CY39100Z256-125BBI [CYPRESS]

Loadable PLD, 10ns, CMOS, PBGA256, 17 X 17 MM, 1.60 MM HEIGHT, 1 MM PITCH, FBGA-256;
CY39100Z256-125BBI
型号: CY39100Z256-125BBI
厂家: CYPRESS    CYPRESS
描述:

Loadable PLD, 10ns, CMOS, PBGA256, 17 X 17 MM, 1.60 MM HEIGHT, 1 MM PITCH, FBGA-256

输入元件 可编程逻辑
文件: 总49页 (文件大小:715K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Delta39K™ ISR™  
CPLD Family  
PRELIMINARY  
CPLDs at FPGA Densities™  
•Multiple I/O standards supported  
Features  
LVCMOS, LVTTL, 3.3V PCI, SSTL2 (I-II), SSTL3 (I-II),  
HSTL (I-IV), and GTL+  
•High density  
— 15K to 350K usable gates  
— 256 to 5376 macrocells  
— 92 to 520 maximum I/O pins  
•Compatible with NOBL™, ZBT™, and QDR™ SRAMs  
•Programmable slew rate control on each I/O pin  
•User-Programmable Bus Hold capability on each I/O pin  
•Fully PCI compliant (to 66 MHz 64-bit PCI spec rev2.2)  
•Compact PCI hot swap compatible  
•Multiple package/pinout offering across all densities  
— 144 to 676 pins in PQFP, BGA and FBGA packages  
— Same pinout for 3.3V/2.5V and 1.8V devices  
— Simplifies design migration across density  
— Self-Boot™ solution in BGA and FBGA packages  
•In-System Reprogrammable™ (ISR™)  
— 12 Dedicated Inputs including 4 clock pins, 4 global  
control signal pins and 4 JTAG interface pins for  
reconfigurability  
•Embedded Memory  
— 40K to 840K bits embedded SRAM  
• 32K to 672K bits of (single port) Cluster memory  
• 8K to 168K bits of (dual port) Channel memory  
•High speed - 250 MHz in-system operation  
•AnyVolt™ interface  
JTAG-compliant on-board programming  
— 3.3V, 2.5V and 1.8V V versions available  
CC  
— Design changes don’t cause pinout changes  
•IEEE1149.1 JTAG boundary scan  
— 3.3V, 2.5V and 1.8V I/O capability on all versions  
• Low Power Operation  
0.18- m 6-layer metal SRAM-based logic process  
µ
Development Software  
— Full-CMOS implementation of product term array  
Standby current as low as 100 A at 1.8V V  
µ
Warp™  
CC  
•Simple timing model  
— IEEE 1076/1164 VHDL or IEEE 1364 Verilog context  
sensitive editing.  
— No penalty for using full 16 product terms / macrocell  
— No delay for single product term steering or sharing  
•Flexible clocking  
— Active-HDL FSM graphical finite state machine editor  
— Active-HDL SIM post-synthesis timing simulator  
— Architecture Explorer for detailed design analysis  
— Static Timing Analyzer for critical path analysis  
— Available on Windows 95, 98 & NT for $99  
— 4 synchronous clocks per device  
— 1 spread-aware PLL drives all 4 clock networks  
— Locally generated Product Term clock  
— Clock polarity control at each register  
•Carry chain logic for fast efficient arithmetic operations  
— Supports all Cypress Programmable Logic Products  
Delta39K™ ISR CPLD Family Members  
[1]  
Standby I  
CC  
Cluster  
Channel  
f
Speed-t  
PD  
T =25 C  
°
MAX2  
A
Typical  
Gates  
memory memory Maximum  
Pin-to-Pin  
(ns)  
Device  
39K15  
Macrocells  
256  
(Kbits)  
(Kbits)  
I/O Pins  
(MHz)  
250  
222  
222  
200  
181  
167  
167  
154  
3.3/2.5V  
1.8V  
8K–24K  
16K–48K  
32  
8
134  
6.5  
7.0  
7.0  
7.5  
8.0  
8.5  
8.5  
9.0  
10 mA  
10 mA  
10 mA  
10 mA  
10 mA  
10 mA  
10 mA  
10 mA  
100 µA  
200 µA  
300 µA  
600 µA  
1000 µA  
1250 µA  
1500 µA  
2100 µA  
39K30  
512  
64  
16  
176  
39K50  
23K–72K  
768  
96  
24  
218  
39K100  
39K165  
39K200  
39K250  
39K350  
46K–144K  
77K–241K  
92K–288K  
115K–361K  
161K–505K  
1536  
2560  
3072  
3840  
5376  
192  
320  
384  
480  
672  
48  
302  
80  
386  
96  
428  
120  
168  
470  
520  
Note:  
1. Standby ICC values are with PLL not utilized, no output load and stable inputs  
Cypress Semiconductor Corporation  
3901 North First Street  
San Jose  
CA 95134  
408-943-2600  
August 9, 2000  
Delta39KISR™  
CPLD Family  
PRELIMINARY  
Delta39K Speed Bins[2]  
Device  
39K15  
250  
222  
200  
181  
167  
154  
125  
X
83  
X
X
X
X
X
X
X
X
X
39K30  
X
X
X
39K50  
X
39K100  
39K165  
39K200  
39K250  
39K350  
X
X
X
X
X
X
X
X
X
X
Device Package Offering and I/O Count Including Dedicated Clock and Control Inputs  
[3]  
Self-Boot Solution  
256-FBGA 388-BGA  
208-EQFP 144-FBGA 256-FBGA 484-FBGA 676-FBGA  
676-FBGA  
27x27 mm  
1.0-mm  
484-FBGA  
23x23 mm  
1.0-mm pitch  
17x17 mm  
1.0-mm  
pitch  
35x35 mm  
1.27-mm  
pitch  
28X28 mm  
0.5-mm  
pitch  
13x13 mm  
1.0-mm  
pitch  
17x17 mm  
1.0-mm  
pitch  
23x23 mm  
1.0-mm  
pitch  
27x27 mm  
1.0-mm  
pitch  
Device  
39K15  
pitch  
134  
136  
136  
136  
136  
136  
136  
136  
92  
92  
134  
176  
180  
180  
134  
176  
39K30  
39K50  
218  
294  
294  
294  
294  
294  
218  
39K100  
39K165  
39K200  
39K250  
302  
362  
368  
302  
386  
428  
470  
520  
470  
520  
39K350  
Notes:  
2. Speed bins shown here are for Commercial operating range. Please refer to Delta39K Ordering Information on page 36 for Industrial range speed bins.  
3. Self-Boot Solution integrates the boot PROM with Delta39K die inside the same package.  
2
Delta39KISR™  
CPLD Family  
PRELIMINARY  
PLL & Clock MUX  
GCLK[3:0]  
GCTL[3:0]  
4
4
I/O Bank 7  
I/O Bank 6  
G CLK[3:0]  
4
4
4
4
LB 0  
LB 1  
LB 2  
LB 3  
LB 7  
LB 0  
LB 1  
LB 7  
LB 6  
LB 5  
LB 4  
LB 0  
LB 7  
LB 6  
LB 5  
LB 4  
LB 0  
LB 1  
LB 2  
LB 3  
LB 7  
LB 6  
LB 6  
LB 5  
LB 4  
LB 1  
LB 2  
LB 3  
Channel  
R AM  
C hannel  
R AM  
C hannel  
RA M  
Channel  
R AM  
PIM  
PIM  
LB 2  
LB 3  
PIM  
PIM  
LB 5  
LB 4  
Cluster  
RAM  
Cluster  
RAM  
Cluster  
RAM  
Cluster  
RAM  
Cluster  
RAM  
Cluster  
RAM  
Cluster  
RAM  
Cluster  
RAM  
GCLK[3:0]  
4
4
4
4
LB  
LB  
LB  
LB  
0
1
2
3
LB 0  
LB 1  
LB 2  
LB 3  
LB 7  
LB 6  
LB 5  
LB 4  
LB  
LB  
LB  
LB  
7
6
5
4
LB 0  
LB 1  
LB 2  
LB 3  
LB 7  
LB 0  
LB 1  
LB 2  
LB 3  
LB 7  
LB 6  
LB 6  
LB 5  
LB 4  
Channel  
R AM  
Channel  
R AM  
C hannel  
R AM  
C hannel  
RA M  
PIM  
PIM  
PIM  
PIM  
LB 5  
LB 4  
Cluster  
RAM  
Cluster  
RAM  
Cluster  
RAM  
Cluster  
RAM  
Cluster  
RAM  
Cluster  
RAM  
Cluster  
RAM  
Cluster  
RAM  
G CLK[3:0]  
4
4
4
4
LB 0  
LB 1  
LB 2  
LB 3  
LB 7  
LB 0  
LB 1  
LB 2  
LB 3  
LB 7  
LB 6  
LB 5  
LB 4  
LB 0  
LB 1  
LB 2  
LB 3  
LB 7  
LB 6  
LB 5  
LB 4  
LB 0  
LB 1  
LB 2  
LB 3  
LB 7  
LB 6  
LB 6  
LB 5  
LB 4  
Channel  
R AM  
Channel  
R AM  
C hannel  
RA M  
C hannel  
R AM  
PIM  
PIM  
PIM  
PIM  
LB 5  
LB 4  
Cluster  
RAM  
Cluster  
RAM  
Cluster  
RAM  
Cluster  
RAM  
Cluster  
RAM  
Cluster  
RAM  
Cluster  
RAM  
Cluster  
RAM  
I/O Bank 2  
I/O Bank 3  
Figure 1. Delta39K100 Block Diagram (3 Rows x 4 Columns) with I/O Bank Structure  
3
Delta39KISR™  
CPLD Family  
PRELIMINARY  
The Delta39KZ devices accept 1.8V on the V  
directly. With Delta39Ks AnyVolt technology, the I/O pins can  
supply pins  
General Description  
CC  
The Delta39K family, based on a 0.18µ, 6-layer metal CMOS  
logic process, offers a wide range of high-density solutions at  
unparalleled system performance. The Delta39K family is de-  
signed to combine the high speed, predictable timing, and  
ease of use of CPLDs with the high densities and low power  
of FPGAs. With devices ranging from 15,000 to 350,000 us-  
able gates, the family features devices ten times the size of  
previously available CPLDs. Even at these large densities, the  
Delta39K family is fast enough to implement a fully synthesiz-  
able 64-bit, 66-MHz PCI core.  
be connected to either 1.8V, 2.5V, or 3.3V. All Delta39K devices  
are 3.3V tolerant regardless of V  
or V settings  
CCIO  
CC  
Device  
39KV  
V
V
CCIO  
CC  
[4]  
[4]  
3.3V or 2.5V  
1.8V  
3.3V or 2.5V or 1.8V or 1.5V  
3.3V or 2.5V or 1.8V or 1.5V  
39KZ  
Note:  
4. For HSTL only.  
Global Routing Description  
The architecture is based on Logic Block Clusters (LBC) that  
are connected by Horizontal and Vertical (H&V) routing chan-  
nels. Each LBC features eight individual Logic Blocks (LB) and  
two cluster memory blocks. Adjacent to each LBC is a channel  
memory block, which can be accessed directly from the I/O  
pins. Both types of memory blocks are highly configurable and  
can be cascaded in width and depth. See Figure 1 for a block  
diagram of the Delta39K architecture.  
The routing architecture of the Delta39K is made up of hori-  
zontal and vertical (H&V) routing channels. These routing  
channels allow signals from each of the Delta39K architectural  
components to communicate with one another. In addition to  
the horizontal and vertical routing channels that interconnect  
the I/O banks, channel memory blocks, and logic block clus-  
ters, each LBC contains a PIM, which is used to route signals  
among the logic blocks and the cluster memory blocks.  
All the members of the Delta39K family maintain Cypresss  
highly regarded In-System Reprogrammability (ISR) feature,  
which simplifies both design and manufacturing flows, thereby  
reducing costs. The ISR feature provides the ability to recon-  
figure the devices without having design changes cause pinout  
or timing changes in most cases. The Cypress ISR function is  
implemented through a JTAG-compliant serial interface. Data  
is shifted in and out through the TDI and TDO pins respectively.  
Superior routability, simple timing, and the ISR allows users to  
change existing logic designs while simultaneously fixing pi-  
nout assignments and maintaining system performance.  
Figure 2 is a block diagram of the routing channels that inter-  
face within the Delta39K architecture. The LBC is exactly the  
same for every member of the Delta39K CPLD family.  
Logic Block Cluster (LBC)  
The Delta39K architecture consists of several logic block clus-  
ters (LBCs), each of which have 8 Logic Blocks (LB) and 2  
cluster memory blocks connected via a Programmable Inter-  
connect Matrix (PIM) as shown in Figure 3. Each cluster  
memory block consists of 8-Kbit single-port RAM, which is  
configurable as synchronous or asynchronous. The cluster  
memory blocks can be cascaded with other cluster memory  
blocks within the same LBC as well as other LBCs to imple-  
ment larger memory functions. If a cluster memory block is not  
specifically utilized by the designer, Cypresss Warp software  
can automatically use it to implement large blocks of logic.  
The entire family features JTAG for ISR and boundary scan,  
and is compatible with the PCI Local Bus specification, meet-  
ing the electrical and timing requirements. The Delta39K fam-  
ily also features user programmable bus-hold and slew rate  
control capabilities on each I/O pin.  
AnyVolt Interface  
All LBCs interface with each other via horizontal and vertical  
routing channels.  
All Delta39KV devices feature an on-chip regulator, which ac-  
cepts 3.3V or 2.5V on the V supply pins and steps it down  
CC  
to 1.8V internally, the voltage level at which the core operates.  
I/O Block  
LB  
LB  
LB  
LB  
LB  
LB  
LB  
LB  
72  
64  
Cluster  
PIM  
Channel memory  
outputs drive  
dedicated tracks in the  
horizontal and vertical  
routing channels  
Channel  
Memory  
Block  
Cluster  
Memory  
Block  
Cluster  
Memory  
Block  
72  
64  
H-to-V  
PIM  
V-to-H  
PIM  
Pin inputs from the I/O cells  
drive dedicated tracks in the  
horizontal and vertical routing  
channels  
Figure 2. Delta39K Routing Interface  
4
Delta39KISR™  
CPLD Family  
PRELIMINARY  
Clock Inputs  
GCLK[3:0]  
4
Logic  
Block  
0
Logic  
Block  
7
36  
16  
36  
16  
Logic  
Block  
1
Logic  
Block  
6
36  
16  
36  
16  
Logic  
Block  
2
Logic  
Block  
5
36  
16  
36  
16  
PIM  
Logic  
Block  
3
Logic  
Block  
4
36  
16  
36  
16  
Cluster  
Memory  
0
Cluster  
Memory  
1
25  
8
25  
8
CC = Carry Chain  
64 Inputs From  
Vertical Routing  
Channel  
64 Inputs From  
Horizontal Routing  
Channel  
144 Outputs to  
Horizontal and Vertical  
cluster-to-channel PIMs  
Figure 3. Delta39K Logic Block Cluster Diagram  
Logic Block (LB)  
vides two important capabilities without affecting performance:  
product term steering and product term sharing.  
The logic block is the basic building block of the Delta39K ar-  
chitecture. It consists of a product term array, an intelligent  
product-term allocator, and 16 macrocells.  
Product Term Steering  
Product term steering is the process of assigning product  
terms to macrocells as needed. For example, if one macrocell  
requires ten product terms while another needs just three, the  
product term allocator will steerten product terms to one  
macrocell and three to the other. On Delta39K devices, prod-  
uct terms are steered on an individual basis. Any number be-  
tween 1and 16 product terms can be steered to any macrocell.  
Product Term Array  
Each logic block features a 72 x 83 programmable product  
term array. This array accepts 36 inputs from the PIM. These  
inputs originate from device pins and macrocell feedbacks as  
well as cluster memory and channel memory feedbacks. Ac-  
tive LOW and active HIGH versions of each of these inputs are  
generated to create the full 72-input field. The 83 product  
terms in the array can be created from any of the 72 inputs.  
Product Term Sharing  
Product term sharing is the process of using the same product  
term among multiple macrocells. For example, if more than  
one function has one or more product terms in its equation that  
are common to other functions, those product terms are only  
programmed once. The Delta39K product term allocator al-  
lows sharing across groups of four macrocells in a variable  
fashion. The software automatically takes advantage of this  
capability so that the user does not have to intervene.  
Of the 83 product terms, 80 are for general-purpose use for the  
16 macrocells in the logic block. Two of the remaining three  
product terms in the logic block are used as asynchronous set  
and asynchronous reset product terms. The final product term  
is the Product Term clock (PTCLK) and is shared by all 16  
macrocells within a logic block.  
Product Term Allocator  
Through the product term allocator, Warp software automati-  
cally distributes the 80 product terms as needed among the 16  
macrocells in the logic block. The product term allocator pro-  
Note that neither product term sharing nor product term steer-  
ing have any effect on the speed of the product. All worst-case  
steering and sharing configurations have been incorporated in  
the timing specifications for the Delta39K devices.  
.
5
Delta39KISR™  
CPLD Family  
PRELIMINARY  
Macrocell  
which drives through the circuit quickly. Figure 4 shows that the  
carry chain logic within the macrocell consists of two product  
terms (CPT0 and CPT1) from the PTA and an input carry-in for  
carry logic. The inputs to the carry chain mux are connected  
directly to the product terms in the PTA. The output of the carry  
chain mux generates the carry-out for the next macrocell in the  
logic block as well as the local carry input that is connected to  
an input of the XOR input mux. Carry-in and a configuration bit  
are inputs to an AND gate. This AND gate provides a method  
of segmenting the carry chain in any macrocell in the logic  
block.  
Within each logic block there are 16 macrocells. Each  
macrocell accepts up to 16 product terms which can be output  
in either registered or combinatorial mode. Figure 4 displays  
the block diagram of the macrocell. The register can be asyn-  
chronously preset or asynchronously reset at the macrocell  
level with the separate preset and reset product terms. Each  
of these product terms features programmable polarity. This  
allows the registers to be preset or reset based on an AND  
expression or an OR expression.  
An XOR gate in the Delta39K macrocell allows for many differ-  
ent types of equations to be realized. It can be used as a po-  
larity mux to implement the true or complement form of an  
equation in the product term array or as a toggle to turn the D  
flip-flop into a T flip-flop. The carry-chain input mux allows ad-  
ditional flexibility for the implementation of different types of  
logic. The macrocell can utilize the carry chain logic to imple-  
ment adders, subtractors, magnitude comparators, parity tree,  
or even generic XOR logic. The output of the macrocell is ei-  
ther registered or combinatorial.  
Macrocell Clocks  
Clocking of the register is highly flexible. Four global synchro-  
nous clocks (GCLK[3:0]) and a Product Term (PTCLK) clock  
are available at each macrocell register. Furthermore, a clock  
polarity mux within each macrocell allows the register to be  
clocked on the rising or the falling edge (see macrocell dia-  
gram in Figure 4).  
PRESET/RESET Configurations  
The macrocell register can be asynchronously preset and re-  
set using the PRESET and RESET mux. Both signals are ac-  
tive high and can be controlled by either of two Preset/Reset  
product terms (PRC[1:0] in Figure 4) or GND. In situations  
where the PRESET and RESET are active at the same time,  
RESET takes priority over PRESET.  
Carry Chain Logic  
The Delta39K macrocell features carry chain logic which is  
used for fast and efficient implementation of arithmetic opera-  
tions. The carry logic connects macrocells in up to 4 logic  
blocks for a total of 64 macrocells. Effective data path opera-  
tions are implemented through the use of carry-in arithmetic,  
Carry In  
(from macrocell n-1)  
PRESET  
Mux  
0
1
C
XOR Input  
3
Carry Chain  
Mux  
Mux  
C
CPT0  
CPT1  
Output Mux  
C
2
To PIM  
C
D PSET  
C
Q
FROM PTM  
Up To 16 PTs  
Clock  
Clock Mux  
Polarity  
Mux  
Q
RES  
GCLK[3:0]  
PTCLK  
3
C
C
0
1
Carry Out  
(to macrocell n+1)  
3
C
RESET  
Mux  
Figure 4. Delta39K Macrocell  
6
Delta39KISR™  
CPLD Family  
PRELIMINARY  
Embedded Memory  
Cluster Memory Initialization  
Each member of the Delta39K family contains two types of  
embedded memory blocks. The channel memory block is  
placed at the intersection of horizontal and vertical routing  
channels. Each channel memory block is 4096 bits in size and  
can be configured as asynchronous or synchronous Dual Port  
RAM, or synchronous FIFO. The memory organization is con-  
figurable as 4Kx1, 2Kx2, 1Kx4 and 512x8. The second type of  
memory block is located within each LBC and is referred to as  
a cluster memory block. Each LBC contains two cluster mem-  
ory blocks that are 8192 bits in size. Similar to the channel  
memory blocks, the cluster memory blocks can be configured  
as 8Kx1, 4Kx2, 2Kx4 and 1Kx8 and can be configured as ei-  
ther asynchronous or synchronous single-port RAM.  
The cluster memory powers up in an undefined state, but is set  
to a user-defined known state during configuration. To facilitate  
the use of look-up-table (LUT) logic and ROM applications, the  
cluster memory blocks can be initialized with a given set of  
data when the device is configured at power up. For LUT and  
ROM applications, the user cannot write to memory blocks.  
Channel Memory  
The Delta39K architecture includes an embedded memory  
block at each crossing point of horizontal and vertical routing  
channels. The channel memory is a 4096-bit embedded mem-  
ory block that can be configured as Asynchronous Dual-Port  
memory, Synchronous Dual-Port memory, or Synchronous  
FIFO memory.  
Cluster Memory  
Data, address, and control inputs to the channel memory are  
driven from horizontal and vertical routing channels. All data  
and FIFO logic outputs drive dedicated tracks in the horizontal  
and vertical routing channels. The clocks for the channel mem-  
ory block are selected from four global clocks and pin inputs  
from the horizontal and vertical channels. The clock muxes  
also include a polarity mux for each clock so that the user can  
choose an inverted clock.  
Each logic block cluster of the Delta39K contains two 8192-bit  
cluster memory blocks. Figure 5 is a block diagram of the clus-  
ter memory block and the interface of the cluster memory block  
to the cluster PIM.  
The output of the cluster memory block can be optionally reg-  
istered to perform synchronous pipelining or to register asyn-  
chronous read and write operations. The output registers con-  
tain an asynchronous RESET which can be used in any type  
of sequential logic circuits (e.g., state machines)  
Dual-Port (Channel Memory) Configuration  
Each port has distinct address inputs, as well as separate data  
and control inputs that can be accessed simultaneously. The  
inputs to the Dual-Port memory are driven from the horizontal  
and vertical routing channels. The data outputs drive dedicat-  
ed tracks in the routing channels. The interface to the routing  
is such that Port A of the Dual-Port interfaces primarily with the  
horizontal routing channel and Port B interfaces primarily with  
There are four global clocks (GCLK[3:0]) and one local clock  
available for the input and the output registers. The local clock  
for the input registers is independent of the one used for the  
output registers. The local clock is generated in the user-de-  
sign in a macrocell or comes from an I/O pin  
the vertical routing channel.  
.
Write  
Control  
Logic  
DIN[7:0]  
ADDR[12:0]  
W E  
3
D
D
D
Q
Q
Q
C
C
2
8
C
1024x8  
Asynchronous  
SRAM  
10  
C
Cluster PIM  
GCLK[3:0]  
5:1  
Local CLK  
3
3
C
8
C
DOUT[7:0]  
Read  
Control  
Logic  
Q
D
C
R
RESET  
2
C
GCLK[3:0]  
5:1  
Local CLK  
3
C
C
Figure 5. Block Diagram of Cluster Memory Block  
7
Delta39KISR™  
CPLD Family  
PRELIMINARY  
The clocks for each port of the Dual-Port configuration are  
selected from four global clocks and two local clocks. One local  
clock is sourced from the horizontal channel and the other from  
the vertical channel. The data outputs of the dual-port memory  
can also be registered. Clock for the output registers are also  
selected from four global clocks and two local clocks. One  
clock polarity mux per port allows the use of true or comple-  
ment polarity for input and output clocking purposes.  
same horizontal or vertical routing channel without any speed  
penalty.  
In FIFO mode, the write and read ports are controlled by sep-  
arate clock and enable signals. The clocks for each port are  
selected from four global clocks and two local clocks.  
One local clock is sourced from the horizontal channel and the  
other from the vertical channel. The data outputs from the read  
port of the FIFO can also be registered. One clock polarity mux  
per port allows using true or complement polarity for read and  
write operations. The write operation is controlled by the clock  
and the write enable pin. The read operation is controlled by  
the clock and the read enable pin. The enable pins can be  
sourced from horizontal or vertical channels.  
Arbitration  
The Dual-Port configuration of the Channel Memory Block pro-  
vides arbitration when both ports are accessed at the same  
time. Depending on the memory operation being attempted,  
one port always gets priority. See Table 1 for details on which  
port gets priority for read and write operations. An active-LOW  
Address Matchsignal is generated when address collision  
occurs.  
Channel Memory Initialization  
The channel memory powers up in an undefined state, but is  
set to a user-defined known state during configuration. To fa-  
cilitate the use of look-up-table (LUT) logic and ROM applica-  
tions, the channel memory blocks can be initialized with a giv-  
en set of data when the device is configured at power up. For  
LUT and ROM applications, the user cannot write to memory  
blocks.  
Table 1. Arbitration Result: Address Match Signal  
Becomes Active  
Result of  
Port A Port B Arbitration  
Comment  
Read  
Read No arbitration Both ports read at the  
Channel Memory Routing Interface  
required  
same time  
Write  
Read Port A gets  
priority  
If Port B requests first  
then it will read the cur-  
rent data. The output will  
then change to the newly  
written data by Port A  
Similar to LBC outputs, the channel memory blocks feature  
dedicated tracks in the horizontal and vertical routing channels  
for the data outputs and the flag outputs, as shown in Figure  
6. This allows the channel memory blocks to be expanded eas-  
ily. These dedicated lines can be routed to I/O pins as chip  
outputs or to other logic block clusters to be used in logic equa-  
tions.  
Read  
Write  
Write Port B gets  
priority  
If Port A requests first  
then it will read the cur-  
rent data. The output will  
then change to the newly  
written data by Port B  
I/O Banks  
The Delta39K interfaces the horizontal and vertical routing  
channels to the pins through I/O banks. There are 8 I/O banks  
per device as shown in Figure 7 and all I/Os from an I/O bank  
are located in the same section of a package for PCB layout  
convenience.  
Write Port A gets  
priority  
Port B is blocked until  
Port A is finished writing  
FIFO (Channel Memory) Configuration  
The channel memory blocks are also configurable as synchro-  
nous FIFO RAM. In the FIFO mode of operation, the channel  
memory block supports all normal FIFO operations without the  
use of any general-purpose logic resources in the device.  
Each I/O bank contains several I/O cells, and each I/O cell  
contains an input/output register, an output enable register,  
programmable slew rate control and programmable bus hold  
control logic. Each I/O cell drives a pin output of the device; the  
cell also supplies an input to the device that connects to a  
dedicated track in the associated routing channel.  
The FIFO block contains all of the necessary FIFO flag logic,  
including the read and write address pointers. The FIFO flags  
include an empty/full flag (EF), half-full flag (HF), and program-  
mable almost-empty/full (PAEF) flag output. The FIFO config-  
uration has the ability to perform simultaneous read and write  
operations using two separate clocks. These clocks may be  
tied together for a single operation or may run independently  
for asynchronous read/write (w.r.t. each other) applications.  
The data and control inputs to the FIFO block are driven from  
the horizontal or vertical routing channels. The data and flag  
outputs are driven onto dedicated routing tracks in both the  
horizontal and vertical routing channels. This allows the FIFO  
blocks to be expanded by using multiple FIFO blocks on the  
There are four dedicated inputs (GCTl[3:0]) that are used as  
Global Control Signals available to every I/O cell. These global  
control signals may be used as output enables, register resets  
and register clock enables as shown in Figure 8.  
Each I/O bank can use any supported I/O standard by supply-  
ing appropriate V  
and V  
voltages. All the V and  
REF  
CCIO  
REF  
V
pins in an I/O bank must be connected to the same V  
CCIO  
REF  
and V  
voltage respectively. This requirement restricts the  
CCIO  
number of IO standards supported by an IO bank at any given  
time.  
8
Delta39KISR™  
CPLD Family  
PRELIMINARY  
All channel memory  
inputs are driven from  
the routing channels  
4096-bit Dual Port  
Global Clock  
Signals  
Array  
Configurable as  
Async/Sync Dual Port or  
Sync FIFO  
GCLK[3:0]  
Configurable as  
4Kx1, 2Kx2, 1Kx4 and  
512x8 block sizes  
All channel memory outputs  
drive dedicated tracks in the  
routing channels  
Horizontal Channel  
Figure 6. Block Diagram of Channel Memory Block  
IO Standards  
I/O  
Standard  
Termination  
bank 7  
bank 6  
V
(V)  
V
Voltage (V  
)
REF  
CCIO  
TT  
Min  
Max  
LVTTL  
N/A  
3.3 V  
3.3 V  
3.0 V  
2.5 V  
1.8 V  
3.3 V  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
1.5  
LVCMOS  
LVCMOS3  
LVCMOS2  
LVCMOS18  
3.3V PCI  
GTL+  
Delta39K  
0.9  
1.3  
1.1  
1.7  
bank 2  
bank 3  
SSTL3 I  
SSTL3 II  
SSTL2 I  
SSTL2 II  
HSTL I  
3.3 V  
3.3 V  
2.5 V  
2.5 V  
1.5 V  
1.5 V  
1.5 V  
1.5 V  
1.5  
1.3  
1.7  
1.5  
Figure 7. Delta39K I/O Bank Block Diagram  
1.15  
1.15  
0.68  
0.68  
0.68  
0.68  
1.35  
1.35  
0.9  
1.25  
1.25  
0.75  
0.75  
1.5  
HSTL II  
0.9  
HSTL III  
HSTL IV  
0.9  
0.9  
1.5  
9
Delta39KISR™  
CPLD Family  
PRELIMINARY  
.
Registered OE  
Mux  
OE Mux  
D
Q
From  
Output PIM  
C
3
C
Input  
Mux  
RES  
To Routing  
Channel  
Register Input  
Mux  
C
C
Output Mux  
Bus  
Hold  
I/O  
Register Enable  
Mux  
D
E
Q
Clock  
C
C
Polarity  
Mux  
Slew  
Rate  
RES  
3
C
Control  
Clock Mux  
C
C
2
C
Register Reset  
Mux  
3
C
Figure 8. Block Diagram of I/O Cell  
I/O Cell  
pull-up resistor, is a weak latch connected to the pin that does  
not degrade the devices performance. As a latch, bus-hold  
maintains the last state of a pin when the pin is placed in a  
high-impedance state, thus reducing system noise in bus-in-  
terface applications. Bus-hold additionally allows unused de-  
vice pins to remain unconnected on the board, which is partic-  
ularly useful during prototyping as designers can route new  
Figure 8 is a block diagram of the Delta39K I/O cell. The I/O  
cell contains a three-state input buffer, an output buffer, and a  
register that can be configured as an input or output register.  
The output buffer has a slew rate control option that can be  
used to configure the output for a slower slew rate. The input  
of the device and the pin output can each be configured as  
registered or combinatorial, however only one path can be  
configured as registered in a given design.  
signals to the device without cutting trace connections to V  
CC  
or GND. For more information, see the application note Un-  
derstanding Bus-hold A Feature of Cypress CPLDs.”  
The output enable can be selected from one of the four global  
control signals or from one of two Output Control Channel  
(OCC) signals. The output enable can be configured as always  
enabled or always disabled or it can be controlled by one of the  
remaining inputs to the mux. The selection is done via a mux  
Clocks  
Delta39K has four dedicated clock input pins (GCLK[3:0]) to  
accept system clocks. One of these clocks (GCLK[0]) may be  
selected to drive an on-chip Phase-Locked Loop (PLL) for fre-  
quency modulation (see Figure 9 for details).  
that includes V and GND as inputs.  
CC  
One of the global clocks can be selected as the clock for the  
I/O cell register. The clock mux output is an input to a clock  
polarity mux that allows the input/output register to be clocked  
on either edge of the clock.  
The global clock tree for a Delta39K device can be driven by a  
combination of the dedicated clock pins and/or the PLL-de-  
rived clocks. The global clock tree consists of four global clocks  
that go to every macrocell, memory block, and I/O cell.  
Slew Rate Control  
Clock Tree Distribution  
The ouput buffer has a slew rate control option. This allows the  
ouput buffer to slew at fast rate (3 V/ns) or a slow rate (1 V/ns).  
All I/Os default to fast slew rate. For designs concerned with  
meeting FCC emissions standards the slow edge provides for  
lower system noise. For designs requiring very high perfor-  
mance the fast edge rate provides maximum system perfor-  
mance.  
The global clock tree performs two primary functions. First, the  
clock tree generates the four global clocks by multiplexing four  
dedicated clocks from the package pins and four PLL driven  
clocks. Second, the clock tree distributes the four global clocks  
to every cluster, channel memory, and I/O block on the die. The  
global clock tree is designed such that the clock skew is mini-  
mized while maintaining an acceptable clock delay.  
Programmable Bus Hold  
On each I/O pin, user-programmable-bus-hold is included.  
Bus-hold, which is an improved version of the popular internal  
10  
Delta39KISR™  
CPLD Family  
PRELIMINARY  
off-chip signal (external feedback)  
INTCLK0, INTCLK1, INTCLK2, INTCLK3  
Any Register  
Send a global  
clock off chip  
GCLK1  
Normal I/O signal path  
Lock Detect/IO pin  
C
Clock Tree  
Delay  
Phase selection  
Divide  
1-6,8,16  
2
÷
C
INTCLK0  
GCLK0  
fb  
fb  
Lock  
2
Phase selection  
C
Divide  
1-6,8,16  
÷
÷
Clk 00  
INTCLK1  
Clk 450  
GCLK1  
Clk 900  
Clk 1350  
Clk 1800  
Clk 2250  
Clk 2700  
Clk 3150  
Phase selection  
2
GCLK0  
Source  
Clock  
C
Divide  
1-6,8,16  
INTCLK2  
GCLK2  
2
PLL  
X1, X2, X4  
C
Phase selection  
Divide  
1-6,8,16  
÷
INTCLK3  
GCLK3  
2
C
Figure 9. Block Diagram of Spread Aware PLL  
Spread AwarePLL  
The Voltage Controlled Oscillator (VCO), the core of the  
Delta39K PLL is designed to operate within the frequency  
range of 100 MHz to 266 MHz. Hence, the multiply option com-  
bined with input (GCLK[0]) frequency should be selected such  
that this VCO operating frequency requirement is met. This is  
demonstrated in Table 2 (columns 1, 2, and 3)  
Each device in the Delta39K family features an on-chip PLL  
designed using Spread Aware technology for low EMI applica-  
tions. In general, PLLs are used to implement time-division-  
multiplex circuits to achieve higher performance with fewer de-  
vice resources.  
Another feature of this PLL is the ability to drive the output  
clock (INTCLK) off the Delta39K chip to clock other devices on  
the board, as shown in Figure 9 above. This off-chip clock is  
half the frequency of the output clock as it has to go through a  
register (I/O register or a macrocell register).  
For example, a system that operates on a 32-bit data path that  
runs at 40 MHz can be implemented with 16-bit circuitry that  
runs internally at 80 MHz. PLLs can also be used to take ad-  
vantage of the positioning of the internally generated clock  
edges to shift performance towards improved setup, hold or  
clock-to-out times.  
This PLL can also be used for board de-skewing purpose by  
driving a PLL output clock off-chip, routing it to the other devic-  
es on the board and feeding it back to the PLLs external feed-  
back input (GCLK[1]). When this feature is used only a limited  
multiply, divide and phase shift options can be used.  
There are several frequency multiply (X1, X2, X4) and divide  
(/1, /2, /3, /4, /5, /6. /8, /16) options available to create a wide  
range of clock frequencies from a single clock input (GCLK[0]).  
For increased flexibility, there are seven phase shifting options  
which allow clock skew/de-skew by 45°, 90°, 135°, 180°, 225°,  
270° or 315°.  
Table 2 describes the valid multiply and divide options that can  
be used without an external feedback. Table 3 describes the  
valid multiply & divide options that can be used with an external  
feedback.  
Table 2. PLL Multiply and Divide Optionswithout External Feedback  
Valid Multiply Options  
Input Frequency  
Valid Divide Options  
(GCLK[0])  
(MHz)  
VCO Output  
Output Frequency (INTCLK[3:0]) Off-chip Clock  
f
Value Frequency (MHz)  
Value  
f
(MHz)  
Frequency  
PLLI  
PLLO  
2533  
4
4
4
2
2
2
1
100133  
133200  
200266  
100133  
133200  
200266  
100133  
16, 8, 16  
16, 8, 16  
16, 8, 16  
16, 8, 16  
16, 8, 16  
16, 8, 16  
16, 8, 16  
6.25133  
8.33200  
12.5266  
6.25133  
8.3200  
3.1266  
3350  
4.16100  
6.25133  
3.1266  
5066  
66100  
4.16100  
6.25133  
3.1266  
12.5266  
6.25133  
100133  
11  
Delta39KISR™  
CPLD Family  
PRELIMINARY  
Table 3. PLL Multiply and Divide Optionswith External Feedback  
Valid Multiply Options  
Valid Divide Options  
Output (INTCLK) Frequency  
Input (GCLK) Frequency  
(MHz)  
VCO Output  
Off-chip Clock  
Frequency  
f
Value  
Frequency (MHz)  
Value  
f
(MHz)  
PLLI  
PLLO  
5066  
1
1
1
100133  
133200  
200266  
1
1
1
100133  
133200  
200266  
5066  
66100  
100133  
66100  
100133  
Table 5 is an example of the effect of all the available divide  
and phase shift options on a VCO output of 250 MHz. It also  
shows the effect of division on the duty cycle of the resultant  
clock. Note that the duty cycle is 50-50 when a VCO output is  
divided by an even number. Also note that the phase shift ap-  
plies to VCO output and not to the divided output  
Table 4 describes the valid phase shift options that can be used  
with or without an external feedback.  
Table 4. PLL Phase Shift Options—  
with and without External Feedback  
With External  
Feedback  
This Spread Aware PLL operates as specified in Delta39K V’  
devices (2.5V/3.3V). It does not operate om Delta39K Zde-  
vices (1.8V). For more details on the architecture and opera-  
tion of this PLL please refer to an application note titled  
Delta39K PLL and Clock Tree.”  
Without External Feedback  
0°,45°, 90°, 135°, 180°, 225°, 270°, 315°  
0°  
Table 5. Timing of Clock Phases for all Divide Options for a VCO Output Frequency of 250 MHz  
Duty  
Divide  
Factor  
Period  
(ns)  
Cy-  
0°  
45°  
90°  
135°  
180°  
225°  
270°  
(ns)  
315°  
(ns)  
cle%  
(ns)  
(ns)  
(ns)  
(ns)  
(ns)  
(ns)  
1
2
4
40-60  
50  
0
0
0
0
0
0
0
0
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
1.0  
1.0  
1.0  
1.0  
1.0  
1.0  
1.0  
1.0  
1.5  
1.5  
1.5  
1.5  
1.5  
1.5  
1.5  
1.5  
2.0  
2.0  
2.0  
2.0  
2.0  
2.0  
2.0  
2.0  
2.5  
2.5  
2.5  
2.5  
2.5  
2.5  
2.5  
2.5  
3.0  
3.0  
3.0  
3.0  
3.0  
3.0  
3.0  
3.0  
3.5  
3.5  
3.5  
3.5  
3.5  
3.5  
3.5  
3.5  
8
3
12  
16  
20  
24  
32  
64  
33-67  
50  
4
5
40-60  
50  
6
8
50  
16  
50  
12  
Delta39KISR™  
CPLD Family  
PRELIMINARY  
Timing Model  
10. For synchronous systems, the input set-up time to the out-  
put macrocell register and the clock to output time are shown  
One important feature of the Delta39K family is the simplicity  
of its timing. All combinatorial and registered/synchronous de-  
lays are worst case and system performance is static (as  
shown in the AC specs section) as long as data is routed  
through the same horizontal and vertical channels. Figure 10  
illustrates the true timing model for the 200-MHz devices. For  
synchronous clocking of macrocells, a delay is incurred from  
macrocell clock to macrocell clock within the same cluster and  
as the parameters t  
and t  
shown in the Figure 10.  
MCS  
MCCO  
These measurements are for any output and synchronous  
clock, regardless of the logic placement.  
The Delta39K features:  
no dedicated vs. I/O pin delays  
no penalty for using 016 product terms  
no added delay for steering product terms  
no added delay for sharing product terms  
no output bypass delays  
in different clusters. This is shown as t  
and t  
in Figure  
SCS  
SCS2  
10. For combinatorial paths, any input to any output (from cor-  
ner to corner on the device), incurs a worst-case delay in the  
39K100 regardless of the amount of logic or which horizontal  
The simple timing model of the Delta39K family eliminates un-  
expected performance penalties.  
and vertical channels are used. This is the t shown in Figure  
PD  
t
SCS  
GCLK[3:0]  
4
4
4
4
LB  
LB  
LB  
LB  
0
1
2
3
LB  
LB  
7
6
LB  
LB  
LB  
LB  
0
1
2
3
LB  
LB  
7
6
LB  
LB  
LB  
LB  
0
1
2
3
LB  
LB  
LB  
LB  
7
6
5
4
LB  
LB  
7
6
LB  
LB  
LB  
LB  
0
1
2
3
Channel  
RAM  
Channel  
RAM  
Channel  
RAM  
Channel  
RAM  
P IM  
P IM  
P
P IM  
LB  
LB  
5
4
LB  
LB  
5
4
LB  
LB  
5
4
t
MCS  
Cluster  
RAM  
Cluster  
RAM  
Cluster  
RAM  
Cluster  
RAM  
Cluster  
RAM  
Cluster  
RAM  
8
Kb  
8
Kb  
SRAM  
SRAM  
GCLK[3:0]  
4
4
4
4
t
SCS2  
LB  
LB  
LB  
LB  
0
1
2
3
LB  
LB  
LB  
LB  
7
6
5
4
LB  
LB  
LB  
LB  
0
1
2
3
LB  
LB  
LB  
LB  
7
6
5
4
B  
LB  
LB  
LB  
0
1
2
3
LB  
LB  
LB  
LB  
7
6
5
4
LB  
LB  
LB  
LB  
0
1
2
3
LB  
LB  
LB  
LB  
7
6
5
4
Channel  
RAM  
Channel  
RAM  
Channel  
RAM  
Channel  
RAM  
PIM  
PIM  
IM  
PIM  
t
PD  
Cluster  
RAM  
Cluster  
RAM  
Cluster  
RAM  
Cluster  
RAM  
Cluster  
RAM  
Cluster  
RAM  
Cluster  
RAM  
Cluster  
RAM  
GCLK[3:0]  
4
4
4
4
LB  
LB  
LB  
LB  
7
6
5
4
LB  
LB  
LB  
LB  
0
1
2
3
LB  
LB  
7
6
LB  
LB  
LB  
LB  
0
1
2
3
LB  
LB  
LB  
LB  
0
1
2
3
LB  
LB  
LB  
LB  
7
6
5
4
LB  
LB  
LB  
LB  
0
1
2
3
LB  
LB  
LB  
LB  
7
6
5
4
Channel  
RAM  
Channel  
RAM  
Channel  
RAM  
Channel  
RAM  
P IM  
P IM  
PIM  
P IM  
LB  
LB  
5
4
Cluster  
RAM  
Cluster  
RAM  
Cluster  
RAM  
Cluster  
RAM  
Cluster  
RAM  
Cluster  
RAM  
Cluster  
RAM  
Cluster  
RAM  
t
MCCO  
Figure 10. Timing Model for 39K100 Device  
13  
Delta39KISR™  
CPLD Family  
PRELIMINARY  
IEEE 1149.1 Compliant JTAG Operation  
1076/1164 VHDL and IEEE 1364 as the Hardware Description  
Language (HDL) for design entry. Warp accepts VHDL or Ver-  
ilog input, synthesizes and optimizes the entered design, and  
outputs a configuration bitstream for the desired Delta39K de-  
vice. For simulation, Warp provides a graphical waveform sim-  
ulator as well as VHDL and Verilog Timing Models.  
The Delta39K family has an IEEE std 1149.1 JTAG interface  
for both Boundary Scan and ISR operations.  
Four dedicated pins are reserved on each device for use by  
the Test Access Port (TAP).  
VHDL and Verilog are open, powerful, non-proprietary Hard-  
ware Description Languages (HDLs) that are standards for be-  
havioral design entry and simulation. HDL allows designers to  
learn a single language that is useful for all facets of the design  
process.  
Boundary Scan  
The Delta39K family supports Bypass, Sample/Preload, Ex-  
test, Intest, Idcode and Usercode boundary scan instructions.  
The JTAG interface is shown in Figure 11.  
Third-Party Software  
Instruction Register  
Cypress products are supported in a number of third-party de-  
sign entry and simulation tools. Refer to the third-party soft-  
ware data sheet or contact your local sales office for a list of  
currently supported third party vendors.  
TDI  
TDO  
Bypass Reg.  
JTAG  
TAP  
CONTROLLER  
TMS  
Programming  
Boundary Scan  
idcode  
There are three programming options available for Delta39K  
devices. The first method is to use a PC with the Delta39K ISR  
programming cable and software. With this method, the ISR  
pins of the Delta39K devices are routed to a connector at the  
edge of the printed circuit board. The Delta39K ISR program-  
ming cable is then connected between the PC and this con-  
nector. A simple configuration file instructs the ISR software of  
the programming operations to be performed on each of the  
Delta39K devices in the system. The ISR software then auto-  
matically completes all of the necessary data manipulations  
required to accomplish the programming, reading, verifying,  
and other ISR functions. For more information on Cypress ISR  
Interface, see the ISR Programming Kit data sheet (CY3900i).  
TCLK  
Usercode  
ISR Prog.  
Data Registers  
Figure 11. JTAG Interface  
In-System Reprogramming (ISR)  
In-System Reprogramming is the combination of the capability  
to program or reprogram a device on-board, and the ability to  
support design changes without changing the system timing  
or device pinout. This combination means design changes  
during debug or field upgrades do not cause board respins.  
The Delta39K family implements ISR by providing a JTAG  
compliant interface for on-board programming, robust routing  
resources for pinout flexibility, and a simple timing model for  
consistent system performance.  
The second method for programming Delta39K devices is on  
automatic test equipment (ATE). This is accomplished through  
a STAPL file created by the ISR software. Check the Cypress  
website for the latest ISR software download information  
(http://www.cypress.com).  
The third programming option for Delta39K devices is to utilize  
the embedded controller or processor that already exists in the  
system. The Delta39K ISR software assists in this method by  
converting the device JEDEC maps into the ISR serial stream  
that contains the ISR instruction information and the address-  
es and data of locations to be programmed. The embedded  
controller then simply directs this ISR stream to the chain of  
Delta39K devices to complete the desired reconfiguring or di-  
agnostic operations. Contact your local sales office for infor-  
mation on availability of this option.  
Configuration  
Configuration is defined as the process of loading the volatile  
SRAM memory locations with the data generated from the  
Warp design tools to implement users logic design.  
Delta39K devices can be configured using two methods: serial  
mode and through the IEEE std 1149.1 JTAG interface. Device  
configuration can begin in 3 ways. It can be done automatically  
after power-up of the system, by toggling Reconfig pin from  
LOW to HIGH, or by issuing the Self Config Initiate instruction  
through the IEEE std 1149.1 JTAG interface.  
Third-Party Programmers  
As with development software, Cypress support is available on  
a wide variety of third-party programmers. All major program-  
mers (including BP Micro, System General, Hi-Lo) support the  
Delta39K family.  
Development Software Support  
Warp  
Warp is a state-of-the-art HDL compiler for designing with Cy-  
press programmable logic. Warp utilizes a subset of IEEE  
14  
Delta39KISR™  
CPLD Family  
PRELIMINARY  
V
V
to Ground Potential (39KV device)............0.5V to 4.6V  
Maximum Ratings  
CC  
to Ground Potential................................0.5V to 4.6V  
CCIO  
(Above which the useful life may be impaired. For user guide-  
lines, not tested.)  
DC Voltage Applied to Outputs in High Z State 0.5V to 4.5V  
DC Input voltage......................... ......................0.5V to 4.5V  
Storage Temperature .................................. 65°C to +150°C  
SolderingTemperature...................................................220°C  
[5]  
DC Current into Outputs............................................±20mA  
Static Discharge Voltage (per MIL-STD-8883,  
Ambient Temperature with  
Power Applied............................................... 40°C to +85°C  
Method 3015).............................................................>2001V  
Latch-Up Current.......................................................>200 mA  
Junction Temperature....................................................135°C  
V
to Ground Potential (39KZ device)......... .. 0.5V to 2.5V  
CC  
Operating Range  
Ambient  
Temperature  
Junction  
Temperature  
Output  
Condition  
V
V
/
CCJTAG  
CCCNFG  
Range  
V
V
V
V
CCPRG  
CCIO  
CC  
CCPLL  
0°C to +70°C  
0°C to +85°C  
3.3V  
2.5V  
1.8V  
1.5V  
3.3V  
2.5V  
1.8V  
1.5V  
3.3V ± 0.3V  
2.5V ± 0.2V  
3.3V ± 0.3V  
or  
Same as  
Same  
as V  
3.3V  
±
Commercial  
1.8V ± 0.15V 2.5V ± 0.2V  
V
CCIO  
CC  
or  
0.3V  
[4]  
1.5V ± 0.1V  
1.8V ± 0.15V  
40°C to +85°C 40°C to +100°C  
3.3V ± 0.3V  
2.5V ± 0.2V  
1.8V ± 0.15V  
Industrial  
[4]  
1.5V ± 0.1V  
DC Characteristics  
V
= 3.3 V  
V
= 2.5 V  
V
= 1.8 V  
CCIO  
CCIO  
CCIO  
Parameter Description  
Test Conditions  
Min. Max. Min. Max. Min. Max. Unit  
Data Retention V Voltage  
(config data may be lost below this)  
1.5  
1.5  
1.5  
V
CC  
V
V
DRINT  
DRIO  
Data Retention V  
Voltage  
1.2  
1.2  
1.2  
V
CCIO  
(config data may be lost below this)  
I
I
Input Leakage Current  
GND V 3.6V  
10  
10  
10  
10  
10  
10  
10  
10  
10  
10  
10  
10  
µA  
µA  
IX  
I
Output Leakage Current  
GND V V  
O CCIO  
OZ  
OS  
V
V
= Max.,  
= 0.5V  
160  
160  
160 mA  
[6]  
CCIO  
I
I
I
I
I
Output Short Circuit Current  
OUT  
Input Bus Hold LOW Sustaining  
Current  
+40  
+30  
+25  
µA  
V
V
V
V
= Min., V  
= V  
BHL  
CC  
CC  
CC  
CC  
PIN  
IL  
Input Bus Hold HIGH Sustaining  
Current  
40  
30  
25  
µA  
= Min., V = V  
BHH  
PIN  
IH  
Input Bus Hold LOW Overdrive  
Current  
+250  
+200  
+150 µA  
150 µA  
= Max.  
= Max.  
BHLO  
BHHO  
Input Bus Hold HIGH Overdrive  
Current  
250  
200  
Capacitance  
Parameter  
Description  
Test Conditions  
@ f=1MHz 25°C  
@ f=1MHz 25°C  
Min.  
Max.  
Unit  
pF  
C
C
Input/Output Capacitance  
Clock Signal Capacitance  
V =V  
8
I/O  
in  
CCIO  
CCIO  
V =V  
5
12  
pF  
CLK  
in  
Notes:  
5. DC current into outputs is 36 mA with HSTL III and 48 mA with HSTL IV  
6. Not more than one output should be tested at a time. Duration of the short circuit should not exceed 1 second. VOUT=0.5V has been chosen to avoid test problems  
caused by tester ground degradation. Tested initially and after any design or process changes that may affect these parameters.  
15  
Delta39KISR™  
CPLD Family  
PRELIMINARY  
DC Characteristics (IO)  
V
(V)  
V
(V)  
V
(V)  
V
(V)  
V (V)  
IL  
REF  
OH  
OL  
IH  
Input/  
Output  
V
V
OL  
(max.)  
CCIO  
(V)  
Standard  
@ I  
=
V
(min.) @ I =  
OL  
Min.  
2.0 V  
2.0 V  
2.0 V  
1.7 V  
Max.  
Min.  
Max.  
OH  
OH  
LVTTL  
3.3  
3.3  
3.0  
2.5  
4 mA  
2.4  
4 mA  
0.4  
V
V
V
V
+0.3 0.3V  
+0.3 0.3V  
+0.3 0.3V  
+0.3 0.3V  
0.8V  
0.8V  
0.8V  
0.7V  
CCIO  
CCIO  
CCIO  
CCIO  
LVCMOS  
LVCMOS3  
0.1 mA  
0.1 mA  
0.1 mA  
1.0 mA  
2.0 mA  
0.1 mA  
2 mA  
V
0.2v 0.1 mA  
0.2v 0.1mA  
0.2  
CCIO  
CCIO  
V
0.2  
2.1  
2.0  
1.7  
0.1 mA  
1.0 mA  
2.0 mA  
0.2  
LVCMOS2  
0.4  
0.7  
1.8  
3.3  
V
0.2v 0.1mA  
0.2  
0.65V  
V
V
+0.3 0.3V 0.35V  
CCIO  
CCIO  
CCIO  
CCIO  
CCIO  
LVCMOS18  
V
0.45v 2.0 mA  
0.45  
CCIO  
3.3V PCI  
GTL+  
0.5 mA  
0.9V  
1.5 mA 0.1V  
0.5V  
+0.5 0.5V 0.3V  
CCIO  
CCIO  
CCIO  
CCIO  
0.9 1.1 Note 7  
Note 8  
8 mA  
0.6  
0.7  
V
V
V
V
V
V
V
V
V
+0.2  
+0.2  
+0.2  
+1.8  
+1.8  
+1.0  
+1.0  
+1.0  
+1.0  
V
V
V
0.2  
0.2  
0.2  
REF  
REF  
REF  
REF  
REF  
REF  
REF  
REF  
REF  
REF  
REF  
REF  
SSTL3 I  
SSTL3 II  
SSTL2 I  
SSTL2 II  
HSTL I  
1.3 1.7  
1.3 1.7  
3.3  
3.3  
8 mA  
16 mA  
7.6 mA  
V
1.1v  
V
V
V
V
V
V
V
V
+0.3 0.3V  
+0.3 0.3V  
+0.3 0.3V  
+0.3 0.3V  
+0.3 0.3V  
+0.3 0.3V  
+0.3 0.3V  
+0.3 0.3V  
CCIO  
CCIO  
CCIO  
CCIO  
CCIO  
CCIO  
CCIO  
CCIO  
CCIO  
CCIO  
V
0.9v 16 mA  
0.5  
1.15 1.35 2.5  
V
0.62v 7.6 mA  
0.43v 15.2 mA  
0.54  
0.35  
0.4  
V
0.18  
0.18  
CCIO  
CCIO  
REF  
REF  
1.15 1.35 2.5 15.2 mA V  
V
0.68 0.9  
0.68 0.9  
0.68 0.9  
0.68 0.9  
1.5  
1.5  
1.5  
1.5  
8 mA  
16 mA  
8 mA  
8 mA  
V
0.4v  
8 mA  
V
0.1  
0.1  
0.1  
0.1  
CCIO  
CCIO  
CCIO  
CCIO  
REF  
REF  
REF  
REF  
HSTL II  
HSTL III  
HSTL IV  
V
V
V
0.4v 16 mA  
0.4v 24 mA  
0.4v 48 mA  
0.4  
V
0.4  
V
V
0.4  
Configuration Parameters  
Parameter  
Description  
Reconfig pin LOW time before it goes HIGH  
Min  
200  
Units  
ns  
t
RECONFIG  
Notes:  
7. See Power-up Sequence Requirementsbelow for VCCIO requirement.  
8. 25resistor terminated to termination voltage of 1.5V.  
Power-up Sequence Requirements  
Upon power-up, all the outputs remain three-stated until all  
All V  
s on a bank should be tied to the same potential  
CCIO  
the V pins have powered-up to the nominal voltage and  
and powered up together.  
CC  
the part has completed configuration.  
All V  
s (even the unused banks) need to be powered up  
CCIO  
The part will not start configuration until V , V  
,
CCIO  
to at least 1.5V before configuration has completed.  
CC  
V
, V  
, V  
and V  
have reached  
CCPRG  
CCJTAG  
CCCNFG  
CCPLL  
Maximum ramp time for all V s should be 0V to nominal  
voltage in 100 ms.  
CC  
nominal voltage.  
V pins can be powered up in any order.  
CC  
16  
Delta39KISR™  
CPLD Family  
PRELIMINARY  
[9]  
Switching Characteristics - Parameter Descriptions Over the Operating Range  
Parameter  
Description  
Combinatorial Mode Parameters  
Delay from any pin input, through any cluster on the channel associated with that pin input, to any pin output  
on the horizontal or vertical channel associated with that cluster  
t
PD  
t
t
Global control to output enable  
Global control to output disable  
EA  
ER  
Asynchronous macrocell RESET or PRESET recovery time from any pin input on the horizontal or vertical  
channel associated with the cluster the macrocell is in  
t
PRR  
PRO  
Asynchronous macrocell RESET or PRESET from any pin input on the horizontal or vertical channel associ-  
ated with the cluster that the macrocell is in to any pin output on those same channels  
t
Synchronous Clocking Parameters  
Set-up time of any input pin to a macrocell in any cluster on the channel associated with that input pin, relative  
t
t
t
MCS  
to a global clock  
Hold time of any input pin to a macrocell in any cluster on the channel associated with that input pin, relative  
to a global clock  
MCH  
Global clock to output of any macrocell to any output pin on the horizontal or vertical channel associated with  
the cluster that macrocell is in  
MCCO  
t
t
t
t
t
t
Set-up time of any input pin to the I/O cell register associated with that pin, relative to a global clock  
Hold time of any input pin to the I/O cell register associated with that pin, relative to a global clock  
Clock to output of an I/O cell register to the output pin associated with that register  
Macrocell clock to macrocell clock through array logic within the same cluster  
IOS  
IOH  
IOCO  
SCS  
SCS2  
ICS  
Macrocell clock to macrocell clock through array logic in different clusters  
I/O register clock to any macrocell clock in a cluster on the channel the I/O register is associated with  
Macrocell clock to any I/O register clock on the horizontal or vertical channel associated with the cluster that  
the macrocell is in  
t
OCS  
t
t
f
Clock to output disable (high-impedance)  
CHZ  
CLZ  
MAX  
Clock to output enable (low-impedance)  
Maximum frequency with internal feedbackwithin the same cluster  
Maximum frequency with internal feedbackwithin different clusters at the opposite ends of a horizontal or  
vertical channel  
f
MAX2  
Product Term Clock  
t
t
t
t
Set-up time for macrocell used as input register from input to product term clock  
Macrocell used as an input register hold time  
MCSPT  
MCHPT  
MCCOPT  
SCS2PT  
Product term clock to output delay from input pin  
Register to register delay through logic array with a product term clock within different clusters  
Channel Interconnect Parameters  
t
Adder for a signal to switch from a horizontal to vertical channel and vice-versa  
Cluster to Cluster delay adder (through channels and channel PIM)  
CHSW  
t
CL2CL  
Miscellaneous Delays  
Delay from the input of a cluster PIM, through a macrocell in the cluster, back to a cluster PIM input. This  
t
parameter can be added to t and t  
parameter for each extra pass through the AND/OR array required  
CPLD  
PD  
SCS  
by a given signal path  
t
t
t
Adder for carry chain logic per macrocell  
MCCD  
Delay from the input of the output buffer to the I/O pin  
Delay from the I/O pin to the input of the channel buffer  
IOD  
IOIN  
17  
Delta39KISR™  
CPLD Family  
PRELIMINARY  
[9]  
Switching Characteristics - Parameter Descriptions Over the Operating Range  
Parameter  
Description  
Delay from the clock pin to the input of the clock driver  
t
t
CKIN  
IOREGPIN  
Delay from the I/O pin to the input of the I/O register  
PLL Parameters  
t
t
t
t
f
f
Maximum cycle to cycle jitter time  
PLL delay with skew adjustment  
PLL delay without any skew adjustment  
Lock time for the PLL  
MCCJ  
DWSA  
DWOSA  
LOCK  
PLLO  
PLLI  
Output frequency of the PLL  
Input frequency of the PLL  
Cluster Memory Timing Parameter Descriptions Over the Operating Range  
Parameter  
Description  
Asynchronous Mode Parameters  
t
t
t
t
t
t
Cluster memory access time. Delay from address to read data out  
Write enable pulse width  
CLMAA  
CLMPWE  
CLMSA  
CLMHA  
CLMSD  
CLMHD  
Address setup to the beginning of write  
Address hold after the end of write  
Data set-up to the end of write  
Data hold after the end of write  
Synchronous Mode Parameters  
t
t
t
t
t
t
Clock cycle time for flow-through read and write operations  
Clock cycle time for pipelined read and write operations  
CLMCYC1  
CLMCYC2  
CLMS  
Address, data, and WE set-up time of pin inputs, relative to a global clock  
Address, data, and WE hold time of pin inputs, relative to a global clock  
Global clock to data valid on output pins for flow through data  
Global clock to data valid on output pins for pipelined data  
CLMH  
CLMDV1  
CLMDV2  
Internal Parameters  
t
t
Asynchronous cluster memory access time from input of cluster to output of cluster  
CLMCLAA  
Internal clock cycle time for pipelined read and write operations. It includes the delay from a global clock,  
through the cluster memory and set-up into the cluster memory output register  
CLMCYC3  
t
t
t
t
Cluster memory input clock to macrocell clock  
Cluster memory output clock to macrocell clock  
Macrocell clock to cluster memory input clock  
Macrocell clock to cluster memory output clock  
CLMMACS1  
CLMMACS2  
MACCLMS1  
MACCLMS2  
Note:  
9. Add tCHSW to signals making a horizontal to vertical channel switch or vice-versa,  
18  
Delta39KISR™  
CPLD Family  
PRELIMINARY  
Channel Memory Timing Parameter Descriptions Over the Operating Range  
Parameter  
Description  
Dual Port Asynchronous Mode Parameters  
t
t
t
t
t
t
Channel memory access time. Delay from address to read data out  
Write enable pulse width  
CHMAA  
CHMPWE  
CHMSA  
CHMSD  
CHMHD  
CHMBA  
Address setup to the beginning of write  
Data set-up to the end of write  
Data hold after the end of write  
Channel memory asynchronous dual port address match (busy access time)  
Dual Port Synchronous Mode Parameters  
t
t
t
t
t
t
t
Clock cycle time for flow through read and write operations  
CHMCYC1  
CHMCYC2  
CHMS  
Clock cycle time for pipelined read and write operations  
Address, data, and WE set-up time of pin inputs, relative to a global clock  
Address, data, and WE hold time of pin inputs, relative to a global clock  
Global clock to data valid on output pins for flow through data  
Global clock to data valid on output pins for pipelined data.  
CHMH  
CHMDV1  
CHMDV2  
CHMBDV  
Channel memory synchronous dual-port address match (busy, clock to data valid)  
Synchronous FIFO Data Parameters  
t
t
t
t
t
t
Read and write minimum clock cycle time  
CHMCLK  
CHMFS  
Data, read enable, and write enable set-up time relative to pin inputs  
Data, read enable, and write enable hold time relative to pin inputs  
Data access time to output pins from rising edge of read clock (read clock to data valid)  
Channel memory FIFO read clock to macrocell clock with read data  
Macrocell clock to channel memory FIFO write clock with write data  
CHMFH  
CHMFRDV  
CHMMACS  
MACCHMS  
Synchronous FIFO Flag Parameters  
t
t
t
t
t
t
t
t
Read or write clock to respective flag output at output pins  
Read or write clock to macrocell clock with FIFO flag  
Master Reset Pulse Width  
CHMFO  
CHMMACF  
CHMFRS  
Master Reset Recovery Time  
CHMFRSR  
CHMFRSF  
CHMSKEW1  
CHMSKEW2  
CHMSKEW3  
Master Reset to Flag and Data Output Time  
Read/Write Clock Skew Time for Full Flag  
Read/Write Clock Skew Time for Empty Flag  
Read/Write Clock Skew Time for Boundary Flags  
Internal Parameters  
t
Asynchronous channel memory access time from input of channel memory to output of channel memory  
CHMCHAA  
CHMCYC3  
Internal pipelined memory access time. The delay from a global clock, through the channel memory and  
setup into the channel memory output register  
t
t
t
t
t
Channel memory input clock to macrocell clock  
Channel memory output clock to macrocell clock  
Macrocell clock to channel memory input clock  
Macrocell clock to channel memory output clock  
CHMMACS1  
CHMMACS2  
MACCHMS1  
MACCHMS2  
19  
Delta39KISR™  
CPLD Family  
PRELIMINARY  
Switching Characteristics - Parameter Values Over the Operating Range  
125  
83  
250  
222  
200  
181  
167  
154  
Parameter Min. Max. Min. Max. Min. Max. Min. Max. Min. Max. Min. Max. Min. Max. Min. Max. Unit  
Combinatorial Mode Parameters  
t
t
t
t
t
6.5  
4.0  
4.0  
7.0  
4.5  
4.5  
7.5  
5.0  
5.0  
8.0  
5.5  
5.5  
8.5  
6.5  
6.5  
9.0  
7.5  
7.5  
10  
9.0  
9.0  
15  
10  
10  
ns  
ns  
ns  
ns  
ns  
PD  
EA  
ER  
6.0  
9.0  
6.0  
9.5  
6.0  
10  
6.0  
6.0  
11  
7.0  
12  
8.0  
13  
10  
15  
PRR  
PRO  
10.5  
Synchronous Clocking Parameters  
t
t
t
t
t
t
t
t
t
t
t
t
f
f
2.5  
0.0  
2.7  
0.0  
3.0  
0.0  
3.3  
0.0  
3.5  
0.0  
4.0  
0.0  
5.0  
0.0  
6.0  
0.0  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
MCS  
MCH  
MCCO  
IOS  
5.0  
3.2  
5.5  
3.6  
6.0  
4.0  
6.5  
4.5  
7.5  
5.0  
8.5  
6.0  
10  
12  
0.8  
0.8  
0.9  
0.9  
1.0  
1.0  
1.2  
1.2  
1.4  
1.4  
1.7  
1.7  
2.0  
2.0  
2.5  
2.5  
IOH  
7.0  
8.0  
IOCO  
SCS  
SCS2  
ICS  
3.2  
4.0  
4.0  
4.0  
3.6  
4.5  
4.5  
4.5  
4.0  
5.0  
5.0  
5.0  
4.4  
5.5  
5.5  
5.5  
4.8  
6.0  
6.0  
6.0  
5.2  
6.5  
6.5  
6.5  
6.4  
8.0  
8.0  
8.0  
9.6  
12  
12  
12  
OCS  
CHZ  
CLZ  
3.0  
3.3  
3.5  
4.0  
4.5  
5.0  
6.0  
7.0  
1.6  
1.8  
2.0  
2.4  
2.8  
3.2  
3.6  
4.0  
313  
250  
278  
222  
250  
200  
227  
181  
208  
167  
192  
154  
156  
125  
104 MHz  
83 MHz  
MAX  
MAX2  
Product Term Clocking Parameters  
t
t
t
t
2.5  
0.8  
2.7  
0.9  
3.0  
3.3  
1.2  
3.5  
4.0  
5.0  
6.0  
ns  
ns  
MCSPT  
MCHPT  
MCCOPT  
SCS2PT  
1.0  
1.4  
1.7  
2.0  
2.5  
7.0  
7.5  
8.0  
8.5  
9.0  
10.0  
11.0  
15.0  
ns  
ns  
5.5  
6.0  
6.5  
7.0  
7.5  
9.0  
10.0  
15.0  
Channel Interconnect Parameters  
t
t
0.8  
1.6  
0.9  
1.8  
1.0  
2.0  
1.1  
2.2  
1.2  
2.4  
1.4  
2.6  
1.7  
2.8  
2.0  
3.0  
ns  
ns  
CHSW  
CL2CL  
Miscellaneous Parameters  
t
t
2.5  
0.2  
2.8  
3.0  
3.3  
3.5  
3.8  
4.0  
5.0  
ns  
ns  
CPLD  
0.22  
0.25  
0.28  
0.30  
0.32  
0.35  
0.38  
MCCD  
PLL Parameters  
t
t
t
t
f
f
0.45  
0.32  
0.32  
3.0  
0.48  
0.33  
0.33  
3.0  
0.50  
0.35  
0.35  
3.0  
0.53  
0.37  
0.37  
3.0  
0.55  
0.39  
0.39  
3.0  
0.58  
0.40  
0.40  
3.0  
0.60  
0.42  
0.42  
3.0  
0.65  
0.46  
0.46  
3.0  
ns  
ns  
MCCJ  
DWSA  
DWOSA  
LOCK  
ns  
ms  
[10]  
6.2 266 6.2 266 6.2 266 6.2 266 6.2 266 6.2 266 6.2  
25 133 25 133 25 133 25 133 25 133 25 133 25  
200 6.2 200 MHz  
100 25 100 MHz  
PLLO  
[10]  
PLLI  
Note:  
10. Refer to page 11 and the application note titled Delta39K PLL and Clock Treefor details on the PLL operation & specification  
20  
Delta39KISR™  
CPLD Family  
PRELIMINARY  
Input & Output Standard Timing Delay Adjustments  
[11]  
All the timing specifications in this data sheet are specified based on 3.3V PCI compliant inputs and outputs (fast slew rates ).  
Apply following adjustments if the inputs and outputs are configured to operate at other standards.  
Output Delay Adjustments  
Input Delay Adjustments  
Input/Output  
Standard  
t
t
t
t
t
t
IOREGPIN  
IOD  
EA  
ER  
IOIN  
CKIN  
LVTTL  
0.2  
0.2  
0.3  
0.5  
2.1  
0
0
0
0
0
0
LVCMOS  
LVCMOS3  
LVCMOS2  
LVCMOS18  
3.3V PCI  
GTL+  
0
0
0
0
0
0.05  
0.1  
0.7  
0
0
0.1  
0.2  
0.5  
0
0.1  
0.2  
0.4  
0
0.2  
0.4  
0.3  
0
0
0.1  
0
[12]  
[12]  
[12]  
0.6  
0.6  
0.3  
0.2  
0.4  
0.2  
0.9  
0.8  
0.5  
0.6  
0.9  
0.1  
0
0.5  
0.5  
0.5  
0.9  
0.9  
0.5  
0.5  
0.5  
0.5  
0.4  
0.3  
0.3  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.2  
0.3  
0.3  
0.6  
0.6  
0.3  
0.3  
0.3  
0.3  
SSTL3 I  
SSTL3 II  
SSTL2 I  
SSTL2 II  
HSTL I  
-0.3  
-0.4  
-0.1  
-0.2  
0.6  
0
0
0.5  
0.5  
0.1  
0
HSTL II  
0.4  
HSTL III  
0.6  
HSTL IV  
0.7  
Notes:  
11. For slow slew rateoutput delay adjustments, refer to Warp softwares static timing analyzer results.  
12. These delays are based on falling edge output. The rising edge delay depends on the size of pull up resistor and termination voltage.  
21  
Delta39KISR™  
CPLD Family  
PRELIMINARY  
Cluster Memory Timing Parameter Values Over the Operating Range  
83  
250  
222  
200  
181  
167  
154  
125  
Parameter Min. Max. Min. Max. Min. Max. Min. Max. Min. Max. Min. Max. Min. Max. Min. Max. Unit  
Asynchronous Mode Parameters  
t
t
t
t
t
t
9.0  
10  
11  
12  
13  
15  
17  
20  
ns  
ns  
ns  
ns  
ns  
ns  
CLMAA  
CLMPWE  
CLMSA  
CLMHA  
CLMSD  
CLMHD  
5.0  
1.6  
0.8  
5.0  
0.3  
5.5  
1.8  
0.9  
5.5  
0.4  
6.0  
2.0  
1.0  
6.0  
0.5  
6.5  
2.2  
1.1  
6.5  
0.6  
7.0  
2.5  
1.2  
7.0  
0.7  
8.0  
2.8  
1.5  
8.0  
0.8  
10  
3.2  
1.8  
10  
12  
4.0  
2.0  
12  
0.9  
1.0  
Synchronous Mode Parameters  
t
t
t
t
t
t
9.0  
6.5  
2.5  
0.0  
9.5  
7.0  
2.7  
0.0  
10  
10.5  
8.0  
11  
9.5  
3.5  
0.0  
13  
11  
15  
12  
20  
15  
ns  
ns  
ns  
ns  
ns  
ns  
CLMCY1  
CLMCY2  
CLMS  
7.5  
3.0  
0.0  
3.3  
3.8  
0.0  
4.0  
0.0  
5.0  
0.0  
0.0  
CLMH  
9.0  
6.5  
10  
11  
12  
13  
15  
17  
10  
20  
15  
CLMDV1  
CLMDV2  
7.0  
7.5  
8.0  
8.5  
9.0  
Internal Parameters  
t
t
t
t
t
t
5.0  
4.0  
7.0  
4.0  
3.2  
5.5  
5.5  
4.5  
7.5  
4.5  
3.6  
6.0  
6.0  
5.0  
8.0  
5.0  
4.0  
6.5  
6.5  
5.5  
8.5  
5.5  
4.4  
7.0  
7.0  
6.0  
9.0  
6.0  
4.8  
7.5  
8.0  
7.0  
10  
10  
8.0  
12  
12  
10.0  
15  
ns  
ns  
ns  
ns  
ns  
ns  
CLMCLAA  
CLMCYC3  
CLMMACS1  
CLMMACS2  
MACCLMS1  
MACCLMS2  
7.0  
5.5  
8.5  
8.0  
6.6  
10  
10  
8.0  
12  
22  
Delta39KISR™  
CPLD Family  
PRELIMINARY  
Channel Memory Timing Parameter Values  
83  
250  
222  
200  
181  
167  
154  
125  
Parameter Min. Max. Min. Max. Min. Max. Min. Max. Min. Max. Min. Max. Min. Max. Min. Max. Unit  
Dual-Port Asynchronous Mode Parameters  
t
t
t
t
t
t
t
9.0  
10  
11  
12  
13  
15  
17  
20  
ns  
ns  
ns  
ns  
ns  
ns  
CHMAA  
CHMPWE  
CHMSA  
CHMHA  
CHMSD  
CHMHD  
CHMBA  
5.0  
1.6  
0.8  
5.0  
0.3  
5.5  
1.8  
0.9  
5.5  
0.4  
6.0  
2.0  
1.0  
6.0  
0.5  
6.5  
2.2  
1.1  
6.5  
0.6  
7.0  
2.5  
1.2  
7.0  
0.7  
8.0  
2.8  
1.5  
8.0  
0.8  
10  
3.2  
1.8  
10  
12  
4.0  
2.0  
12  
0.9  
1.0  
8.0  
8.5  
9.0  
10.0  
11.0  
12.0  
14.0  
16.0 ns  
Dual-Port Synchronous Mode Parameters  
t
t
t
t
t
t
9.0  
6.5  
2.7  
0.0  
9.5  
7.0  
3.0  
0.0  
10  
10  
8.0  
3.5  
0.0  
11  
9.5  
4.0  
0.0  
13  
11  
15  
12  
20  
15  
ns  
ns  
ns  
ns  
CHMCYC1  
CHMCYC2  
CHMS  
7.5  
3.3  
0.0  
4.5  
0.0  
5.0  
0.0  
6.0  
0.0  
CHMH  
9.0  
6.5  
10  
11  
12  
13  
15  
17  
10  
20  
15  
ns  
ns  
CHMDV1  
CHMDV2  
7.0  
7.5  
8.0  
8.5  
9.0  
Synchronous FIFO Data Parameters  
t
t
t
t
t
t
4.2  
3.5  
0.0  
6.0  
4.2  
4.2  
4.6  
3.7  
0.0  
6.5  
4.6  
4.6  
5.0  
4.0  
0.0  
7.0  
5.0  
5.0  
5.4  
4.3  
0.0  
7.5  
5.4  
5.4  
5.8  
4.5  
0.0  
8.0  
5.8  
5.8  
6.2  
5.0  
0.0  
9.0  
6.2  
6.2  
7.4  
6.0  
10.6  
7.0  
ns  
ns  
ns  
CHMCLK  
CHMFS  
0.0  
0.0  
CHMFH  
10.0  
7.4  
13.0  
10.6  
10.6  
CHMFRDV  
CHMMACS  
MACCHMS  
ns  
ns  
7.4  
Synchronous FIFO Flag Parameters  
t
t
t
t
t
t
t
t
10.0  
8.0  
10.5  
8.5  
11  
9
11.5  
9.5  
12  
10  
13  
11  
15  
13  
20  
17  
10  
ns  
ns  
ns  
ns  
CHMFO  
CHMMACF  
CHMFRS  
4.0  
4.5  
5.0  
5.5  
6.0  
7.0  
8.0  
3.2  
9.0  
1.6  
1.6  
4.2  
3.6  
9.5  
1.8  
1.8  
4.6  
4.0  
10.0  
2.0  
4.4  
11.0  
2.2  
4.8  
12.0  
2.4  
5.5  
13.0  
2.6  
6.6  
15.0  
3.2  
8.0  
CHMFRSR  
CHMFRSF  
CHMSKEW1  
CHMSKEW2  
CHMSKEW3  
18.0 ns  
4.0  
4.0  
ns  
ns  
2.0  
2.2  
2.4  
2.6  
3.2  
5.0  
5.4  
5.8  
6.2  
7.4  
10.6 ns  
Internal Parameters  
t
t
t
t
t
t
6.0  
4.2  
8.0  
4.0  
4.2  
6.0  
6.5  
4.6  
8.5  
4.5  
4.6  
6.5  
7.0  
5.0  
9.0  
5.0  
5.0  
7.0  
7.5  
5.4  
8.0  
5.8  
11.0  
6.0  
5.8  
8.0  
9.0  
6.2  
12.0  
7.0  
6.5  
9.0  
10.0  
7.4  
13.0  
10.6  
16.0  
10  
ns  
ns  
ns  
ns  
ns  
ns  
CHMCHAA  
CHMCYC3  
10.0  
5.5  
14.0  
8.0  
CHMMACS1  
CHMMACS2  
MACCHMS1  
MACCHMS2  
5.4  
7.6  
9.0  
7.5  
10.0  
13.0  
23  
Delta39KISR™  
CPLD Family  
PRELIMINARY  
Switching Waveforms  
Combinatorial Output  
INPUT  
tPD  
COMBINATORIAL  
OUTPUT  
Delta39K-1  
Registered Output with Synchronous Clocking (Macrocell)  
INPUT  
tMCS  
tM C H  
SYNCHRONOUS  
CLOCK  
tWH  
tWL  
REGISTERED  
OUTPUT  
tMCC0  
Delta39K-2  
Registered Input in I/O Cell  
REGISTERED  
INPUT  
tIOH  
tIOS  
INPUT REGISTER  
CLOCK  
tIOCO  
COMBINATORIAL  
OUTPUT  
Delta39K-3  
24  
Delta39KISR™  
CPLD Family  
PRELIMINARY  
Switching Waveforms (continued)  
Clock to Clock  
INPUT REGISTER  
CLOCK  
tICS  
tSCS  
OUTPUT  
REGISTER CLOCK  
Delta39K-4  
PT Clock to PT Clock  
PT CLOCK  
tMCSPT  
tSCS2PT  
MACROCELL  
REGISTER CLOCK  
Delta39K-5  
Asynchronous Reset/Preset  
tPRW  
RESET/PRESET  
INPUT  
tPRO  
REGISTERED  
OUTPUT  
tPRR  
CLOCK  
Delta39K-6  
Output Enable/Disable  
GLOBAL CONTROL  
INPUT  
tER  
tEA  
OUTPUTS  
Delta39K-7  
25  
Delta39KISR™  
CPLD Family  
PRELIMINARY  
Switching Waveforms (continued)  
Cluster Memory Asynchronous Timing  
WRITE  
READ  
READ  
ADDRESS (AT  
THE CLUSTER  
INPUT)  
WRITE ENABLE  
tCLMPWE  
INPUT  
tCLMCLAA  
tCLMCLAA  
OUTPUT  
Delta39K-8  
Cluster Memory Asynchronous Timing 2  
WRITE  
READ  
READ  
ADDRESS (AT THE  
I/O PIN)  
tCLMHA  
tCLMSA  
WRITE ENABLE  
tCLMPWE  
INPUT  
tCLMHD  
tCLMSD  
tCLMAA  
tCLMAA  
OUTPUT  
Delta39K-9  
26  
Delta39KISR™  
CPLD Family  
PRELIMINARY  
Switching Waveforms (continued)  
Cluster Memory Synchronous Timing  
READ  
WRITE  
READ  
GLOBAL  
CLOCK  
tCLMCYC1  
tCLMS  
tCLMH  
ADDRESS  
tCLMS  
tCLMH  
tCLMS  
tCLMH  
WRITE  
ENABLE  
REGISTERED  
INPUT  
tCLMDV1  
tCLMDV1  
tCLMDV1  
REGISTERED  
OUTPUT  
Delta39K-10  
Cluster Memory Internal Clocking  
MACROCELL  
INPUT CLOCK  
tCLMMACS1  
tCLMMACS1  
CLUSTER MEMORY  
INPUT CLOCK  
tCLMMACS2  
tCLMMACS2  
CLUSTER MEMORY  
OUTPUT CLOCK  
Delta39K-11  
27  
Delta39KISR™  
CPLD Family  
PRELIMINARY  
Switching Waveforms (continued)  
Cluster Memory Output Register Timing (Asynchronous Inputs)  
ADDRESS  
WRITE  
ENABLE  
INPUT  
tCLMCYC3  
GLOBAL CLOCK  
(OUTPUT REGISTER)  
tCLMDV2  
EGISTERED  
OUTPUT  
Delta39K-12  
Cluster Memory Output Register Timing (Synchronous Inputs)  
ADDRESS  
WRITE  
ENABLE  
INPUT  
tCLMCYC2 (external) / tCLMCYC3 (internal)  
GLOBAL CLOCK  
(INPUT REGISTER)  
tCLMS  
tCLMH  
GLOBAL CLOCK  
(OUTPUT REGISTER)  
tCLMDV2  
REGISTERED  
OUTPUT  
Delta39K-13  
28  
Delta39KISR™  
CPLD Family  
PRELIMINARY  
Switching Waveforms (continued)  
Channel Memory DP Asynchronous Timing  
ADDRESS  
tCHMHA  
tCHMSA  
tCHMPWE  
WRITE  
ENABLE  
tCHMSD  
tCHMHD  
INPUT  
tCHMAA  
tCHMAA  
OUTPUT  
Delta39K-14  
Channel Memory Internal Clocking  
MACROCELL INPUT  
CLOCK  
tMACCHMS1  
tCHMMACS1  
CHANNEL MEMORY  
INPUT CLOCK  
tCHMMACS2  
tMACCHMS2  
CHANNEL MEMORY  
OUTPUT CLOCK  
Delta39K-15  
29  
Delta39KISR™  
CPLD Family  
PRELIMINARY  
Switching Waveforms (continued)  
Channel Memory Internal Clocking 2  
MACROCELL INPUT  
CLOCK  
tCHMMACS  
CHANNEL MEMORY  
INPUT CLOCK  
tMACCHMS  
CHANNEL MEMORY  
OUTPUT CLOCK  
tCHMMACF  
FIFO READ OR  
WRITE CLOCK  
Delta39K-16  
Channel Memory DP SRAM Flow Through R/W Timing  
CLOCK  
tCHMCYC1  
tCHMS  
tCHMH  
An+1  
An  
An+2  
ADDRESS  
An+3  
WRITE  
ENABLE  
tCHMS  
tCHMH  
EGISTERED  
NPUT  
Dn+1  
tCHMDV1  
tCHMDV1  
REGISTERED  
OUTPUT  
Dn+2  
Dn  
Delta39K-17  
30  
Delta39KISR™  
CPLD Family  
PRELIMINARY  
Switching Waveforms (continued)  
Channel Memory DP SRAM Pipeline R/W Timing  
CLOCK  
tCHMCYC2  
tCHMS  
tCHMH  
ADDRESS  
An+1  
An  
An+2  
An+3  
tCHMH  
tCHMS  
WRITE  
ENABLE  
tCHMH  
tCHMS  
REGISTERED  
INPUT  
Dn+1  
tCHMDV2  
REGISTERED  
OUTPUT  
Dn-1  
Delta39K-18  
31  
Delta39KISR™  
CPLD Family  
PRELIMINARY  
Switching Waveforms (continued)  
Channel Memory Synchronous FIFO Empty/Write Timing  
PORT B CLOCK  
tCHMCLK  
tCHMFS  
tCHMFH  
WRITE ENABLE  
REGISTERED  
INPUT  
Dn+1  
EMPTY FLAG  
(active low)  
tCHMSKEW2  
tCHMFO  
tCHMFO  
PORT A CLOCK  
READ ENABLE  
RE  
tCHMFRDV  
REGISTERED  
OUTPUT  
Delta39K-19  
32  
Delta39KISR™  
CPLD Family  
PRELIMINARY  
Switching Waveforms (continued)  
Channel Memory Synchronous FIFO Full/Read Timing  
PORT A CLOCK  
tCHMCLK  
tCHMFS  
tCHMFH  
READ ENABLE  
tCHMFRDV  
REGISTERED  
OUTPUT  
FULL FLAG  
(active low)  
tCHMFO  
tCHMSKEW1 tCHMFO  
PORT B CLOCK  
WRITE ENABLE  
tCHMS  
tCHMH  
REGISTERED  
INPUT  
Delta39K-20  
33  
Delta39KISR™  
CPLD Family  
PRELIMINARY  
Switching Waveforms (continued)  
Channel Memory Synchronous FIFO Programmable Flag Timing  
PORT B CLOCK  
tCHMCLK  
tCHMFH  
tCHMFS  
WRITE ENABLE  
PROGRAMMABLE  
ALMOST-EMPTY FLAG  
(active LOW)  
tCHMSKEW3  
tCHMFO  
tCHMFO  
PORT A CLOCK  
READ ENABLE  
tCHMFH  
tCHMFS  
PORT B CLOCK  
tCHMCLK  
WRITE ENABLE  
tCHMFO  
tCHMFO  
PROGRAMMABLE  
ALMOST-FULL FLAG  
(active LOW)  
tCHMSKEW3  
PORT A CLOCK  
READ ENABLE  
Delta39K-21  
34  
Delta39KISR™  
CPLD Family  
PRELIMINARY  
Switching Waveforms (continued)  
Channel Memory Synchronous FIFO Master Reset Timing  
tCHMFRS  
MASTER  
RESET INPUT  
tCHMFRSR  
READ ENABLE /  
WRITE ENABLE  
tCHMFRSF  
EMPTY/FULL  
PROGRAMMABLE  
ALMOST EMPTY  
FLAGS  
tCHMFRSF  
HALF-FULL/  
PROGRAMMABLE  
ALMOST FULL  
FLAGS  
tCHMFRSF  
REGISTERED  
OUTPUT  
Delta39K-22  
35  
Delta39KISR™  
CPLD Family  
PRELIMINARY  
C Y 3 9 1 0 0 V 6 7 6 - 2 0 0 M B C  
Cypress Semiconductor ID  
Family Type  
39 = Delta39K Family  
Operating Conditions  
Commercial  
Industrial  
0°C to +70°C  
-40°C to +85°C  
Gate Density  
15=15k Usable Gates  
30=30k Usable Gates  
50=50k Usable Gates  
165=165k Usable Gates  
200=200k Usable Gates  
250=250k Usable Gates  
Package Type  
N
= Plastic Quad Flat Pack (PQFP)  
NT = Thermally Enhanced Quad Flat Pack (EQFP)  
BG = Ball Grid Array (BGA)  
BB = Fine-Pitch Ball Grid Array (FBGA)  
1.0-mm Lead Pitch  
MG = One Chip Solution - Ball Grid Array  
MB = One Chip Solution - Fine Pitch Ball Grid Array  
1.0-mm Lead Pitch  
100=100k Usable Gates 350=350k Usable Gates  
Operating Reference Voltage  
V = 3.3V or 2.5V Supply Voltage  
Z = 1.8V  
Supply Voltage  
Pin Count  
144 = 144 Balls  
208 = 208 Leads  
256 = 256 Balls  
388 = 388 Balls  
484 = 484 Balls  
676 = 676 Balls  
Speed  
250 = 250 MHz  
222 = 222 MHz  
200 = 200 MH  
181 = 181 MHz  
167 = 167 MHz  
154 = 154 MHz  
125 = 125 MHz  
83 = 83 MHz  
Delta39K Pin Table  
Please refer to document titled Delta39K Pin Tablesfor pinouts of all the packages of all Delta39K family members. You can  
access this document on the internet at: http://www.cypress.com/pld/datasheets.html.  
Delta39K Part Numbers (Ordering Information)  
Speed  
(MHz)  
Package  
Name  
Self-Boot  
Solution  
Operating  
Range  
Device  
Ordering Code  
Package Type  
39K15  
250  
CY39015V208-250NTC  
CY39015Z208-250NC  
CY39015V144-250BBC  
CY39015Z144-250BBC  
CY39015V256-250BBC  
CY39015Z256-250BBC  
CY39015V256-250MBC  
CY39015Z256-250MBC  
CY39015V208-125NTC  
CY39015Z208-125NC  
CY39015V144-125BBC  
CY39015Z144-125BBC  
CY39015V256-125BBC  
CY39015Z256-125BBC  
CY39015V256-125MBC  
CY39015Z256-125MBC  
NT208  
N208  
208-Lead Enhanced Quad Flat Pack  
208-Lead Plastic Quad Flat Pack  
144-Lead Fine Pitch Ball Grid Array  
144-Lead Fine Pitch Ball Grid Array  
256-Lead Fine Pitch Ball Grid Array  
256-Lead Fine Pitch Ball Grid Array  
Commercial  
BB144  
BB144  
BB256  
BB256  
MB256 256-Lead Fine Pitch Ball Grid Array  
MB256 256-Lead Fine Pitch Ball Grid Array  
125  
NT208  
N208  
208-Lead Enhanced Quad Flat Pack  
208-Lead Plastic Quad Flat Pack  
144-Lead Fine Pitch Ball Grid Array  
144-Lead Fine Pitch Ball Grid Array  
256-Lead Fine Pitch Ball Grid Array  
256-Lead Fine Pitch Ball Grid Array  
BB144  
BB144  
BB256  
BB256  
MB256 256-Lead Fine Pitch Ball Grid Array  
MB256 256-Lead Fine Pitch Ball Grid Array  
36  
Delta39KISR™  
CPLD Family  
PRELIMINARY  
Delta39K Part Numbers (Ordering Information) (continued)  
Speed  
(MHz)  
Package  
Name  
Self-Boot  
Solution  
Operating  
Range  
Device  
Ordering Code  
Package Type  
39K15  
125  
CY39015V208-125NTI  
CY39015Z208-125NI  
CY39015V144-125BBI  
CY39015Z144-125BBI  
CY39015V256-125BBI  
CY39015Z256-125BBI  
CY39015V256-125MBI  
CY39015Z256-125MBI  
CY39015V208-83NTC  
CY39015Z208-83NC  
CY39015V144-83BBC  
CY39015Z144-83BBC  
CY39015V256-83BBC  
CY39015Z256-83BBC  
CY39015V256-83MBC  
CY39015Z256-83MBC  
CY39015V208-83NTI  
CY39015Z208-83NI  
NT208  
N208  
208-Lead Enhanced Quad Flat Pack  
208-Lead Plastic Quad Flat Pack  
144-Lead Fine Pitch Ball Grid Array  
144-Lead Fine Pitch Ball Grid Array  
256-Lead Fine Pitch Ball Grid Array  
256-Lead Fine Pitch Ball Grid Array  
Industrial  
Commercial  
Industrial  
BB144  
BB144  
BB256  
BB256  
MB256 256-Lead Fine Pitch Ball Grid Array  
MB256 256-Lead Fine Pitch Ball Grid Array  
83  
NT208  
N208  
208-Lead Enhanced Quad Flat Pack  
208-Lead Plastic Quad Flat Pack  
144-Lead Fine Pitch Ball Grid Array  
144-Lead Fine Pitch Ball Grid Array  
256-Lead Fine Pitch Ball Grid Array  
256-Lead Fine Pitch Ball Grid Array  
BB144  
BB144  
BB256  
BB256  
MB256 256-Lead Fine Pitch Ball Grid Array  
MB256 256-Lead Fine Pitch Ball Grid Array  
NT208  
N208  
208-Lead Plastic Quad Flat Pack  
208-Lead Enhanced Quad Flat Pack  
144-Lead Fine Pitch Ball Grid Array  
144-Lead Fine Pitch Ball Grid Array  
256-Lead Fine Pitch Ball Grid Array  
256-Lead Fine Pitch Ball Grid Array  
CY39015V144-83BBI  
CY39015Z144-83BBI  
CY39015V256-83BBI  
CY39015Z256-83BBI  
CY39015V256-83MBI  
CY39015Z256-83MBI  
CY39030V208-222NTC  
CY39030Z208-222NC  
CY39030V144-222BBC  
CY39030Z144-222BBC  
CY39030V256-222BBC  
CY39030Z256-222BBC  
CY39030V256-222MBC  
CY39030Z256-222MBC  
CY39030V208-125NTC  
CY39030Z208-125NC  
CY39030V144-125BBC  
CY39030Z144-125BBC  
CY39030V256-125BBC  
CY39030Z256-125BBC  
CY39030V256-125MBC  
CY39030Z256-125MBC  
BB144  
BB144  
BB256  
BB256  
MB256 256-Lead Fine Pitch Ball Grid Array  
MB256 256-Lead Fine Pitch Ball Grid Array  
39K30  
222  
NT208  
N208  
208-Lead Enhanced Quad Flat Pack  
208-Lead Plastic Quad Flat Pack  
144-Lead Fine Pitch Ball Grid Array  
144-Lead Fine Pitch Ball Grid Array  
256-Lead Fine Pitch Ball Grid Array  
256-Lead Fine Pitch Ball Grid Array  
Commercial  
BB144  
BB144  
BB256  
BB256  
MB256 256-Lead Fine Pitch Ball Grid Array  
MB256 256-Lead Fine Pitch Ball Grid Array  
125  
NT208  
N208  
208-Lead Enhanced Quad Flat Pack  
208-Lead Plastic Quad Flat Pack  
144-Lead Fine Pitch Ball Grid Array  
144-Lead Fine Pitch Ball Grid Array  
256-Lead Fine Pitch Ball Grid Array  
256-Lead Fine Pitch Ball Grid Array  
BB144  
BB144  
BB256  
BB256  
MB256 256-Lead Fine Pitch Ball Grid Array  
MB256 256-Lead Fine Pitch Ball Grid Array  
37  
Delta39KISR™  
CPLD Family  
PRELIMINARY  
Delta39K Part Numbers (Ordering Information) (continued)  
Speed  
(MHz)  
Package  
Name  
Self-Boot  
Solution  
Operating  
Range  
Device  
Ordering Code  
Package Type  
39K30  
125  
CY39030V208-125NTI  
CY39030Z208-125NI  
CY39030V144-125BBI  
CY39030Z144-125BBI  
CY39030V256-125BBI  
CY39030Z256-125BBI  
CY39030V256-125MBI  
CY39030Z256-125MBI  
CY39030V208-83NTC  
CY39030Z208-83NC  
CY39030V144-83BBC  
CY39030Z144-83BBC  
CY39030V256-83BBC  
CY39030Z256-83BBC  
CY39030V256-83MBC  
CY39030Z256-83MBC  
CY39030V208-83NTI  
CY39030Z208-83NI  
NT208  
N208  
208-Lead Enhanced Quad Flat Pack  
208-Lead Plastic Quad Flat Pack  
144-Lead Fine Pitch Ball Grid Array  
144-Lead Fine Pitch Ball Grid Array  
256-Lead Fine Pitch Ball Grid Array  
256-Lead Fine Pitch Ball Grid Array  
Industrial  
Commercial  
Industrial  
BB144  
BB144  
BB256  
BB256  
MB256 256-Lead Fine Pitch Ball Grid Array  
MB256 256-Lead Fine Pitch Ball Grid Array  
83  
NT208  
N208  
208-Lead Enhanced Quad Flat Pack  
208-Lead Plastic Quad Flat Pack  
144-Lead Fine Pitch Ball Grid Array  
144-Lead Fine Pitch Ball Grid Array  
256-Lead Fine Pitch Ball Grid Array  
256-Lead Fine Pitch Ball Grid Array  
BB144  
BB144  
BB256  
BB256  
MB256 256-Lead Fine Pitch Ball Grid Array  
MB256 256-Lead Fine Pitch Ball Grid Array  
NT208  
N208  
208-Lead Plastic Quad Flat Pack  
208-Lead Enhanced Quad Flat Pack  
144-Lead Fine Pitch Ball Grid Array  
144-Lead Fine Pitch Ball Grid Array  
256-Lead Fine Pitch Ball Grid Array  
256-Lead Fine Pitch Ball Grid Array  
CY39030V144-83BBI  
CY39030Z144-83BBI  
CY39030V256-83BBI  
CY39030Z256-83BBI  
CY39030V256-83MBI  
CY39030Z256-83MBI  
CY39050V208-222NTC  
CY39050Z208-222NC  
CY39050V256-222BBC  
CY39050Z256-222BBC  
CY39050V388-222MGC  
CY39050Z388-222MGC  
CY39050V484-222MBC  
CY39050Z484-222MBC  
CY39050V208-125NTC  
CY39050Z208-125NC  
CY39050V256-125BBC  
CY39050Z256-125BBC  
CY39050V388-125MBC  
CY39050Z388-125MBC  
CY39050V484-125MBC  
CY39050Z484-125MBC  
BB144  
BB144  
BB256  
BB256  
MB256 256-Lead Fine Pitch Ball Grid Array  
MB256 256-Lead Fine Pitch Ball Grid Array  
39K50  
222  
NT208  
N208  
208-Lead Enhanced Quad Flat Pack  
208-Lead Plastic Quad Flat Pack  
256-Lead Fine Pitch Ball Grid Array  
256-Lead Fine Pitch Ball Grid Array  
Commercial  
BB256  
BB256  
MG388 388-Lead Ball Grid Array  
MG388 388-Lead Ball Grid Array  
MB484 484-Lead Fine Pitch Ball Grid Array  
MB484 484-Lead Fine Pitch Ball Grid Array  
125  
NT208  
N208  
208-Lead Enhanced Quad Flat Pack  
208-Lead Plastic Quad Flat Pack  
256-Lead Fine Pitch Ball Grid Array  
256-Lead Fine Pitch Ball Grid Array  
BB256  
BB256  
MG388 388-Lead Fine Pitch Ball Grid Array  
MG388 388-Lead Fine Pitch Ball Grid Array  
MB484 484-Lead Fine Pitch Ball Grid Array  
MB484 484-Lead Fine Pitch Ball Grid Array  
38  
Delta39KISR™  
CPLD Family  
PRELIMINARY  
Delta39K Part Numbers (Ordering Information) (continued)  
Speed  
(MHz)  
Package  
Name  
Self-Boot  
Solution  
Operating  
Range  
Device  
Ordering Code  
Package Type  
39K50  
125  
CY39050V208-125NTI  
CY39050Z208-125NI  
CY39050V256-125BBI  
CY39050Z256-125BBI  
CY39050V388-125MBI  
CY39050Z388-125MBI  
CY39050V484-125MBI  
CY39050Z484-125MBI  
CY39050V208-83NTC  
CY39050Z208-83NC  
CY39050V256-83BBC  
CY39050Z256-83BBC  
CY39050V388-83MGC  
CY39050Z388-83MGC  
CY39050V484-83MBC  
CY39050Z484-83MBC  
CY39050V208-83NTI  
CY39050Z208-83NI  
NT208  
N208  
208-Lead Enhanced Quad Flat Pack  
208-Lead Plastic Quad Flat Pack  
256-Lead Fine Pitch Ball Grid Array  
256-Lead Fine Pitch Ball Grid Array  
Industrial  
Commercial  
Industrial  
BB256  
BB256  
MG388 388-Lead Fine Pitch Ball Grid Array  
MG388 388-Lead Fine Pitch Ball Grid Array  
MB484 484-Lead Fine Pitch Ball Grid Array  
MB484 484-Lead Fine Pitch Ball Grid Array  
83  
NT208  
N208  
208-Lead Enhanced Quad Flat Pack  
208-Lead Plastic Quad Flat Pack  
256-Lead Fine Pitch Ball Grid Array  
256-Lead Fine Pitch Ball Grid Array  
BB256  
BB256  
MG388 388-Lead Ball Grid Array  
MG388 388-Lead Ball Grid Array  
MB484 484-Lead Fine Pitch Ball Grid Array  
MB484 484-Lead Fine Pitch Ball Grid Array  
NT208  
N208  
208-Lead Plastic Quad Flat Pack  
208-Lead Enhanced Quad Flat Pack  
256-Lead Fine Pitch Ball Grid Array  
256-Lead Fine Pitch Ball Grid Array  
CY39050V256-83BBI  
CY39050Z256-83BBI  
CY39050V388-83MGI  
CY39050Z388-83MGI  
CY39050V484-83MBI  
CY39050Z484-83MBI  
CY39100V208-200NTC  
CY39100Z208-200NC  
CY39100V256-200BBC  
CY39100Z256-200BBC  
CY39100V484-200BBC  
CY39100Z484-200BBC  
CY39100V388-200MGC  
CY39100Z388-200MGC  
CY39100V676-200MBC  
CY39100Z676-200MBC  
BB256  
BB256  
MG388 388-Lead Ball Grid Array  
MG388 388-Lead Ball Grid Array  
MB484 484-Lead Fine Pitch Ball Grid Array  
MB484 484-Lead Fine Pitch Ball Grid Array  
39K100  
200  
NT208  
N208  
208-Lead Enhanced Quad Flat Pack  
208-Lead Plastic Quad Flat Pack  
256-Lead Fine Pitch Ball Grid Array  
256-Lead Fine Pitch Ball Grid Array  
484-Lead Fine Pitch Ball Grid Array  
484-Lead Fine Pitch Ball Grid Array  
Commercial  
BB256  
BB256  
BB484  
BB484  
MG388 388-Lead Ball Grid Array  
MG388 388-Lead Ball Grid Array  
MB676 676-Lead Fine Pitch Ball Grid Array  
MB676 676-Lead Fine Pitch Ball Grid Array  
39  
Delta39KISR™  
CPLD Family  
PRELIMINARY  
Delta39K Part Numbers (Ordering Information) (continued)  
Speed  
(MHz)  
Package  
Name  
Self-Boot  
Solution  
Operating  
Range  
Device  
Ordering Code  
Package Type  
39K100  
125  
CY39100V208-125NTC  
CY39100Z208-125NC  
CY39100V256-125BBC  
CY39100Z256-125BBC  
CY39100V484-125BBC  
CY39100Z484-125BBC  
CY39100V388-125MGC  
CY39100Z388-125MGC  
CY39100V676-125MBC  
CY39100Z676-125MBC  
CY39100V208-125NTI  
CY39100Z208-125NI  
CY39100V256-125BBI  
CY39100Z256-125BBI  
CY39100V484-125BBI  
CY39100Z484-125BBI  
CY39100V388-125MGI  
CY39100Z388-125MGI  
CY39100V676-125MBI  
CY39100Z676-125MBI  
CY39100V208-83NTC  
CY39100Z208-83NC  
CY39100V256-83BBC  
CY39100Z256-83BBC  
CY39100V484-83BBC  
CY39100Z484-83BBC  
CY39100V388-83MGC  
CY39100Z388-83MGC  
CY39100V676-83MBC  
CY39100Z676-83MBC  
CY39100V208-83NTI  
CY39100Z208-83NI  
NT208  
N208  
208-Lead Enhanced Quad Flat Pack  
208-Lead Plastic Quad Flat Pack  
256-Lead Fine Pitch Ball Grid Array  
256-Lead Fine Pitch Ball Grid Array  
484-Lead Fine Pitch Ball Grid Array  
484-Lead Fine Pitch Ball Grid Array  
Commercial  
BB256  
BB256  
BB484  
BB484  
MG388 388-Lead Ball Grid Array  
MG388 388-Lead Ball Grid Array  
MB676 676-Lead Fine Pitch Ball Grid Array  
MB676 676-Lead Fine Pitch Ball Grid Array  
NT208  
N208  
208-Lead Enhanced Quad Flat Pack  
208-Lead Plastic Quad Flat Pack  
256-Lead Fine Pitch Ball Grid Array  
256-Lead Fine Pitch Ball Grid Array  
484-Lead Fine Pitch Ball Grid Array  
484-Lead Fine Pitch Ball Grid Array  
Industrial  
BB256  
BB256  
BB484  
BB484  
MG388 388-Lead Ball Grid Array  
MG388 388-Lead Ball Grid Array  
MB676 676-Lead Fine Pitch Ball Grid Array  
MB676 676-Lead Fine Pitch Ball Grid Array  
39K100  
83  
NT208  
N208  
208-Lead Enhanced Quad Flat Pack  
208-Lead Plastic Quad Flat Pack  
256-Lead Fine Pitch Ball Grid Array  
256-Lead Fine Pitch Ball Grid Array  
484-Lead Fine Pitch Ball Grid Array  
484-Lead Fine Pitch Ball Grid Array  
Commercial  
BB256  
BB256  
BB484  
BB484  
MG388 388-Lead Ball Grid Array  
MG388 388-Lead Ball Grid Array  
MB676 676-Lead Fine Pitch Ball Grid Array  
MB676 676-Lead Fine Pitch Ball Grid Array  
NT208  
N208  
208-Lead Enhanced Quad Flat Pack  
208-Lead Plastic Quad Flat Pack  
256-Lead Fine Pitch Ball Grid Array  
256-Lead Fine Pitch Ball Grid Array  
484-Lead Fine Pitch Ball Grid Array  
484-Lead Fine Pitch Ball Grid Array  
Industrial  
CY39100V256-83BBI  
CY39100Z256-83BBI  
CY39100V484-83BBI  
CY39100Z484-83BBI  
CY39100V388-83MGI  
CY39100Z388-83MGI  
CY39100V676-83MBI  
CY39100Z676-83MBI  
BB256  
BB256  
BB484  
BB484  
MG388 388-Lead Ball Grid Array  
MG388 388-Lead Ball Grid Array  
MB676 676-Lead Fine Pitch Ball Grid Array  
MB676 676-Lead Fine Pitch Ball Grid Array  
40  
Delta39KISR™  
CPLD Family  
PRELIMINARY  
Delta39K Part Numbers (Ordering Information) (continued)  
Speed  
(MHz)  
Package  
Name  
Self-Boot  
Solution  
Operating  
Range  
Device  
Ordering Code  
Package Type  
39K165  
181  
CY39165V208-181NTC  
CY39165Z208-181NC  
CY39165V484-181BBC  
CY39165Z484-181BBC  
CY39165V388-181MGC  
CY39165Z388-181MGC  
CY39165V676-181MBC  
CY39165Z676-181MBC  
CY39165V208-125NTC  
CY39165Z208-125NC  
CY39165V484-125BBC  
CY39165Z484-125BBC  
CY39165V388-125MGC  
CY39165Z388-125MGC  
CY39165V676-125MBC  
CY39165Z676-125MBC  
CY39165V208-125NTI  
CY39165Z208-125NI  
CY39165V484-125BBI  
CY39165Z484-125BBI  
CY39165V388-125MGI  
CY39165Z388-125MGI  
CY39165V676-125MBI  
CY39165Z676-125MBI  
CY39165V208-83NTC  
CY39165Z208-83NC  
CY39165V484-83BBC  
CY39165Z484-83BBC  
CY39165V388-83MGC  
CY39165Z388-83MGC  
CY39165V676-83MBC  
CY39165Z676-83MBC  
CY39165V208-83NTI  
CY39165Z208-83NI  
NT208  
N208  
208-Lead Enhanced Quad Flat Pack  
208-Lead Plastic Quad Flat Pack  
484-Lead Fine Pitch Ball Grid Array  
484-Lead Fine Pitch Ball Grid Array  
Commercial  
Commercial  
Industrial  
BB484  
BB484  
MG388 388-Lead Ball Grid Array  
MG388 388-Lead Ball Grid Array  
MB676 676-Lead Fine Pitch Ball Grid Array  
MB676 676-Lead Fine Pitch Ball Grid Array  
125  
NT208  
N208  
208-Lead Enhanced Quad Flat Pack  
208-Lead Plastic Quad Flat Pack  
484-Lead Fine Pitch Ball Grid Array  
484-Lead Fine Pitch Ball Grid Array  
BB484  
BB484  
MG388 388-Lead Ball Grid Array  
MG388 388-Lead Ball Grid Array  
MB676 676-Lead Fine Pitch Ball Grid Array  
MB676 676-Lead Fine Pitch Ball Grid Array  
NT208  
N208  
208-Lead Enhanced Quad Flat Pack  
208-Lead Plastic Quad Flat Pack  
484-Lead Fine Pitch Ball Grid Array  
484-Lead Fine Pitch Ball Grid Array  
BB484  
BB484  
MG388 388-Lead Ball Grid Array  
MG388 388-Lead Ball Grid Array  
MB676 676-Lead Fine Pitch Ball Grid Array  
MB676 676-Lead Fine Pitch Ball Grid Array  
83  
NT208  
N208  
208-Lead Enhanced Quad Flat Pack  
208-Lead Plastic Quad Flat Pack  
484-Lead Fine Pitch Ball Grid Array  
484-Lead Fine Pitch Ball Grid Array  
Commercial  
BB484  
BB484  
MG388 388-Lead Ball Grid Array  
MG388 388-Lead Ball Grid Array  
MB676 676-Lead Fine Pitch Ball Grid Array  
MB676 676-Lead Fine Pitch Ball Grid Array  
NT208  
N208  
208-Lead Enhanced Quad Flat Pack  
208-Lead Plastic Quad Flat Pack  
484-Lead Fine Pitch Ball Grid Array  
484-Lead Fine Pitch Ball Grid Array  
Industrial  
CY39165V484-83BBI  
CY39165Z484-83BBI  
CY39165V388-83MGI  
CY39165Z388-83MGI  
CY39165V676-83MBI  
CY39165Z676-83MBI  
BB484  
BB484  
MG388 388-Lead Ball Grid Array  
MG388 388-Lead Ball Grid Array  
MB676 676-Lead Fine Pitch Ball Grid Array  
MB676 676-Lead Fine Pitch Ball Grid Array  
41  
Delta39KISR™  
CPLD Family  
PRELIMINARY  
Delta39K Part Numbers (Ordering Information) (continued)  
Speed  
(MHz)  
Package  
Name  
Self-Boot  
Solution  
Operating  
Range  
Device  
Ordering Code  
Package Type  
39K200  
167  
CY39200V208-167NTC  
CY39200Z208-167NC  
CY39200V484-167BBC  
CY39200Z484-167BBC  
CY39200V388-167MGC  
CY39200Z388-167MGC  
CY39200V676-167MBC  
CY39200Z676-167MBC  
CY39200V208-125NTC  
CY39200Z208-125NC  
CY39200V484-125BBC  
CY39200Z484-125BBC  
CY39200V388-125MGC  
CY39200Z388-125MGC  
CY39200V676-125MBC  
CY39200Z676-125MBC  
CY39200V208-125NTI  
CY39200Z208-125NI  
CY39200V484-125BBI  
CY39200Z484-125BBI  
CY39200V388-125MGI  
CY39200V388-125MGI  
CY39200V676-125MBI  
CY39200Z676-125MBI  
CY39200V208-83NTC  
CY39200Z208-83NC  
CY39200V484-83BBC  
CY39200Z484-83BBC  
CY39200V388-83MGC  
CY39200Z388-83MGC  
CY39200V676-83MBC  
CY39200Z676-83MBC  
CY39200V208-83NTI  
CY39200Z208-83NI  
NT208  
N208  
208-Lead Enhanced Quad Flat Pack  
208-Lead Plastic Quad Flat Pack  
484-Lead Fine Pitch Ball Grid Array  
484-Lead Fine Pitch Ball Grid Array  
Commercial  
Commercial  
Industrial  
BB484  
BB484  
MG388 388-Lead Ball Grid Array  
MG388 388-Lead Ball Grid Array  
MB676 676-Lead Fine Pitch Ball Grid Array  
MB676 676-Lead Fine Pitch Ball Grid Array  
125  
NT208  
N208  
208-Lead Enhanced Quad Flat Pack  
208-Lead Plastic Quad Flat Pack  
484-Lead Fine Pitch Ball Grid Array  
484-Lead Fine Pitch Ball Grid Array  
BB484  
BB484  
MG388 388-Lead Ball Grid Array  
MG388 388-Lead Ball Grid Array  
MB676 676-Lead Fine Pitch Ball Grid Array  
MB676 676-Lead Fine Pitch Ball Grid Array  
NT208  
N208  
208-Lead Enhanced Quad Flat Pack  
208-Lead Plastic Quad Flat Pack  
484-Lead Fine Pitch Ball Grid Array  
484-Lead Fine Pitch Ball Grid Array  
BB484  
BB484  
MG388 388-Lead Ball Grid Array  
MG388 388-Lead Ball Grid Array  
MB676 676-Lead Fine Pitch Ball Grid Array  
MB676 676-Lead Fine Pitch Ball Grid Array  
83  
NT208  
N208  
208-Lead Enhanced Quad Flat Pack  
208-Lead Plastic Quad Flat Pack  
484-Lead Fine Pitch Ball Grid Array  
484-Lead Fine Pitch Ball Grid Array  
Commercial  
BB484  
BB484  
MG388 388-Lead Ball Grid Array  
MG388 388-Lead Ball Grid Array  
MB676 676-Lead Fine Pitch Ball Grid Array  
MB676 676-Lead Fine Pitch Ball Grid Array  
NT208  
N208  
208-Lead Enhanced Quad Flat Pack  
208-Lead Plastic Quad Flat Pack  
484-Lead Fine Pitch Ball Grid Array  
484-Lead Fine Pitch Ball Grid Array  
Industrial  
CY39200V484-83BBI  
CY39200Z484-83BBI  
CY39200V388-83MGI  
CY39200Z388-83MGI  
CY39200V676-83MBI  
CY39200Z676-83MBI  
BB484  
BB484  
MG388 388-Lead Ball Grid Array  
MG388 388-Lead Ball Grid Array  
MB676 676-Lead Fine Pitch Ball Grid Array  
MB676 676-Lead Fine Pitch Ball Grid Array  
42  
Delta39KISR™  
CPLD Family  
PRELIMINARY  
Serial Boot EEPROM[13] Part Numbers (Ordering Information)  
Speed  
(MHz)  
Package  
Name  
Operating  
Device  
Ordering Code  
CY3LV010-10JC  
CY3LV010-10JI  
Package Type  
Range  
1Meg CPLD Configu-  
ration EEPROM  
15  
10  
J61  
J61  
20-Lead Plastic Leaded Chip Carrier Commercial  
20-Lead Plastic Leaded Chip Carrier  
Industrial  
Note:  
13. See CY3LV010 data sheet for detailed architectural and timing information.  
Package Diagrams  
208-Lead Plastic Quad Flatpack (PQFP) N208  
208-Lead Enhanced Quad Flat Pack (EQFP) NT208  
51-85069-B  
43  
Delta39KISR™  
CPLD Family  
PRELIMINARY  
Package Diagrams (continued)  
388-Lead Ball Grid Array MG388  
51-85103  
44  
Delta39KISR™  
CPLD Family  
PRELIMINARY  
Package Diagrams (continued)  
256-Ball Thin Ball Grid Array (17 x 17 x 1.6 mm) BB256/MB256  
51-85108-A  
45  
Delta39KISR™  
CPLD Family  
PRELIMINARY  
Package Diagrams (continued)  
484-Ball Thin Ball Grid Array (23 x 23 x 1.6 mm) BB484/MB484  
51-85124  
46  
Delta39KISR™  
CPLD Family  
PRELIMINARY  
Package Diagrams (continued)  
676-Ball FBGA (27 x 27 x 1.6 mm) BB676  
51-85125  
Mechanical drawings of 144FBGA will be available soon.  
For package sizes and ball pitch see page 2.  
47  
Delta39KISR™  
CPLD Family  
PRELIMINARY  
REVISIONS MADE TO THE DATA SHEET  
Change  
#
Revision  
Date  
Revision Description  
on the first page the no fanout or expander delays has been removed.  
Multiple I/O standards supported  
Simple Timing Model  
1)  
2)  
Under  
12/7/1999  
12/7  
Under the bullet  
been listed  
section on the first page the I/o standards have  
High Performance CPLDs  
On the first page, in the top right corner “  
at FPGA densities”  
CPLDs  
has been changed to “  
3)  
12/7  
Development Software  
4)  
5)  
On the front page all software bullets have been put under the heading  
Warp 3  
12/7  
12/7  
Hierarchy Navi-  
On the front page under the bullet the following items have been deleted:  
gator, Warp Galaxy GUI for Input, Mixed-mode Design Entry for VHDL and Schematics, Avail-  
able for PC, Sun, and HP platforms for $4995,  
ucts  
Supports all Cypress Programmable Prod-  
and  
Delta39K Speed Bins  
the 15, 30, 50, and 100 macrocell devices.  
6)  
7)  
In the  
table the 154 MHz speed bins have been removed from all devices in  
12/7  
12/7  
Delta39K Speed Bins  
In the  
table the 125 MHz speed bins have been added to all devices in the  
15, 30, 50, and 100 macrocell devices.  
Delta39K Speed Bins  
8)  
In the  
In the  
In the  
table a 250 MHz speed bin column has been added.  
12/7  
12/7  
12/7  
Device Package Offerings  
9)  
table the 352-FBGA heading has been changed to 352-BGA  
General Description  
10)  
section the sentence With devices ranging from 50,000 to 350,000  
usable gates....has been changed to ........15,000 to 350,000 usable gates.”  
General Description  
11)  
12)  
In the  
disabledhas been removed  
section the sentence On device power up, the bus hold feature is  
12/7  
12/7  
Global Routing Description  
In the  
section the sentence Figure 2 is a block diagram of the routing  
channels and all of the LBC PIM interfaces required in the Delta39K architecturehas been changed  
to Figure 2 is a block diagram of the routing channels that interfaces with the Delta39K architecture.”  
Global Routing Description  
The last sentence of  
LBC.has been removed.  
13)  
Figure 3 shows a block diagram of the Delta39K  
12/7  
14)  
15)  
16)  
In Figure 3 the numbering of the Logic Blocks and Cluster memories in the diagram were changed.  
Macrocell  
12/7  
12/7  
12/7  
Carry Chain Logic section under the  
description  
In the FIFO Configuration section the sentence These clocks may be tied together for a single  
operation or may run independently for synchronous....has been changed to ...independently for  
asynchronous...”  
17)  
18)  
19)  
20)  
21)  
22)  
23)  
Under the Dual Port Configuration, a section regarding Arbitration has been added  
12/7  
12/7  
12/7  
12/7  
12/7  
12/7  
12/7  
I/O Banks  
I/O Banks  
Under  
a block diagram of the device showing the location of the I/O banks has been added.  
a table showing the I/O standards has been added.  
Under  
Block Diagram of Channel Memory Block  
Figure 6,  
Figure 8,  
Figure 9,  
in 12/7 Rev. deleted  
Block Diagram of Dual Port Channel Memory  
in 12/7 Rev. deleted  
Block Diagram of FIFO Channel Memory Block  
in 12/7 Rev. deleted  
Switching Characteristics - Parameter Values  
Cluster Memory Timing Parameter Description  
Over the Operating Range table added prior to the  
Over the Operating Range table.  
Switching Characteristics Table  
24)  
25)  
26)  
Timing parameters added to  
: tMCCCD and tSCS2PT  
tADDMS  
The following bullets were removed from the Delta39K features in the  
no fanout delays, no expander delays, no additional delay through PIM, and no routing delays.  
12/7  
12/7  
12/7  
Channel Memory Timing:  
Timing Parameter added to  
Timing Model  
in the section:  
Timing Model paragraph  
The caption was also changed to read  
27)  
The wording of the  
was changed and now includes tMCS and tMCCO.  
39K100  
12/7  
12/7  
Switching Characteristics - Parameter Descriptions  
28)  
29)  
table added  
Channel Memory Timing Parameter Values  
tADDMS added to  
48  
Delta39KISR™  
CPLD Family  
PRELIMINARY  
Change  
#
Revision  
Date  
Revision Description  
30)  
Updated Isb spec and miscellaneous edits on first 3 pages; released first 3 pages as Advance  
Informationdata sheet on 2/1/00 on the web and Cypress CD-ROM  
3/4/2000  
31)  
32)  
33)  
34)  
35)  
36)  
37)  
38)  
39)  
40)  
41)  
42)  
43)  
44)  
Updated the PLL arch. diagram and description to reflect recent arch. changes  
Changed the name of 352-BGAto 388-BGA”  
3/4  
3/4  
3/4  
3/4  
3/4  
3/4  
3/4  
3/4  
3/4  
3/4  
3/4  
3/4  
5/11  
5/11  
Misc. text edits in the Programmingsection on p. 13  
Reduced the Tj from 95C to 85C for comm and from 130C to 100C (p.14)  
Vccjtag, Vcccnfg, Vccpll, Vccprg  
Added  
Added  
Added  
specs (p. 14)  
Vdrint, Vdrio  
specs (p. 14)  
5 notes on Power-up sequence  
(p. 15)  
Added tCHMCHAA, tCHMFS, tCHMFH timing parameters  
Lowered tCLMCYC3, tCHMCLK, tCHMFS, tCHMCYC3, tMACCHMS1  
Edited the Timing waveforms to reflect consistency in parameter names  
specs to meet design  
Fixed 208-PQFP pinout diagram to reflect the latest pinout changes (p.34)  
(352BGA -> 388BGA)  
Part Numbers & Ordering info  
Added part ordering info for 39K15, 39K30 and updated the rest  
Removed the Pin Tables for all packages and all devices and created a new spec (#38-00982) titled  
Delta39K Pin Tables”  
45)  
46)  
47)  
48)  
49)  
50)  
51)  
52)  
53)  
54)  
55)  
56)  
57)  
58)  
59)  
60)  
61)  
62)  
63)  
64)  
65)  
66)  
Added f  
to the Family Members table (p.1)  
5/11  
5/11  
5/11  
5/23  
5/11  
5/11  
5/14  
5/14  
5/14  
5/14  
5/14  
5/14  
5/14  
5/14  
5/14  
5/14  
5/14  
5/15  
6/23  
6/23  
6/23  
7/28  
MAX2  
Increased Typical gate count per new formula (p.1)  
Added package dimensions to Device package offeringTable (p.2)  
Miscellaneous edits in the General Descriptionsection (p. 4-13)  
Added t  
parameter (p. 15)  
RECONFIG  
Split the max. rating for VCC to ground potential for 39kZ and 39KV device (p.14)  
Added t , t , parameters for NoBL/ZBT compatibility as per RHRs 5/12/00 memo  
CHZ CLZ  
Put values for t  
, t  
parameter as per RHRs 5/12/00 memo  
SCS2PT MCCD  
Modified tMCSPT, tMCHPT, tMCCOPT specs as per RHRs 5/12/00 memo  
Reduced t  
specs as per RHRs 5/12/00 memo  
specs as per RHRs 5/12/00 memo  
CHMMACS  
Increased t  
MACCHMS  
Added t  
parameter as per RHRs 5/12/00 memo  
CHMFRDV  
Increased tCLMHD, tCHMHD, tCHMS as per RHRs 5/12/00 memo  
Added t (to replace tADDMS - the arbitration param) as per RHRs 5/12/00 memo  
CHMBA  
Increased tCHMCHAA, tCHMMACS1, tMACCHMS2 as per RHRs 5/12/00 memo  
Changed name of tCHMRS to tCHMFRS and tCHMRSF to tCHMFRSF to indicate FIFO params  
added Serial Boot EEPROM Part Numbers (p. 43)  
removed package diagrams for all packages  
Added I/O standards delay adjustment table(p.21)  
Updated timing waveforms for Cluster memory & FIFO  
Miscellaneous edits in the General Descriptionsection (p. 4-13)  
Updated I/O standards delay adjustment table(p.21)  
NoBL, PIM, Spread Aware,  
Corporation.  
, AnyVolt, Self-Boot, In-System Reprogrammable, ISR, and Delta39K are trademarks of Cypress Semiconductor  
Warp  
ZBT is a trademark of IDT. QDR is a trademark of Micron, IDT, and Cypress Semiconductor Corporation.  
SpeedWave, and ViewDraw are trademarks of ViewLogic.  
Document #: 38-00830-B  
© Cypress Semiconductor Corporation, 2000. The information contained herein is subject to change without notice. Cypress Semiconductor Corporation assumes no responsibility for the use  
of any circuitry other than circuitry embodied in a Cypress Semiconductor product. Nor does it convey or imply any license under patent or other rights. Cypress Semiconductor does not authorize  
its products for use as critical components in life-support systems where a malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress  
Semiconductor products in life-support systems application implies that the manufacturer assumes all risk of such use and in doing so indemnifies Cypress Semiconductor against all charges.  

相关型号:

CY39100Z256-125MGC

CPLDs at FPGA Densities
CYPRESS

CY39100Z256-181MBC

CPLDs at FPGA Densities
CYPRESS

CY39100Z256-181MGC

CPLDs at FPGA Densities
CYPRESS

CY39100Z256-181NC

CPLDs at FPGA Densities
CYPRESS

CY39100Z256-200MGC

CPLDs at FPGA Densities
CYPRESS

CY39100Z256-233MGC

CPLDs at FPGA Densities
CYPRESS

CY39100Z256-233MGI

CPLDs at FPGA Densities
CYPRESS

CY39100Z256-233NTC

CPLDs at FPGA Densities
CYPRESS

CY39100Z256B-200BBC

Loadable PLD, 7.5ns, 1536-Cell, CMOS, PBGA256, 17 X 17 MM, 1.60 MM HEIGHT, 1 MM PITCH, TFBGA-256
CYPRESS

CY39100Z388-125BBC

CPLDs at FPGA Densities
CYPRESS

CY39100Z388-125BBI

CPLDs at FPGA Densities
CYPRESS

CY39100Z388-125BGC

CPLDs at FPGA Densities
CYPRESS