE is low when CE goes low, the outputs remain in the high impedance state.  
15. t starts from the time V rises above V  
HRECALL  
CC  
SWITCH.  
16. If an SRAM write has not taken place since the last nonvolatile cycle, no STORE takes place.  
Document Number: 001-09603 Rev. *H  
Page 9 of 22  
[+] Feedback  
CY14E104L/CY14E104N  
PRELIMINARY  
Software Controlled STORE/RECALL Cycle  
In the following table, the software controlled STORE/RECALL cycle parameters are listed. [17, 18]  
15 ns  
20 ns  
25 ns  
45 ns  
Parameters  
tRC  
Description  
Unit  
Min  
Max  
Min  
Max  
Min  
Max  
Min  
Max  
STORE/RECALL Initiation Cycle Time  
Address Setup Time  
15  
0
20  
0
25  
0
45  
0
ns  
ns  
ns  
ns  
μs  
μs  
tAS  
tCW  
Clock Pulse Width  
12  
1
15  
1
20  
1
30  
tGHAX  
tRECALL  
Address Hold Time  
RECALL Duration  
200  
70  
200  
70  
200  
70  
200  
70  
[19, 20]  
tSS  
Soft Sequence Processing Time  
Hardware STORE Cycle  
CY14E104L/CY14E104N  
Parameters  
Description  
Unit  
Min  
1
Max  
[21]  
tDELAY  
tHLHX  
Time Allowed to Complete SRAM Cycle  
Hardware STORE Pulse Width  
70  
μs  
15  
ns  
Notes  
17. The software sequence is clocked with CE controlled or OE controlled reads.  
18. The six consecutive addresses must be read in the order listed in the Table 1 on page 5. WE must be HIGH during all six consecutive cycles.  
19. This is the amount of time it takes to take action on a soft sequence command. Vcc power must remain HIGH to effectively register command.  
20. Commands such as STORE and RECALL lock out IO until operation is complete which further increases this time. See the specific command.  
21. On a hardware STORE initiation, SRAM operation continues to be enabled for time t  
to allow read and write cycles to complete.  
DELAY  
Document Number: 001-09603 Rev. *H  
Page 10 of 22  
[+] Feedback  
CY14E104L/CY14E104N  
PRELIMINARY  
Switching Waveforms  
Figure 6. SRAM Read Cycle #1: Address Controlled [11, 12, 22]  
tRC  
ADDRESS  
tAA  
tOHA  
DQ (DATA OUT)  
DATA VALID  
Figure 7. SRAM Read Cycle #2: CE and OE Controlled [11, 22, 23]  
tRC  
ADDRESS  
CE  
tACE  
tPD  
tHZCE  
tLZCE  
OE  
tHZOE  
tDOE  
tLZOE  
BHE , BLE  
tHZCE  
tHZBE  
tDBE  
tLZBE  
DQ (DATA OUT)  
DATA VALID  
ACTIVE  
tPU  
STANDBY  
ICC  
Notes  
22. HSB must remain HIGH during read and write cycles.  
23. BHE and BLE are applicable for x16 configuration only.  
Document Number: 001-09603 Rev. *H  
Page 11 of 22  
[+] Feedback  
CY14E104L/CY14E104N  
PRELIMINARY  
Switching Waveforms (continued)  
Figure 8. SRAM Write Cycle #1: WE Controlled[14, 22, 23, 24]  
tWC  
ADDRESS  
CE  
tHA  
tSCE  
tAW  
tSA  
tPWE  
WE  
tBW  
BHE , BLE  
tHD  
tSD  
DATA VALID  
DATA IN  
tHZWE  
tLZWE  
HIGH IMPEDANCE  
PREVIOUS DATA  
DATA OUT  
Figure 9. SRAM Write Cycle #2: CE Controlled[14, 22, 23, 24]  
tWC  
ADDRESS  
CE  
tSA  
tSCE  
tHA  
tAW  
tPWE  
WE  
tBW  
tSD  
BHE , BLE  
tHD  
DATA IN  
DATA VALID  
HIGH IMPEDANCE  
DATA OUT  
Note  
24. CE or WE must be > V during address transitions.  
IH  
Document Number: 001-09603 Rev. *H  
Page 12 of 22  
[+] Feedback  
CY14E104L/CY14E104N  
PRELIMINARY  
Switching Waveforms (continued)  
Figure 10. AutoStore/Power Up RECALL[25]  
No STORE occurs  
without atleast one  
SRAM write  
STORE occurs only  
if a SRAM write  
has happened  
V
CC  
V
SWITCH  
tVCCRISE  
AutoStore  
tSTORE  
tSTORE  
POWER-UP RECALL  
tHRECALL  
tHRECALL  
Read & Write Inhibited  
Figure 11. CE Controlled Software STORE/RECALL Cycle[18]  
Note  
25. Read and Write cycles are ignored during STORE, RECALL, and while VCC is below V  
SWITCH.  
Document Number: 001-09603 Rev. *H  
Page 13 of 22  
[+] Feedback  
CY14E104L/CY14E104N  
PRELIMINARY  
Switching Waveforms (continued)  
Figure 12. OE Controlled Software STORE/RECALL Cycle[18]  
tRC  
tRC  
ADDRESS # 1  
ADDRESS # 6  
ADDRESS  
CE  
OE  
tAS  
tCW  
tGHAX  
t
STORE / tRECALL  
HIGH IMPEDANCE  
DATA VALID  
DQ (DATA)  
DATA VALID  
Figure 13. Hardware STORE Cycle[21]  
Figure 14. Soft Sequence Processing[19, 20]  
tSS  
tSS  
Document Number: 001-09603 Rev. *H  
Page 14 of 22  
[+] Feedback  
CY14E104L/CY14E104N  
PRELIMINARY  
PART NUMBERING NOMENCLATURE  
CY 14 E 104 L - ZS P 15 X C T  
Option:  
T - Tape & Reel  
Blank - Std.  
Temperature:  
C - Commercial (0 to 70°C)  
I - Industrial (–40 to 85°C)  
Speed:  
Pb-free  
15 - 15 ns  
20 - 20 ns  
25 - 25 ns  
45 - 45 ns  
P - 54 Pin  
Blank - 44 Pin  
Package:  
BA - 48 FBGA  
ZS - TSOP II  
Data Bus:  
L - x8  
N - x16  
Density:  
104 - 4 Mb  
Voltage:  
E - 5.0V  
NVSRAM  
14 - AutoStore + Software Store + Hardware Store  
Cypress  
Document Number: 001-09603 Rev. *H  
Page 15 of 22  
[+] Feedback  
CY14E104L/CY14E104N  
PRELIMINARY  
Ordering Information  
Speed  
Package  
Ordering Code  
Package Type  
Operating Range  
(ns)  
Diagram  
51-85087  
51-85087  
51-85087  
51-85128  
51-85128  
51-85128  
51-85160  
51-85160  
51-85160  
51-85087  
51-85087  
51-85087  
51-85128  
51-85128  
51-85128  
51-85160  
51-85160  
51-85160  
51-85087  
51-85087  
51-85087  
51-85128  
51-85128  
51-85128  
51-85160  
51-85160  
51-85160  
51-85087  
51-85087  
51-85087  
51-85128  
51-85128  
51-85128  
51-85160  
51-85160  
51-85160  
15  
CY14E104L-ZS15XCT  
CY14E104L-ZS15XIT  
CY14E104L-ZS15XI  
CY14E104L-BA15XCT  
CY14E104L-BA15XIT  
CY14E104L-BA15XI  
CY14E104L-ZSP15XCT  
CY14E104L-ZSP15XIT  
CY14E104L-ZSP15XI  
CY14E104N-ZS15XCT  
CY14E104N-ZS15XIT  
CY14E104N-ZS15XI  
CY14E104N-BA15XCT  
CY14E104N-BA15XIT  
CY14E104N-BA15XI  
CY14E104N-ZSP15XCT  
CY14E104N-ZSP15XIT  
CY14E104N-ZSP15XI  
CY14E104L-ZS20XCT  
CY14E104L-ZS20XIT  
CY14E104L-ZS20XI  
CY14E104L-BA20XCT  
CY14E104L-BA20XIT  
CY14E104L-BA20XI  
CY14E104L-ZSP20XCT  
CY14E104L-ZSP20XIT  
CY14E104L-ZSP20XI  
CY14E104N-ZS20XCT  
CY14E104N-ZS20XIT  
CY14E104N-ZS20XI  
CY14E104N-BA20XCT  
CY14E104N-BA20XIT  
CY14E104N-BA20XI  
CY14E104N-ZSP20XCT  
CY14E104N-ZSP20XIT  
CY14E104N-ZSP20XI  
44-pin TSOP II  
44-pin TSOP II  
44-pin TSOP II  
48-ball FBGA  
48-ball FBGA  
48-ball FBGA  
54-pin TSOP II  
54-pin TSOP II  
54-pin TSOP II  
44-pin TSOP II  
44-pin TSOP II  
44-pin TSOP II  
48-ball FBGA  
48-ball FBGA  
48-ball FBGA  
54-pin TSOP II  
54-pin TSOP II  
54-pin TSOP II  
44-pin TSOP II  
44-pin TSOP II  
44-pin TSOP II  
48-ball FBGA  
48-ball FBGA  
48-ball FBGA  
54-pin TSOP II  
54-pin TSOP II  
54-pin TSOP II  
44-pin TSOP II  
44-pin TSOP II  
44-pin TSOP II  
48-ball FBGA  
48-ball FBGA  
48-ball FBGA  
54-pin TSOP II  
54-pin TSOP II  
54-pin TSOP II  
Commercial  
Industrial  
Commercial  
Industrial  
Commercial  
Industrial  
Commercial  
Industrial  
Commercial  
Industrial  
Commercial  
Industrial  
20  
Commercial  
Industrial  
Commercial  
Industrial  
Commercial  
Industrial  
Commercial  
Industrial  
Commercial  
Industrial  
Commercial  
Industrial  
Document Number: 001-09603 Rev. *H  
Page 16 of 22  
[+] Feedback  
CY14E104L/CY14E104N  
PRELIMINARY  
Ordering Information (continued)  
Speed  
Package  
Ordering Code  
(ns)  
Package Type  
Operating Range  
Diagram  
51-85087  
51-85087  
51-85087  
51-85128  
51-85128  
51-85128  
51-85160  
51-85160  
51-85160  
51-85087  
51-85087  
51-85087  
51-85128  
51-85128  
51-85128  
51-85160  
51-85160  
51-85160  
51-85087  
51-85087  
51-85087  
51-85128  
51-85128  
51-85128  
51-85160  
51-85160  
51-85160  
51-85087  
51-85087  
51-85087  
51-85128  
51-85128  
51-85128  
51-85160  
51-85160  
51-85160  
25  
CY14E104L-ZS25XCT  
CY14E104L-ZS25XIT  
CY14E104L-ZS25XI  
CY14E104L-BA25XCT  
CY14E104L-BA25XIT  
CY14E104L-BA25XI  
CY14E104L-ZSP25XCT  
CY14E104L-ZSP25XIT  
CY14E104L-ZSP25XI  
CY14E104N-ZS25XCT  
CY14E104N-ZS25XIT  
CY14E104N-ZS25XI  
CY14E104N-BA25XCT  
CY14E104N-BA25XIT  
CY14E104N-BA25XI  
CY14E104N-ZSP25XCT  
CY14E104N-ZSP25XIT  
CY14E104N-ZSP25XI  
CY14E104L-ZS45XCT  
CY14E104L-ZS45XIT  
CY14E104L-ZS45XI  
CY14E104L-BA45XCT  
CY14E104L-BA45XIT  
CY14E104L-BA45XI  
CY14E104L-ZSP45XCT  
CY14E104L-ZSP45XIT  
CY14E104L-ZSP45XI  
CY14E104N-ZS45XCT  
CY14E104N-ZS45XIT  
CY14E104N-ZS45XI  
CY14E104N-BA45XCT  
CY14E104N-BA45XIT  
CY14E104N-BA45XI  
CY14E104N-ZSP45XCT  
CY14E104N-ZSP45XIT  
CY14E104N-ZSP45XI  
44-pin TSOP II  
44-pin TSOP II  
44-pin TSOP II  
48-ball FBGA  
48-ball FBGA  
48-ball FBGA  
54-pin TSOP II  
54-pin TSOP II  
54-pin TSOP II  
44-pin TSOP II  
44-pin TSOP II  
44-pin TSOP II  
48-ball FBGA  
48-ball FBGA  
48-ball FBGA  
54-pin TSOP II  
54-pin TSOP II  
54-pin TSOP II  
44-pin TSOP II  
44-pin TSOP II  
44-pin TSOP II  
48-ball FBGA  
48-ball FBGA  
48-ball FBGA  
54-pin TSOP II  
54-pin TSOP II  
54-pin TSOP II  
44-pin TSOP II  
44-pin TSOP II  
44-pin TSOP II  
48-ball FBGA  
48-ball FBGA  
48-ball FBGA  
54-pin TSOP II  
54-pin TSOP II  
54-pin TSOP II  
Commercial  
Industrial  
Commercial  
Industrial  
Commercial  
Industrial  
Commercial  
Industrial  
Commercial  
Industrial  
Commercial  
Industrial  
45  
Commercial  
Industrial  
Commercial  
Industrial  
Commercial  
Industrial  
Commercial  
Industrial  
Commercial  
Industrial  
Commercial  
Industrial  
All parts are Pb-free. The above table contains Preliminary information. Please contact your local Cypress sales representative for availability of these parts.  
Document Number: 001-09603 Rev. *H  
Page 17 of 22  
[+] Feedback  
CY14E104L/CY14E104N  
PRELIMINARY  
Package Diagrams  
Figure 15. 44-Pin TSOP II (51-85087)  
DIMENSION IN MM (INCH)  
MAX  
MIN.  
PIN 1 I.D.  
22  
1
R
O
E
K
A
X
S G  
EJECTOR PIN  
23  
44  
TOP VIEW  
BOTTOM VIEW  
10.262 (0.404)  
10.058 (0.396)  
0.400(0.016)  
0.300 (0.012)  
0.800 BSC  
(0.0315)  
BASE PLANE  
0.210 (0.0083)  
0.120 (0.0047)  
0°-5°  
0.10 (.004)  
18.517 (0.729)  
18.313 (0.721)  
0.597 (0.0235)  
0.406 (0.0160)  
SEATING  
PLANE  
51-85087-*A  
Document Number: 001-09603 Rev. *H  
Page 18 of 22  
[+] Feedback  
CY14E104L/CY14E104N  
PRELIMINARY  
Package Diagrams (continued)  
Figure 16. 48-Ball FBGA - 6 mm x 10 mm x 1.2 mm (51-85128)  
BOTTOM VIEW  
A1 CORNER  
TOP VIEW  
Ø0.05 M C  
Ø0.25 M C A B  
A1 CORNER  
Ø0.30 0.05(48X)  
1
2
3
4
5
6
6
5
4
3
2
1
A
A
B
C
D
B
C
D
E
E
F
F
G
G
H
H
1.875  
A
A
0.75  
B
6.00 0.10  
3.75  
B
6.00 0.10  
0.15(4X)  
SEATING PLANE  
C
51-85128-*D  
Document Number: 001-09603 Rev. *H  
Page 19 of 22  
[+] Feedback  
CY14E104L/CY14E104N  
PRELIMINARY  
Package Diagrams (continued)  
Figure 17. 54-pin TSOP II (51-85160)  
51-85160-**  
Document Number: 001-09603 Rev. *H  
Page 20 of 22  
[+] Feedback  
CY14E104L/CY14E104N  
PRELIMINARY  
Document History Page  
Document Title: CY14E104L/CY14E104N 4 Mbit (512K x 8/256K x 16) nvSRAM  
Document Number: 001-09603  
Submission  
Orig. of  
Change  
TUP  
Rev. ECN No.  
Description of Change  
Date  
**  
493192  
499597  
See ECN  
See ECN  
New Data Sheet  
Removed 35 ns speed bin  
*A  
PCI  
Added 55 ns speed bin. Updated AC table for the same  
Changed “Unlimited” read/write to “infinite” read/write  
Features section: Changed typical ICC at 200-ns cycle time to 8 mA  
Changed STORE cycles from 500K to 200K cycles  
Shaded Commercial grade in operating range table  
Modified Icc/Isb specs  
Corrected Vcc from 3.0v to 5.5v in the Low Average Active Power description section  
48 FBGA package nomenclature changed from BW to BV  
Modified part nomenclature table. Changes reflected in the ordering information table  
Removed 55ns speed bin  
*B  
517928  
See ECN  
TUP  
Changed pinout for 44TSOPII and 54TSOPII Packages.  
Changed ISB to 1mA  
Changed ICC4 to 3mA  
Changed VCAP min to 35μF  
Changed tSTORE to 15ns  
Changed tPWE to 10ns  
Changed tSCE to 15ns  
Changed tSD to 5ns  
Changed tAW to 10ns  
Removed tHLBL  
Added Timing Parameters for BHE and BLE - tDBE, tLZBE, tHZBE, tBW  
Removed min. specification for Vswitch  
Changed tGLAX to 1ns  
Added tDELAY max. of 70us  
Changed tSS specification from 70us min. to 70us max.  
Changed the data sheet from Advance information to Preliminary  
48 FBGA package code changed from BV to BA  
Removed 48 FBGA package in X8 configuration in ordering information.  
Changed tDBE to 10ns in 15ns part  
*C  
774157  
See ECN  
UHA  
Changed tHZBE in 15ns part to 7ns and in 25ns part to10ns  
Changed tBW in 15ns part to 15ns and in 25ns part to 20ns  
Changed tGLAX to tGHAX  
Changed the value of ICC3 to 25mA  
Changed the value of tAW in 15ns part to 15ns  
Changed A18 and A19 Pins in FBGA Pin Configuration to NC  
In AC test loads changed the value of R1 to 963Ω and R2 to 512Ω  
Included all the information for 45 ns part in this data sheet  
*D  
*E  
914280  
1890926  
See ECN  
See ECN  
UHA  
vsutmp8/A Updated logic block diagram  
ESA  
Updated Pin definition table  
Added Footnote 1, 2 and 3.  
Added 48-FBGA (X8) Pin Diagram  
Changed 8Mb Address expansion Pin from Pin 43 to Pin 42 for 44-TSOP II (x8)  
package.  
Corrected typo in VIL min spec  
Changed Vswitch value from 2.65V to 4.4V  
Changed the value of ICC3 from 25mA to 13mA  
Changed ISB value from 1mA to 2mA  
Updated ordering information table  
Rearranging of Footnotes.  
Document Number: 001-09603 Rev. *H  
Page 21 of 22  
[+] Feedback  
PRELIMINARY  
CY14E104L/CY14E104N  
Document Title: CY14E104L/CY14E104N 4 Mbit (512K x 8/256K x 16) nvSRAM  
Document Number: 001-09603  
Submission  
Orig. of  
Rev. ECN No.  
*F 2267286  
Description of Change  
Date  
Change  
See ECN  
GVCH/PY Updated Figure 4 (Autostore mode)  
RS  
Changed ICC2 & ICC4 from 3mA to 6mA. Changed ICC3 from 13mA to 15mA  
Changed ISB from 2mA to 3mA  
Added input leakage current (IIX) for HSB in DC Electrical Characteristics table  
Changed Vcap from 35uF min and 57uF max value to 54uF min and 82uF max value  
Corrected typo in tHZCE and tHZOE min spec and added max value15ns for 45ns part  
Corrected typo in tPU max spec and added min value 0ns for 45ns part  
Corrected typo in tAW value from 15ns to 10ns for 15ns part  
Changed tRECALL from 100us to 200us  
Added tRECALL and tSS max value for 45ns part in Software controlled STORE/Re-  
CALL Cycle table  
Reframed footnote 6, 14 and 21. Added footnote 9 and 25  
Added footnote 14 to figure 7 and footnote 14, 22 and 24 to figure 8  
GVCH/PY Removed 8 mA typical ICC at 200 ns cycle time in Feature section  
*G 2483627  
See ECN  
06/20/08  
RS  
Referenced footnote 8 to ICC3 in DC Characteristics table  
Changed ICC3 from 15 mA to 35 mA  
Changed Vcap minimum value from 54uF to 61uF. Changed tAVAV to tRC  
Figure 11:Changed tSA to tAS and tSCE to CW  
t
*H  
2519319  
GVCH/PY Added 20 ns access speed in “Features”  
RS  
Added ICC1 for tRC=20 ns for both industrial and Commecial temperature Grade  
Updated thermal resistance values for 48-FBGA, 44-TSOP II and 54-TSOP II pack-  
ages  
Added AC Switching Characteristics specs for 20 ns access speed  
Added Software controlled STORE/RECALL cycle specs for 20 ns access speed  
Updated ordering information and Part numbering nomenclature  
Sales, Solutions, and Legal Information  
Worldwide Sales and Design Support  
Cypress maintains a worldwide network of offices, solution centers, manufacturer’s representatives, and distributors. To find the office  
closest to you, visit us at cypress.com/sales.  
Products  
PSoC  
PSoC Solutions  
General  
psoc.cypress.com  
clocks.cypress.com  
wireless.cypress.com  
memory.cypress.com  
image.cypress.com  
psoc.cypress.com/solutions  
psoc.cypress.com/low-power  
psoc.cypress.com/precision-analog  
psoc.cypress.com/lcd-drive  
psoc.cypress.com/can  
Clocks & Buffers  
Wireless  
Low Power/Low Voltage  
Precision Analog  
LCD Drive  
Memories  
Image Sensors  
CAN 2.0b  
USB  
psoc.cypress.com/usb  
© Cypress Semiconductor Corporation, 2006-2008. The information contained herein is subject to change without notice. Cypress Semiconductor Corporation assumes no responsibility for the use of  
any circuitry other than circuitry embodied in a Cypress product. Nor does it convey or imply any license under patent or other rights. Cypress products are not warranted nor intended to be used for  
medical, life support, life saving, critical control or safety applications, unless pursuant to an express written agreement with Cypress. Furthermore, Cypress does not authorize its products for use as  
critical components in life-support systems where a malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress products in life-support systems  
application implies that the manufacturer assumes all risk of such use and in doing so indemnifies Cypress against all charges.  
Any Source Code (software and/or firmware) is owned by Cypress Semiconductor Corporation (Cypress) and is protected by and subject to worldwide patent protection (United States and foreign),  
United States copyright laws and international treaty provisions. Cypress hereby grants to licensee a personal, non-exclusive, non-transferable license to copy, use, modify, create derivative works of,  
and compile the Cypress Source Code and derivative works for the sole purpose of creating custom software and or firmware in support of licensee product to be used only in conjunction with a Cypress  
integrated circuit as specified in the applicable agreement. Any reproduction, modification, translation, compilation, or representation of this Source Code except as specified above is prohibited without  
the express written permission of Cypress.  
Disclaimer: CYPRESS MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES  
OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. Cypress reserves the right to make changes without further notice to the materials described herein. Cypress does not  
assume any liability arising out of the application or use of any product or circuit described herein. Cypress does not authorize its products for use as critical components in life-support systems where  
a malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress’ product in a life-support systems application implies that the manufacturer  
assumes all risk of such use and in doing so indemnifies Cypress against all charges.  
Use may be limited by and subject to the applicable Cypress software license agreement.  
Document Number: 001-09603 Rev. *H  
Revised June 20, 2008  
Page 22 of 22  
AutoStore and QuantumTrap are registered trademarks of Simtek Corporation. All products and company names mentioned in this document are the trademarks of their respective holders. All products  
and company names mentioned in this document may be the trademarks of their respective holders.  
[+] Feedback  

相关型号:

CY14E104L-ZS20XCT

4 Mbit (512K x 8/256K x 16) nvSRAM
CYPRESS

CY14E104L-ZS20XI

4 Mbit (512K x 8/256K x 16) nvSRAM
CYPRESS

CY14E104L-ZS20XIT

4 Mbit (512K x 8/256K x 16) nvSRAM
CYPRESS

CY14E104L-ZS25XCT

4 Mbit (512K x 8/256K x 16) nvSRAM
CYPRESS

CY14E104L-ZS25XI

4 Mbit (512K x 8/256K x 16) nvSRAM
CYPRESS

CY14E104L-ZS25XIT

4 Mbit (512K x 8/256K x 16) nvSRAM
CYPRESS

CY14E104L-ZS45XCT

4 Mbit (512K x 8/256K x 16) nvSRAM
CYPRESS

CY14E104L-ZS45XI

4 Mbit (512K x 8/256K x 16) nvSRAM
CYPRESS

CY14E104L-ZS45XIT

4 Mbit (512K x 8/256K x 16) nvSRAM
CYPRESS

CY14E104L-ZSP15XCT

4 Mbit (512K x 8/256K x 16) nvSRAM
CYPRESS

CY14E104L-ZSP15XI

4 Mbit (512K x 8/256K x 16) nvSRAM
CYPRESS

CY14E104L-ZSP15XIT

4 Mbit (512K x 8/256K x 16) nvSRAM
CYPRESS