CY3686 [CYPRESS]

EZ-USB NX2LP-Flex⑩ Flexible USB NAND Flash Controller; EZ- USB NX2LP -FLEX ™灵活的USB NAND闪存控制器
CY3686
型号: CY3686
厂家: CYPRESS    CYPRESS
描述:

EZ-USB NX2LP-Flex⑩ Flexible USB NAND Flash Controller
EZ- USB NX2LP -FLEX ™灵活的USB NAND闪存控制器

闪存 控制器
文件: 总33页 (文件大小:1526K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
CY7C68033/CY7C68034  
EZ-USB NX2LP-Flex™ Flexible USB NAND Flash Controller  
• Integrated, industry-standard enhanced 8051  
CY7C68033/CY7C68034 Silicon Features  
— 48-MHz, 24-MHz, or 12-MHz CPU operation  
• Certified compliant for Bus- or Self-powered USB 2.0  
operation (TID# 40490118)  
— Four clocks per instruction cycle  
— Three counter/timers  
• Single-chip, integrated USB 2.0 transceiver and smart SIE  
• Ultra low power – 43 mA typical current draw in any mode  
• Enhanced 8051 core  
— Expanded interrupt system  
— Two data pointers  
— Firmware runs from internal RAM, which is downloaded  
from NAND flash at startup  
• 3.3V operation with 5V tolerant inputs  
• Vectored USB interrupts and GPIF/FIFO interrupts  
— No external EEPROM required  
• 15 KBytes of on-chip Code/Data RAM  
— Default NAND firmware ~8 kB  
— Default free space ~7 kB  
• Separate data buffers for the Set-up and Data portions of a  
CONTROL transfer  
• Integrated I2C™ controller, runs at 100 or 400 kHz  
• Four integrated FIFOs  
— Integrated glue logic and FIFOs lower system cost  
— Automatic conversion to and from 16-bit buses  
— Master or slave operation  
• Four programmable BULK/INTERRUPT/ISOCHRONOUS  
endpoints  
— Buffering options: double, triple, and quad  
• Additional programmable (BULK/INTERRUPT) 64-byte  
endpoint  
— Uses external clock or asynchronous strobes  
— Easy interface to ASIC and DSP ICs  
• Available in space saving, 56-pin QFN package  
• SmartMedia Standard Hardware ECC generation with 1-bit  
correction and 2-bit detection  
CY7C68034 Only Silicon Features:  
• Ideal for battery powered applications  
— Suspend current: 100 μA (typ.)  
• GPIF (General Programmable Interface)  
— Allows direct connection to most parallel interfaces  
— Programmable waveform descriptors and configuration  
registers to define waveforms  
CY7C68033 Only Silicon Features:  
• Ideal for non-battery powered applications  
— Suspend current: 300 μA (typ.)  
— SupportsmultipleReady(RDY)inputsandControl(CTL)  
outputs  
• 12 fully-programmable GPIO pins  
High-performance,  
enhanced 8051 core  
with low power options  
24 MHz  
Ext. Xtal  
Block Diagram  
NX2LP-Flex  
/0.5  
/1.0  
/2.0  
8051 Core  
x20  
2
12/24/48 MHz,  
four clocks/cycle  
PLL  
I C  
Master  
V
CC  
Connected for  
full-speed USB  
Additional I/Os  
1.5k  
NAND  
Boot Logic  
(ROM)  
GeneralProgrammable  
I/F to ASIC/DSP or bus  
standards such as 8-bit  
GPIF  
NAND, EPP, etc.  
RDY (2)  
CTL (3)  
USB  
2.0  
XCVR  
D+  
D–  
15 kB  
RAM  
CY  
Smart  
USB  
ECC  
1.1/2.0  
Engine  
Up to 96 MB/s burst rate  
Integrated full- and  
high-speed XCVR  
4 kB  
8/16  
FIFO  
‘Soft Configuration’ enables  
easy firmware changes  
FIFO and USB endpoint memory  
(master or slave modes)  
Enhanced USB core  
simplifies 8051 code  
Cypress Semiconductor Corporation  
Document #: 001-04247 Rev. *D  
198 Champion Court  
San Jose, CA 95134-1709  
408-943-2600  
Revised September 21, 2006  
[+] Feedback  
CY7C68033/CY7C68034  
Default NAND Firmware Features  
quick configuration of some features to decrease design effort  
and increase time-to-market advantages.  
Because the NX2LP-Flex™ is intended for NAND  
Flash-based USB mass storage applications, a default  
firmware image is included in the development kit with the  
following features:  
Overview  
Cypress Semiconductor Corporation’s (Cypress’s) EZ-USB  
NX2LP-Flex (CY7C68033/CY7C68034) is a firmware-based,  
• High (480-Mbps) or full (12-Mbps) speed USB support  
• Both common NAND page sizes supported  
— 512 bytes for up to 1 Gb capacity  
programmable version  
(CY7C68023/CY7C68024), which is  
of the  
EZ-USB NX2LP™  
a
fixed-function,  
low-power USB 2.0 NAND Flash controller. By integrating the  
— 2K bytes for up to 8 Gb capacity  
USB 2.0 transceiver, serial interface engine (SIE), enhanced  
8051 microcontroller, and  
a programmable peripheral  
• 12 configurable general-purpose I/O (GPIO) pins  
— 2 dedicated chip enable (CE#) pins  
— 6 configurable CE#/GPIO pins  
interface in a single chip, Cypress has created a very  
cost-effective solution that enables feature-rich NAND  
Flash-based applications.  
The ingenious architecture of NX2LP-Flex results in USB data  
transfer rates of over 53 Mbytes per second, the  
maximum-allowable USB 2.0 bandwidth, while still using a  
low-cost 8051 microcontroller in a small 56-pin QFN package.  
Because it incorporates the USB 2.0 transceiver, the  
NX2LP-Flex is more economical, providing a smaller footprint  
solution than external USB 2.0 SIE or transceiver implemen-  
tations. With EZ-USB NX2LP-Flex, the Cypress Smart SIE  
handles most of the USB 1.1 and 2.0 protocol, freeing the  
embedded microcontroller for application-specific functions  
and decreasing development time while ensuring USB  
compatibility.  
• Up to 8 NAND Flash single-device (single-die) chips are  
supported  
• Up to 4 NAND Flash dual-device (dual-die) chips are  
supported  
• Compile option allows unused CE# pins to be config-  
ured as GPIOs  
— 4 dedicated GPIO pins  
• Industry standard ECC NAND Flash correction  
— 1-bit per 256-bit correction  
— 2-bit error detection  
The General Programmable Interface (GPIF) and  
Master/Slave Endpoint FIFO (8- or 16-bit data bus) provide an  
easy and glueless interface to popular interfaces such as  
UTOPIA, EPP, I2C, PCMCIA, and most DSP processors.  
• Industry standard (SmartMedia) page management for  
wear leveling algorithm, bad block handling, and Physical  
to Logical management.  
• 8-bit NAND Flash interface support  
• Support for 30-ns, 50-ns, and 100-ns NAND Flash timing  
Applications  
• Complies with the USB Mass Storage Class Specification  
revision 1.0  
The NX2LP-Flex allows designers to add extra functionality to  
basic NAND Flash mass storage designs, or to interface them  
with other peripheral devices. Applications may include:  
The default firmware image implements a USB 2.0 NAND  
Flash controller. This controller adheres to the Mass Storage  
Class Bulk-Only Transport Specification. The USB port of the  
NX2LP-Flex is connected to a host computer directly or via the  
downstream port of a USB hub. Host software issues  
commands and data to the NX2LP-Flex and receives status  
and data from the NX2LP-Flex using standard USB protocol.  
• NAND Flash-based GPS devices  
• NAND Flash-based DVB video capture devices  
• Wireless pointer/presenter tools with NAND Flash storage  
• NAND Flash-based MPEG/TV conversion devices  
• Legacy conversion devices with NAND Flash storage  
• NAND Flash-based cameras  
The default firmware image supports industry leading 8-bit  
NAND Flash interfaces and both common NAND page sizes  
of 512 and 2k bytes. Up to eight chip enable pins allow the  
NX2LP-Flex to be connected to up to eight single- or four  
dual-die NAND Flash chips.  
• NAND Flash mass storage device with biometric (e.g.,  
fingerprint) security  
• Home PNA devices with NAND Flash storage  
• Wireless LAN with NAND Flash storage  
• NAND Flash-based MP3 players  
Complete source code and documentation for the default  
firmware image are included in the NX2LP-Flex development  
kit to enable customization for meeting design requirements.  
Additionally, compile options for the default firmware allow for  
• LAN networking with NAND Flash storage  
Document #: 001-04247 Rev. *D  
Page 2 of 33  
[+] Feedback  
CY7C68033/CY7C68034  
Figure 1. Example DVB Block Diagram  
8051 Microprocessor  
The 8051 microprocessor embedded in the NX2LP-Flex has  
256 bytes of register RAM, an expanded interrupt system and  
three timer/counters.  
Buttons  
NAND-Based  
DVB Unit  
8051 Clock Frequency  
NX2LP-Flex has an on-chip oscillator circuit that uses an  
external 24-MHz (±100-ppm) crystal with the following charac-  
teristics:  
I/O  
CTL  
LCD  
NX2LP-  
Flex  
NAND Bank(s)  
CE[7:0]  
D+/-  
I/O  
• Parallel resonant  
• Fundamental mode  
• 500-μW drive level  
DVB  
Decoder  
• 12-pF (5% tolerance) load capacitors.  
Audio / Video I/O  
An on-chip PLL multiplies the 24-MHz oscillator up to  
480 MHz, as required by the transceiver/PHY, and internal  
counters divide it down for use as the 8051 clock. The default  
8051 clock frequency is 12 MHz. The clock frequency of the  
8051 can be changed by the 8051 through the CPUCS  
register, dynamically  
Figure 2. Example GPS Block Diagram  
Buttons  
NAND-Based  
Figure 3. Crystal Configuration.  
GPS Unit  
24 MHz  
C1  
C2  
I/O  
CTL  
LCD  
12 pf  
12 pf  
NX2LP-  
Flex  
NAND Bank(s)  
CE[7:0]  
D+/-  
I/O  
20 × PLL  
GPS  
12-pF capacitor values assumes a trace capacitance  
of 3 pF per side on a four-layer FR4 PCA  
Special Function Registers  
The “Reference Designs” section of the Cypress web site  
provides additional tools for typical USB 2.0 applications. Each  
reference design comes complete with firmware source and  
object code, schematics, and documentation. Please visit  
http://www.cypress.com for more information.  
Certain 8051 SFR addresses are populated to provide fast  
access to critical NX2LP-Flex functions. These SFR additions  
are shown in Table 1. Bold type indicates non-standard,  
enhanced 8051 registers. The two SFR rows that end with ‘0’  
and ‘8’ contain bit-addressable registers. The four I/O ports  
A–D use the SFR addresses used in the standard 8051 for  
ports 0–3, which are not implemented in NX2LP-Flex.  
Because of the faster and more efficient SFR addressing, the  
NX2LP-Flex I/O ports are not addressable in external RAM  
space (using the MOVX instruction).  
Functional Overview  
USB Signaling Speed  
NX2LP-Flex operates at two of the three rates defined in the  
USB Specification Revision 2.0, dated April 27, 2000:  
I2C Bus  
• Full speed, with a signaling bit rate of 12 Mbps  
• High speed, with a signaling bit rate of 480 Mbps.  
NX2LP supports the I2C bus as a master only at 100-/400-kHz.  
SCL and SDA pins have open-drain outputs and hysteresis  
inputs. These signals must be pulled up to 3.3V, even if no I2C  
device is connected. The I2C bus is disabled at startup and  
only available for use after the initial NAND access.  
NX2LP-Flex does not support the low-speed signaling mode  
of 1.5 Mbps.  
Document #: 001-04247 Rev. *D  
Page 3 of 33  
[+] Feedback  
CY7C68033/CY7C68034  
Table 1. Special Function Registers  
x
0
1
2
3
4
5
6
7
8
9
A
B
C
D
E
F
8x  
IOA  
9x  
IOB  
Ax  
Bx  
Cx  
Dx  
Ex  
Fx  
IOC  
IOD  
SCON1  
SBUF1  
PSW  
ACC  
B
SP  
EXIF  
INT2CLR  
INT4CLR  
IOE  
DPL0  
DPH0  
DPL1  
DPH1  
DPS  
MPAGE  
OEA  
OEB  
OEC  
OED  
OEE  
PCON  
TCON  
TMOD  
TL0  
SCON0  
IE  
IP  
T2CON  
EICON  
EIE  
EIP  
SBUF0  
AUTOPTRH1  
AUTOPTRL1  
RESERVED  
AUTOPTRH2  
AUTOPTRL2  
RESERVED  
EP2468STAT  
EP24FIFOFLGS  
EP68FIFOFLGS  
EP01STAT  
GPIFTRIG  
RCAP2L  
RCAP2H  
TL2  
TL1  
TH0  
TH1  
GPIFSGLDATH  
GPIFSGLDATLX  
TH2  
CKCON  
AUTOPTRSET-UP GPIFSGLDATLNOX  
Buses  
Enumeration  
The NX2LP-Flex features an 8- or 16-bit ‘FIFO’ bidirectional  
data bus, multiplexed on I/O ports B and D.  
During the start-up sequence, internal logic checks for the  
presence of NAND Flash with valid firmware. If valid firmware  
is found, the NX2LP-Flex loads it and operates according to  
the firmware. If no NAND Flash is detected, or if no valid  
firmware is found, the NX2LP-Flex uses the default values  
from internal ROM space for manufacturing mode operation.  
The two modes of operation are described in the section  
”Normal Operation Mode” on page 5 and ”Manufacturing  
Mode” on page 5.  
The default firmware image implements an 8-bit data bus in  
GPIF Master mode. It is recommended that additional inter-  
faces added to the default firmware image use this 8-bit data  
bus.  
Document #: 001-04247 Rev. *D  
Page 4 of 33  
[+] Feedback  
CY7C68033/CY7C68034  
Figure 4. NX2LP-Flex Enumeration Sequence  
values stored in ROM space. The default silicon ID values  
should only be used for development purposes. Cypress  
requires designers to use their own Vendor ID for final  
products. A Vendor ID is obtained through registration with the  
USB Implementor’s Forum (USB-IF). Also, if the NX2LP-Flex  
is used as a mass storage class device, a unique USB serial  
number is required for each device in order to comply with the  
USB Mass Storage class specification.  
Start-up  
Cypress provides all the software tools and drivers necessary  
for properly programming and testing the NX2LP-Flex. Please  
refer to the documentation in the development kit for more  
information on these topics.  
NAND Flash  
Present?  
Yes  
No  
Table 2. Default Silicon ID Values  
Default VID/PID/DID  
Vendor ID  
Product ID  
0x04B4 Cypress Semiconductor  
0x8613 EZ-USB® Default  
NAND Flash  
Programmed?  
No  
Device release 0xAnnn Depends on chip revision  
(nnn = chip revision, where first  
silicon = 001)  
Yes  
ReNumeration™  
Load Default  
Descriptors and  
Configuration Data  
Load Firmware  
From NAND  
Cypress’s ReNumeration™ feature is used in conjunction with  
the NX2LP-Flex manufacturing software tools to enable  
first-time NAND programming. It is only available when used  
in conjunction with the NX2LP-Flex Manufacturing tools, and  
is not enabled during normal operation.  
Bus-powered Applications  
The NX2LP-Flex fully supports bus-powered designs by  
enumerating with less than 100 mA, as required by the USB  
2.0 specification.  
Enumerate  
According To  
Firmware  
Enumerate As  
Unprogrammed  
NX2LP-Flex  
Interrupt System  
INT2 Interrupt Request and Enable Registers  
NX2LP-Flex implements an autovector feature for INT2 and  
INT4. There are 27 INT2 (USB) vectors, and 14 INT4  
(FIFO/GPIF) vectors. See the EZ-USB Technical Reference  
Manual (TRM) for more details.  
Normal Operation  
Mode  
Manufacturing  
Mode  
Normal Operation Mode  
USB-Interrupt Autovectors  
In Normal Operation Mode, the NX2LP-Flex behaves as a  
USB 2.0 Mass Storage Class NAND Flash controller. This  
includes all typical USB device states (powered, configured,  
etc.). The USB descriptors are returned according to the data  
stored in the configuration data memory area. Normal read  
and write access to the NAND Flash is available in this mode.  
The main USB interrupt is shared by 27 interrupt sources. To  
save the code and processing time that normally would be  
required to identify the individual USB interrupt source, the  
NX2LP-Flex provides a second level of interrupt vectoring,  
called Autovectoring. When a USB interrupt is asserted, the  
NX2LP-Flex pushes the program counter onto its stack then  
jumps to address 0x0500, where it expects to find a ‘jump’  
instruction to the USB Interrupt service routine.  
Manufacturing Mode  
In Manufacturing Mode, the NX2LP-Flex enumerates using  
the default descriptors and configuration data that are stored  
in internal ROM space. This mode allows for first-time  
programming of the configuration data memory area, as well  
as board-level manufacturing tests.  
Developers familiar with Cypress’s programmable USB  
devices should note that these interrupt vector values differ  
from those used in other EZ-USB microcontrollers. This is due  
to the additional NAND boot logic that is present in the  
NX2LP-Flex ROM space. Also, these values are fixed and  
cannot be changed in the firmware.  
Default Silicon ID Values  
To facilitate proper USB enumeration when no programmed  
NAND Flash is present, the NX2LP-Flex has default silicon ID  
Document #: 001-04247 Rev. *D  
Page 5 of 33  
[+] Feedback  
CY7C68033/CY7C68034  
Table 3. INT2 USB Interrupts  
USB INTERRUPT TABLE FOR INT2  
Source  
Priority  
1
INT2VEC Value  
Notes  
0x500  
0x504  
0x508  
0x50C  
0x510  
0x514  
0x518  
0x51C  
0x520  
0x524  
0x528  
0x52C  
0x530  
0x534  
0x538  
0x53C  
0x540  
0x544  
0x548  
0x54C  
0x550  
0x554  
0x558  
0x55C  
0x560  
0x564  
0x568  
0x56C  
0x570  
0x574  
0x578  
0x57C  
SUDAV  
Setup Data Available  
2
SOF  
Start of Frame (or microframe)  
Setup Token Received  
3
SUTOK  
4
SUSPEND  
USB RESET  
HISPEED  
EP0ACK  
USB Suspend request  
5
Bus reset  
6
Entered high speed operation  
NX2LP ACK’d the CONTROL Handshake  
Reserved  
7
8
9
EP0-IN  
EP0-OUT  
EP1-IN  
EP1-OUT  
EP2  
EP0-IN ready to be loaded with data  
EP0-OUT has USB data  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
EP1-IN ready to be loaded with data  
EP1-OUT has USB data  
IN: buffer available. OUT: buffer has data  
IN: buffer available. OUT: buffer has data  
IN: buffer available. OUT: buffer has data  
IN: buffer available. OUT: buffer has data  
IN-Bulk-NAK (any IN endpoint)  
Reserved  
EP4  
EP6  
EP8  
IBN  
EP0PING  
EP1PING  
EP2PING  
EP4PING  
EP6PING  
EP8PING  
ERRLIMIT  
EP0 OUT was Pinged and it NAK’d  
EP1 OUT was Pinged and it NAK’d  
EP2 OUT was Pinged and it NAK’d  
EP4 OUT was Pinged and it NAK’d  
EP6 OUT was Pinged and it NAK’d  
EP8 OUT was Pinged and it NAK’d  
Bus errors exceeded the programmed limit  
Reserved  
Reserved  
Reserved  
EP2ISOERR  
EP4ISOERR  
EP6ISOERR  
EP8ISOERR  
ISO EP2 OUT PID sequence error  
ISO EP4 OUT PID sequence error  
ISO EP6 OUT PID sequence error  
ISO EP8 OUT PID sequence error  
If Autovectoring is enabled (AV2EN = 1 in the INTSET-UP  
register), the NX2LP-Flex substitutes its INT2VEC byte.  
Therefore, if the high byte (‘page’) of a jump-table address is  
preloaded at location 0x544, the automatically-inserted  
INT2VEC byte at 0x545 will direct the jump to the correct  
address out of the 27 addresses within the page.  
FIFO/GPIF Interrupt (INT4)  
Just as the USB Interrupt is shared among 27 individual  
USB-interrupt sources, the FIFO/GPIF interrupt is shared  
among 14 individual FIFO/GPIF sources. The FIFO/GPIF  
Interrupt, like the USB Interrupt, can employ autovectoring.  
Table 4 shows the priority and INT4VEC values for the 14  
FIFO/GPIF interrupt sources.  
Document #: 001-04247 Rev. *D  
Page 6 of 33  
[+] Feedback  
CY7C68033/CY7C68034  
Table 4. Individual FIFO/GPIF Interrupt Sources  
Priority  
INT4VEC Value  
0x580  
Source  
EP2PF  
EP4PF  
EP6PF  
EP8PF  
EP2EF  
EP4EF  
EP6EF  
EP8EF  
EP2FF  
EP4FF  
EP6FF  
EP8FF  
GPIFDONE  
GPIFWF  
Notes  
1
2
Endpoint 2 Programmable Flag  
0x584  
Endpoint 4 Programmable Flag  
Endpoint 6 Programmable Flag  
Endpoint 8 Programmable Flag  
Endpoint 2 Empty Flag  
Endpoint 4 Empty Flag  
Endpoint 6 Empty Flag  
Endpoint 8 Empty Flag  
Endpoint 2 Full Flag  
3
0x588  
4
0x58C  
0x590  
5
6
0x594  
7
0x598  
8
0x59C  
0x5A0  
0x5A4  
0x5A8  
0x5AC  
0x5B0  
0x5B4  
9
10  
11  
12  
13  
14  
Endpoint 4 Full Flag  
Endpoint 6 Full Flag  
Endpoint 8 Full Flag  
GPIF Operation Complete  
GPIF Waveform  
If Autovectoring is enabled (AV4EN = 1 in the INTSET-UP  
register), the NX2LP-Flex substitutes its INT4VEC byte.  
Therefore, if the high byte (‘page’) of a jump-table address is  
preloaded at location 0x554, the automatically-inserted  
INT4VEC byte at 0x555 will direct the jump to the correct  
address out of the 14 addresses within the page. When the  
ISR occurs, the NX2LP-Flex pushes the program counter onto  
its stack then jumps to address 0x553, where it expects to find  
a ‘jump’ instruction to the ISR Interrupt service routine.  
reset period must allow for the stabilization of the crystal and  
the PLL. This reset period should be approximately 5 ms after  
VCC has reached 3.0V. If the crystal input pin is driven by a  
clock signal, the internal PLL stabilizes in 200 μs after VCC has  
reached 3.0V[1]. Figure 5 shows a power-on reset condition  
and a reset applied during operation. A power-on reset is  
defined as the time reset is asserted while power is being  
applied to the circuit. A powered reset is defined to be when  
the NX2LP-Flex has previously been powered on and  
operating and the RESET# pin is asserted.  
Reset and Wakeup  
Cypress provides an application note which describes and  
recommends power on reset implementation and can be found  
on the Cypress web site. For more information on reset imple-  
mentation for the EZ-USB family of products visit the  
http://www.cypress.com website.  
Reset Pin  
The input pin RESET#, will reset the NX2LP-Flex when  
asserted. This pin has hysteresis and is active LOW. When a  
crystal is used as the clock source for the NX2LP-Flex, the  
Figure 5. Reset Timing Plots  
RESET#  
RESET#  
VIL  
VIL  
3.3V  
3.0V  
3.3V  
VCC  
VCC  
0V  
0V  
TRESET  
TRESET  
Power-on Reset  
Powered Reset  
Note  
1. If the external clock is powered at the same time as the CY7C68033/CY7C68034 and has a stabilization wait period, it must be added to the 200 μs.  
Document #: 001-04247 Rev. *D  
Page 7 of 33  
[+] Feedback  
CY7C68033/CY7C68034  
Table 5. Reset Timing Values  
Figure 6. Internal Code Memory  
Condition  
TRESET  
FFFF  
7.5 kBytes  
Power-on Reset with crystal  
5 ms  
USB registers  
and 4 kBytes  
FIFO buffers  
Power-on Reset with external 200 μs + Clock stability time  
clock source  
(RD#, WR#)  
E200  
E1FF  
Powered Reset  
200 μs  
512 Bytes RAM Data  
(RD#, WR#)*  
E000  
Wakeup Pins  
The 8051 puts itself and the rest of the chip into a power-down  
mode by setting PCON.0 = 1. This stops the oscillator and  
PLL. When WAKEUP is asserted by external logic, the oscil-  
lator restarts, after the PLL stabilizes, and then the 8051  
receives a wakeup interrupt. This applies whether or not  
NX2LP-Flex is connected to the USB.  
3FFF  
15 kBytes RAM  
Code and Data  
(PSEN#, RD#,  
WR#)*  
The NX2LP-Flex exits the power-down (USB suspend) state  
using one of the following methods:  
0500  
• USB bus activity (if D+/D– lines are left floating, noise on  
these lines may indicate activity to the NX2LP-Flex and  
initiate a wakeup).  
1 kbyte ROM  
0000  
*SUDPTR, USB download, NAND boot access  
• External logic asserts the WAKEUP pin  
• External logic asserts the PA3/WU2 pin.  
The second wakeup pin, WU2, can also be configured as a  
general purpose I/O pin. This allows a simple external R-C  
network to be used as a periodic wakeup source. Note that  
WAKEUP is, by default, active LOW.  
Register Addresses  
Figure 7. Internal Register Addresses  
Program/Data RAM  
FFFF  
4 KBytes EP2-EP8  
Internal ROM/RAM Size  
buffers  
(8 x 512)  
The NX2LP-Flex has 1 kBytes ROM and 15 kBytes of internal  
program/data RAM, where PSEN#/RD# signals are internally  
ORed to allow the 8051 to access it as both program and data  
memory. No USB control registers appear in this space.  
F000  
EFFF  
2 KBytes RESERVED  
Internal Code Memory  
E800  
E7FF  
E7C0  
This mode implements the internal block of RAM (starting at  
0x0500) as combined code and data memory, as shown in  
Figure 6, below.  
64 Bytes EP1IN  
E7BF  
E780  
E77F  
E740  
64 Bytes EP1OUT  
Only the internal and scratch pad RAM spaces have the  
following access:  
64 Bytes EP0 IN/OUT  
E73F  
• USB download (only supported by the Cypress Manufac-  
turing Tool)  
64 Bytes RESERVED  
E700  
E6FF  
8051 Addressable Registers  
• Setup data pointer  
• NAND boot access.  
(512)  
E500  
E4FF  
Reserved (128)  
E480  
E47F  
128 bytes GPIF Waveforms  
E400  
E3FF  
E200  
Reserved (512)  
E1FF  
512 bytes  
8051 xdata RAM  
E000  
Document #: 001-04247 Rev. *D  
Page 8 of 33  
[+] Feedback  
CY7C68033/CY7C68034  
Endpoint RAM  
Setup Data Buffer  
A separate 8-byte buffer at 0xE6B8-0xE6BF holds the setup  
data from a CONTROL transfer.  
Size  
• 3 × 64 bytes (Endpoints 0 and 1)  
• 8 × 512 bytes (Endpoints 2, 4, 6, 8)  
Endpoint Configurations (High-speed Mode)  
Endpoints 0 and 1 are the same for every configuration.  
Endpoint 0 is the only CONTROL endpoint, and endpoint 1 can  
be either BULK or INTERRUPT. The endpoint buffers can be  
configured in any 1 of the 12 configurations shown in the  
vertical columns. When operating in full-speed BULK mode,  
only the first 64 bytes of each buffer are used. For example, in  
high-speed the max packet size is 512 bytes, but in full-speed  
it is 64 bytes. Even though a buffer is configured to be a 512  
byte buffer, in full-speed only the first 64 bytes are used. The  
unused endpoint buffer space is not available for other opera-  
tions. An example endpoint configuration would be:  
Organization  
• EP0  
— Bidirectional endpoint zero, 64-byte buffer  
• EP1IN, EP1OUT  
— 64-byte buffers, bulk or interrupt  
• EP2,4,6,8  
— Eight 512-byte buffers, bulk, interrupt, or isochronous.  
— EP4 and EP8 can be double buffered, while EP2 and 6  
can be either double, triple, or quad buffered.  
EP2–1024 double buffered; EP6–512 quad buffered  
(column 8 in Figure 8).  
For high-speed endpoint configuration options, see Figure 8.  
Figure 8. Endpoint Configuration  
64  
64  
64  
64  
64  
64  
64  
64  
64  
64  
64  
64  
64  
64  
64  
64  
64  
64  
64  
64  
64  
64  
64  
64  
64  
64  
64  
64  
64  
64  
64  
64  
64  
64  
64  
64  
EP0 IN&OUT  
EP1 IN  
EP1 OUT  
EP2  
EP2  
512  
EP2  
EP2 EP2  
EP2 EP2  
EP2  
512  
EP2  
EP2  
512  
EP2  
EP2  
512  
512  
512  
512  
512  
512  
512  
1024  
1024  
1024  
1024  
512  
512  
512  
512  
512  
1024  
EP4  
512  
EP4 EP4  
512  
512  
512  
512  
512  
512  
512  
512  
EP6  
1024  
1024  
1024  
1024  
1024  
512  
512  
512  
512  
EP6  
512  
EP6  
512  
EP6  
EP6 EP6  
EP6  
EP6  
EP6 EP6  
512  
512  
1024  
1024  
512  
512  
512  
512  
512  
512  
1024  
1024  
1024  
512  
512  
512  
512  
EP8  
512  
EP8  
512  
EP8  
512  
EP8  
512  
EP8  
512  
1024  
512  
512  
512  
512  
512  
512  
1024  
1024  
1024  
512  
512  
512  
512  
512  
10  
11  
12  
9
4
5
8
1
2
3
6
7
Default Full-Speed Alternate Settings  
Table 6. Default Full-Speed Alternate Settings[2, 3]  
Alternate Setting  
0
64  
0
1
2
3
ep0  
64  
64  
64  
ep1out  
ep1in  
ep2  
64 bulk  
64 bulk  
64 int  
64 int  
64 int  
64 int  
0
0
64 bulk out (2×)  
64 int out (2×)  
64 iso out (2×)  
Notes  
2. ‘0’ means ‘not implemented.’  
3. ‘2×’ means ‘double buffered.’  
Document #: 001-04247 Rev. *D  
Page 9 of 33  
[+] Feedback  
CY7C68033/CY7C68034  
Table 6. Default Full-Speed Alternate Settings[2, 3] (continued)  
ep4  
ep6  
ep8  
0
0
0
64 bulk out (2×)  
64 bulk in (2×)  
64 bulk in (2×)  
64 bulk out (2×)  
64 int in (2×)  
64 bulk out (2×)  
64 iso in (2×)  
64 bulk in (2×)  
64 bulk in (2×)  
Default High-Speed Alternate Settings  
Table 7. Default High-Speed Alternate Settings[2, 3]  
Alternate Setting  
0
1
2
3
ep0  
64  
0
64  
64  
64  
ep1out  
ep1in  
ep2  
512 bulk[4]  
512 bulk[4]  
64 int  
64 int  
0
64 int  
64 int  
0
512 bulk out (2×)  
512 bulk out (2×)  
512 bulk in (2×)  
512 bulk in (2×)  
512 int out (2×)  
512 bulk out (2×)  
512 int in (2×)  
512 bulk in (2×)  
512 iso out (2×)  
512 bulk out (2×)  
512 iso in (2×)  
512 bulk in (2×)  
ep4  
0
ep6  
0
ep8  
0
External FIFO Interface  
(IFCLK), at a rate that transfers data up to 96 Megabytes/s  
(48-MHz IFCLK with 16-bit interface).  
Architecture  
In Slave (S) mode, the NX2LP-Flex accepts an internally  
derived clock (IFCLK, max. frequency 48 MHz) and SLCS#,  
SLRD, SLWR, SLOE, PKTEND signals from external logic.  
Each endpoint can individually be selected for byte or word  
operation by an internal configuration bit, and a Slave FIFO  
Output Enable signal SLOE enables data of the selected  
width. External logic must ensure that the output enable signal  
is inactive when writing data to a slave FIFO. The slave  
interface must operate asynchronously, where the SLRD and  
SLWR signals act directly as strobes, rather than a clock  
qualifier as in a synchronous mode. The signals SLRD, SLWR,  
SLOE and PKTEND are gated by the signal SLCS#.  
The NX2LP-Flex slave FIFO architecture has eight 512-byte  
blocks in the endpoint RAM that directly serve as FIFO  
memories, and are controlled by FIFO control signals (such as  
SLCS#, SLRD, SLWR, SLOE, PKTEND, and flags).  
In operation, some of the eight RAM blocks fill or empty from  
the SIE, while the others are connected to the I/O transfer  
logic. The transfer logic takes two forms, the GPIF for internally  
generated control signals, or the slave FIFO interface for  
externally controlled transfers.  
Master/Slave Control Signals  
The NX2LP-Flex endpoint FIFOS are implemented as eight  
physically distinct 256x16 RAM blocks. The 8051/SIE can  
switch any of the RAM blocks between two domains, the USB  
(SIE) domain and the 8051-I/O Unit domain. This switching is  
done virtually instantaneously, giving essentially zero transfer  
time between ‘USB FIFOS’ and ‘Slave FIFOS.’ Since they are  
physically the same memory, no bytes are actually transferred  
between buffers.  
GPIF and FIFO Clock Rates  
An 8051 register bit selects one of two frequencies for the  
internally supplied interface clock: 30 MHz and 48 MHz. A bit  
within the IFCONFIG register will invert the IFCLK signal.  
The default NAND firmware image implements a 48-MHz  
internally supplied interface clock. The NAND boot logic uses  
the same configuration to implement 100-ns timing on the  
NAND bus to support proper detection of all NAND Flash  
types.  
At any given time, some RAM blocks are filling/emptying with  
USB data under SIE control, while other RAM blocks are  
available to the 8051 and/or the I/O control unit. The RAM  
blocks operate as single-port in the USB domain, and  
dual-port in the 8051-I/O domain. The blocks can be  
configured as single, double, triple, or quad buffered as previ-  
ously shown.  
GPIF  
The GPIF is a flexible 8- or 16-bit parallel interface driven by a  
user-programmable finite state machine. It allows the  
NX2LP-Flex to perform local bus mastering, and can  
implement a wide variety of protocols such as 8-bit NAND  
interface, printer parallel port, and Utopia. The default NAND  
firmware and boot logic utilizes GPIF functionality to interface  
with NAND Flash.  
The I/O control unit implements either an internal-master (M  
for master) or external-master (S for Slave) interface.  
In Master (M) mode, the GPIF internally controls  
FIFOADR[1:0] to select a FIFO. The two RDY pins can be  
used as flag inputs from an external FIFO or other logic if  
desired. The GPIF can be run from an internally derived clock  
The GPIF on the NX2LP-Flex features three programmable  
control outputs (CTL) and two general-purpose ready inputs  
(RDY). The GPIF data bus width can be 8 or 16 bits. Because  
Note  
4. Even though these buffers are 64 bytes, they are reported as 512 for USB 2.0 compliance. The user must never transfer packets larger than 64 bytes to EP1.  
Document #: 001-04247 Rev. *D  
Page 10 of 33  
[+] Feedback  
CY7C68033/CY7C68034  
the default NAND firmware image implements an 8-bit data  
bus and up to 8 chip enable pins on the GPIF ports, it is recom-  
mended that designs based upon the default firmware image  
use an 8-bit data bus as well.  
ECCM = 0  
Two 3-byte ECCs, each calculated over a 256-byte block of  
data. This configuration conforms to the SmartMedia Standard  
and is used by both the NAND boot logic and default NAND  
firmware image.  
Each GPIF vector defines the state of the control outputs, and  
determines what state a ready input (or multiple inputs) must  
be before proceeding. The GPIF vector can be programmed  
to advance a FIFO to the next data value, advance an address,  
etc. A sequence of the GPIF vectors make up a single  
waveform that will be executed to perform the desired data  
move between the NX2LP-Flex and the external device.  
When any value is written to ECCRESET and data is then  
passed across the GPIF or Slave FIFO interface, the ECC for  
the first 256 bytes of data will be calculated and stored in  
ECC1. The ECC for the next 256 bytes of data will be stored  
in ECC2. After the second ECC is calculated, the values in the  
ECCx registers will not change until ECCRESET is written  
again, even if more data is subsequently passed across the  
interface.  
Three Control OUT Signals  
The NX2LP-Flex exposes three control signals, CTL[2:0].  
CTLx waveform edges can be programmed to make transi-  
tions as fast as once per clock (20.8 ns using a 48-MHz clock).  
ECCM = 1  
One 3-byte ECC calculated over a 512-byte block of data.  
Two Ready IN Signals  
When any value is written to ECCRESET and data is then  
passed across the GPIF or Slave FIFO interface, the ECC for  
the first 512 bytes of data will be calculated and stored in  
ECC1; ECC2 is unused. After the ECC is calculated, the value  
in ECC1 will not change until ECCRESET is written again,  
even if more data is subsequently passed across the interface  
The 8051 programs the GPIF unit to test the RDY pins for  
GPIF branching. The 56-pin package brings out two signals,  
RDY[1:0].  
Long Transfer Mode  
In GPIF Master mode, the 8051 appropriately sets GPIF trans-  
action count registers (GPIFTCB3, GPIFTCB2, GPIFTCB1, or  
GPIFTCB0) for unattended transfers of up to 232 transactions.  
The GPIF automatically throttles data flow to prevent under- or  
over-flow until the full number of requested transactions  
complete. The GPIF decrements the value in these registers  
to represent the current status of the transaction.  
Autopointer Access  
NX2LP-Flex provides two identical autopointers. They are  
similar to the internal 8051 data pointers, but with an additional  
feature: they can optionally increment after every memory  
access. Also, the autopointers can point to any NX2LP-Flex  
register or endpoint buffer space.  
I2C Controller  
ECC Generation[5]  
NX2LP has one I2C port that the 8051, once running uses to  
control external I2C devices. The I2C port operates in master  
mode only. The I2C post is disabled at startup and only  
available for use after the initial NAND access.  
The NX2LP-Flex can calculate ECCs (Error-Correcting  
Codes) on data that passes across its GPIF or Slave FIFO  
interfaces. There are two ECC configurations:  
• Two ECCs, each calculated over 256 bytes (SmartMedia  
Standard)  
I2C Port Pins  
The I2C pins SCL and SDA must have external 2.2-kΩ pull-up  
• One ECC calculated over 512 bytes.  
resistors even if no EEPROM is connected to the NX2LP.  
The two ECC configurations described below are selected by  
the ECCM bit. The ECC can correct any one-bit error or detect  
any two-bit error.  
I2C Interface General-Purpose Access  
The 8051 can control peripherals connected to the I2C bus  
using the I2CTL and I2DATA registers. NX2LP provides I2C  
master control only and is never an I2C slave.  
Note  
5. To use the ECC logic, the GPIF or Slave FIFO interface must be configured for byte-wide operation.  
Document #: 001-04247 Rev. *D  
Page 11 of 33  
[+] Feedback  
CY7C68033/CY7C68034  
from the default NAND firmware image, which actually utilizes  
GPIF Master mode. The signals on the left edge of the ‘Port’  
column are common to all modes of the NX2LP-Flex. The  
8051 selects the interface mode using the IFCONFIG[1:0]  
register bits. Port mode is the power-on default configuration.  
Pin Assignments  
Figure 9 and Figure 10 identify all signals for the 56-pin  
NX2LP-Flex package.  
Three modes of operation are available for the NX2LP-Flex:  
Port mode, GPIF Master mode, and Slave FIFO mode. These  
modes define the signals on the right edge of each column in  
Figure 9. The right-most column details the signal functionality  
Figure 10 details the pinout of the 56-pin package and lists pin  
names for all modes of operation. Pin names with an asterisk  
(*) feature programmable polarity.  
Figure 9. Port and Signal Mapping  
Default NAND  
Firmware Use  
Port  
GPIF Master  
Slave FIFO  
CE7#/GPIO7  
CE6#/GPIO6  
CE5#/GPIO5  
CE4#/GPIO4  
CE3#/GPIO3  
CE2#/GPIO2  
CE1#  
CE0#  
DD7  
DD6  
DD5  
PD7  
PD6  
PD5  
PD4  
PD3  
PD2  
PD1  
PD0  
PB7  
PB6  
PB5  
PB4  
PB3  
PB2  
PB1  
PB0  
FD[15]  
FD[14]  
FD[13]  
FD[12]  
FD[11]  
FD[10]  
FD[9]  
FD[8]  
FD[7]  
FD[6]  
FD[5]  
FD[4]  
FD[3]  
FD[2]  
FD[1]  
FD[0]  
FD[15]  
FD[14]  
FD[13]  
FD[12]  
FD[11]  
FD[10]  
FD[9]  
FD[8]  
FD[7]  
FD[6]  
FD[5]  
FD[4]  
FD[3]  
FD[2]  
FD[1]  
FD[0]  
XTALIN  
DD4  
DD3  
DD2  
DD1  
XTALOUT  
RESET#  
WAKEUP#  
SCL  
DD0  
SDATA  
R_B1#  
R_B2#  
SLRD  
SLWR  
RDY0  
RDY1  
WE#  
RE0#  
RE1#  
FLAGA  
FLAGB  
FLAGC  
CTL0  
CTL1  
CTL2  
GPIO1  
GPIO0  
WP_SW#  
WP_NF#  
LED2#  
LED1#  
ALE  
PA7  
PA6  
PA5  
FLAGD/SLCS#/PA7  
PKTEND  
FIFOADR1  
FIFOADR0  
PA3/WU2  
SLOE  
PA1/INT1#  
PA0/INT0#  
PA7  
PA6  
PA5  
PA4  
PA3/WU2  
PA2  
PA1/INT1#  
PA0/INT0#  
PA4  
WU2/PA3  
PA2  
INT1#/PA1  
INTO#/PA0  
DPLUS  
DMINUS  
CLE  
GPIO8  
GPIO9  
GPIO8  
GPIO9  
GPIO8  
GPIO9  
GPIO8  
GPIO9  
Document #: 001-04247 Rev. *D  
Page 12 of 33  
[+] Feedback  
CY7C68033/CY7C68034  
Figure 10. CY7C68033/CY7C68034 56-pin QFN Pin Assignment  
RESET#  
RDY0/*SLRD  
RDY1/*SLWR  
AVCC  
1
2
42  
41  
40  
39  
38  
37  
36  
35  
34  
33  
32  
31  
30  
29  
GND  
PA7/*FLAGD/SLCS#  
PA6/*PKTEND  
PA5/FIFOADR1  
PA4/FIFOADR0  
PA3/*WU2  
3
XTALOUT  
XTALIN  
AGND  
4
5
6
CY7C68033/CY7C68034  
56-pin QFN  
AVCC  
7
PA2/*SLOE  
PA1/INT1#  
DPLUS  
8
DMINUS  
AGND  
9
PA0/INT0#  
10  
11  
12  
13  
14  
VCC  
VCC  
CTL2/*FLAGC  
CTL1/*FLAGB  
CTL0/*FLAGA  
GND  
GPIO8  
RESERVED#  
Document #: 001-04247 Rev. *D  
Page 13 of 33  
[+] Feedback  
CY7C68033/CY7C68034  
Table 8. NX2LP-Flex Pin Descriptions [6]  
56 QFN  
Pin  
Number  
NAND  
Firmware  
Usage  
DefaultPin  
Name  
Pin  
Type  
Default  
State  
Description  
9
8
DMINUS  
DPLUS  
N/A  
N/A  
N/A  
I/O/Z  
I/O/Z  
Input  
Z
Z
USB D– Signal. Connect to the USB D– signal.  
USB D+ Signal. Connect to the USB D+ signal.  
42  
RESET#  
N/A  
Active LOW Reset. Resets the entire chip. See section ”Reset and  
Wakeup” on page 7 for more details.  
5
XTALIN  
N/A  
Input  
N/A  
Crystal Input. Connect this signal to a 24-MHz parallel-resonant,  
fundamental mode crystal and load capacitor to GND.  
It is also correct to drive XTALIN with an external 24-MHz square  
wave derived from another clock source. When driving from an  
external source, the driving signal should be a 3.3V square wave.  
4
XTALOUT  
GPIO9  
N/A  
Output  
N/A  
Crystal Output. Connect this signal to a 24-MHz parallel-resonant,  
fundamental mode crystal and load capacitor to GND.  
If an external clock is used to drive XTALIN, leave this pin open.  
54  
1
GPIO9  
R_B1#  
O/Z  
12 MHz GPIO9 is a bidirectional IO port pin.  
RDY0 or  
SLRD  
Input  
N/A  
N/A  
H
Multiplexed pin whose function is selected by IFCONFIG[1:0].  
RDY0 is a GPIF input signal.  
SLRD is the input-only read strobe with programmable polarity  
(FIFOPINPOLAR[3]) for the slave FIFOs connected to FD[7:0] or  
FD[15:0].  
R_B1# is a NAND Ready/Busy input signal.  
2
RDY1 or  
SLWR  
R_B2#  
WE#  
Input  
O/Z  
Multiplexed pin whose function is selected by IFCONFIG[1:0].  
RDY1 is a GPIF input signal.  
SLWR is the input-only write strobe with programmable polarity  
(FIFOPINPOLAR[2]) for the slave FIFOs connected to FD[7:0] or  
FD[15:0].  
R_B2# is a NAND Ready/Busy input signal.  
29  
CTL0 or  
FLAGA  
Multiplexed pin whose function is selected by IFCONFIG[1:0].  
CTL0 is a GPIF control output.  
FLAGA is a programmable slave-FIFO output status flag signal.  
Defaults to programmable for the FIFO selected by the  
FIFOADR[1:0] pins.  
WE# is the NAND write enable output signal.  
30  
31  
CTL1 or  
FLAGB  
RE0#  
RE1#  
O/Z  
O/Z  
H
H
Multiplexed pin whose function is selected by IFCONFIG[1:0].  
CTL1 is a GPIF control output.  
FLAGB is a programmable slave-FIFO output status flag signal.  
Defaults to FULL for the FIFO selected by the FIFOADR[1:0] pins.  
RE0# is a NAND read enable output signal.  
CTL2 or  
FLAGC  
Multiplexed pin whose function is selected by IFCONFIG[1:0].  
CTL2 is a GPIF control output.  
FLAGC is a programmable slave-FIFO output status flag signal.  
Defaults to EMPTY for the FIFO selected by the FIFOADR[1:0] pins.  
RE1# is a NAND read enable output signal.  
Note  
6. Unused inputs should not be left floating. Tie either HIGH or LOW as appropriate. Outputs should only be pulled up or down to ensure signals at power-up and in  
standby. Note also that no pins should be driven while the device is powered down.  
Document #: 001-04247 Rev. *D  
Page 14 of 33  
[+] Feedback  
CY7C68033/CY7C68034  
Table 8. NX2LP-Flex Pin Descriptions (continued)[6]  
56 QFN  
Pin  
Number  
NAND  
Firmware  
Usage  
DefaultPin  
Name  
Pin  
Type  
Default  
State  
Description  
13  
14  
15  
GPIO8  
Reserved#  
SCL  
GPIO8  
N/A  
I/O/Z  
Input  
OD  
I
GPIO8: is a bidirectional IO port pin.  
N/A  
Z
Reserved. Connect to ground.  
N/A  
Clock for the I2C interface. Connect to VCC with a 2.2K resistor,  
even if no I2C peripheral is attached.  
16  
44  
SDATA  
N/A  
OD  
Z
Data for the I2C interface. Connect to VCC with a 2.2K resistor, even  
if no I2C peripheral is attached.  
WAKEUP  
Unused  
Input  
N/A  
USB Wakeup. If the 8051 is in suspend, asserting this pin starts up  
the oscillator and interrupts the 8051 to allow it to exit the suspend  
mode. Holding WAKEUP asserted inhibits the EZ-USB chip from  
suspending. This pin has programmable polarity, controlled by  
WAKEUP[4].  
Port A  
33  
PA0 or  
INT0#  
CLE  
ALE  
I/O/Z  
I/O/Z  
I/O/Z  
I
Multiplexed pin whose function is selected by PORTACFG[0]  
(PA0) PA0 is a bidirectional IO port pin.  
INT0# is the active-LOW 8051 INT0 interrupt input signal, which is  
either edge triggered (IT0 = 1) or level triggered (IT0 = 0).  
CLE is the NAND Command Latch Enable signal.  
34  
35  
PA1 or  
INT1#  
I
Multiplexed pin whose function is selected by PORTACFG[1]  
(PA1) PA1 is a bidirectional IO port pin.  
INT1# is the active-LOW 8051 INT1 interrupt input signal, which is  
either edge triggered (IT1 = 1) or level triggered (IT1 = 0).  
ALE is the NAND Address Latch Enable signal.  
PA2 or  
SLOE  
LED1#  
I
Multiplexed pin whose function is selected by IFCONFIG[1:0].  
(PA2) PA2 is a bidirectional IO port pin.  
SLOE is an input-only output enable with programmable polarity  
(FIFOPINPOLAR[4]) for the slave FIFOs connected to FD[7:0] or  
FD[15:0].  
LED1# is the data activity indicator LED sink pin.  
36  
PA3 or  
WU2  
LED2#  
I/O/Z  
I
Multiplexed pin whose function is selected by WAKEUP[7] and  
(PA3) OEA[3]  
PA3 is a bidirectional I/O port pin.  
WU2 is an alternate source for USB Wakeup, enabled by WU2EN  
bit (WAKEUP[1]) and polarity set by WU2POL (WAKEUP[4]). If the  
8051 is in suspend and WU2EN = 1, a transition on this pin starts  
up the oscillator and interrupts the 8051 to allow it to exit the suspend  
mode. Asserting this pin inhibits the chip from suspending, if  
WU2EN = 1.  
LED2# is the chip activity indicator LED sink pin.  
37  
38  
PA4 or  
FIFOADR0  
WP_NF#  
WP_SW#  
I/O/Z  
I/O/Z  
I
Multiplexed pin whose function is selected by IFCONFIG[1:0].  
(PA4) PA4 is a bidirectional I/O port pin.  
FIFOADR0 is an input-only address select for the slave FIFOs  
connected to FD[7:0] or FD[15:0].  
WP_NF# is the NAND write-protect control output signal.  
PA5 or  
FIFOADR1  
I
Multiplexed pin whose function is selected by IFCONFIG[1:0].  
(PA5) PA5 is a bidirectional I/O port pin.  
FIFOADR1 is an input-only address select for the slave FIFOs  
connected to FD[7:0] or FD[15:0].  
WP_SW# is the NAND write-protect switch input signal.  
Document #: 001-04247 Rev. *D  
Page 15 of 33  
[+] Feedback  
CY7C68033/CY7C68034  
Table 8. NX2LP-Flex Pin Descriptions (continued)[6]  
56 QFN  
Pin  
Number  
NAND  
Firmware  
Usage  
DefaultPin  
Name  
Pin  
Type  
Default  
State  
Description  
39  
PA6 or  
PKTEND  
GPIO0  
(Input)  
I/O/Z  
I
Multiplexed pin whose function is selected by the IFCONFIG[1:0]  
(PA6) bits.  
PA6 is a bidirectional I/O port pin.  
PKTEND is an input used to commit the FIFO packet data to the  
endpoint and whose polarity is programmable via FIFOPIN-  
POLAR[5].  
GPIO1 is a general purpose I/O signal.  
40  
PA7 or  
FLAGD or  
SLCS#  
GPIO1  
(Input)  
I/O/Z  
I
Multiplexed pin whose function is selected by the IFCONFIG[1:0]  
(PA7) and PORTACFG[7] bits.  
PA7 is a bidirectional I/O port pin.  
FLAGD is a programmable slave-FIFO output status flag signal.  
SLCS# gates all other slave FIFO enable/strobes  
GPIO0 is a general purpose I/O signal.  
Port B  
18  
PB0 or  
FD[0]  
DD0  
DD1  
DD2  
DD3  
DD4  
DD5  
DD6  
DD7  
I/O/Z  
I/O/Z  
I/O/Z  
I/O/Z  
I/O/Z  
I/O/Z  
I/O/Z  
I/O/Z  
I
Multiplexed pin whose function is selected by IFCONFIG[1:0].  
(PB0) PB0 is a bidirectional I/O port pin.  
FD[0] is the bidirectional FIFO/GPIF data bus.  
DD0 is a bidirectional NAND data bus signal.  
19  
20  
21  
22  
23  
24  
25  
PB1 or  
FD[1]  
I
Multiplexed pin whose function is selected by IFCONFIG[1:0].  
(PB1) PB1 is a bidirectional I/O port pin.  
FD[1] is the bidirectional FIFO/GPIF data bus.  
DD1 is a bidirectional NAND data bus signal.  
PB2 or  
FD[2]  
I
Multiplexed pin whose function is selected by IFCONFIG[1:0].  
(PB2) PB2 is a bidirectional I/O port pin.  
FD[2] is the bidirectional FIFO/GPIF data bus.  
DD2 is a bidirectional NAND data bus signal.  
PB3 or  
FD[3]  
I
Multiplexed pin whose function is selected by IFCONFIG[1:0].  
(PB3) PB3 is a bidirectional I/O port pin.  
FD[3] is the bidirectional FIFO/GPIF data bus.  
DD3 is a bidirectional NAND data bus signal.  
PB4 or  
FD[4]  
I
Multiplexed pin whose function is selected by IFCONFIG[1:0].  
(PB4) PB4 is a bidirectional I/O port pin.  
FD[4] is the bidirectional FIFO/GPIF data bus.  
DD4 is a bidirectional NAND data bus signal.  
PB5 or  
FD[5]  
I
Multiplexed pin whose function is selected by IFCONFIG[1:0].  
(PB5) PB5 is a bidirectional I/O port pin.  
FD[5] is the bidirectional FIFO/GPIF data bus.  
DD5 is a bidirectional NAND data bus signal.  
PB6 or  
FD[6]  
I
Multiplexed pin whose function is selected by IFCONFIG[1:0].  
(PB6) PB6 is a bidirectional I/O port pin.  
FD[6] is the bidirectional FIFO/GPIF data bus.  
DD6 is a bidirectional NAND data bus signal.  
PB7 or  
FD[7]  
I
Multiplexed pin whose function is selected by IFCONFIG[1:0].  
(PB7) PB7 is a bidirectional I/O port pin.  
FD[7] is the bidirectional FIFO/GPIF data bus.  
DD7 is a bidirectional NAND data bus signal.  
PORT D  
45  
PD0 or  
FD[8]  
CE0#  
I/O/Z  
I
Multiplexed pin whose function is selected by the IFCONFIG[1:0]  
(PD0) and EPxFIFOCFG.0 (wordwide) bits.  
FD[8] is the bidirectional FIFO/GPIF data bus.  
CE0# is a NAND chip enable output signal.  
Document #: 001-04247 Rev. *D  
Page 16 of 33  
[+] Feedback  
CY7C68033/CY7C68034  
Table 8. NX2LP-Flex Pin Descriptions (continued)[6]  
56 QFN  
Pin  
Number  
NAND  
Firmware  
Usage  
DefaultPin  
Name  
Pin  
Type  
Default  
State  
Description  
46  
PD1 or  
FD[9]  
CE1#  
I/O/Z  
I
Multiplexed pin whose function is selected by the IFCONFIG[1:0]  
(PD1) and EPxFIFOCFG.0 (wordwide) bits.  
FD[9] is the bidirectional FIFO/GPIF data bus.  
CE1# is a NAND chip enable output signal.  
47  
PD2 or  
FD[10]  
CE2# or GPIO2 I/O/Z  
CE3# or GPIO3 I/O/Z  
CE4# or GPIO4 I/O/Z  
CE5# or GPIO5 I/O/Z  
CE6# or GPIO6 I/O/Z  
CE7# or GPIO7 I/O/Z  
I
Multiplexed pin whose function is selected by the IFCONFIG[1:0]  
(PD2) and EPxFIFOCFG.0 (wordwide) bits.  
FD[10] is the bidirectional FIFO/GPIF data bus.  
CE2# is a NAND chip enable output signal.  
GPIO2 is a general purpose I/O signal.  
48  
49  
50  
51  
52  
PD3 or  
FD[11]  
I
Multiplexed pin whose function is selected by the IFCONFIG[1:0]  
(PD3) and EPxFIFOCFG.0 (wordwide) bits.  
FD[11] is the bidirectional FIFO/GPIF data bus.  
CE3# is a NAND chip enable output signal.  
GPIO3 is a general purpose I/O signal.  
PD4 or  
FD[12]  
I
Multiplexed pin whose function is selected by the IFCONFIG[1:0]  
(PD4) and EPxFIFOCFG.0 (wordwide) bits.  
FD[12] is the bidirectional FIFO/GPIF data bus.  
CE4# is a NAND chip enable output signal.  
GPIO4 is a general purpose I/O signal.  
PD5 or  
FD[13]  
I
Multiplexed pin whose function is selected by the IFCONFIG[1:0]  
(PD5) and EPxFIFOCFG.0 (wordwide) bits.  
FD[13] is the bidirectional FIFO/GPIF data bus.  
CE5# is a NAND chip enable output signal.  
GPIO5 is a general purpose I/O signal.  
PD6 or  
FD[14]  
I
Multiplexed pin whose function is selected by the IFCONFIG[1:0]  
(PD6) and EPxFIFOCFG.0 (wordwide) bits.  
FD[14] is the bidirectional FIFO/GPIF data bus.  
CE6# is a NAND chip enable output signal.  
GPIO6 is a general purpose I/O signal.  
PD7 or  
FD[15]  
I
Multiplexed pin whose function is selected by the IFCONFIG[1:0]  
(PD7) and EPxFIFOCFG.0 (wordwide) bits.  
FD[15] is the bidirectional FIFO/GPIF data bus.  
CE7# is a NAND chip enable output signal.  
GPIO7 is a general purpose I/O signal.  
Power and Ground  
3
7
AVCC  
AGND  
VCC  
N/A  
N/A  
N/A  
Power  
Ground  
Power  
N/A  
N/A  
N/A  
Analog VCC. Connect this pin to 3.3V power source. This signal  
provides power to the analog section of the chip.  
6
10  
Analog Ground. Connect to ground with as short a path as  
possible.  
11  
17  
27  
32  
43  
55  
VCC. Connect to 3.3V power source.  
12  
26  
28  
41  
53  
56  
GND  
N/A  
Ground  
N/A  
Ground.  
Document #: 001-04247 Rev. *D  
Page 17 of 33  
[+] Feedback  
CY7C68033/CY7C68034  
Register Summary  
NX2LP-Flex register bit definitions are described in the EZ-USB TRM in greater detail. Some registers that are listed here and in  
the TRM do not apply to the NX2LP-Flex. They are kept here for consistency reasons only. Registers that do not apply to the  
NX2LP-Flex should be left at their default power-up values.  
Table 9. NX2LP-Flex Register Summary  
Hex Size Name  
Description  
b7  
b6  
b5  
b4  
b3  
b2  
b1  
b0  
Default  
Access  
GPIF Waveform Memories  
E400 128 WAVEDATA  
GPIF Waveform  
Descriptor 0, 1, 2, 3 data  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
xxxxxxxx RW  
E480 128 reserved  
GENERAL CONFIGURATION  
E50D  
GPCR2  
General Purpose Configu- reserved  
ration Register 2  
reserved  
reserved  
FULL_SPEE reserved  
D_ONLY  
reserved  
reserved  
reserved  
00000000 R  
E600  
E601  
1
1
CPUCS  
CPU Control & Status  
0
1
0
PORTCSTB CLKSPD1 CLKSPD0 CLKINV  
CLKOE  
IFCFG1  
8051RES  
IFCFG0  
00000010 rrbbbbbr  
10000000 RW  
IFCONFIG  
Interface Configuration  
(Ports, GPIF, slave FIFOs)  
3048MHZ  
0
IFCLKPOL ASYNC  
GSTATE  
FLAGA2  
FLAGC2  
EP2  
[7]  
[7]  
E602  
E603  
E604  
1
1
1
PINFLAGSAB  
Slave FIFO FLAGA and FLAGB3  
FLAGB Pin Configuration  
FLAGB2  
FLAGD2  
0
FLAGB1  
FLAGD1  
0
FLAGB0  
FLAGD0  
0
FLAGA3  
FLAGC3  
EP3  
FLAGA1  
FLAGC1  
EP1  
FLAGA0  
FLAGC0  
EP0  
00000000 RW  
00000000 RW  
PINFLAGSCD  
Slave FIFO FLAGC and FLAGD3  
FLAGD Pin Configuration  
[7]  
FIFORESET  
Restore FIFOS to default NAKALL  
state  
xxxxxxxx  
W
E605  
E606  
E607  
E608  
1
1
1
1
BREAKPT  
BPADDRH  
BPADDRL  
UART230  
Breakpoint Control  
0
0
0
0
BREAK  
A11  
A3  
BPPULSE BPEN  
0
00000000 rrrrbbbr  
xxxxxxxx RW  
xxxxxxxx RW  
Breakpoint Address H  
Breakpoint Address L  
A15  
A7  
0
A14  
A6  
0
A13  
A5  
0
A12  
A4  
0
A10  
A2  
0
A9  
A1  
A8  
A0  
230 Kbaud internally  
generated ref. clock  
0
230UART1 230UART0 00000000 rrrrrrbb  
[7]  
E609  
1
FIFOPINPOLAR  
REVID  
Slave FIFO Interface pins 0  
polarity  
0
PKTEND  
SLOE  
rv4  
SLRD  
rv3  
SLWR  
rv2  
EF  
FF  
00000000 rrbbbbbb  
E60A 1  
E60B 1  
Chip Revision  
rv7  
rv6  
0
rv5  
0
rv1  
rv0  
RevA  
00000001  
R
[7]  
REVCTL  
Chip Revision Control  
0
0
0
0
0
dyn_out  
enh_pkt  
00000000 rrrrrrbb  
UDMA  
E60C 1  
3
GPIFHOLDAMOUNT MSTB Hold Time  
(for UDMA)  
0
0
0
0
0
HOLDTIME1 HOLDTIME0 00000000 rrrrrrbb  
reserved  
ENDPOINT CONFIGURATION  
E610  
E611  
1
1
EP1OUTCFG  
Endpoint 1-OUT  
Configuration  
VALID  
VALID  
0
0
TYPE1  
TYPE1  
TYPE0  
TYPE0  
0
0
0
0
0
0
0
0
10100000 brbbrrrr  
10100000 brbbrrrr  
EP1INCFG  
Endpoint 1-IN  
Configuration  
E612  
E613  
E614  
E615  
1
1
1
1
2
1
EP2CFG  
EP4CFG  
EP6CFG  
EP8CFG  
reserved  
Endpoint 2 Configuration VALID  
Endpoint 4 Configuration VALID  
Endpoint 6 Configuration VALID  
Endpoint 8 Configuration VALID  
DIR  
DIR  
DIR  
DIR  
TYPE1  
TYPE1  
TYPE1  
TYPE1  
TYPE0  
TYPE0  
TYPE0  
TYPE0  
SIZE  
0
0
0
0
0
BUF1  
0
BUF0  
0
10100010 bbbbbrbb  
10100000 bbbbrrrr  
11100010 bbbbbrbb  
11100000 bbbbrrrr  
SIZE  
0
BUF1  
0
BUF0  
0
[7]  
[7]  
[7]  
[7]  
E618  
E619  
EP2FIFOCFG  
Endpoint 2/slave FIFO  
configuration  
0
0
0
0
INFM1  
INFM1  
INFM1  
INFM1  
OEP1  
OEP1  
OEP1  
OEP1  
AUTOOUT AUTOIN  
AUTOOUT AUTOIN  
AUTOOUT AUTOIN  
AUTOOUT AUTOIN  
ZEROLENIN 0  
ZEROLENIN 0  
ZEROLENIN 0  
ZEROLENIN 0  
WORDWIDE 00000101 rbbbbbrb  
WORDWIDE 00000101 rbbbbbrb  
WORDWIDE 00000101 rbbbbbrb  
WORDWIDE 00000101 rbbbbbrb  
1
EP4FIFOCFG  
EP6FIFOCFG  
EP8FIFOCFG  
reserved  
Endpoint 4/slave FIFO  
configuration  
E61A 1  
E61B 1  
E61C 4  
Endpoint 6/slave FIFO  
configuration  
Endpoint 8/slave FIFO  
configuration  
[7  
E620  
E621  
E622  
E623  
E624  
E625  
E626  
E627  
E628  
1
1
1
1
1
1
1
1
1
EP2AUTOINLENH Endpoint 2 AUTOIN  
0
0
0
0
0
PL10  
PL2  
0
PL9  
PL8  
PL0  
PL8  
PL0  
PL8  
PL0  
PL8  
PL0  
ECCM  
00000010 rrrrrbbb  
00000000 RW  
Packet Length H  
[7]  
EP2AUTOINLENL  
Endpoint 2 AUTOIN  
Packet Length L  
PL7  
0
PL6  
0
PL5  
0
PL4  
0
PL3  
0
PL1  
PL9  
PL1  
PL9  
PL1  
PL9  
PL1  
0
[7]  
EP4AUTOINLENH Endpoint 4 AUTOIN  
00000010 rrrrrrbb  
00000000 RW  
Packet Length H  
[7]  
EP4AUTOINLENL  
Endpoint 4 AUTOIN  
Packet Length L  
PL7  
0
PL6  
0
PL5  
0
PL4  
0
PL3  
0
PL2  
PL10  
PL2  
0
[7]  
EP6AUTOINLENH Endpoint 6 AUTOIN  
00000010 rrrrrbbb  
00000000 RW  
Packet Length H  
[7]  
EP6AUTOINLENL  
Endpoint 6 AUTOIN  
Packet Length L  
PL7  
0
PL6  
0
PL5  
0
PL4  
0
PL3  
0
[7]  
EP8AUTOINLENH Endpoint 8 AUTOIN  
00000010 rrrrrrbb  
00000000 RW  
Packet Length H  
[7]  
EP8AUTOINLENL  
ECCCFG  
Endpoint 8 AUTOIN  
Packet Length L  
PL7  
0
PL6  
0
PL5  
0
PL4  
0
PL3  
0
PL2  
0
ECC Configuration  
00000000 rrrrrrrb  
Note  
7. Read and writes to these registers may require synchronization delay, see the Technical Reference Manual for “Synchronization Delay.”  
Document #: 001-04247 Rev. *D  
Page 18 of 33  
[+] Feedback  
CY7C68033/CY7C68034  
Table 9. NX2LP-Flex Register Summary (continued)  
Hex Size Name  
Description  
b7  
b6  
b5  
b4  
b3  
b2  
b1  
b0  
Default  
Access  
E629  
1
ECCRESET  
ECC1B0  
ECC Reset  
x
x
x
x
x
x
x
x
00000000  
00000000  
00000000  
00000000  
00000000  
00000000  
00000000  
W
R
R
R
R
R
R
E62A 1  
E62B 1  
E62C 1  
E62D 1  
E62E 1  
E62F 1  
ECC1 Byte 0 Address  
ECC1 Byte 1 Address  
ECC1 Byte 2 Address  
ECC2 Byte 0 Address  
ECC2 Byte 1 Address  
ECC2 Byte 2 Address  
LINE15  
LINE7  
COL5  
LINE15  
LINE7  
COL5  
DECIS  
LINE14  
LINE6  
COL4  
LINE14  
LINE6  
COL4  
PKTSTAT  
LINE13  
LINE5  
COL3  
LINE13  
LINE5  
COL3  
LINE12  
LINE4  
COL2  
LINE12  
LINE4  
COL2  
LINE11  
LINE3  
COL1  
LINE11  
LINE3  
COL1  
LINE10  
LINE2  
COL0  
LINE10  
LINE2  
COL0  
0
LINE9  
LINE1  
LINE17  
LINE9  
LINE1  
0
LINE8  
LINE0  
LINE16  
LINE8  
LINE0  
0
ECC1B1  
ECC1B2  
ECC2B0  
ECC2B1  
ECC2B2  
[7]  
[7]  
E630  
H.S.  
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
EP2FIFOPFH  
Endpoint 2/slave FIFO  
Programmable Flag H  
IN:PKTS[2] IN:PKTS[1] IN:PKTS[0]  
OUT:PFC12 OUT:PFC11 OUT:PFC10  
PFC9  
PFC8  
10001000 bbbbbrbb  
E630  
F.S.  
EP2FIFOPFH  
Endpoint 2/slave FIFO  
Programmable Flag H  
DECIS  
PFC7  
PKTSTAT  
PFC6  
OUT:PFC12 OUT:PFC11 OUT:PFC10 0  
PFC9  
PFC1  
PFC1  
0
IN:PKTS[2] 10001000 bbbbbrbb  
OUT:PFC8  
[7]  
[7]  
[7]  
E631  
H.S.  
EP2FIFOPFL  
EP2FIFOPFL  
Endpoint 2/slave FIFO  
Programmable Flag L  
PFC5  
PFC4  
PFC4  
PFC3  
PFC3  
PFC2  
PFC2  
PFC0  
PFC0  
PFC8  
PFC8  
PFC0  
PFC0  
PFC8  
00000000 RW  
E631  
F.S  
Endpoint 2/slave FIFO  
Programmable Flag L  
IN:PKTS[1] IN:PKTS[0] PFC5  
OUT:PFC7 OUT:PFC6  
00000000 RW  
E632  
H.S.  
EP4FIFOPFH  
Endpoint 4/slave FIFO  
Programmable Flag H  
DECIS  
DECIS  
PFC7  
PKTSTAT  
PKTSTAT  
PFC6  
0
IN: PKTS[1] IN: PKTS[0] 0  
OUT:PFC10 OUT:PFC9  
10001000 bbrbbrrb  
10001000 bbrbbrrb  
00000000 RW  
[7]  
E632  
F.S  
EP4FIFOPFH  
Endpoint 4/slave FIFO  
Programmable Flag H  
0
OUT:PFC10 OUT:PFC9  
0
0
[7]  
[7]  
[7]  
E633  
H.S.  
EP4FIFOPFL  
Endpoint 4/slave FIFO  
Programmable Flag L  
PFC5  
PFC4  
PFC4  
PFC3  
PFC3  
PFC2  
PFC2  
0
PFC1  
PFC1  
PFC9  
PFC9  
PFC1  
PFC1  
0
E633  
F.S  
EP4FIFOPFL  
Endpoint 4/slave FIFO  
Programmable Flag L  
IN: PKTS[1] IN: PKTS[0] PFC5  
OUT:PFC7 OUT:PFC6  
00000000 RW  
E634  
H.S.  
EP6FIFOPFH  
Endpoint 6/slave FIFO  
Programmable Flag H  
DECIS  
DECIS  
PFC7  
PKTSTAT  
PKTSTAT  
PFC6  
IN:PKTS[2] IN:PKTS[1] IN:PKTS[0]  
OUT:PFC12 OUT:PFC11 OUT:PFC10  
00001000 bbbbbrbb  
[7]  
E634  
F.S  
EP6FIFOPFH  
Endpoint 6/slave FIFO  
Programmable Flag H  
OUT:PFC12 OUT:PFC11 OUT:PFC10 0  
IN:PKTS[2] 00001000 bbbbbrbb  
OUT:PFC8  
[7]  
[7]  
[7]  
E635  
H.S.  
EP6FIFOPFL  
Endpoint 6/slave FIFO  
Programmable Flag L  
PFC5  
PFC4  
PFC4  
PFC3  
PFC3  
PFC2  
PFC2  
PFC0  
PFC0  
PFC8  
PFC8  
PFC0  
PFC0  
00000000 RW  
E635  
F.S  
EP6FIFOPFL  
Endpoint 6/slave FIFO  
Programmable Flag L  
IN:PKTS[1] IN:PKTS[0] PFC5  
OUT:PFC7 OUT:PFC6  
00000000 RW  
E636  
H.S.  
EP8FIFOPFH  
Endpoint 8/slave FIFO  
Programmable Flag H  
DECIS  
DECIS  
PFC7  
PKTSTAT  
PKTSTAT  
PFC6  
0
IN: PKTS[1] IN: PKTS[0] 0  
OUT:PFC10 OUT:PFC9  
00001000 bbrbbrrb  
00001000 bbrbbrrb  
00000000 RW  
[7]  
E636  
F.S  
EP8FIFOPFH  
Endpoint 8/slave FIFO  
Programmable Flag H  
0
OUT:PFC10 OUT:PFC9  
0
0
[7]  
E637  
H.S.  
EP8FIFOPFL  
EP8FIFOPFL  
reserved  
Endpoint 8/slave FIFO  
Programmable Flag L  
PFC5  
PFC4  
PFC4  
PFC3  
PFC3  
PFC2  
PFC2  
PFC1  
PFC1  
[7]  
E637  
F.S  
Endpoint 8/slave FIFO  
Programmable Flag L  
IN: PKTS[1] IN: PKTS[0] PFC5  
OUT:PFC7 OUT:PFC6  
00000000 RW  
8
1
E640  
E641  
E642  
E643  
EP2ISOINPKTS  
EP4ISOINPKTS  
EP6ISOINPKTS  
EP8ISOINPKTS  
reserved  
EP2 (if ISO) IN Packets AADJ  
per frame (1-3)  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
INPPF1  
INPPF1  
INPPF1  
INPPF1  
INPPF0  
INPPF0  
INPPF0  
INPPF0  
00000001 brrrrrbb  
00000001 brrrrrrr  
00000001 brrrrrbb  
00000001 brrrrrrr  
1
1
1
EP4 (if ISO) IN Packets AADJ  
per frame (1-3)  
EP6 (if ISO) IN Packets AADJ  
per frame (1-3)  
EP8 (if ISO) IN Packets AADJ  
per frame (1-3)  
E644  
E648  
E649  
4
1
7
[7]  
INPKTEND  
Force IN Packet End  
Skip  
0
0
0
0
0
0
EP3  
EP3  
EP2  
EP2  
EP1  
EP1  
EP0  
EP0  
xxxxxxxx  
xxxxxxxx  
W
W
[7]  
OUTPKTEND  
Force OUT Packet End Skip  
INTERRUPTS  
[7]  
E650  
E651  
E652  
E653  
E654  
E655  
E656  
E657  
E658  
E659  
1
1
1
1
1
1
1
1
1
1
EP2FIFOIE  
Endpoint 2 slave FIFO  
Flag Interrupt Enable  
0
0
0
0
0
0
0
0
0
0
0
0
0
EDGEPF  
PF  
EF  
EF  
EF  
EF  
EF  
EF  
EF  
EF  
EP1  
EP1  
0
FF  
00000000 RW  
[7,8]  
EP2FIFOIRQ  
Endpoint 2 slave FIFO  
Flag Interrupt Request  
0
0
0
0
PF  
FF  
00000000 rrrrrbbb  
00000000 RW  
[7]  
EP4FIFOIE  
Endpoint 4 slave FIFO  
Flag Interrupt Enable  
0
0
0
EDGEPF  
PF  
FF  
[7,8]  
EP4FIFOIRQ  
Endpoint 4 slave FIFO  
Flag Interrupt Request  
0
0
0
0
PF  
FF  
00000000 rrrrrbbb  
00000000 RW  
[7]  
EP6FIFOIE  
Endpoint 6 slave FIFO  
Flag Interrupt Enable  
0
0
0
EDGEPF  
0
PF  
FF  
[7,8]  
EP6FIFOIRQ  
Endpoint 6 slave FIFO  
Flag Interrupt Request  
0
0
0
PF  
FF  
00000000 rrrrrbbb  
00000000 RW  
[7]  
EP8FIFOIE  
Endpoint 8 slave FIFO  
Flag Interrupt Enable  
0
0
0
EDGEPF  
0
PF  
FF  
[7,8]  
EP8FIFOIRQ  
Endpoint 8 slave FIFO  
Flag Interrupt Request  
0
0
0
PF  
FF  
00000000 rrrrrbbb  
00000000 RW  
IBNIE  
IN-BULK-NAK Interrupt  
Enable  
0
EP8  
EP8  
EP4  
EP6  
EP6  
EP2  
EP4  
EP2  
EP2  
EP0  
EP0  
EP0  
IBN  
[8]  
IBNIRQ  
IN-BULK-NAK interrupt  
Request  
0
EP4  
00xxxxxx rrbbbbbb  
00000000 RW  
E65A 1  
NAKIE  
Endpoint Ping-NAK/IBN EP8  
Interrupt Enable  
EP6  
EP1  
Note  
8. The register can only be reset, it cannot be set.  
Document #: 001-04247 Rev. *D  
Page 19 of 33  
[+] Feedback  
CY7C68033/CY7C68034  
Table 9. NX2LP-Flex Register Summary (continued)  
Hex Size Name  
Description  
b7  
b6  
b5  
b4  
b3  
b2  
b1  
0
b0  
Default  
Access  
[8]  
E65B 1  
NAKIRQ  
Endpoint Ping-NAK/IBN EP8  
Interrupt Request  
EP6  
EP4  
EP2  
EP1  
EP0  
IBN  
xxxxxx0x bbbbbbrb  
E65C 1  
E65D 1  
E65E 1  
USBIE  
USBIRQ  
EPIE  
USB Int Enables  
0
EP0ACK  
EP0ACK  
EP6  
HSGRANT URES  
HSGRANT URES  
SUSP  
SUTOK  
SUTOK  
EP1IN  
SOF  
SUDAV  
SUDAV  
EP0IN  
00000000 RW  
[8]  
USB Interrupt Requests  
0
SUSP  
SOF  
0xxxxxxx rbbbbbbb  
00000000 RW  
Endpoint Interrupt  
Enables  
EP8  
EP4  
EP2  
EP1OUT  
EP0OUT  
[8]  
E65F 1  
EPIRQ  
Endpoint Interrupt  
Requests  
EP8  
EP6  
EP4  
EP2  
EP1OUT  
EP1IN  
EP0OUT  
EP0IN  
0
RW  
[7]  
E660  
E661  
E662  
1
1
1
GPIFIE  
GPIF Interrupt Enable  
GPIF Interrupt Request  
0
0
0
0
0
0
0
0
0
0
GPIFWF  
GPIFWF  
0
GPIFDONE 00000000 RW  
GPIFDONE 000000xx RW  
ERRLIMIT 00000000 RW  
[7]  
GPIFIRQ  
0
0
0
0
USBERRIE  
USB Error Interrupt  
Enables  
ISOEP8  
ISOEP6  
ISOEP4  
ISOEP2  
[8]  
E663  
E664  
1
1
USBERRIRQ  
ERRCNTLIM  
USB Error Interrupt  
Requests  
ISOEP8  
EC3  
ISOEP6  
EC2  
ISOEP4  
EC1  
ISOEP2  
EC0  
0
0
0
ERRLIMIT 0000000x bbbbrrrb  
USB Error counter and  
limit  
LIMIT3  
LIMIT2  
LIMIT1  
LIMIT0  
xxxx0100 rrrrbbbb  
E665  
E666  
1
1
CLRERRCNT  
INT2IVEC  
Clear Error Counter EC3:0 x  
x
x
x
x
x
x
x
xxxxxxxx  
W
R
Interrupt 2 (USB)  
Autovector  
0
1
0
I2V4  
I2V3  
I2V2  
I2V1  
I2V0  
0
0
00000000  
E667  
1
INT4IVEC  
Interrupt 4 (slave FIFO &  
GPIF) Autovector  
0
0
I4V3  
0
I4V2  
0
I4V1  
I4V0  
0
0
0
10000000  
R
E668  
E669  
1
7
INTSET-UP  
reserved  
Interrupt 2&4 setup  
AV2EN  
INT4SRC  
AV4EN  
00000000 RW  
INPUT/OUTPUT  
PORTACFG  
E670  
E671  
E672  
1
1
1
I/O PORTA Alternate  
Configuration  
FLAGD  
GPIFA7  
GPIFA8  
0
SLCS  
GPIFA6  
T2EX  
0
0
0
0
0
INT1  
GPIFA1  
T1OUT  
0
INT0  
00000000 RW  
00000000 RW  
00000000 RW  
00000000 rrrrrrrb  
PORTCCFG  
PORTECFG  
I/O PORTC Alternate  
Configuration  
GPIFA5  
INT6  
0
GPIFA4  
GPIFA3  
GPIFA2  
GPIFA0  
T0OUT  
EXTCLK  
I/O PORTE Alternate  
Configuration  
RXD1OUT RXD0OUT T2OUT  
E673  
E677  
E678  
E679  
4
1
1
1
XTALINSRC  
reserved  
I2CS  
XTALIN Clock Source  
0
0
0
2
I C Bus Control & Status START  
2
STOP  
d6  
LASTRD  
ID1  
d4  
0
ID0  
d3  
0
BERR  
d2  
ACK  
d1  
DONE  
d0  
000xx000 bbbrrrrr  
xxxxxxxx RW  
00000000 RW  
xxxxxxxx RW  
I2DAT  
I C Bus Data  
d7  
0
d5  
0
2
E67A 1  
E67B 1  
I2CTL  
I C Bus Control  
0
0
STOPIE  
D1  
400kHz  
D0  
XAUTODAT1  
Autoptr1 MOVX access, D7  
when APTREN=1  
D6  
D5  
D4  
D3  
D2  
E67C 1  
XAUTODAT2  
UDMA CRC  
Autoptr2 MOVX access, D7  
when APTREN=1  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
xxxxxxxx RW  
[7]  
E67D 1  
E67E 1  
E67F 1  
UDMACRCH  
UDMA CRC MSB  
UDMA CRC LSB  
UDMA CRC Qualifier  
CRC15  
CRC14  
CRC6  
0
CRC13  
CRC5  
0
CRC12  
CRC4  
0
CRC11  
CRC3  
CRC10  
CRC2  
CRC9  
CRC1  
CRC8  
CRC0  
01001010 RW  
10111010 RW  
[7]  
UDMACRCL  
CRC7  
UDMACRC-  
QUALIFIER  
QENABLE  
QSTATE  
QSIGNAL2 QSIGNAL1 QSIGNAL0 00000000 brrrbbbb  
USB CONTROL  
USBCS  
E680  
E681  
E682  
E683  
E684  
E685  
E686  
E687  
E688  
1
1
1
1
1
1
1
1
2
USB Control & Status  
Put chip into suspend  
HSM  
x
0
0
0
DISCON  
NOSYNSOF RENUM  
SIGRSUME x0000000 rrrrbbbb  
SUSPEND  
WAKEUPCS  
TOGCTL  
x
x
x
x
x
x
x
xxxxxxxx  
W
Wakeup Control & Status WU2  
WU  
S
WU2POL  
WUPOL  
0
DPEN  
EP2  
FC10  
FC2  
MF2  
FA2  
WU2EN  
EP1  
FC9  
FC1  
MF1  
FA1  
WUEN  
EP0  
FC8  
FC0  
MF0  
FA0  
xx000101 bbbbrbbb  
x0000000 rrrbbbbb  
Toggle Control  
Q
R
IO  
EP3  
0
USBFRAMEH  
USBFRAMEL  
MICROFRAME  
FNADDR  
USB Frame count H  
USB Frame count L  
Microframe count, 0-7  
USB Function address  
0
0
0
0
00000xxx  
xxxxxxxx  
00000xxx  
0xxxxxxx  
R
R
R
R
FC7  
0
FC6  
0
FC5  
0
FC4  
0
FC3  
0
0
FA6  
FA5  
FA4  
FA3  
reserved  
ENDPOINTS  
[7]  
E68A 1  
E68B 1  
E68C 1  
E68D 1  
EP0BCH  
Endpoint 0 Byte Count H (BC15)  
Endpoint 0 Byte Count L (BC7)  
(BC14)  
BC6  
(BC13)  
BC5  
(BC12)  
BC4  
(BC11)  
BC3  
(BC10)  
BC2  
(BC9)  
BC1  
(BC8)  
BC0  
xxxxxxxx RW  
xxxxxxxx RW  
[7]  
EP0BCL  
reserved  
EP1OUTBC  
Endpoint 1 OUT Byte  
Count  
0
BC6  
BC5  
BC4  
BC3  
BC2  
BC1  
BC0  
0xxxxxxx RW  
E68E 1  
E68F 1  
reserved  
EP1INBC  
Endpoint 1 IN Byte Count 0  
Endpoint 2 Byte Count H  
Endpoint 2 Byte Count L BC7/SKIP  
BC6  
0
BC5  
0
BC4  
0
BC3  
0
BC2  
BC10  
BC2  
BC1  
BC9  
BC1  
BC0  
BC8  
BC0  
0xxxxxxx RW  
00000xxx RW  
xxxxxxxx RW  
[7]  
E690  
E691  
E692  
E694  
E695  
E696  
E698  
E699  
1
1
2
1
1
2
1
1
EP2BCH  
0
[7]  
EP2BCL  
BC6  
BC5  
BC4  
BC3  
reserved  
[7]  
EP4BCH  
Endpoint 4 Byte Count H  
0
0
0
0
0
0
BC9  
BC1  
BC8  
BC0  
000000xx RW  
xxxxxxxx RW  
[7]  
EP4BCL  
Endpoint 4 Byte Count L BC7/SKIP  
BC6  
BC5  
BC4  
BC3  
BC2  
reserved  
[7]  
EP6BCH  
Endpoint 6 Byte Count H  
0
0
0
0
0
BC10  
BC2  
BC9  
BC1  
BC8  
BC0  
00000xxx RW  
xxxxxxxx RW  
[7]  
EP6BCL  
Endpoint 6 Byte Count L BC7/SKIP  
BC6  
BC5  
BC4  
BC3  
E69A 2  
E69C 1  
E69D 1  
reserved  
[7]  
EP8BCH  
Endpoint 8 Byte Count H  
0
0
0
0
0
0
BC9  
BC1  
BC8  
BC0  
000000xx RW  
xxxxxxxx RW  
[7]  
EP8BCL  
Endpoint 8 Byte Count L BC7/SKIP  
BC6  
BC5  
BC4  
BC3  
BC2  
Document #: 001-04247 Rev. *D  
Page 20 of 33  
[+] Feedback  
CY7C68033/CY7C68034  
Table 9. NX2LP-Flex Register Summary (continued)  
Hex Size Name  
Description  
b7  
b6  
b5  
b4  
b3  
b2  
b1  
b0  
Default  
Access  
E69E 2  
E6A0 1  
reserved  
EP0CS  
Endpoint 0 Control and HSNAK  
Status  
0
0
0
0
0
BUSY  
BUSY  
BUSY  
0
STALL  
STALL  
STALL  
STALL  
STALL  
STALL  
STALL  
FF  
10000000 bbbbbbrb  
00000000 bbbbbbrb  
00000000 bbbbbbrb  
00101000 rrrrrrrb  
00101000 rrrrrrrb  
00000100 rrrrrrrb  
00000100 rrrrrrrb  
E6A1 1  
E6A2 1  
E6A3 1  
E6A4 1  
E6A5 1  
E6A6 1  
E6A7 1  
E6A8 1  
E6A9 1  
E6AA 1  
E6AB 1  
E6AC 1  
E6AD 1  
E6AE 1  
E6AF 1  
E6B0 1  
E6B1 1  
E6B2 1  
E6B3 1  
E6B4 1  
E6B5 1  
EP1OUTCS  
EP1INCS  
Endpoint 1 OUT Control  
and Status  
0
0
0
0
0
0
Endpoint 1 IN Control and 0  
Status  
0
0
0
0
0
EP2CS  
Endpoint 2 Control and  
Status  
0
NPAK2  
NPAK1  
NPAK0  
NPAK0  
NPAK0  
NPAK0  
0
FULL  
FULL  
FULL  
FULL  
0
EMPTY  
EMPTY  
EMPTY  
EMPTY  
PF  
EP4CS  
Endpoint 4 Control and  
Status  
0
0
NPAK1  
0
EP6CS  
Endpoint 6 Control and  
Status  
0
NPAK2  
NPAK1  
0
EP8CS  
Endpoint 8 Control and  
Status  
0
0
NPAK1  
0
EP2FIFOFLGS  
EP4FIFOFLGS  
EP6FIFOFLGS  
EP8FIFOFLGS  
EP2FIFOBCH  
EP2FIFOBCL  
EP4FIFOBCH  
EP4FIFOBCL  
EP6FIFOBCH  
EP6FIFOBCL  
EP8FIFOBCH  
EP8FIFOBCL  
SUDPTRH  
Endpoint 2 slave FIFO  
Flags  
0
0
0
EF  
00000010  
00000010  
00000110  
00000110  
00000000  
00000000  
00000000  
00000000  
00000000  
00000000  
00000000  
00000000  
R
R
R
R
R
R
R
R
R
R
R
R
Endpoint 4 slave FIFO  
Flags  
0
0
0
0
0
PF  
EF  
FF  
Endpoint 6 slave FIFO  
Flags  
0
0
0
0
0
PF  
EF  
FF  
Endpoint 8 slave FIFO  
Flags  
0
0
0
0
0
PF  
EF  
FF  
Endpoint 2 slave FIFO  
total byte count H  
0
0
0
BC12  
BC4  
0
BC11  
BC3  
0
BC10  
BC2  
BC10  
BC2  
BC10  
BC2  
BC10  
BC2  
A10  
A2  
BC9  
BC1  
BC9  
BC1  
BC9  
BC1  
BC9  
BC1  
A9  
BC8  
BC0  
BC8  
BC0  
BC8  
BC0  
BC8  
BC0  
A8  
Endpoint 2 slave FIFO  
total byte count L  
BC7  
0
BC6  
0
BC5  
0
Endpoint 4 slave FIFO  
total byte count H  
Endpoint 4 slave FIFO  
total byte count L  
BC7  
0
BC6  
0
BC5  
0
BC4  
0
BC3  
BC11  
BC3  
0
Endpoint 6 slave FIFO  
total byte count H  
Endpoint 6 slave FIFO  
total byte count L  
BC7  
0
BC6  
0
BC5  
0
BC4  
0
Endpoint 8 slave FIFO  
total byte count H  
Endpoint 8 slave FIFO  
total byte count L  
BC7  
BC6  
A14  
A6  
0
BC5  
A13  
A5  
0
BC4  
A12  
A4  
BC3  
A11  
A3  
Setup Data Pointer high A15  
address byte  
xxxxxxxx RW  
SUDPTRL  
Setup Data Pointer low ad- A7  
dress byte  
A1  
0
xxxxxxx0 bbbbbbbr  
SUDPTRCTL  
Setup Data Pointer Auto  
Mode  
0
0
0
0
0
SDPAUTO 00000001 RW  
2
reserved  
E6B8 8  
SET-UPDAT  
8 bytes of setup data  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
xxxxxxxx  
R
SET-UPDAT[0] =  
bmRequestType  
SET-UPDAT[1] =  
bmRequest  
SET-UPDAT[2:3] = wVal-  
ue  
SET-UPDAT[4:5] = wInd-  
ex  
SET-UPDAT[6:7] =  
wLength  
GPIF  
E6C0 1  
E6C1 1  
GPIFWFSELECT  
GPIFIDLECS  
Waveform Selector  
SINGLEWR1 SINGLEWR0 SINGLERD1 SINGLERD0 FIFOWR1 FIFOWR0  
FIFORD1  
0
FIFORD0  
IDLEDRV  
11100100 RW  
10000000 RW  
GPIF Done, GPIF IDLE DONE  
drive mode  
0
0
0
0
0
E6C2 1  
E6C3 1  
E6C4 1  
E6C5 1  
GPIFIDLECTL  
GPIFCTLCFG  
Inactive Bus, CTL states  
CTL Drive Type  
0
0
CTL5  
CTL5  
0
CTL4  
CTL4  
0
CTL3  
CTL3  
0
CTL2  
CTL2  
0
CTL1  
CTL1  
0
CTL0  
11111111 RW  
00000000 RW  
00000000 RW  
00000000 RW  
TRICTL  
0
0
CTL0  
[7]  
GPIFADRH  
GPIF Address H  
0
GPIFA8  
GPIFA0  
[7]  
GPIFADRL  
GPIF Address L  
GPIFA7  
GPIFA6  
GPIFA5  
GPIFA4  
GPIFA3  
GPIFA2  
GPIFA1  
FLOWSTATE  
FLOWSTATE  
E6C6 1  
Flowstate Enable and  
Selector  
FSE  
0
0
0
0
FS2  
FS1  
FS0  
00000000 brrrrbbb  
E6C7 1  
E6C8 1  
FLOWLOGIC  
Flowstate Logic  
LFUNC1  
CTL0E3  
LFUNC0  
CTL0E2  
TERMA2  
TERMA1  
TERMA0  
CTL3  
TERMB2  
CTL2  
TERMB1  
CTL1  
TERMB0  
CTL0  
00000000 RW  
00000000 RW  
FLOWEQ0CTL  
CTL-Pin States in  
Flowstate  
(when Logic = 0)  
CTL0E1/  
CTL5  
CTL0E0/  
CTL4  
E6C9 1  
E6CA 1  
E6CB 1  
E6CC 1  
FLOWEQ1CTL  
FLOWHOLDOFF  
FLOWSTB  
CTL-Pin States in Flow- CTL0E3  
state (when Logic = 1)  
CTL0E2  
CTL0E1/  
CTL5  
CTL0E0/  
CTL4  
CTL3  
CTL2  
CTL1  
CTL0  
00000000 RW  
00010010 RW  
00100000 RW  
00000001 rrrrrrbb  
Holdoff Configuration  
HOPERIOD3 HOPERIOD2 HOPERIOD1 HOPERIOD HOSTATE HOCTL2  
0
HOCTL1  
MSTB1  
FALLING  
HOCTL0  
MSTB0  
RISING  
Flowstate Strobe  
Configuration  
SLAVE  
RDYASYNC CTLTOGL  
SUSTAIN  
0
MSTB2  
FLOWSTBEDGE  
Flowstate Rising/Falling  
Edge Configuration  
0
0
0
0
0
0
Document #: 001-04247 Rev. *D  
Page 21 of 33  
[+] Feedback  
CY7C68033/CY7C68034  
Table 9. NX2LP-Flex Register Summary (continued)  
Hex Size Name  
Description  
b7  
b6  
b5  
b4  
b3  
b2  
b1  
b0  
Default  
Access  
E6CD 1  
E6CE 1  
FLOWSTBPERIOD Master-Strobe Half-PeriodD7  
[7]  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
00000010 RW  
00000000 RW  
GPIFTCB3  
GPIFTCB2  
GPIFTCB1  
GPIFTCB0  
GPIF Transaction Count TC31  
Byte 3  
TC30  
TC29  
TC28  
TC27  
TC26  
TC25  
TC24  
[7]  
[7]  
[7]  
E6CF 1  
E6D0 1  
E6D1 1  
2
GPIF Transaction Count TC23  
Byte 2  
TC22  
TC14  
TC6  
TC21  
TC13  
TC5  
TC20  
TC12  
TC4  
TC19  
TC11  
TC3  
TC18  
TC10  
TC2  
TC17  
TC9  
TC1  
TC16  
TC8  
TC0  
00000000 RW  
00000000 RW  
00000001 RW  
00000000 RW  
GPIF Transaction Count TC15  
Byte 1  
GPIF Transaction Count TC7  
Byte 0  
reserved  
reserved  
reserved  
1
0
0
x
[7]  
E6D2 1  
E6D3 1  
EP2GPIFFLGSEL  
Endpoint 2 GPIF Flag  
select  
0
0
x
0
0
x
0
0
x
0
0
x
0
0
x
FS1  
0
FS0  
00000000 RW  
EP2GPIFPFSTOP Endpoint 2 GPIF stop  
FIFO2FLAG 00000000 RW  
transaction on prog. flag  
[7]  
E6D4 1  
3
EP2GPIFTRIG  
reserved  
Endpoint 2 GPIF Trigger  
x
x
xxxxxxxx  
W
reserved  
reserved  
[7]  
E6DA 1  
E6DB 1  
EP4GPIFFLGSEL  
Endpoint 4 GPIF Flag  
select  
0
0
x
0
0
x
0
0
x
0
0
x
0
0
x
0
0
x
FS1  
0
FS0  
00000000 RW  
EP4GPIFPFSTOP Endpoint 4 GPIF stop  
FIFO4FLAG 00000000 RW  
transaction on GPIF Flag  
[7]  
E6DC 1  
3
EP4GPIFTRIG  
reserved  
Endpoint 4 GPIF Trigger  
x
x
xxxxxxxx  
W
reserved  
reserved  
[7]  
E6E2 1  
E6E3 1  
EP6GPIFFLGSEL  
Endpoint 6 GPIF Flag  
select  
0
0
x
0
0
x
0
0
x
0
0
x
0
0
x
0
0
x
FS1  
0
FS0  
00000000 RW  
EP6GPIFPFSTOP Endpoint 6 GPIF stop  
FIFO6FLAG 00000000 RW  
transaction on prog. flag  
[7]  
E6E4 1  
3
EP6GPIFTRIG  
reserved  
Endpoint 6 GPIF Trigger  
x
x
xxxxxxxx  
W
reserved  
reserved  
[7]  
E6EA 1  
E6EB 1  
EP8GPIFFLGSEL  
Endpoint 8 GPIF Flag  
select  
0
0
x
0
0
x
0
0
x
0
0
x
0
0
x
0
0
x
FS1  
0
FS0  
00000000 RW  
EP8GPIFPFSTOP Endpoint 8 GPIF stop  
FIFO8FLAG 00000000 RW  
transaction on prog. flag  
[7]  
E6EC 1  
3
EP8GPIFTRIG  
reserved  
Endpoint 8 GPIF Trigger  
x
x
xxxxxxxx  
W
E6F0 1  
XGPIFSGLDATH  
GPIF Data H  
D15  
D14  
D6  
D13  
D12  
D4  
D4  
0
D11  
D3  
D3  
0
D10  
D2  
D2  
0
D9  
D1  
D1  
0
D8  
D0  
D0  
0
xxxxxxxx RW  
xxxxxxxx RW  
(16-bit mode only)  
E6F1 1  
E6F2 1  
E6F3 1  
XGPIFSGLDATLX  
Read/Write GPIF Data L & D7  
trigger transaction  
D5  
XGPIFSGLDATL-  
NOX  
Read GPIF Data L, no  
transaction trigger  
D7  
D6  
D5  
xxxxxxxx  
R
GPIFREADYCFG  
InternalRDY,Sync/Async, INTRDY  
RDY pin states  
SAS  
TCXRDY5  
00000000 bbbrrrrr  
E6F4 1  
E6F5 1  
E6F6 2  
GPIFREADYSTAT  
GPIFABORT  
GPIF Ready Status  
0
x
0
x
RDY5  
x
RDY4  
x
RDY3  
x
RDY2  
x
RDY1  
x
RDY0  
x
00xxxxxx  
xxxxxxxx  
R
Abort GPIF Waveforms  
W
reserved  
ENDPOINT BUFFERS  
E740 64 EP0BUF  
E780 64 EP10UTBUF  
E7C0 64 EP1INBUF  
2048 reserved  
EP0-IN/-OUT buffer  
EP1-OUT buffer  
EP1-IN buffer  
D7  
D7  
D7  
D6  
D6  
D6  
D5  
D5  
D5  
D4  
D4  
D4  
D3  
D3  
D3  
D2  
D2  
D2  
D1  
D1  
D1  
D0  
D0  
D0  
xxxxxxxx RW  
xxxxxxxx RW  
xxxxxxxx RW  
RW  
F000 1024 EP2FIFOBUF  
512/1024-byte EP 2/slave D7  
FIFO buffer (IN or OUT)  
D6  
D6  
D5  
D5  
D4  
D4  
D3  
D3  
D2  
D2  
D1  
D1  
D0  
D0  
xxxxxxxx RW  
F400 512 EP4FIFOBUF  
512 byte EP 4/slave FIFO D7  
buffer (IN or OUT)  
xxxxxxxx RW  
F600 512 reserved  
F800 1024 EP6FIFOBUF  
512/1024-byte EP 6/slave D7  
FIFO buffer (IN or OUT)  
D6  
D6  
D5  
D5  
D4  
D4  
D3  
D3  
D2  
D2  
D1  
D1  
D0  
D0  
xxxxxxxx RW  
xxxxxxxx RW  
FC00 512 EP8FIFOBUF  
512 byte EP 8/slave FIFO D7  
buffer (IN or OUT)  
FE00 512 reserved  
xxxx  
I²C Configuration Byte  
Special Function Registers (SFRs)  
0
DISCON  
0
0
0
0
0
400KHZ  
xxxxxxxx n/a  
[10]  
[9]  
80  
81  
82  
1
1
1
IOA  
SP  
Port A (bit addressable) D7  
D6  
D6  
A6  
D5  
D5  
A5  
D4  
D4  
A4  
D3  
D3  
A3  
D2  
D2  
A2  
D1  
D1  
A1  
D0  
D0  
A0  
xxxxxxxx RW  
00000111 RW  
00000000 RW  
Stack Pointer  
D7  
A7  
DPL0  
Data Pointer 0 L  
Document #: 001-04247 Rev. *D  
Page 22 of 33  
[+] Feedback  
CY7C68033/CY7C68034  
Table 9. NX2LP-Flex Register Summary (continued)  
Hex Size Name  
Description  
b7  
b6  
b5  
b4  
b3  
A11  
A3  
A11  
0
b2  
A10  
A2  
A10  
0
b1  
A9  
A1  
A9  
0
b0  
Default  
Access  
83  
84  
85  
86  
87  
88  
1
1
1
1
1
1
DPH0  
Data Pointer 0 H  
Data Pointer 1 L  
Data Pointer 1 H  
Data Pointer 0/1 select  
Power Control  
A15  
A7  
A14  
A6  
A14  
0
A13  
A5  
A13  
0
A12  
A4  
A12  
0
A8  
00000000 RW  
00000000 RW  
00000000 RW  
00000000 RW  
00110000 RW  
00000000 RW  
[9]  
DPL1  
DPH1  
A0  
[9]  
A15  
0
A8  
[9]  
DPS  
SEL  
IDLE  
IT0  
PCON  
TCON  
SMOD0  
TF1  
x
1
1
x
x
x
Timer/Counter Control  
(bit addressable)  
TR1  
TF0  
TR0  
IE1  
IT1  
IE0  
89  
1
TMOD  
Timer/Counter Mode  
Control  
GATE  
CT  
M1  
M0  
GATE  
CT  
M1  
M0  
00000000 RW  
8A  
8B  
8C  
8D  
8E  
8F  
90  
91  
92  
1
1
1
1
1
1
1
1
1
TL0  
Timer 0 reload L  
Timer 1 reload L  
Timer 0 reload H  
Timer 1 reload H  
Clock Control  
D7  
D7  
D15  
D15  
x
D6  
D6  
D14  
D14  
x
D5  
D4  
D3  
D2  
D1  
D0  
00000000 RW  
00000000 RW  
00000000 RW  
00000000 RW  
00000001 RW  
TL1  
D5  
D4  
D3  
D2  
D1  
D0  
TH0  
D13  
D13  
T2M  
D12  
D12  
T1M  
D11  
D11  
T0M  
D10  
D10  
MD2  
D9  
D8  
TH1  
D9  
D8  
[9]  
CKCON  
MD1  
MD0  
reserved  
[9]  
IOB  
Port B (bit addressable) D7  
External Interrupt Flag(s) IE5  
D6  
D5  
D4  
D3  
1
D2  
0
D1  
0
D0  
0
xxxxxxxx RW  
00001000 RW  
00000000 RW  
[9]  
EXIF  
IE4  
A14  
I²CINT  
A13  
USBNT  
A12  
[9]  
MPAGE  
Upper Addr Byte of MOVX A15  
using @R0/@R1  
A11  
A10  
A9  
A8  
93  
98  
5
1
reserved  
SCON0  
Serial Port 0 Control  
(bit addressable)  
SM0_0  
SM1_0  
SM2_0  
REN_0  
TB8_0  
RB8_0  
TI_0  
RI_0  
00000000 RW  
99  
9A  
9B  
9C  
9D  
9E  
9F  
A0  
A1  
A2  
A3  
A8  
1
1
1
1
1
1
1
1
1
1
5
1
SBUF0  
Serial Port 0 Data Buffer D7  
Autopointer 1 Address H A15  
Autopointer 1 Address L A7  
D6  
D5  
D4  
D3  
A11  
A3  
D2  
D1  
A9  
A1  
D0  
A8  
A0  
00000000 RW  
00000000 RW  
00000000 RW  
[9]  
AUTOPTRH1  
A14  
A6  
A13  
A5  
A12  
A4  
A10  
A2  
[9]  
AUTOPTRL1  
reserved  
[9]  
AUTOPTRH2  
Autopointer 2 Address H A15  
Autopointer 2 Address L A7  
A14  
A6  
A13  
A5  
A12  
A4  
A11  
A3  
A10  
A2  
A9  
A1  
A8  
A0  
00000000 RW  
00000000 RW  
[9]  
AUTOPTRL2  
reserved  
[9]  
IOC  
Port C (bit addressable) D7  
D6  
x
D5  
x
D4  
x
D3  
x
D2  
x
D1  
x
D0  
x
xxxxxxxx RW  
[9]  
INT2CLR  
Interrupt 2 clear  
Interrupt 4 clear  
x
x
xxxxxxxx  
xxxxxxxx  
W
W
[9]  
INT4CLR  
x
x
x
x
x
x
x
reserved  
IE  
Interrupt Enable  
(bit addressable)  
EA  
ES1  
ET2  
ES0  
ET1  
EX1  
ET0  
EX0  
00000000 RW  
A9  
AA  
1
1
reserved  
[9]  
EP2468STAT  
Endpoint 2,4,6,8 status EP8F  
flags  
EP8E  
EP6F  
EP6E  
EP4F  
EP4E  
EP2F  
EP2E  
01011010  
00100010  
01100110  
R
R
R
AB  
AC  
1
1
EP24FIFOFLGS  
[9]  
Endpoint 2,4 slave FIFO  
status flags  
0
EP4PF  
EP8PF  
EP4EF  
EP8EF  
EP4FF  
EP8FF  
0
0
EP2PF  
EP6PF  
EP2EF  
EP6EF  
EP2FF  
EP6FF  
EP68FIFOFLGS  
[9]  
Endpoint 6,8 slave FIFO  
status flags  
0
AD  
AF  
B0  
B1  
2
1
1
1
reserved  
[9]  
AUTOPTRSET-UP Autopointer 1&2 setup  
[9]  
0
0
0
0
0
APTR2INC APTR1INC APTREN  
00000110 RW  
xxxxxxxx RW  
xxxxxxxx RW  
IOD  
Port D (bit addressable) D7  
D6  
D6  
D5  
D5  
D4  
D4  
D3  
D3  
D2  
D2  
D1  
D1  
D0  
D0  
[9]  
IOE  
Port E  
D7  
(NOT bit addressable)  
[9]  
[9]  
[9]  
B2  
B3  
B4  
B5  
B6  
B7  
B8  
1
1
1
1
1
1
1
OEA  
OEB  
Port A Output Enable  
Port B Output Enable  
Port C Output Enable  
Port D Output Enable  
Port E Output Enable  
D7  
D7  
D7  
D7  
D7  
D6  
D6  
D6  
D6  
D6  
D5  
D5  
D5  
D5  
D5  
D4  
D4  
D4  
D4  
D4  
D3  
D3  
D3  
D3  
D3  
D2  
D2  
D2  
D2  
D2  
D1  
D1  
D1  
D1  
D1  
D0  
D0  
D0  
D0  
D0  
00000000 RW  
00000000 RW  
00000000 RW  
00000000 RW  
00000000 RW  
OEC  
OED  
[9]  
[9]  
OEE  
reserved  
IP  
Interrupt Priority (bit ad-  
dressable)  
1
PS1  
PT2  
PS0  
PT1  
PX1  
PT0  
PX0  
10000000 RW  
B9  
BA  
1
1
reserved  
[9]  
EP01STAT  
Endpoint 0&1 Status  
0
0
0
0
0
0
0
0
0
EP1INBSY EP1OUTBS EP0BSY  
Y
00000000 R  
[9, 7]  
BB  
1
GPIFTRIG  
Endpoint 2,4,6,8 GPIF  
slave FIFO Trigger  
DONE  
RW  
EP1  
EP0  
10000xxx brrrrbbb  
BC  
BD  
1
1
reserved  
[9]  
GPIFSGLDATH  
GPIF Data H (16-bit mode D15  
only)  
D14  
D6  
D13  
D5  
D12  
D4  
D11  
D3  
D10  
D2  
D9  
D1  
D8  
D0  
xxxxxxxx RW  
xxxxxxxx RW  
[9]  
BE  
1
GPIFSGLDATLX  
GPIF Data L w/Trigger  
D7  
Notes  
9. SFRs not part of the standard 8051 architecture.  
10. If no NAND is detected by the SIE then the default is 00000000.  
Document #: 001-04247 Rev. *D  
Page 23 of 33  
[+] Feedback  
CY7C68033/CY7C68034  
Table 9. NX2LP-Flex Register Summary (continued)  
Hex Size Name  
Description  
b7  
b6  
b5  
b4  
b3  
b2  
b1  
b0  
Default  
Access  
R
BF  
1
GPIFSGLDAT  
LNOX  
GPIF Data L w/No Trigger D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
xxxxxxxx  
[9]  
[9]  
C0  
1
SCON1  
Serial Port 1 Control (bit SM0_1  
addressable)  
SM1_1  
D6  
SM2_1  
D5  
REN_1  
D4  
TB8_1  
D3  
RB8_1  
D2  
TI_1  
D1  
RI_1  
D0  
00000000 RW  
00000000 RW  
[9]  
C1  
C2  
C8  
1
6
1
SBUF1  
Serial Port 1 Data Buffer D7  
reserved  
T2CON  
Timer/Counter 2 Control TF2  
(bit addressable)  
EXF2  
RCLK  
TCLK  
EXEN2  
TR2  
CT2  
CPRL2  
00000000 RW  
C9  
CA  
1
1
reserved  
RCAP2L  
Capture for Timer 2, au- D7  
to-reload, up-counter  
D6  
D6  
D5  
D5  
D4  
D4  
D3  
D3  
D2  
D2  
D1  
D1  
D0  
D0  
00000000 RW  
00000000 RW  
CB  
1
RCAP2H  
Capture for Timer 2, au- D7  
to-reload, up-counter  
CC  
CD  
CE  
D0  
1
1
2
1
TL2  
Timer 2 reload L  
Timer 2 reload H  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D9  
D0  
D8  
00000000 RW  
00000000 RW  
TH2  
D15  
D14  
D13  
D12  
D11  
D10  
reserved  
PSW  
Program Status Word (bit CY  
addressable)  
AC  
F0  
RS1  
RS0  
OV  
F1  
P
00000000 RW  
D1  
D8  
D9  
E0  
7
1
7
1
reserved  
[9]  
EICON  
External Interrupt Control SMOD1  
1
ERESI  
D5  
RESI  
D4  
INT6  
D3  
0
0
0
01000000 RW  
00000000 RW  
reserved  
ACC  
Accumulator (bit address- D7  
able)  
D6  
D2  
D1  
D0  
E1  
E8  
7
1
reserved  
[9]  
EIE  
External Interrupt En-  
able(s)  
1
1
1
EX6  
EX5  
EX4  
EI²C  
EUSB  
11100000 RW  
E9  
F0  
F1  
F8  
7
1
7
1
reserved  
B
B (bit addressable)  
D7  
1
D6  
1
D5  
1
D4  
D3  
D2  
D1  
D0  
00000000 RW  
11100000 RW  
reserved  
[9]  
EIP  
External Interrupt Priority  
Control  
PX6  
PX5  
PX4  
PI²C  
PUSB  
F9  
7
reserved  
R = all bits read-only  
W = all bits write-only  
r = read-only bit  
w = write-only bit  
b = both read/write bit  
Static Discharge Voltage...........................................>2000V  
Max Output Current, per I/O port................................. 10 mA  
Absolute Maximum Ratings  
Storage Temperature ..................................65°C to +150°C  
Ambient Temperature with Power Supplied......0°C to +70°C  
Supply Voltage to Ground Potential............... –0.5V to +4.0V  
DC Input Voltage to Any Input Pin ........................ +5.25V[11]  
Operating Conditions  
TA (Ambient Temperature Under Bias)............. 0°C to +70°C  
Supply Voltage............................................+3.00V to +3.60V  
Ground Voltage.................................................................. 0V  
DC Voltage Applied to  
Outputs in High Z State......................... –0.5V to VCC + 0.5V  
FOSC (Oscillator or Crystal Frequency).... 24 MHz ± 100 ppm  
Power Dissipation .....................................................300 mW  
(Parallel Resonant)  
Note  
11. Applying power to I/O pins when the chip is not powered is not recommended.  
Document #: 001-04247 Rev. *D  
Page 24 of 33  
[+] Feedback  
CY7C68033/CY7C68034  
DC Characteristics  
Table 10.DC Characteristics  
Parameter  
VCC  
VCC Ramp Up 0 to 3.3V  
Description  
Conditions  
Min.  
3.00  
200  
2
Typ.  
Max.  
Unit  
V
Supply Voltage  
3.3  
3.60  
μs  
V
VIH  
VIL  
Input HIGH Voltage  
5.25  
0.8  
Input LOW Voltage  
–0.5  
2
V
VIH_X  
VIL_X  
II  
Crystal Input HIGH Voltage  
Crystal Input LOW Voltage  
Input Leakage Current  
Output Voltage HIGH  
Output LOW Voltage  
Output Current HIGH  
Output Current LOW  
Input Pin Capacitance  
5.25  
0.8  
V
–0.5  
V
0< VIN < VCC  
IOUT = 4 mA  
±10  
μA  
V
VOH  
VOL  
IOH  
IOL  
2.4  
IOUT = –4 mA  
0.4  
4
V
mA  
mA  
pF  
pF  
μA  
μA  
mA  
mA  
mA  
mA  
mA  
ms  
μs  
4
CIN  
Except D+/D–  
10  
D+/D–  
15  
ISUSP  
Suspend Current  
CY7C68034  
Connected  
300  
100  
0.5  
0.3  
43  
380[12]  
150[12]  
1.2[12]  
1.0[12]  
Disconnected  
Suspend Current  
CY7C68033  
Connected  
Disconnected  
ICC  
Supply Current  
8051 running, connected to USB HS  
8051 running, connected to USB FS  
Before bMaxPower granted by host  
VCC min = 3.0V  
35  
IUNCONFIG  
TRESET  
Unconfigured Current  
43  
Reset Time After Valid Power  
Pin Reset After powered on  
5.0  
200  
USB Transceiver  
USB 2.0-compliant in full- and high-speed modes.  
AC Electrical Characteristics  
USB Transceiver  
USB 2.0-compliant in full- and high-speed modes.  
Note  
12. Measured at Max V , 25°C.  
CC  
Document #: 001-04247 Rev. *D  
Page 25 of 33  
[+] Feedback  
CY7C68033/CY7C68034  
Slave FIFO Asynchronous Read  
Figure 11. Slave FIFO Asynchronous Read Timing Diagram[13]  
t
RDpwh  
SLRD  
t
RDpwl  
t
XFLG  
t
FLAGS  
XFD  
DATA  
SLOE  
N+1  
N
t
t
OEoff  
OEon  
Table 11.Slave FIFO Asynchronous Read Parameters[15]  
Parameter Description  
tRDpwl SLRD Pulse Width LOW  
Min.  
50  
Max.  
Unit  
ns  
tRDpwh  
tXFLG  
tXFD  
SLRD Pulse Width HIGH  
50  
ns  
SLRD to FLAGS Output Propagation Delay  
70  
15  
ns  
SLRD to FIFO Data Output Propagation Delay  
SLOE Turn-on to FIFO Data Valid  
ns  
tOEon  
tOEoff  
10.5  
10.5  
ns  
SLOE Turn-off to FIFO Data Hold  
ns  
Slave FIFO Asynchronous Write  
Figure 12. Slave FIFO Asynchronous Write Timing Diagram[13]  
t
WRpwh  
SLWR/SLCS#  
t
WRpwl  
t
t
FDH  
SFD  
DATA  
t
XFD  
FLAGS  
Table 12.Slave FIFO Asynchronous Write Parameters with Internally Sourced IFCLK [15]  
Parameter  
tWRpwl  
tWRpwh  
tSFD  
Description  
Min.  
50  
Max.  
Unit  
ns  
SLWR Pulse LOW  
SLWR Pulse HIGH  
70  
ns  
SLWR to FIFO DATA Setup Time  
FIFO DATA to SLWR Hold Time  
10  
ns  
tFDH  
10  
ns  
tXFD  
SLWR to FLAGS Output Propagation Delay  
70  
ns  
Notes  
13. Dashed lines denote signals with programmable polarity.  
14. GPIF asynchronous RDY signals have a minimum setup time of 50 ns when using internal 48-MHz IFCLK.  
x
15. Slave FIFO asynchronous parameter values use internal IFCLK setting at 48 MHz.  
Document #: 001-04247 Rev. *D  
Page 26 of 33  
[+] Feedback  
CY7C68033/CY7C68034  
Slave FIFO Asynchronous Packet End Strobe  
Figure 13. Slave FIFO Asynchronous Packet End Strobe Timing Diagram[9]  
t
PEpwh  
PKTEND  
FLAGS  
t
PEpwl  
t
XFLG  
Table 13.Slave FIFO Asynchronous Packet End Strobe Parameters[15]  
Parameter Description  
tPEpwl PKTEND Pulse Width LOW  
tPWpwh  
tXFLG  
Min.  
50  
Max.  
Unit  
ns  
PKTEND Pulse Width HIGH  
50  
ns  
PKTEND to FLAGS Output Propagation Delay  
115  
ns  
Slave FIFO Output Enable  
Figure 14. Slave FIFO Output Enable Timing Diagram[13]  
SLOE  
t
OEoff  
t
OEon  
DATA  
Table 14.Slave FIFO Output Enable Parameters  
Parameter Description  
tOEon  
tOEoff  
Min.  
Max.  
10.5  
10.5  
Unit  
ns  
SLOE Assert to FIFO DATA Output  
SLOE Deassert to FIFO DATA Hold  
ns  
Slave FIFO Address to Flags/Data  
Figure 15. Slave FIFO Address to Flags/Data Timing Diagram[13]  
FIFOADR [1.0]  
t
XFLG  
FLAGS  
DATA  
t
XFD  
N
N+1  
Table 15.Slave FIFO Address to Flags/Data Parameters  
Parameter  
tXFLG  
tXFD  
Description  
FIFOADR[1:0] to FLAGS Output Propagation Delay  
FIFOADR[1:0] to FIFODATA Output Propagation Delay  
Min.  
Max.  
10.7  
14.3  
Unit  
ns  
ns  
Document #: 001-04247 Rev. *D  
Page 27 of 33  
[+] Feedback  
CY7C68033/CY7C68034  
Slave FIFO Asynchronous Address  
Figure 16. Slave FIFO Asynchronous Address Timing Diagram[13]  
SLCS/FIFOADR [1:0]  
SLRD/SLWR/PKTEND  
t
FAH  
t
SFA  
Table 16.Slave FIFO Asynchronous Address Parameters[15]  
Parameter  
Description  
Min.  
Max.  
Unit  
ns  
tSFA  
tFAH  
FIFOADR[1:0] to SLRD/SLWR/PKTEND Setup Time  
RD/WR/PKTEND to FIFOADR[1:0] Hold Time  
10  
10  
ns  
Sequence Diagram  
Sequence Diagram of a Single and Burst Asynchronous Read  
Figure 17. Slave FIFO Asynchronous Read Sequence and Timing Diagram[13]  
t
t
t
t
FAH  
SFA  
SFA  
FAH  
FIFOADR  
t=0  
t
t
t
t
t
RDpwh  
t
t
RDpwh  
t
T=0  
RDpwl  
RDpwh  
RDpwl  
RDpwl  
RDpwl  
RDpwh  
SLRD  
SLCS  
t=3  
t=2  
T=2  
T=3  
T=5  
T=4  
T=6  
t
XFLG  
t
XFLG  
FLAGS  
DATA  
SLOE  
t
t
XFD  
t
XFD  
XFD  
t
XFD  
Data (X)  
Driven  
N+3  
N
N+1  
N+2  
N
t
t
OEon  
t
t
OEoff  
OEoff  
OEon  
t=4  
T=1  
T=7  
t=1  
Figure 18. Slave FIFO Asynchronous Read Sequence of Events Diagram  
SLOE  
SLRD  
SLRD  
SLOE  
SLOE  
SLRD  
N+1  
SLRD  
N+1  
SLRD  
N+2  
SLRD  
N+2  
SLOE  
FIFO POINTER  
N
N
N
N
N+1  
N
N+1  
N+3  
N+2  
N+3  
FIFO DATA BUS Not Driven  
Driven: X  
Not Driven  
N
N+1  
N+1  
N+2  
Not Driven  
Document #: 001-04247 Rev. *D  
Page 28 of 33  
[+] Feedback  
CY7C68033/CY7C68034  
Figure 17 diagrams the timing relationship of the SLAVE FIFO  
signals during an asynchronous FIFO read. It shows a single  
read followed by a burst read.  
• The data that will be driven, after asserting SLRD, is the  
updated data from the FIFO. This data is valid after a propa-  
gation delay of tXFD from the activating edge of SLRD. In  
Figure 17, data N is the first valid data read from the FIFO.  
For data to appear on the data bus during the read cycle  
(that is SLRD is asserted), SLOE MUST be in an asserted  
state. SLRD and SLOE can also be tied together.  
• At t = 0 the FIFO address is stable and the SLCS signal is  
asserted.  
• At t = 1, SLOE is asserted. This results in the data bus being  
driven. The data that is driven on to the bus is previous data,  
it data that was in the FIFO from a prior read cycle.  
The same sequence of events is also shown for a burst read  
marked with T = 0 through 5. Note: In burst read mode, during  
SLOE is assertion, the data bus is in a driven state and outputs  
the previous data. Once SLRD is asserted, the data from the  
FIFO is driven on the data bus (SLOE must also be asserted)  
and then the FIFO pointer is incremented.  
• At t = 2, SLRD is asserted. The SLRD must meet the  
minimum active pulse of tRDpwl and minimum de-active  
pulse width of tRDpwh. If SLCS is used then, SLCS must be  
in asserted with SLRD or before SLRD is asserted (that is  
the SLCS and SLRD signals must both be asserted to start  
a valid read condition).  
Sequence Diagram of a Single and Burst Asynchronous Write  
Figure 19. Slave FIFO Asynchronous Write Sequence and Timing Diagram[13]  
t
t
t
FAH  
t
SFA  
SFA  
FAH  
FIFOADR  
t=0  
T=0  
t
t
t
t
t
t
t
t
WRpwh  
WRpwl  
WRpwh  
WRpwl  
WRpwl  
WRpwh  
WRpwh  
WRpwl  
SLWR  
SLCS  
t =1  
t=3  
T=1  
T=4  
T=3  
T=7  
T=6  
T=9  
t
XFLG  
t
XFLG  
FLAGS  
DATA  
t
t
t
t
t
t
t
SFD  
t
SFD FDH  
SFD FDH  
SFD FDH  
FDH  
N
N+1  
N+2  
N+3  
t=2  
T=8  
T=2  
T=5  
t
t
PEpwl  
PEpwh  
PKTEND  
Figure 19 diagrams the timing relationship of the SLAVE FIFO  
write in an asynchronous mode. The diagram shows a single  
write followed by a burst write of 3 bytes and committing the  
4-byte-short packet using PKTEND.  
pointer. The FIFO flag is also updated after tXFLG from the  
deasserting edge of SLWR.  
The same sequence of events are shown for a burst write and  
is indicated by the timing marks of T = 0 through 5. Note: In  
the burst write mode, once SLWR is deasserted, the data is  
written to the FIFO and then the FIFO pointer is incremented  
to the next byte in the FIFO. The FIFO pointer is post incre-  
mented.  
• At t = 0 the FIFO address is applied, insuring that it meets  
the setup time of tSFA. If SLCS is used, it must also be  
asserted (SLCS may be tied low in some applications).  
• At t = 1 SLWR is asserted. SLWR must meet the minimum  
active pulse of tWRpwl and minimum de-active pulse width  
of tWRpwh. If the SLCS is used, it must be in asserted with  
SLWR or before SLWR is asserted.  
In Figure 19 once the four bytes are written to the FIFO and  
SLWR is deasserted, the short 4-byte packet can be  
committed to the host using the PKTEND. The external device  
should be designed to not assert SLWR and the PKTEND  
signal at the same time. It should be designed to assert the  
PKTEND after SLWR is deasserted and met the minimum  
de-asserted pulse width. The FIFOADDR lines are to be held  
constant during the PKTEND assertion.  
• At t = 2, data must be present on the bus tSFD before the  
deasserting edge of SLWR.  
• At t = 3, deasserting SLWR will cause the data to be written  
from the data bus to the FIFO and then increments the FIFO  
Document #: 001-04247 Rev. *D  
Page 29 of 33  
[+] Feedback  
CY7C68033/CY7C68034  
Ordering Information  
Table 17.Ordering Information  
Ordering Code  
Description  
Silicon for battery-powered applications  
CY7C68034-56LFXC  
8x8 mm, 56 QFN – Lead-free  
Silicon for non-battery-powered applications  
CY7C68033-56LFXC  
8x8 mm, 56 QFN – Lead-free  
Development Kit  
CY3686  
EZ-USB NX2LP-Flex Development Kit  
Package Diagram  
Figure 20. 56-Lead QFN 8 x 8 mm LF56A  
DIMENSIONS IN MMINCHES] MIN.  
MAX.  
REFERENCE JEDEC MO-220  
TOP VIEW  
SIDE VIEW  
1.00[0.039] MAX.  
BOTTOM VIEW  
0.08[0.003]  
C
7.900.311]  
A
8.100.319]  
0.05[0.002] MAX.  
0.18[0.007]  
0.28[0.011]  
7.70[0.303
7.80[0.307]  
0.80[0.031] MAX.  
0.20[0.008] REF.  
PIN1 ID  
N
N
0.20[0.008] R.  
1
2
1
2
0.45[0.018]  
0.800.031]  
DIA.  
0.30[0.012]  
0.50[0.020]  
0.24[0.009]  
0.60[0.024]  
(4X
0°-12°  
.240TYP  
0.50[0.020]  
C
SEATING PLANE  
6.45[0.254]  
6.55[0.258]  
OPTION FOR CML - BOTTOM VIEW  
N
2.375  
1
2
1.925  
.000  
.680  
1.975  
2.07
2175  
2.275  
U-GROOVE DIMENSION  
51-85144*E  
NOTE:  
DIMENSIONS ARE SAME WITH STD DWG ON UPPER RIGHT EXCEPT  
FOR THE U-GROOVE ON THE PADDLE  
Document #: 001-04247 Rev. *D  
Page 30 of 33  
[+] Feedback  
CY7C68033/CY7C68034  
PCB Layout Recommendations[16]  
The following recommendations should be followed to ensure  
reliable high-performance operation:  
heat transfer area below the package to provide a good  
thermal bond to the circuit board. A Copper (Cu) fill is to be  
designed into the PCB as a thermal pad under the package.  
Heat is transferred from the NX2LP-Flex to the PCB through  
the device’s metal paddle on the bottom side of the package.  
It is then conducted from the PCB’s thermal pad to the inner  
ground plane by a 5 x 5 array of vias. A via is a plated through  
hole in the PCB with a finished diameter of 13 mil. The QFN’s  
metal die paddle must be soldered to the PCB’s thermal pad.  
Solder mask is placed on the board top side over each via to  
resist solder flow into the via. The mask on the top side also  
minimizes outgassing during the solder reflow process.  
• At least a four-layer impedance controlled boards is recom-  
mended to maintain signal quality.  
• Specify impedance targets (ask your board vendor what  
they can achieve) to meet USB specifications.  
To control impedance, maintain trace widths and trace  
spacing.  
• Minimize any stubs to avoid reflected signals.  
• Connections between the USB connector shell and signal  
ground must be done near the USB connector.  
For further information on this package design please refer to  
the application note Surface Mount Assembly of AMKOR’s  
MicroLeadFrame (MLF) Technology. This application note can  
be downloaded from AMKOR’s website from the following  
URL:  
• Bypass/flyback caps on VBUS, near connector, are recom-  
mended.  
• DPLUS and DMINUS trace lengths should be kept to within  
2 mm of each other in length, with preferred length of  
20–30 mm.  
http://www.amkor.com/products/notes_papers/  
MLF_AppNote_0902.pdf.  
• Maintain a solid ground plane under the DPLUS and  
DMINUS traces. Do not allow the plane to be split under  
these traces.  
The application note provides detailed information on board  
mounting guidelines, soldering flow, rework process, etc.  
• No vias should be placed on the DPLUS or DMINUS trace  
routing unless absolutely necessary.  
Figure 21 below displays a cross-sectional area underneath  
the package. The cross section is of only one via. The solder  
paste template needs to be designed to allow at least 50%  
solder coverage. The thickness of the solder paste template  
should be 5 mil. It is recommended that ‘No Clean’ type 3  
solder paste is used for mounting the part. Nitrogen purge is  
recommended during reflow.  
• Isolate the DPLUS and DMINUS traces from all other signal  
traces as much as possible.  
Quad Flat Package No Leads (QFN) Package  
Design Notes  
Electrical contact of the part to the Printed Circuit Board (PCB)  
is made by soldering the leads on the bottom surface of the  
package to the PCB. Hence, special attention is required to the  
Figure 22 is a plot of the solder mask pattern and Figure 23  
displays an X-Ray image of the assembly (darker areas  
indicate solder)  
Figure 21. Cross-section of the Area Underneath the QFN Package.  
0.017” dia  
Solder Mask  
Cu Fill  
Cu Fill  
0.013” dia  
PCB Material  
PCB Material  
Via hole for thermally connecting the  
This figure only shows the top three layers of the  
QFN to the circuit board ground plane.  
circuit board: Top Solder, PCB Dielectric, and the Ground Plane.  
Note  
16. Source for recommendations: EZ-USB FX2™PCB Design Recommendations, http://www.cypress.com/cfuploads/support/app_notes/FX2_PCB.pdf and High  
Speed USB Platform Design Guidelines, http://www.usb.org/developers/docs/hs_usb_pdg_r1_0.pdf.  
Document #: 001-04247 Rev. *D  
Page 31 of 33  
[+] Feedback  
CY7C68033/CY7C68034  
Figure 22. Plot of the Solder Mask (White Area)  
Figure 23. X-ray Image of the Assembly  
Purchase of I2C components from Cypress, or one of its sublicensed Associated Companies, conveys a license under the Philips  
I2C Patent Rights to use these components in an I2C system, provided that the system conforms to the I2C Standard Specification  
as defined by Philips. EZ-USB FX2LP, EZ-USB FX2 and ReNumeration are trademarks, and EZ-USB is a registered trademark,  
of Cypress Semiconductor Corporation. All product and company names mentioned in this document are the trademarks of their  
respective holders.  
Document #: 001-04247 Rev. *D  
Page 32 of 33  
© Cypress Semiconductor Corporation, 2006. The information contained herein is subject to change without notice. Cypress Semiconductor Corporation assumes no responsibility for the use  
of any circuitry other than circuitry embodied in a Cypress product. Nor does it convey or imply any license under patent or other rights. Cypress products are not warranted nor intended to be  
used for medical, life support, life saving, critical control or safety applications, unless pursuant to an express written agreement with Cypress. Furthermore, Cypress does not authorize its  
products for use as critical components in life-support systems where a malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress  
products in life-support systems application implies that the manufacturer assumes all risk of such use and in doing so indemnifies Cypress against all charges.  
[+] Feedback  
CY7C68033/CY7C68034  
Document History Page  
Document Title: CY7C68033/CY7C68034 EZ-USB NX2LP-Flex™ Flexible USB NAND Flash Controller  
Document #: 001-04247 Rev. *D  
Orig. of  
Change  
REV.  
ECN NO. Issue Date  
Description of Change  
**  
388499  
394699  
See ECN  
See ECN  
GIR  
Preliminary draft  
*A  
XUT  
Minor Change: Upload data sheet to external website. Publicly announcing the  
parts. No physical changes to document were made  
*B  
400518  
See ECN  
GIR  
Took ‘Preliminary’ off the top of all pages. Corrected the first bulleted item.  
Corrected Figure 3-2 caption. Added new logo  
*C  
*D  
433952  
498295  
See ECN  
See ECN  
RGL  
KKU  
Added I2C functionality  
Updated Data sheet format  
Changed In/Output reference from I/O to IO  
Changed set-up to setup  
Changed IFCLK and CLKOUT pins to GPIO8 and GPIO9. Removed external  
IFCLK  
Document #: 001-04247 Rev. *D  
Page 33 of 33  
[+] Feedback  

相关型号:

CY3687

MoBL-USB⑩ FX2LP18 USB Microcontroller
CYPRESS

CY3690

PTG Programming Kit
CYPRESS

CY3691

PTG Programming Kit
CYPRESS

CY3692

200-MHz Field Programmable Zero Delay Buffer
CYPRESS

CY3693

PTG Programming Kit
CYPRESS

CY3694

PTG Programming Kit
CYPRESS

CY3695

PTG Programming Kit
CYPRESS

CY3696

PTG Programming Kit
CYPRESS

CY3697

PTG Programming Kit
CYPRESS

CY3698

PTG Programming Kit
CYPRESS

CY3699

PTG Programming Kit
CYPRESS

CY36A

Quartz Crystal Leaded HC49 Crystal
CRYSTEKMICROW