CY39200V484-167BBC [CYPRESS]

Loadable PLD, 8.5ns, CMOS, PBGA484, 23 X 23 MM, 1.60 MM HEIGHT, 1 MM PITCH, TFBGA-484;
CY39200V484-167BBC
型号: CY39200V484-167BBC
厂家: CYPRESS    CYPRESS
描述:

Loadable PLD, 8.5ns, CMOS, PBGA484, 23 X 23 MM, 1.60 MM HEIGHT, 1 MM PITCH, TFBGA-484

文件: 总57页 (文件大小:1166K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Delta39K™ ISR™  
CPLD Family  
PRELIMINARY  
CPLDs at FPGA Densities™  
Multiple I/O standards supported  
Features  
LVCMOS (3.3/3.0/2.5/1.8V), LVTTL, 3.3V PCI, SSTL2  
High density  
(I-II), SSTL3 (I-II), HSTL (I-IV), and GTL+  
15K to 350K usable gates  
256 to 5376 macrocells  
92 to 520 maximum I/O pins  
Compatible with NOBL, ZBT, and QDRSRAMs  
Programmable slew rate control on each I/O pin  
User-Programmable Bus Hold capability on each I/O pin  
Fully PCI compliant (to 66 MHz 64-bit PCI spec rev2.2)  
Compact PCI hot swap compatible  
Multiple package/pinout offering across all densities  
144 to 676 pins in PQFP, BGA and FBGA packages  
Same pinout for 3.3V/2.5V and 1.8V devices  
Simplifies design migration across density  
Self-Bootsolution in BGA and FBGA packages  
In-System Reprogrammable(ISR)  
12 Dedicated Inputs including 4 clock pins, 4 global  
control signal pins and 4 JTAG interface pins for  
reconfigurability  
Embedded Memory  
40K to 840K bits embedded SRAM  
32K to 672K bits of (single port) Cluster memory  
8K to 168K bits of (dual port) Channel memory  
High speed - 250-MHz in-system operation  
AnyVoltinterface  
JTAG-compliant on-board programming  
3.3V, 2.5V and 1.8V VCC versions available  
Design changes dont cause pinout changes  
IEEE1149.1 JTAG boundary scan  
3.3V, 2.5V and 1.8V I/O capability on all versions  
Low Power Operation  
0.18-µm 6-layer metal SRAM-based logic process  
Full-CMOS implementation of product term array  
Development Software  
Standby current as low as 100 µA at 1.8V VCC  
Simple timing model  
Warp™  
IEEE 1076/1164 VHDL or IEEE 1364 Verilog context  
sensitive editing.  
Nopenaltyfor usingfull16product terms /macrocell  
No delay for single product term steering or sharing  
Flexible clocking  
Active-HDL FSM graphical finite state machine editor  
Active-HDL SIM post-synthesis timing simulator  
Architecture Explorer for detailed design analysis  
Static Timing Analyzer for critical path analysis  
Available on Windows 95, 98 & NT for $99  
4 synchronous clocks per device  
1 spread-aware PLL drives all 4 clock networks  
Locally generated Product Term clock  
Clock polarity control at each register  
Supports all Cypress Programmable Logic Products  
Carry-chain logic for fast and efficient arithmetic opera-  
tions  
Delta39KISR CPLD Family Members  
[2]  
Standby ICC  
Cluster Channel  
memory memory Maximum  
fMAX2 Speed-tPD  
Pin-to-Pin  
TA=25°C  
Typical  
Gates[1]  
Device  
39K15  
Macrocells  
256  
(Kbits)  
(Kbits)  
I/O Pins  
(MHz)  
256  
238  
238  
222  
181  
181  
167  
154  
(ns)  
6.5  
7.0  
7.0  
7.5  
8.5  
8.5  
8.5  
9.0  
3.3/2.5V  
1.8V  
8K24K  
16K48K  
32  
8
134  
10 mA  
10 mA  
10 mA  
10 mA  
10 mA  
10 mA  
10 mA  
10 mA  
100 µA  
200 µA  
300 µA  
600 µA  
1250 µA  
1250 µA  
1500 µA  
2100 µA  
39K30  
512  
64  
16  
176  
39K50  
23K72K  
768  
96  
24  
218  
39K100  
39K165  
39K200  
39K250  
39K350  
46K144K  
77K241K  
92K288K  
115K361K  
161K505K  
1536  
2560  
3072  
3840  
5376  
192  
320  
384  
480  
672  
48  
302  
80  
386  
96  
428  
120  
168  
470  
520  
Note:  
1. Upper limit of typical gates is calculated by assuming only 10% of the channel memory is used.  
2. Standby ICC values are with PLL not utilized, no output load and stable inputs  
Cypress Semiconductor Corporation  
3901 North First Street  
San Jose  
CA 95134  
408-943-2600  
Document #: 38-03039 Rev. **  
Revised April 4, 2001  
Delta39KISR™  
CPLD Family  
PRELIMINARY  
Delta39K Speed Bins[3]  
Device  
39K15  
250  
222  
200  
181  
167  
154  
125  
X
83  
X
X
X
X
X
X
X
X
X
39K30  
X
X
X
39K50  
X
39K100  
39K165  
39K200  
39K250  
39K350  
X
X
X
X
X
X
X
X
X
X
Device Package Offering and I/O Count Including Dedicated Clock and Control Inputs  
Self-Boot Solution[4]  
256-FBGA 388-BGA 484-FBGA  
208-EQFP 144-FBGA 256-FBGA 484-FBGA 676-FBGA  
676-FBGA  
27x27 mm  
1.0-mm  
17x17 mm  
1.0-mm  
pitch  
35x35 mm  
1.27-mm  
pitch  
23x23 mm  
28X28 mm  
0.5-mm  
pitch  
13x13 mm  
1.0-mm  
pitch  
17x17 mm  
1.0-mm  
pitch  
23x23 mm  
1.0-mm  
pitch  
27x27 mm  
1.0-mm  
pitch  
1.0-mm pitch  
Device  
39K15  
pitch  
134  
136  
136  
136  
136  
136  
136  
136  
92  
92  
134  
176  
180  
180  
134  
176  
39K30  
39K50  
218  
294  
294  
294  
294  
294  
218  
39K100  
39K165  
39K200  
39K250  
302  
356  
368  
302  
386  
428  
470  
520  
470  
520  
39K350  
Notes:  
3. Speed bins shown here are for Commercial operating range. Please refer to Delta39K Ordering Information on page 41 for Industrial range speed bins.  
4. Self-Boot Solution integrates the boot PROM (Flash Memory) with Delta39K die inside the same package.  
Document #: 38-03039 Rev. **  
Page 2 of 57  
Delta39KISR™  
CPLD Family  
PRELIMINARY  
PLL & Clock MUX  
GCLK[3:0]  
GCTL[3:0]  
4
4
I/O Bank 7  
I/O Bank 6  
GCLK[3:0]  
4
4
4
4
LB 0  
LB 1  
LB 2  
LB 3  
LB 7  
LB 0  
LB 1  
LB 7  
LB 6  
LB 5  
LB 4  
LB 0  
LB 7  
LB 6  
LB 5  
LB 4  
LB 0  
LB 1  
LB 2  
LB 3  
LB 7  
LB 6  
LB 6  
LB 5  
LB 4  
LB 1  
LB 2  
LB 3  
Channel  
RAM  
Channel  
RAM  
Channel  
RAM  
Channel  
RAM  
PIM  
PIM  
PIM  
LB 2  
PIM  
LB 5  
LB 3  
LB 4  
Cluster  
RAM  
Cluster  
RAM  
Cluster  
RAM  
Cluster  
RAM  
Cluster  
RAM  
Cluster  
RAM  
Cluster  
RAM  
Cluster  
RAM  
GCLK[3:0]  
4
4
4
4
LB 0  
LB 1  
LB 7  
LB 6  
LB 5  
LB 4  
LB 0  
LB 1  
LB 2  
LB 3  
LB 7  
LB 6  
LB 5  
LB 4  
LB 0  
LB 1  
LB 2  
LB 3  
LB 7  
LB 6  
LB 5  
LB 4  
LB 0  
LB 1  
LB 2  
LB 3  
LB 7  
LB 6  
Channel  
RAM  
Channel  
RAM  
Channel  
RAM  
Channel  
RAM  
PIM  
PIM  
PIM  
LB 2  
PIM  
LB 5  
LB 3  
LB 4  
Cluster  
RAM  
Cluster  
RAM  
Cluster  
RAM  
Cluster  
RAM  
Cluster  
RAM  
Cluster  
RAM  
Cluster  
RAM  
Cluster  
RAM  
GCLK[3:0]  
4
4
4
4
LB 0  
LB 1  
LB 2  
LB 3  
LB 7  
LB 6  
LB 5  
LB 4  
LB 0  
LB 1  
LB 7  
LB 6  
LB 5  
LB 4  
LB 0  
LB 1  
LB 2  
LB 3  
LB 7  
LB 6  
LB 5  
LB 4  
LB 0  
LB 1  
LB 2  
LB 3  
LB 7  
LB 6  
Channel  
RAM  
Channel  
RAM  
Channel  
RAM  
Channel  
RAM  
PIM  
PIM  
PIM  
LB 2  
PIM  
LB 5  
LB 3  
LB 4  
Cluster  
RAM  
Cluster  
RAM  
Cluster  
RAM  
Cluster  
RAM  
Cluster  
RAM  
Cluster  
RAM  
Cluster  
RAM  
Cluster  
RAM  
I/O Bank 2  
I/O Bank 3  
Figure 1. Delta39K100 Block Diagram (3 Rows x 4 Columns) with I/O Bank Structure  
Document #: 38-03039 Rev. **  
Page 3 of 57  
Delta39KISR™  
CPLD Family  
PRELIMINARY  
The Delta39KZ devices accept 1.8V on the VCC supply pins  
directly. With Delta39Ks AnyVolt technology, the I/O pins can  
be connected to either 1.8V, 2.5V, or 3.3V. All Delta39K devic-  
es are 3.3V tolerant regardless of VCCIO or VCC settings.  
General Description  
The Delta39K family, based on a 0.18 µm, 6-layer metal  
CMOS logic process, offers a wide range of high-density solu-  
tions at unparalleled system performance. The Delta39K fam-  
ily is designed to combine the high speed, predictable timing,  
and ease of use of CPLDs with the high densities and low  
power of FPGAs. With devices ranging from 15,000 to 350,000  
usable gates, the family features devices ten times the size of  
previously available CPLDs. Even at these large densities, the  
Delta39K family is fast enough to implement a fully synthesiz-  
able 64-bit, 66-MHz PCI core.  
Device  
39KV  
39KZ  
VCC  
3.3V or 2.5V  
1.8V  
VCCIO  
3.3V or 2.5V or 1.8V or 1.5V[5]  
3.3V or 2.5V or 1.8V or 1.5V[5]  
Global Routing Description  
The routing architecture of the Delta39K is made up of hori-  
zontal and vertical (H&V) routing channels. These routing  
channels allow signals from each of the Delta39K architectural  
components to communicate with one another. In addition to  
the horizontal and vertical routing channels that interconnect  
the I/O banks, channel memory blocks, and logic block clus-  
ters, each LBC contains a Programmable Interconnect Matrix  
(PIM), which is used to route signals among the logic blocks  
and the cluster memory blocks.  
The architecture is based on Logic Block Clusters (LBC) that  
are connected by Horizontal and Vertical (H&V) routing chan-  
nels. Each LBC features eight individual Logic Blocks (LB) and  
two cluster memory blocks. Adjacent to each LBC is a channel  
memory block, which can be accessed directly from the I/O  
pins. Both types of memory blocks are highly configurable and  
can be cascaded in width and depth. See Figure 1 for a block  
diagram of the Delta39K architecture.  
All the members of the Delta39K family have Cypresss highly  
regarded In-System Reprogrammability (ISR) feature, which  
simplifies both design and manufacturing flows, thereby re-  
ducing costs. The ISR feature provides the ability to reconfig-  
ure the devices without having design changes cause pinout  
or timing changes in most cases. The Cypress ISR function is  
implemented through a JTAG-compliant serial interface. Data  
is shifted in and out through the TDI and TDO pins respective-  
ly. Superior routability, simple timing, and the ISR allows users  
to change existing logic designs while simultaneously fixing  
pinout assignments and maintaining system performance.  
Figure 2 is a block diagram of the routing channels that inter-  
face within the Delta39K architecture. The LBC is exactly the  
same for every member of the Delta39K CPLD family.  
Logic Block Cluster (LBC)  
The Delta39K architecture consists of several logic block clus-  
ters, each of which have 8 Logic Blocks (LB) and 2 cluster  
memory blocks connected via a Programmable Interconnect  
Matrix (PIM) as shown in Figure 3. Each cluster memory block  
consists of 8-Kbit single-port RAM, which is configurable as  
synchronous or asynchronous. The cluster memory blocks  
can be cascaded with other cluster memory blocks within the  
same LBC as well as other LBCs to implement larger memory  
functions. If a cluster memory block is not specifically utilized  
by the designer, Cypresss Warp software can automatically  
use it to implement large blocks of logic.  
The entire family features JTAG for ISR and boundary scan,  
and is compatible with the PCI Local Bus specification, meet-  
ing the electrical and timing requirements. The Delta39K fam-  
ily also features user programmable bus-hold and slew rate  
control capabilities on each I/O pin.  
All LBCs interface with each other via horizontal and vertical  
routing channels.  
AnyVolt Interface  
All Delta39KV devices feature an on-chip regulator, which ac-  
cepts 3.3V or 2.5V on the VCC supply pins and steps it down  
to 1.8V internally, the voltage level at which the core operates.  
I/O Block  
LB  
LB  
LB  
LB  
LB  
LB  
LB  
LB  
72  
64  
Cluster  
PIM  
Channel memory  
outputs drive  
dedicated tracks in the  
horizontal and vertical  
routing channels  
Channel  
Memory  
Block  
Cluster  
Memory  
Block  
Cluster  
Memory  
Block  
72  
64  
H-to-V  
PIM  
V-to-H  
PIM  
Pin inputs from the I/O cells  
drive dedicated tracks in the  
horizontal and vertical routing  
channels  
Figure 2. Delta39K Routing Interface  
Note:  
5. For HSTL only.  
Document #: 38-03039 Rev. **  
Page 4 of 57  
Delta39KISR™  
CPLD Family  
PRELIMINARY  
Clock Inputs  
GCLK[3:0]  
4
Logic  
Block  
0
Logic  
Block  
7
36  
16  
36  
16  
Logic  
Block  
1
Logic  
Block  
6
36  
16  
36  
16  
Logic  
Block  
2
Logic  
Block  
5
36  
16  
36  
16  
PIM  
Logic  
Block  
3
Logic  
Block  
4
36  
16  
36  
16  
Cluster  
Memory  
0
Cluster  
Memory  
1
25  
8
25  
8
CC = Carry Chain  
64 Inputs From  
Vertical Routing  
Channel  
64 Inputs From  
Horizontal Routing  
Channel  
144 Outputs to  
Horizontal and Vertical  
cluster-to-channel PIMs  
Figure 3. Delta39K Logic Block Cluster Diagram  
Logic Block (LB)  
vides two important capabilities without affecting performance:  
product term steering and product term sharing.  
The logic block is the basic building block of the Delta39K ar-  
chitecture. It consists of a product term array, an intelligent  
product-term allocator, and 16 macrocells.  
Product Term Steering  
Product term steering is the process of assigning product  
terms to macrocells as needed. For example, if one macrocell  
requires ten product terms while another needs just three, the  
product term allocator will steerten product terms to one  
macrocell and three to the other. On Delta39K devices, prod-  
uct terms are steered on an individual basis. Any number be-  
tween 1and 16 product terms can be steered to any macrocell.  
Product Term Array  
Each logic block features a 72 x 83 programmable product  
term array. This array accepts 36 inputs from the PIM. These  
inputs originate from device pins and macrocell feedbacks as  
well as cluster memory and channel memory feedbacks. Ac-  
tive LOW and active HIGH versions of each of these inputs are  
generated to create the full 72-input field. The 83 product  
terms in the array can be created from any of the 72 inputs.  
Product Term Sharing  
Product term sharing is the process of using the same product  
term among multiple macrocells. For example, if more than  
one function has one or more product terms in its equation that  
are common to other functions, those product terms are only  
programmed once. The Delta39K product term allocator al-  
lows sharing across groups of four macrocells in a variable  
fashion. The software automatically takes advantage of this  
capability so that the user does not have to intervene.  
Of the 83 product terms, 80 are for general-purpose use for  
the 16 macrocells in the logic block. Two of the remaining three  
product terms in the logic block are used as asynchronous set  
and asynchronous reset product terms. The final product term  
is the Product Term clock (PTCLK) and is shared by all 16  
macrocells within a logic block.  
Product Term Allocator  
Through the product term allocator, Warp software automati-  
cally distributes the 80 product terms as needed among the 16  
macrocells in the logic block. The product term allocator pro-  
Note that neither product term sharing nor product term steer-  
ing have any effect on the speed of the product. All steering  
and sharing configurations have been incorporated in the tim-  
ing specifications for the Delta39K devices.  
.
Document #: 38-03039 Rev. **  
Page 5 of 57  
Delta39KISR™  
CPLD Family  
PRELIMINARY  
Macrocell  
tions are implemented through the use of carry-in arithmetic,  
which drives through the circuit quickly. Figure 4 shows that  
the carry chain logic within the macrocell consists of two prod-  
uct terms (CPT0 and CPT1) from the PTA and an input carry-  
in for carry logic. The inputs to the carry chain mux are con-  
nected directly to the product terms in the PTA. The output of  
the carry chain mux generates the carry-out for the next mac-  
rocell in the logic block as well as the local carry input that is  
connected to an input of the XOR input mux. Carry-in and a  
configuration bit are inputs to an AND gate. This AND gate  
provides a method of segmenting the carry chain in any mac-  
rocell in the logic block.  
Within each logic block there are 16 macrocells. Each  
macrocell accepts a sum of up to 16 product terms from the  
product term array. The sum of these 16 product terms can be  
output in either registered or combinatorial mode. Figure 4  
displays the block diagram of the macrocell. The register can  
be asynchronously preset or asynchronously reset at the mac-  
rocell level with the separate preset and reset product terms.  
Each of these product terms features programmable polarity.  
This allows the registers to be preset or reset based on an  
AND expression or an OR expression.  
An XOR gate in the Delta39K macrocell allows for many differ-  
ent types of equations to be realized. It can be used as a po-  
larity mux to implement the true or complement form of an  
equation in the product term array or as a toggle to turn the D  
flip-flop into a T flip-flop. The carry-chain input mux allows ad-  
ditional flexibility for the implementation of different types of  
logic. The macrocell can utilize the carry chain logic to imple-  
ment adders, subtractors, magnitude comparators, parity tree,  
or even generic XOR logic. The output of the macrocell is ei-  
ther registered or combinatorial.  
Macrocell Clocks  
Clocking of the register is highly flexible. Four global synchro-  
nous clocks (GCLK[3:0]) and a Product Term clock (PTCLK)  
are available at each macrocell register. Furthermore, a clock  
polarity mux within each macrocell allows the register to be  
clocked on the rising or the falling edge (see macrocell dia-  
gram in Figure 4).  
PRESET/RESET Configurations  
The macrocell register can be asynchronously preset and re-  
set using the PRESET and RESET mux. Both signals are ac-  
tive high and can be controlled by either of two Preset/Reset  
product terms (PRC[1:0] in Figure 4) or GND. In situations  
where the PRESET and RESET are active at the same time,  
RESET takes priority over PRESET.  
Carry Chain Logic  
The Delta39K macrocell features carry chain logic which is  
used for fast and efficient implementation of arithmetic opera-  
tions. The carry logic connects macrocells in up to 4 logic  
blocks for a total of 64 macrocells. Effective data path opera-  
Carry In  
(from macrocell n-1)  
PRESET  
Mux  
0
1
C
XOR Input  
Mux  
3
Carry Chain  
Mux  
C
CPT0  
CPT1  
Output Mux  
C
2
To PIM  
C
DPSET  
C
Q
FROM PTM  
Up To 16 PTs  
Clock  
Clock Mux  
Polarity  
RES Q  
Mux  
GCLK[3:0]  
PTCLK  
3
C
C
0
1
Carry Out  
(to macrocell n+1)  
3
C
RESET  
Mux  
Figure 4. Delta39K Macrocell  
Document #: 38-03039 Rev. **  
Page 6 of 57  
Delta39KISR™  
CPLD Family  
PRELIMINARY  
Embedded Memory  
Cluster Memory Initialization  
Each member of the Delta39K family contains two types of  
embedded memory blocks. The channel memory block is  
placed at the intersection of horizontal and vertical routing  
channels. Each channel memory block is 4096 bits in size and  
can be configured as asynchronous or synchronous Dual-Port  
RAM, Single-Port RAM, Read-Only memory (ROM), or syn-  
chronous FIFO memory. The memory organization is config-  
urable as 4Kx1, 2Kx2, 1Kx4 and 512x8. The second type of  
memory block is located within each LBC and is referred to as  
a cluster memory block. Each LBC contains two cluster mem-  
ory blocks that are 8192-bits in size. Similar to the channel  
memory blocks, the cluster memory blocks can be configured  
as 8Kx1, 4Kx2, 2Kx4 and 1Kx8 asynchronous or synchronous  
Single-Port RAM or ROM.  
The cluster memory powers up in an undefined state, but is  
set to a user-defined known state during configuration. To fa-  
cilitate the use of look-up-table (LUT) logic and ROM applica-  
tions, the cluster memory blocks can be initialized with a given  
set of data when the device is configured at power up. For LUT  
and ROM applications, the user cannot write to memory  
blocks.  
Channel Memory  
The Delta39K architecture includes an embedded memory  
block at each crossing point of horizontal and vertical routing  
channels. The channel memory is a 4096-bit embedded mem-  
ory block that can be configured as asynchronous or synchro-  
nous Single-Port RAM, Dual-Port RAM, ROM, or synchronous  
FIFO memory.  
Cluster Memory  
Data, address, and control inputs to the channel memory are  
driven from horizontal and vertical routing channels. All data  
and FIFO logic outputs drive dedicated tracks in the horizontal  
and vertical routing channels. The clocks for the channel mem-  
ory block are selected from four global clocks and pin inputs  
from the horizontal and vertical channels. The clock muxes  
also include a polarity mux for each clock so that the user can  
choose an inverted clock.  
Each logic block cluster of the Delta39K contains two 8192-bit  
cluster memory blocks. Figure 5 is a block diagram of the clus-  
ter memory block and the interface of the cluster memory block  
to the cluster PIM.  
The output of the cluster memory block can be optionally reg-  
istered to perform synchronous pipelining or to register asyn-  
chronous read and write operations. The output registers con-  
tain an asynchronous RESET which can be used in any type  
of sequential logic circuits (e.g., state machines).  
Dual-Port (Channel Memory) Configuration  
Each port has distinct address inputs, as well as separate data  
and control inputs that can be accessed simultaneously. The  
inputs to the Dual-Port memory are driven from the horizontal  
and vertical routing channels. The data outputs drive dedicat-  
ed tracks in the routing channels. The interface to the routing  
is such that Port A of the Dual-Port interfaces primarily with the  
horizontal routing channel and Port B interfaces primarily with  
There are four global clocks (GCLK[3:0]) and one local clock  
available for the input and the output registers. The local clock  
for the input registers is independent of the one used for the  
output registers. The local clock is generated in the user-de-  
sign in a macrocell or comes from an I/O pin.  
the vertical routing channel.  
.
Write  
Control  
Logic  
DIN[7:0]  
ADDR[12:0]  
WE  
3
D
D
D
Q
Q
Q
C
C
2
8
C
1024x8  
Asynchronous  
SRAM  
10  
C
Cluster PIM  
GCLK[3:0]  
5:1  
Local CLK  
3
3
C
8
C
DOUT[7:0]  
Read  
Control  
Logic  
Q
D
C
R
RESET  
2
C
GCLK[3:0]  
Local CLK  
5:1  
3
C
C
Figure 5. Block Diagram of Cluster Memory Block  
Document #: 38-03039 Rev. **  
Page 7 of 57  
Delta39KISR™  
CPLD Family  
PRELIMINARY  
The clocks for each port of the Dual-Port configuration are  
selected from four global clocks and two local clocks. One lo-  
cal clock is sourced from the horizontal channel and the other  
from the vertical channel. The data outputs of the dual-port  
memory can also be registered. Clocks for the output registers  
are also selected from four global clocks and two local clocks.  
One clock polarity mux per port allows the use of true or com-  
plement polarity for input and output clocking purposes.  
FIFO (Channel Memory) Configuration  
The channel memory blocks are also configurable as synchro-  
nous FIFO RAM. In the FIFO mode of operation, the channel  
memory block supports all normal FIFO operations without the  
use of any general-purpose logic resources in the device.  
The FIFO block contains all of the necessary FIFO flag logic,  
including the read and write address pointers. The FIFO flags  
include an empty/full flag (EF), half-full flag (HF), and program-  
mable almost-empty/full (PAEF) flag output. The FIFO config-  
uration has the ability to perform simultaneous read and write  
operations using two separate clocks. These clocks may be  
tied together for a single operation or may run independently  
for asynchronous Read/Write (w.r.t. each other) applications.  
The data and control inputs to the FIFO block are driven from  
the horizontal or vertical routing channels. The data and flag  
outputs are driven onto dedicated routing tracks in both the  
horizontal and vertical routing channels. This allows the FIFO  
blocks to be expanded by using multiple FIFO blocks on the  
same horizontal or vertical routing channel without any speed  
penalty.  
Arbitration  
The Dual-Port configuration of the Channel Memory Block pro-  
vides arbitration when both ports access the same address at  
the same time. Depending on the memory operation being at-  
tempted, one port always gets priority. See Table 1 for details  
on which port gets priority for read and write operations. An  
active-LOW Address Matchsignal is generated when an ad-  
dress collision occurs.  
Table 1. Arbitration Result: Address Match Signal  
Becomes Active  
Result of  
Port A Port B Arbitration  
In FIFO mode, the write and read ports are controlled by sep-  
arate clock and enable signals. The clocks for each port are  
selected from four global clocks and two local clocks.  
Comment  
Read  
Read No arbitration Both ports read at the  
required  
same time  
One local clock is sourced from the horizontal channel and the  
other from the vertical channel. The data outputs from the read  
port of the FIFO can also be registered. One clock polarity mux  
per port allows using true or complement polarity for read and  
write operations. The write operation is controlled by the clock  
and the write enable pin. The read operation is controlled by  
the clock and the read enable pin. The enable pins can be  
sourced from horizontal or vertical channels.  
Write  
Read Port A gets  
priority  
If Port B requests first  
then it will read the cur-  
rent data. The output will  
then change to the newly  
written data by Port A  
Read  
Write  
Write Port B gets  
priority  
If Port A requests first  
then it will read the cur-  
rent data. The output will  
then change to the newly  
written data by Port B  
Write Port A gets  
priority  
Port B is blocked until  
Port A is finished writing  
All channel memory  
inputs are driven from  
the routing channels  
4096-bit Dual Port  
Array  
Signals  
Configurable as  
Async/Sync Dual Port or  
Sync FIFO  
GCLK[3:0]  
Configurable as  
4Kx1, 2Kx2, 1Kx4 and  
512x8 block sizes  
All channel memory outputs  
drive dedicated tracks in the  
routing channels  
Horizontal Channel  
Figure 6. Block Diagram of Channel Memory Block  
Document #: 38-03039 Rev. **  
Page 8 of 57  
Delta39KISR™  
CPLD Family  
PRELIMINARY  
Channel Memory Initialization  
note titled Delta39K Family Device I/O Standards and Config-  
urationsfor details.  
The channel memory powers up in an undefined state, but is  
set to a user-defined known state during configuration. To fa-  
cilitate the use of look-up-table (LUT) logic and ROM applica-  
tions, the channel memory blocks can be initialized with a giv-  
en set of data when the device is configured at power up. For  
LUT and ROM applications, the user cannot write to memory  
blocks.  
bank 7  
bank 6  
Channel Memory Routing Interface  
Similar to LBC outputs, the channel memory blocks feature  
dedicated tracks in the horizontal and vertical routing channels  
for the data outputs and the flag outputs, as shown in  
Figure 6. This allows the channel memory blocks to be ex-  
panded easily. These dedicated lines can be routed to I/O pins  
as chip outputs or to other logic block clusters to be used in  
logic equations.  
Delta39K  
bank 2  
bank 3  
I/O Banks  
The Delta39K interfaces the horizontal and vertical routing  
channels to the pins through I/O banks. There are 8 I/O banks  
per device as shown in Figure 7, and all I/Os from an I/O bank  
are located in the same section of a package for PCB layout  
convenience.  
Figure 7. Delta39K I/O Bank Block Diagram  
I/O Standards  
For each package type, Delta39K devices of different densities  
keep given pins in the same I/O banks. This supports and sim-  
plifies design migration across densities.  
I/O  
Standard  
Termination  
VCCIO Voltage (VTT)  
VREF (V)  
Min. Max.  
Each I/O bank contains several I/O cells, and each I/O cell  
contains an input/output register, an output enable register,  
programmable slew rate control and programmable bus hold  
control logic. Each I/O cell drives a pin output of the device;  
the cell also supplies an input to the device that connects to a  
dedicated track in the associated routing channel.  
LVTTL  
N/A  
3.3V  
3.3V  
3.0V  
2.5V  
1.8V  
3.3V  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
1.5  
LVCMOS  
LVCMOS3  
LVCMOS2  
LVCMOS18  
3.3V PCI  
GTL+  
There are four dedicated inputs (GCTl[3:0]) that are used as  
Global Control Signals available to every I/O cell. These global  
control signals may be used as output enables, register resets  
and register clock enables as shown in Figure 8.  
0.9  
1.3  
1.1  
1.7  
SSTL3 I  
SSTL3 II  
SSTL2 I  
SSTL2 II  
HSTL I  
3.3V  
3.3V  
2.5V  
2.5V  
1.5V  
1.5V  
1.5V  
1.5V  
1.5  
Each I/O bank can use any supported I/O standard by supply-  
ing appropriate VREF and VCCIO voltages. All the VREF and  
1.3  
1.7  
1.5  
V
CCIO pins in an I/O bank must be connected to the same VREF  
1.15  
1.15  
0.68  
0.68  
0.68  
0.68  
1.35  
1.35  
0.9  
1.25  
1.25  
0.75  
0.75  
1.5  
and VCCIO voltage respectively. This requirement restricts the  
number of I/O standards supported by an I/O bank at any given  
time.  
The number of I/Os which can be used in each I/O bank de-  
pend on the type of I/O standards and the number of VCCIO  
and GND pins being used. This restriction is derived from the  
electromigration limit of the VCCIO and GND bussing on the  
chip. Please refer to the note on page 17 and the application  
HSTL II  
0.9  
HSTL III  
HSTL IV  
0.9  
0.9  
1.5  
Document #: 38-03039 Rev. **  
Page 9 of 57  
Delta39KISR™  
CPLD Family  
PRELIMINARY  
.
Registered OE  
Mux  
OE Mux  
D
Q
From  
C
Output PIM  
3
C
Input  
Mux  
RES  
To Routing  
Channel  
Register Input  
Mux  
C
C
Output Mux  
Bus  
Hold  
I/O  
Register Enable  
Mux  
D
E
Q
Clock  
C
C
Polarity  
Mux  
Slew  
Rate  
RES  
3
C
C
Control  
Clock Mux  
C
C
2
Register Reset  
Mux  
3
C
Figure 8. Block Diagram of I/O Cell  
I/O Cell  
pull-up resistor, is a weak latch connected to the pin that does  
not degrade the devices performance. As a latch, bus-hold  
maintains the last state of a pin when the pin is placed in a  
high-impedance state, thus reducing system noise in bus-in-  
terface applications. Bus-hold additionally allows unused de-  
vice pins to remain unconnected on the board, which is partic-  
ularly useful during prototyping as designers can route new  
signals to the device without cutting trace connections to VCC  
or GND. For more information, see the application note Un-  
derstanding Bus-Hold A Feature of Cypress CPLDs.”  
Figure 8 is a block diagram of the Delta39K I/O cell. The I/O  
cell contains a three-state input buffer, an output buffer, and a  
register that can be configured as an input or output register.  
The output buffer has a slew rate control option that can be  
used to configure the output for a slower slew rate. The input  
of the device and the pin output can each be configured as  
registered or combinatorial; however, only one path can be  
configured as registered in a given design.  
The output enable can be selected from one of the four global  
control signals or from one of two Output Control Channel  
(OCC) signals. The output enable can be configured as always  
enabled or always disabled or it can be controlled by one of  
the remaining inputs to the mux. The selection is done via a  
mux that includes VCC and GND as inputs.  
Clocks  
Delta39K has four dedicated clock input pins (GCLK[3:0]) to  
accept system clocks. One of these clocks (GCLK[0]) may be  
selected to drive an on-chip Phase-Locked Loop (PLL) for fre-  
quency modulation (see Figure 9 for details).  
One of the global clocks can be selected as the clock for the  
I/O cell register. The clock mux output is an input to a clock  
polarity mux that allows the input/output register to be clocked  
on either edge of the clock.  
The global clock tree for a Delta39K device can be driven by  
a combination of the dedicated clock pins and/or the PLL-de-  
rived clocks. The global clock tree consists of four global  
clocks that go to every macrocell, memory block, and I/O cell.  
Slew Rate Control  
Clock Tree Distribution  
The ouput buffer has a slew rate control option. This allows the  
output buffer to slew at a fast rate (3 V/ns) or a slow rate (1  
V/ns). All I/Os default to fast slew rate. For designs concerned  
with meeting FCC emissions standards the slow edge pro-  
vides for lower system noise. For designs requiring very high  
performance the fast edge rate provides maximum system  
performance.  
The global clock tree performs two primary functions. First, the  
clock tree generates the four global clocks by multiplexing four  
dedicated clocks from the package pins and four PLL driven  
clocks. Second, the clock tree distributes the four global clocks  
to every cluster, channel memory, and I/O block on the die.  
The global clock tree is designed such that the clock skew is  
minimized while maintaining an acceptable clock delay.  
Programmable Bus Hold  
On each I/O pin, user-programmable-bus-hold is included.  
Bus-hold, which is an improved version of the popular internal  
Document #: 38-03039 Rev. **  
Page 10 of 57  
Delta39KISR™  
CPLD Family  
PRELIMINARY  
off-chip signal (external feedback)  
INTCLK0, INTCLK1, INTCLK2, INTCLK3  
Any Register  
Send a global  
clock off chip  
GCLK1  
Normal I/O signal path  
Lock Detect/IO pin  
C
Clock Tree  
Delay  
Phase selection  
Divide  
1-6,8,16  
2
÷
C
INTCLK0  
GCLK0  
fb  
fb  
Lock  
2
Phase selection  
C
Divide  
1-6,8,16  
÷
÷
Clk 00  
Clk 450  
INTCLK1  
INTCLK2  
GCLK1  
Clk 900  
Clk 1350  
Clk 1800  
Clk 2250  
Clk 2700  
Clk 3150  
Phase selection  
2
GCLK0  
Source  
Clock  
C
Divide  
1-6,8,16  
GCLK2  
2
PLL  
X1, X2, X4  
C
Phase selection  
Divide  
1-6,8,16  
÷
INTCLK3  
GCLK3  
2
C
Figure 9. Block Diagram of Spread Aware PLL  
Spread AwarePLL  
The Voltage Controlled Oscillator (VCO), the core of the  
Delta39K PLL is designed to operate within the frequency  
range of 100 MHz to 266 MHz. Hence, the multiply option com-  
bined with input (GCLK[0]) frequency should be selected such  
that this VCO operating frequency requirement is met. This is  
demonstrated in Table 2 (columns 1, 2, and 3).  
Each device in the Delta39K family features an on-chip PLL  
designed using Spread Aware technology for low EMI applica-  
tions. In general, PLLs are used to implement time-division-  
multiplex circuits to achieve higher performance with fewer de-  
vice resources.  
Another feature of this PLL is the ability to drive the output  
clock (INTCLK) off the Delta39K chip to clock other devices on  
the board, as shown in Figure 9 above. This off-chip clock is  
half the frequency of the output clock as it has to go through a  
register (I/O register or a macrocell register).  
For example, a system that operates on a 32-bit data path that  
runs at 40 MHz can be implemented with 16-bit circuitry that  
runs internally at 80 MHz. PLLs can also be used to take ad-  
vantage of the positioning of the internally generated clock  
edges to shift performance towards improved setup, hold or  
clock-to-out times.  
This PLL can also be used for board de-skewing purpose by  
driving a PLL output clock off-chip, routing it to the other de-  
vices on the board and feeding it back to the PLLs external  
feedback input (GCLK[1]). When this feature is used, only lim-  
ited multiply, divide and phase shift options can be used.  
There are several frequency multiply (X1, X2, X4) and divide  
(/1, /2, /3, /4, /5, /6. /8, /16) options available to create a wide  
range of clock frequencies from a single clock input (GCLK[0]).  
For increased flexibility, there are seven phase shifting options  
which allow clock skew/de-skew by 45°, 90°, 135°, 180°, 225°,  
270° or 315°.  
Table 2 describes the valid multiply and divide options that can  
be used without an external feedback. Table 3 describes the  
valid multiply & divide options that can be used with an exter-  
nal feedback.  
Table 2. PLL Multiply and Divide Optionswithout External Feedback  
Valid Multiply Options  
Input Frequency  
Valid Divide Options  
(GCLK[0])  
VCO Output  
Output Frequency (INTCLK[3:0]) Off-chip Clock  
f
PLLI (MHz)  
Value Frequency (MHz)  
Value  
fPLLO (MHz)  
6.25133  
8.33200  
12.5266  
6.25133  
8.3200  
Frequency  
2533  
4
4
4
2
2
2
1
100133  
133200  
200266  
100133  
133200  
200266  
100133  
16, 8, 16  
16, 8, 16  
16, 8, 16  
16, 8, 16  
16, 8, 16  
16, 8, 16  
16, 8, 16  
3.1266  
3350  
4.16100  
6.25133  
3.1266  
5066  
66100  
4.16100  
6.25133  
3.1266  
12.5266  
6.25133  
100133  
Document #: 38-03039 Rev. **  
Page 11 of 57  
Delta39KISR™  
CPLD Family  
PRELIMINARY  
Table 3. PLL Multiply and Divide Optionswith External Feedback  
Valid Multiply Options  
Valid Divide Options  
Input (GCLK) Frequency  
fPLLI (MHz)  
VCO Output  
Frequency (MHz)  
Output (INTCLK) Frequency  
fPLLO (MHz)  
Off-chip Clock  
Frequency  
Value  
Value  
5066  
66100  
100133  
1
1
1
100133  
133200  
200266  
1
1
1
100133  
133200  
200266  
5066  
66100  
100133  
Table 5 is an example of the effect of all the available divide  
and phase shift options on a VCO output of 250 MHz. It also  
shows the effect of division on the duty cycle of the resultant  
clock. Note that the duty cycle is 50-50 when a VCO output is  
divided by an even number. Also note that the phase shift ap-  
plies to the VCO output and not to the divided output.  
Table 4 describes the valid phase shift options that can be used  
with or without an external feedback.  
Table 4. PLL Phase Shift Options—  
with and without External Feedback  
With External  
Feedback  
The Spread Aware PLL operates as specified for Delta39KV  
devices (2.5V/3.3V), but not Delta39KZ devices (1.8V). For  
more details on the architecture and operation of this PLL  
please refer to the application note entitled Delta39K PLL and  
Clock Tree.”  
Without External Feedback  
0°,45°, 90°, 135°, 180°, 225°, 270°, 315°  
0°  
Table 5. Timing of Clock Phases for all Divide Options for a VCO Output Frequency of 250 MHz  
Duty  
Divide  
Factor  
Period  
(ns)  
Cy-  
0°  
45°  
90°  
135°  
180°  
225°  
270°  
(ns)  
315°  
(ns)  
cle%  
(ns)  
(ns)  
(ns)  
(ns)  
(ns)  
(ns)  
1
2
4
40-60  
50  
0
0
0
0
0
0
0
0
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
1.0  
1.0  
1.0  
1.0  
1.0  
1.0  
1.0  
1.0  
1.5  
1.5  
1.5  
1.5  
1.5  
1.5  
1.5  
1.5  
2.0  
2.0  
2.0  
2.0  
2.0  
2.0  
2.0  
2.0  
2.5  
2.5  
2.5  
2.5  
2.5  
2.5  
2.5  
2.5  
3.0  
3.0  
3.0  
3.0  
3.0  
3.0  
3.0  
3.0  
3.5  
3.5  
3.5  
3.5  
3.5  
3.5  
3.5  
3.5  
8
3
12  
16  
20  
24  
32  
64  
33-67  
50  
4
5
40-60  
50  
6
8
50  
16  
50  
Document #: 38-03039 Rev. **  
Page 12 of 57  
Delta39KISR™  
CPLD Family  
PRELIMINARY  
Timing Model  
shown in Figure 10. For synchronous systems, the input set-  
up time to the output macrocell register and the clock to output  
time are shown as the parameters tMCS and tMCCO shown in  
the Figure 10. These measurements are for any output and  
synchronous clock, regardless of the logic placement.  
One important feature of the Delta39K family is the simplicity  
of its timing. All combinatorial and registered/synchronous de-  
lays are worst case and system performance is static (as  
shown in the AC specs section) as long as data is routed  
through the same horizontal and vertical channels. Figure 10  
illustrates the true timing model for the 200-MHz devices. For  
synchronous clocking of macrocells, a delay is incurred from  
macrocell clock to macrocell clock of separate Logic Blocks  
within the same cluster, as well as separate Logic Blocks with-  
in different clusters. This is respectively shown as tSCS and  
tSCS2 in Figure 10. For combinatorial paths, any input to any  
output (from corner to corner on the device), incurs a worst-  
case delay in the 39K100 regardless of the amount of logic or  
which horizontal and vertical channels are used. This is the tPD  
The Delta39K features:  
no dedicated vs. I/O pin delays  
no penalty for using 016 product terms  
no added delay for steering product terms  
no added delay for sharing product terms  
no output bypass delays  
The simple timing model of the Delta39K family eliminates un-  
expected performance penalties.  
tSCS  
GCLK[3:0]  
4
4
4
4
LB 0  
LB 1  
LB 2  
LB 3  
LB 7  
LB 6  
LB 5  
LB 4  
LB 0  
LB 1  
LB 2  
LB 3  
LB 7  
LB 6  
LB 5  
LB 4  
LB 0  
LB 1  
LB 2  
LB 3  
LB 7  
LB 6  
LB 5  
LB 4  
LB 0  
LB 1  
LB 2  
LB 3  
LB 7  
LB 6  
LB 5  
LB 4  
Channel  
RAM  
Channel  
RAM  
Channel  
RAM  
Channel  
RAM  
PIM  
PIM  
PI
PIM  
tMCS  
Cluster  
RAM  
Cluster  
RAM  
Cluster  
RAM  
Cluster  
RAM  
Cluster  
RAM  
Cluster  
RAM  
8 Kb  
SRAM  
8 Kb  
SRAM  
GCLK[3:0]  
4
4
4
4
tSCS2  
LB 0  
LB 1  
LB 2  
LB 3  
LB 7  
LB 6  
LB 5  
LB 4  
LB 0  
LB 1  
LB 2  
LB 3  
LB 7  
LB 6  
LB 5  
LB 4  
LB 0  
LB 1  
LB 2  
LB 3  
LB 7  
LB 6  
LB 5  
LB 4  
LB 0  
LB 1  
LB 7  
LB 6  
LB 5  
LB 4  
Channel  
RAM  
Channel  
RAM  
Channel  
RAM  
Channel  
RAM  
PIM  
PIM  
PIM  
PIM  
LB 2  
LB 3  
tPD  
Cluster  
RAM  
Cluster  
RAM  
Cluster  
RAM  
Cluster  
RAM  
Cluster  
RAM  
Cluster  
RAM  
Cluster  
RAM  
Cluster  
RAM  
GCLK[3:0]  
4
4
4
4
LB 0  
LB 1  
LB 2  
LB 3  
LB 7  
LB 6  
LB 5  
LB 4  
LB 0  
LB 1  
LB 2  
LB 3  
LB 7  
LB 6  
LB 5  
LB 4  
LB 0  
LB 1  
LB 2  
LB 3  
LB 7  
LB 6  
LB 5  
LB 4  
LB 0  
LB 1  
LB 7  
LB 6  
LB 5  
LB 4  
Channel  
RAM  
Channel  
RAM  
Channel  
RAM  
Channel  
RAM  
PIM  
PIM  
PIM  
PIM  
LB 2  
LB 3  
Cluster  
RAM  
Cluster  
RAM  
Cluster  
RAM  
Cluster  
RAM  
Cluster  
RAM  
Cluster  
RAM  
Cluster  
RAM  
Cluster  
RAM  
tMCCO  
Figure 10. Timing Model for 39K100 Device  
Document #: 38-03039 Rev. **  
Page 13 of 57  
Delta39KISR™  
CPLD Family  
PRELIMINARY  
IEEE 1149.1 Compliant JTAG Operation  
Delta39K to (re)configure according to data provided by other  
sources such as a PC, automatic test equipment (ATE), or an  
embedded micro-controller/processor via the JTAG interface.  
For more information on configuring Delta39K devices, refer  
The Delta39K family has an IEEE 1149.1 JTAG interface for  
both Boundary Scan and ISR operations.  
Four dedicated pins are reserved on each device for use by  
the Test Access Port (TAP).  
to  
the  
application  
note  
titled  
Configuring  
note at  
Delta39K/Quantum38K”  
application  
http://www.cypress.com.  
Boundary Scan  
There are two configuration options available for issuing the  
IEEE std 1149.1 JTAG instructions to the Delta39K. The first  
method is to use a PC with the C3ISR programming cable and  
software. With this method, the ISR pins of the Delta39K de-  
vices in the system are routed to a connector at the edge of  
the printed circuit board. The C3ISR programming cable is  
then connected between the PC and this connector. A simple  
configuration file instructs the ISR software of the program-  
ming operations to be performed on the Delta39K devices in  
the system. The ISR software then automatically completes all  
of the necessary data manipulations required to accomplish  
configuration, reading, verifying, and other ISR functions. For  
more information on the Cypress ISR interface, see the ISR  
Programming Kit data sheet (CY3900i).  
The Delta39K family supports Bypass, Sample/Preload, Ex-  
test, Intest, Idcode and Usercode boundary scan instructions.  
The JTAG interface is shown in Figure 11.  
Instruction Register  
TDI  
TDO  
Bypass Reg.  
JTAG  
TMS  
TAP  
CONTROLLER  
Boundary Scan  
TCLK  
idcode  
The second configuration option for the Delta39K is to utilize  
the embedded controller or processor that already exists in the  
system. The Delta39K ISR software assists in this method by  
converting the device HEX file into the ISR serial stream that  
contains the ISR instruction information and the addresses  
and data of locations to be configured. The embedded control-  
ler then simply directs this ISR stream to the chain of Delta39K  
devices to complete the desired reconfiguration or diagnostic  
operations. Contact your local sales office for information on  
availability of this option.  
Usercode  
ISR Prog.  
Data Registers  
Figure 11. JTAG Interface  
In-System Reprogramming (ISR)  
Programming  
In-System Reprogramming is the combination of the capability  
to program or reprogram a device on-board, and the ability to  
support design changes without changing the system timing  
or device pinout. This combination means design changes  
during debug or field upgrades do not cause board respins.  
The Delta39K family implements ISR by providing a JTAG  
compliant interface for on-board programming, robust routing  
resources for pinout flexibility, and a simple timing model for  
consistent system performance.  
The on-chip FLASH device of the Delta39K Self-Boot package  
is programmed by issuing the appropriate IEEE std 1149.1  
JTAG instruction to the internal FLASH memory via the JTAG  
interface. This can be done automatically using ISR/STAPL  
software. The configuration bits are sent from a PC through  
the JTAG port into the Delta39K via the C3ISR programming  
cable. The data is then internally passed from Delta39K to the  
on-chip FLASH. For more information on how to program the  
Delta39K through ISR/STAPL, please refer to the ISR/STAPL  
User Guide.  
Configuration  
Each device of the Delta39K family is available in a volatile and  
a Self-Boot package. Cypresss CPLD boot EEPROM is used  
to store configuration data for the volatile solution and an em-  
bedded on-chip FLASH memory device is used for the Self-  
Boot solution.  
The external CPLD boot EEPROM used to store configuration  
data for the Delta39K volatile package is programmed through  
Cypresss CYDH2200E CPLD Boot PROM Programming Kit  
via a two-wire interface. For more information on how to pro-  
gram the CPLD boot EEPROM, please refer to the data sheet  
titled CYDH2200E CPLD Boot PROM Programming Kit.For  
more information on the architecture and timing specification  
of the boot EEPROM, refer to the data sheet titled CPLD Boot  
EEPROM.”  
For volatile Delta39K packages, programming is defined as  
the loading of a users design into the external CPLD boot  
EEPROM. For Self-Boot Delta39K packages, programming is  
defined as the loading of a users design into the on-chip  
FLASH internal to the Delta39K package. Configuration is de-  
fined as the loading of a users design into the Delta39K die.  
Third-Party Programmers  
Cypress support is available on a wide variety of third-party  
programmers. All major programmers (including BP Micro,  
System General, Hi-Lo) support the Delta39K family.  
Configuration can begin in two ways. It can be initiated by tog-  
gling the Reconfig pin from LOW to HIGH, or by issuing the  
appropriate IEEE std 1149.1 JTAG instruction to the Delta39K  
device via the JTAG interface. There are two IEEE std 1149.1  
JTAG instructions that initiate configuration of the Delta39K.  
The Self Config instruction causes the Delta39K to (re)config-  
ure with data stored in the serial boot PROM or the embedded  
FLASH memory. The Load Config instruction causes the  
Development Software Support  
Warp  
Warp is a state-of-the-art design environment for designing  
with Cypress programmable logic. Warp utilizes a subset of  
Document #: 38-03039 Rev. **  
Page 14 of 57  
Delta39KISR™  
CPLD Family  
PRELIMINARY  
IEEE 1076/1164 VHDL and IEEE 1364 as the Hardware De-  
scription Language (HDL) for design entry. Warp accepts  
VHDL or Verilog input, synthesizes and optimizes the entered  
design, and outputs a configuration bitstream for the desired  
Delta39K device. For simulation, Warp provides a graphical  
waveform simulator as well as VHDL and Verilog Timing Mod-  
els.  
havioral design entry and simulation. HDL allows designers to  
learn a single language that is useful for all facets of the design  
process.  
Third-Party Software  
Cypress products are supported in a number of third-party de-  
sign entry and simulation tools. Refer to the third-party soft-  
ware data sheet or contact your local sales office for a list of  
currently supported third party vendors.  
VHDL and Verilog are open, powerful, non-proprietary Hard-  
ware Description Languages (HDLs) that are standards for be-  
Document #: 38-03039 Rev. **  
Page 15 of 57  
Delta39KISR™  
CPLD Family  
PRELIMINARY  
V
CC to Ground Potential (39KV device) ...........0.5V to 4.6V  
CCIO to Ground Potential................................0.5V to 4.6V  
Maximum Ratings  
V
(Above which the useful life may be impaired. For user guide-  
lines, not tested.)  
DC Voltage Applied to Outputs in High Z State 0.5V to 4.5V  
DC Input voltage...............................................0.5V to 4.5V  
Storage Temperature..................................65°C to +150°C  
Soldering Temperature...................................................220°C  
DC Current into Outputs.........................................................  
...................±20 mA[6]  
Ambient Temperature with  
Power Applied...............................................40°C to +85°C  
Static Discharge Voltage (per MIL-STD-8883,  
Method 3015)..............................................................>2001V  
Latch-Up Current.......................................................>200 mA  
Junction Temperature....................................................135°C  
VCC to Ground Potential (39KZ device)........... 0.5V to 2.5V  
Operating Range  
Ambient  
Temperature  
Junction  
Temperature  
Output  
Condition  
VCCJTAG  
/
Range  
VCCIO  
VCC  
VCCCNFG VCCPLL VCCPRG  
0°C to +70°C  
0°C to +85°C  
3.3V  
2.5V  
1.8V  
1.5V  
3.3V  
2.5V  
1.8V  
1.5V  
3.3V ± 0.3V  
2.5V ± 0.2V  
3.3V ± 0.3V  
or  
Same as  
VCCIO  
Same  
as VCC  
3.3V  
±
0.3V  
Commercial  
1.8V ± 0.15V 2.5V ± 0.2V  
1.5V ± 0.1V[5]  
(39KV)  
40°C to +85°C 40°C to +100°C  
3.3V ± 0.3V  
1.8V± 0.15V  
2.5V ± 0.2V  
(39KZ)  
Industrial  
1.8V ± 0.15V  
1.5V ± 0.1V[5]  
DC Characteristics  
VCCIO = 3.3 V VCCIO =2.5 V VCCIO =1.8V  
Min. Max. Min. Max. Min. Max. Unit  
Parameter Description  
Test Conditions  
Data Retention VCC Voltage  
(config data may be lost below this)  
1.5  
1.2  
10  
1.5  
1.5  
V
VDRINT  
VDRIO  
Data Retention VCCIO Voltage  
(config data may be lost below this)  
1.2  
1.2  
V
IIX  
Input Leakage Current  
Output Leakage Current  
GND VI 3.6V  
10  
10  
10  
10  
10  
10  
10  
10  
10  
10  
µA  
µA  
IOZ  
GND VO VCCIO 10  
VCCIO = Max.,  
160  
160  
160 mA  
[7]  
IOS  
Output Short Circuit Current  
VOUT = 0.5V  
Input Bus Hold LOW Sustaining  
Current  
VCC = Min.,  
VPIN = VIL  
+40  
+30  
+25  
µA  
µA  
IBHL  
Input Bus Hold HIGH Sustaining  
Current  
VCC = Min.,  
VPIN = VIH  
40  
30  
25  
IBHH  
IBHLO  
Input Bus Hold LOW Overdrive Current VCC = Max.  
Input Bus Hold HIGH Overdrive Current VCC = Max.  
+250  
+200  
+150 µA  
150 µA  
IBHHO  
250  
200  
Notes:  
6. DC current into outputs is 36 mA with HSTL III, 48 mA with HSTL IV and 36 mA with GTL+ (with 25pull-up resistor and VTT = 1.5  
7. Not more than one output should be tested at a time. Duration of the short circuit should not exceed 1 second. VOUT = 0.5V has been chosen to avoid test  
problems caused by tester ground degradation. Tested initially and after any design or process changes that may affect these parameters.  
Document #: 38-03039 Rev. **  
Page 16 of 57  
Delta39KISR™  
CPLD Family  
PRELIMINARY  
Capacitance  
Parameter  
CI/O  
Description  
Test Conditions  
Min.  
Max.  
10  
Unit  
pF  
Input/Output Capacitance  
Clock Signal Capacitance  
PCI Compliant[8] Capacitance  
Vin=VCCIO @ f=1 MHz 25°C  
Vin=VCCIO @ f=1 MHz 25°C  
Vin=VCCIO @ f=1 MHz 25°C  
CCLK  
5
12  
pF  
CPCI  
8
pF  
[9]  
DC Characteristics (IO)  
VREF (V)  
Input/  
VOH (V)  
VOL (V)  
VOL  
VIH (V)  
VIL (V)  
Output  
VCCIO  
Standard  
(V)  
3.3  
3.3  
3.0  
2.5  
@ IOH  
=
VOH (min.) @ IOL  
=
(max.)  
Min.  
2.0 V  
2.0 V  
2.0 V  
1.7 V  
Max.  
Min.  
Max.  
0.8V  
0.8V  
0.8V  
0.7V  
LVTTL  
N/A  
4 mA  
2.4 4 mA  
0.4  
VCCIO+0.3 0.3V  
LVCMOS  
LVCMOS3  
0.1 mA VCCIO0.2v 0.1 mA  
0.1 mA VCCIO0.2v 0.1mA  
0.2  
VCCIO+0.3 0.3V  
VCCIO+0.3 0.3V  
VCCIO+0.3 0.3V  
0.2  
0.1 mA  
1.0 mA  
2.0 mA  
2.1  
2.0  
1.7  
0.1 mA  
1.0 mA  
2.0 mA  
0.2  
LVCMOS2  
0.4  
0.7  
1.8  
3.3  
0.1 mA VCCIO0.2v 0.1mA  
2 mA VCCIO0.45v 2.0 mA  
0.2  
0.65VCCIO VCCIO+0.3 0.3V 0.35VCCIO  
LVCMOS18  
0.45  
3.3V PCI  
GTL+  
0.5 mA  
0.9VCCIO  
1.5 mA 0.1VCCIO 0.5VCCIO VCCIO+0.5 0.5V 0.3VCCIO  
0.9 1.1 Note 10  
Note 11  
8 mA  
0.6  
0.7  
VREF+0.2  
VREF0.2  
SSTL3 I  
SSTL3 II  
SSTL2 I  
SSTL2 II  
HSTL I  
1.3 1.7  
1.3 1.7  
1.15 1.35  
1.15 1.35  
0.68 0.9  
0.68 0.9  
0.68 0.9  
0.68 0.9  
3.3  
3.3  
2.5  
2.5  
1.5  
1.5  
1.5  
1.5  
8 mA  
VCCIO1.1v  
VREF+0.2 VCCIO+0.3 0.3V VREF0.2  
VREF+0.2 VCCIO+0.3 0.3V VREF0.2  
VREF+1.8 VCCIO+0.3 0.3V VREF0.18  
VREF+1.8 VCCIO+0.3 0.3V VREF0.18  
VREF+1.0 VCCIO+0.3 0.3V VREF0.1  
VREF+1.0 VCCIO+0.3 0.3V VREF0.1  
VREF+1.0 VCCIO+0.3 0.3V VREF0.1  
VREF+1.0 VCCIO+0.3 0.3V VREF0.1  
16 mA VCCIO0.9v 16 mA  
7.6 mA VCCIO0.62v 7.6 mA  
15.2 mA VCCIO0.43v 15.2 mA  
0.5  
0.54  
0.35  
0.4  
8 mA  
VCCIO0.4v  
8 mA  
HSTL II  
HSTL III  
HSTL IV  
16 mA VCCIO0.4v 16 mA  
0.4  
8 mA  
8 mA  
VCCIO0.4v 24 mA  
VCCIO0.4v 48 mA  
0.4  
0.4  
Notes:  
8. PCI spec (rev 2.2) requires the IDSEL pin to have capacitance less than or equal to 8 pF. Document titled Delta39K Pin Tablesidentifies all the I/O pins, in a  
given package, which can be used as IDSEL in a PCI design. All other I/O pins meet the PCI requirement of capacitance less than or equal to 10 pf.  
9. The number of I/Os which can be used in each I/O bank depends on the type of I/O standards and the number of VCCIO and GND pins being used. Please refer  
to the application note titled Delta39K Family Device I/O Standards and Configurationsfor details.  
The source current limit per I/O bank per Vccio pin is 165 mA  
The sink current limit per I/O bank per GND pin is 230 mA  
10. See Power-up Sequence Requirementsbelow for VCCIO requirement.  
11. 25resistor terminated to termination voltage of 1.5V.  
Document #: 38-03039 Rev. **  
Page 17 of 57  
Delta39KISR™  
CPLD Family  
PRELIMINARY  
Configuration Parameters  
Parameter  
Description  
Reconfig pin LOW time before it goes HIGH  
Min.  
200  
Unit  
ns  
tRECONFIG  
Power-up Sequence Requirements  
Upon power-up, all the outputs remain three-stated until all  
the VCC pins have powered-up to the nominal voltage and  
the part has completed configuration.  
All VCCIOs on a bank should be tied to the same potential  
and powered up together.  
All VCCIOs (even the unused banks) need to be powered up  
to at least 1.5V before configuration has completed.  
Maximum ramp time for all VCCs should be 0V to nominal  
voltage in 100 ms.  
The part will not start configuration until VCC, VCCIO  
,
VCCJTAG, VCCCNFG, VCCPLL and VCCPRG have reached  
nominal voltage.  
VCC pins can be powered up in any order. This includes  
VCC, VCCIO, VCCJTAG, VCCCNFG, VCCPLL and VCCPRG  
.
Document #: 38-03039 Rev. **  
Page 18 of 57  
Delta39KISR™  
CPLD Family  
PRELIMINARY  
Switching Characteristics - Parameter Descriptions Over the Operating Range [12]  
Parameter  
Description  
Combinatorial Mode Parameters  
Delay from any pin input, through any cluster on the channel associated with that pin input, to any pin  
output on the horizontal or vertical channel associated with that cluster  
tPD  
tEA  
tER  
Global control to output enable  
Global control to output disable  
Asynchronous macrocell RESET or PRESET recovery time from any pin input on the horizontal or vertical  
channel associated with the cluster the macrocell is in  
tPRR  
tPRO  
tPRW  
Asynchronous macrocell RESET or PRESET from any pin input on the horizontal or vertical channel  
associated with the cluster that the macrocell is in to any pin output on those same channels  
Asynchronous macrocell RESET or PRESET minimum pulse width, from any pin input to a macrocell in  
the farthest cluster on the horizontal or vertical channel the pin is associated with  
Synchronous Clocking Parameters  
Set-up time of any input pin to a macrocell in any cluster on the channel associated with that input pin,  
relative to a global clock  
tMCS  
Hold time of any input pin to a macrocell in any cluster on the channel associated with that input pin, relative  
to a global clock  
tMCH  
tMCCO  
Global clock to output of any macrocell to any output pin on the horizontal or vertical channel associated  
with the cluster that macrocell is in  
tIOS  
Set-up time of any input pin to the I/O cell register associated with that pin, relative to a global clock  
Hold time of any input pin to the I/O cell register associated with that pin, relative to a global clock  
Clock to output of an I/O cell register to the output pin associated with that register  
tIOH  
tIOCO  
tSCS  
tSCS2  
tICS  
Macrocell clock to macrocell clock through array logic within the same cluster  
Macrocell clock to macrocell clock through array logic in different clusters on the same channel  
I/O register clock to any macrocell clock in a cluster on the channel the I/O register is associated with  
Macrocell clock to any I/O register clock on the horizontal or vertical channel associated with the cluster  
that the macrocell is in  
tOCS  
tCHZ  
tCLZ  
fMAX  
Clock to output disable (high-impedance)  
Clock to output enable (low-impedance)  
Maximum frequency with internal feedbackwithin the same cluster  
Maximum frequency with internal feedbackwithin different clusters at the opposite ends of a horizontal  
or vertical channel  
fMAX2  
Product Term Clock  
tMCSPT  
Set-up time for macrocell used as input register, from input to product term clock  
Hold time of macrocell used as an input register  
tMCHPT  
tMCCOPT  
Product term clock to output delay from input pin  
Register to register delay through array logic in different clusters on the same channel using a product term  
clock  
tSCS2PT  
Channel Interconnect Parameters  
tCHSW  
Adder for a signal to switch from a horizontal to vertical channel and vice-versa  
Cluster to Cluster delay adder (through channels and channel PIM)  
tCL2CL  
Note:  
12. Add tCHSW to signals making a horizontal to vertical channel switch or vice-versa.  
Document #: 38-03039 Rev. **  
Page 19 of 57  
Delta39KISR™  
CPLD Family  
PRELIMINARY  
Switching Characteristics - Parameter Descriptions Over the Operating Range [12] (continued)  
Parameter  
Description  
Miscellaneous Delays  
Delay from the input of a cluster PIM, through a macrocell in the cluster, back to a cluster PIM input. This  
parameter can be added to the tPD and tSCS parameters for each extra pass through the AND/OR array  
required by a given signal path  
tCPLD  
tMCCD  
tIOD  
Adder for carry chain logic per macrocell  
Delay from the input of the output buffer to the I/O pin  
Delay from the I/O pin to the input of the channel buffer  
Delay from the clock pin to the input of the clock driver  
Delay from the I/O pin to the input of the I/O register  
tIOIN  
tCKIN  
tIOREGPIN  
PLL Parameters  
tMCCJ  
Maximum cycle to cycle jitter time  
PLL delay with skew adjustment  
PLL delay without any skew adjustment  
Lock time for the PLL  
tDWSA  
tDWOSA  
tLOCK  
fPLLO  
Output frequency of the PLL  
Input frequency of the PLL  
fPLLI  
JTAG Parameters  
tJCKH  
TCLK HIGH time  
tJCKL  
TCLK LOW time  
tJCP  
TCLK clock period  
tJSU  
JTAG port setup time (TDI/TMS inputs)  
JTAG port hold time (TDI/TMS inputs)  
JTAG port clock to output time (TDO)  
JTAG port valid output to high impedance (TDO)  
JTAG port high impedance to valid output (TDO)  
tJH  
tJCO  
tJXZ  
tJZX  
Document #: 38-03039 Rev. **  
Page 20 of 57  
Delta39KISR™  
CPLD Family  
PRELIMINARY  
Cluster Memory Timing Parameter Descriptions Over the Operating Range  
Parameter  
Description  
Asynchronous Mode Parameters  
tCLMAA  
tCLMPWE  
tCLMSA  
tCLMHA  
tCLMSD  
tCLMHD  
Cluster memory access time. Delay from address change to read data out  
Write Enable pulse width  
Address set-up to the beginning of Write Enable with both signals from the same I/O block  
Address hold after the end of Write Enable with both signals from the same I/O block  
Data set-up to the end of Write Enable  
Data hold after the end of Write Enable  
Synchronous Mode Parameters  
Clock cycle time for flow through read and write operations (from macrocell register through cluster memory  
back to a macrocell register in the same cluster)  
tCLMCYC1  
tCLMCYC2  
Clock cycle time for pipelined read and write operations (from cluster memory input register through the  
memory to cluster memory output register)  
tCLMS  
Address, data, and WE set-up time of pin inputs, relative to a global clock  
Address, data, and WE hold time of pin inputs, relative to a global clock  
Global clock to data valid on output pins for flow through data  
Global clock to data valid on output pins for pipelined data  
tCLMH  
tCLMDV1  
tCLMDV2  
tCLMMACS1  
tCLMMACS2  
tMACCLMS1  
tMACCLMS2  
Internal Parameters  
tCLMCLAA  
Cluster memory input clock to macrocell clock in the same cluster  
Cluster memory output clock to macrocell clock in the same cluster  
Macrocell clock to cluster memory input clock in the same cluster  
Macrocell clock to cluster memory output clock in the same cluster  
Asynchronous cluster memory access time from input of cluster memory to output of cluster memory  
Document #: 38-03039 Rev. **  
Page 21 of 57  
Delta39KISR™  
CPLD Family  
PRELIMINARY  
Channel Memory Timing Parameter Descriptions Over the Operating Range  
Parameter  
Description  
Dual Port Asynchronous Mode Parameters  
tCHMAA  
tCHMPWE  
tCHMSA  
tCHMHA  
tCHMSD  
tCHMHD  
tCHMBA  
Channel memory access time. Delay from address change to read data out  
Write enable pulse width  
Address set-up to the beginning of write enable with both signals from the same I/O block  
Address hold after the end of write enable with both signals from the same I/O block  
Data set-up to the end of write enable  
Data hold after the end of write enable  
Channel memory asynchronous dual port address match (busy access time)  
Dual Port Synchronous Mode Parameters  
Clock cycle time for flow through read and write operations (from macrocell register through channel  
memory back to a macrocell register in the same cluster)  
tCHMCYC1  
tCHMCYC2  
Clock cycle time for pipelined read and write operations (from channel memory input register through the  
memory to channel memory output register)  
tCHMS  
Address, data, and WE set-up time of pin inputs, relative to a global clock  
Address, data, and WE hold time of pin inputs, relative to a global clock  
Global clock to data valid on output pins for flow through data  
tCHMH  
tCHMDV1  
tCHMDV2  
tCHMBDV  
tCHMMACS1  
tCHMMACS2  
tMACCHMS1  
tMACCHMS2  
Global clock to data valid on output pins for pipelined data.  
Channel memory synchronous dual-port address match (busy, clock to data valid)  
Channel memory input clock to macrocell clock in the same cluster  
Channel memory output clock to macrocell clock in the same cluster  
Macrocell clock to channel memory input clock in the same cluster  
Macrocell clock to channel memory output clock in the same cluster  
Synchronous FIFO Data Parameters  
tCHMCLK Read and write minimum clock cycle time  
tCHMFS  
Data, read enable, and write enable set-up time relative to pin inputs  
Data, read enable, and write enable hold time relative to pin inputs  
Data access time to output pins from rising edge of read clock (read clock to data valid)  
Channel memory FIFO read clock to macrocell clock for read data  
Macrocell clock to channel memory FIFO write clock for write data  
tCHMFH  
tCHMFRDV  
tCHMMACS  
tMACCHMS  
Synchronous FIFO Flag Parameters  
tCHMFO  
Read or write clock to respective flag output at output pins  
tCHMMACF  
Read or write clock to macrocell clock with FIFO flag  
Master Reset Pulse Width  
tCHMFRS  
tCHMFRSR  
Master Reset Recovery Time  
tCHMFRSF  
Master Reset to Flag and Data Output Time  
Read/Write Clock Skew Time for Full Flag  
Read/Write Clock Skew Time for Empty Flag  
Read/Write Clock Skew Time for Boundary Flags  
tCHMSKEW1  
tCHMSKEW2  
tCHMSKEW3  
Internal Parameters  
tCHMCHAA  
Asynchronous channel memory access time from input of channel memory to output of channel memory  
Document #: 38-03039 Rev. **  
Page 22 of 57  
Delta39KISR™  
CPLD Family  
PRELIMINARY  
Switching Characteristics - Parameter Values Over the Operating Range  
250  
222  
200  
181  
167  
154  
125  
83  
Parameter Min. Max. Min. Max. Min. Max. Min. Max. Min. Max. Min. Max. Min. Max. Min. Max. Unit  
Combinatorial Mode Parameters  
tPD  
6.5  
4.0  
4.0  
7.0  
4.5  
4.5  
7.5  
5.0  
5.0  
8.5  
5.6  
5.3  
8.5  
6.5  
6.5  
9.0  
7.5  
7.5  
10  
9.0  
9.0  
15  
10  
10  
ns  
ns  
ns  
ns  
ns  
ns  
tEA  
tER  
tPRR  
tPRO  
tPRW  
6.0  
9.0  
3.0  
6.0  
9.5  
3.3  
6.0  
10  
6.0  
10.5  
4.0  
6.0  
11  
7.0  
12  
8.0  
13  
10  
15  
3.6  
4.5  
5.0  
6.0  
7.0  
Synchronous Clocking Parameters  
tMCS  
tMCH  
tMCCO  
tIOS  
2.5  
0.0  
2.7  
0.0  
3.0  
0.0  
3.5  
0.0  
3.5  
0.0  
4.0  
0.0  
5.0  
0.0  
6.0  
0.0  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
5.0  
3.2  
5.5  
3.6  
6.0  
4.0  
7.0  
4.5  
7.5  
5.0  
8.5  
6.0  
10  
12  
0.8  
0.8  
0.9  
0.9  
1.0  
1.0  
1.2  
1.2  
1.4  
1.4  
1.7  
1.7  
2.0  
2.0  
2.5  
2.5  
tIOH  
tIOCO  
tSCS  
tSCS2  
tICS  
7.0  
8.0  
3.0  
3.9  
4.0  
4.0  
3.2  
4.2  
4.5  
4.5  
3.5  
4.5  
5.0  
5.0  
3.6  
5.5  
5.5  
5.5  
3.7  
5.7  
6.0  
6.0  
3.9  
6.2  
6.5  
6.5  
6.4  
8.0  
8.0  
8.0  
9.6  
12  
12  
12  
tOCS  
tCHZ  
tCLZ  
3.5  
3.5  
3.5  
3.8  
4.0  
4.4  
6.0  
7.0  
2.0  
2.0  
2.0  
2.0  
2.0  
2.0  
2.0  
2.0  
fMAX  
fMAX2  
333  
256  
313  
238  
286  
222  
278  
181  
270  
167  
256  
154  
156  
125  
104 MHz  
83 MHz  
Product Term Clocking Parameters  
tMCSPT  
tMCHPT  
tMCCOPT  
tSCS2PT  
2.5  
0.8  
2.7  
0.9  
3.0  
3.3  
1.4  
3.5  
4.0  
5.0  
6.0  
ns  
ns  
1.0  
1.4  
1.7  
2.0  
2.5  
7.0  
7.5  
8.0  
8.8  
9.0  
10.0  
11.0  
15.0  
ns  
ns  
5.5  
6.0  
6.5  
7.2  
7.5  
9.0  
10.0  
15.0  
Channel Interconnect Parameters  
tCHSW  
tCL2CL  
0.8  
1.6  
0.9  
1.8  
1.0  
2.0  
1.2  
2.3  
1.2  
2.4  
1.4  
2.6  
1.7  
2.8  
2.0  
3.0  
ns  
ns  
Miscellaneous Parameters  
tCPLD  
2.5  
0.2  
2.8  
3.0  
3.3  
3.5  
3.8  
4.0  
5.0  
ns  
ns  
tMCCD  
0.22  
0.25  
0.28  
0.30  
0.32  
0.35  
0.38  
PLL Parameters  
tMCCJ  
0.45  
±320  
±320  
3.0  
0.48  
±330  
±330  
3.0  
0.50  
±350  
±350  
3.0  
0.50  
±350  
±350  
3.0  
0.55  
±390  
±390  
3.0  
0.58  
±400  
±400  
3.0  
0.60  
±420  
±420  
3.0  
0.65  
ns  
tDWSA  
±460 ps  
±460 ps  
tDWOSA  
tLOCK  
3.0  
ms  
Document #: 38-03039 Rev. **  
Page 23 of 57  
Delta39KISR™  
CPLD Family  
PRELIMINARY  
Switching Characteristics - Parameter Values Over the Operating Range (continued)  
250  
222  
200  
181  
167  
154  
125  
83  
Parameter Min. Max. Min. Max. Min. Max. Min. Max. Min. Max. Min. Max. Min. Max. Min. Max. Unit  
[13]  
fPLLO  
6.2 266 6.2 266 6.2 266 6.2 266 6.2 266 6.2 266 6.2  
200 6.2 200 MHz  
[13]  
fPLLI  
25  
133  
25  
133  
25  
133  
25  
133  
25  
133  
25  
133  
25  
100  
25  
100 MHz  
JTAG Parameters  
tJCKH  
tJCKL  
tJCP  
tJSU  
tJH  
25  
25  
50  
10  
10  
25  
25  
50  
10  
10  
25  
25  
50  
10  
10  
25  
25  
50  
10  
10  
25  
25  
50  
10  
10  
25  
25  
50  
10  
10  
25  
25  
50  
10  
10  
25  
25  
50  
10  
10  
ns  
ns  
ns  
ns  
ns  
tJCO  
tJXZ  
20  
20  
20  
20  
20  
20  
20  
20  
20  
20  
20  
20  
20  
20  
20  
20  
20  
20  
20  
20  
20  
20  
20  
20  
ns  
ns  
ns  
tJZX  
Note:  
13. Refer to page 11 and the application note titled Delta39K PLL and Clock Treefor details on the PLL operation & specification  
Document #: 38-03039 Rev. **  
Page 24 of 57  
Delta39KISR™  
CPLD Family  
PRELIMINARY  
Input & Output Standard Timing Delay Adjustments  
All the timing specifications in this data sheet are specified based on 3.3V PCI compliant inputs and outputs (fast slew rates).[14]  
Apply following adjustments if the inputs and outputs are configured to operate at other standards.  
Output Delay Adjustments  
Input Delay Adjustments  
tIOIN tCKIN  
0 0  
Input/Output  
Standard  
tIOD  
2.6  
2.0  
2.0  
1.2  
1.0  
0.5  
0.2  
0.2  
0.3  
0.5  
2.1  
tEA  
0
tER  
0
tIOREGPIN  
LVTTL 2 mA  
LVTTL 4 mA  
LVTTL 6 mA  
LVTTL 8 mA  
LVTTL 12 mA  
LVTTL 16 mA  
LVTTL 24 mA  
LVCMOS  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
LVCMOS3  
LVCMOS2  
LVCMOS18  
3.3V PCI  
0.05  
0.1  
0.7  
0
0
0.1  
0.2  
0.5  
0
0.1  
0.2  
0.4  
0
0.2  
0.4  
0.3  
0
0
0.1  
0
0
GTL+  
0.6[15]  
0.3  
0.4  
0.1  
0.2  
0.6  
0.4  
0.6[15]  
0.3  
0.2  
0.4  
0.2  
0.9  
0.8  
0.5  
0.6  
0.9[15]  
0.1  
0
0.5  
0.5  
0.5  
0.9  
0.9  
0.5  
0.5  
0.5  
0.5  
0.4  
0.3  
0.3  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.2  
0.3  
0.3  
0.6  
0.6  
0.3  
0.3  
0.3  
0.3  
SSTL3 I  
SSTL3 II  
SSTL2 I  
0
SSTL2 II  
0
HSTL I  
0.5  
0.5  
0.1  
0
HSTL II  
HSTL III  
0.6  
HSTL IV  
0.7  
Notes:  
14. For slow slew rateoutput delay adjustments, refer to Warp softwares static timing analyzer results.  
15. These delays are based on falling edge output. The rising edge delay depends on the size of pull up resistor and termination voltage.  
Document #: 38-03039 Rev. **  
Page 25 of 57  
Delta39KISR™  
CPLD Family  
PRELIMINARY  
Cluster Memory Timing Parameter Values Over the Operating Range  
250  
222  
200  
181  
167  
154  
125  
83  
Parameter Min. Max. Min. Max. Min. Max. Min. Max. Min. Max. Min. Max. Min. Max. Min. Max. Unit  
Asynchronous Mode Parameters  
tCLMAA  
tCLMPWE  
tCLMSA  
tCLMHA  
tCLMSD  
tCLMHD  
9
10  
11  
12  
13  
15  
17  
20  
ns  
ns  
ns  
ns  
ns  
ns  
5
5.5  
1.8  
0.9  
5.5  
0.4  
6
6.5  
2.2  
1.1  
6.5  
0.6  
7
8
10  
3.2  
1.8  
10  
12  
4.0  
2.0  
12  
1.6  
0.8  
5.0  
0.3  
2.0  
1.0  
6.0  
0.5  
2.5  
1.2  
7.0  
0.7  
2.8  
1.5  
8.0  
0.8  
0.9  
1.0  
Synchronous Mode Parameters  
tCLMCYC1  
tCLMCYC2  
tCLMS  
9.0  
4.0  
2.5  
0.0  
9.5  
4.5  
2.7  
0.0  
10  
5.0  
3.0  
0.0  
10.5  
5.5  
11  
13  
7.0  
3.8  
0.0  
15  
8.0  
4.0  
0.0  
20  
10.0  
5.0  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
6.0  
3.5  
0.0  
3.8  
tCLMH  
0.0  
0.0  
tCLMDV1  
tCLMDV2  
9.0  
6.5  
10  
11  
12  
13  
15  
17  
10  
20  
15  
7.0  
7.5  
8.0  
8.5  
9.0  
tCLMMACS1 7.0  
tCLMMACS2 4.0  
tMACCLMS1 3.2  
tMACCLMS2 5.5  
7.5  
4.5  
3.6  
6.0  
8.0  
5.0  
4.0  
6.5  
8.5  
5.5  
4.4  
7.0  
9.0  
6.0  
4.8  
7.5  
10  
7.0  
5.5  
8.5  
12  
8.0  
6.6  
10  
15  
10  
8.0  
12  
Internal Parameters  
tCLMCLAA  
5
5.5  
6
6.5  
7
8
10  
12  
ns  
Document #: 38-03039 Rev. **  
Page 26 of 57  
Delta39KISR™  
CPLD Family  
PRELIMINARY  
Channel Memory Timing Parameter Values  
250  
222  
200  
181  
167  
154  
125  
83  
Parameter Min. Max. Min. Max. Min. Max. Min. Max. Min. Max. Min. Max. Min. Max. Min. Max. Unit  
Dual-Port Asynchronous Mode Parameters  
tCHMAA  
tCHMPWE  
tCHMSA  
tCHMHA  
tCHMSD  
tCHMHD  
tCHMBA  
9
10  
11  
12  
13  
15  
17  
20  
ns  
ns  
ns  
ns  
ns  
ns  
5.0  
1.6  
0.8  
5.0  
0.3  
5.5  
1.8  
0.9  
5.5  
0.4  
6.0  
2.0  
1.0  
6.0  
0.5  
6.5  
2.2  
1.1  
6.5  
0.6  
7.0  
2.5  
1.2  
7.0  
0.7  
8.0  
2.8  
1.5  
8.0  
0.8  
10  
3.2  
1.8  
10  
12  
4.0  
2.0  
12  
0.9  
1.0  
8.0  
8.5  
9.0  
10.0  
11.0  
12.0  
14.0  
16.0 ns  
Dual-Port Synchronous Mode Parameters  
tCHMCYC1  
tCHMCYC2  
tCHMS  
9.0  
4.2  
2.7  
0.0  
9.5  
4.6  
3.0  
0.0  
10  
5.0  
3.3  
0.0  
10  
5.4  
3.9  
0.0  
11  
13  
6.2  
4.5  
0.0  
15  
7.4  
5.0  
0.0  
20  
10.6  
6.0  
ns  
ns  
ns  
ns  
5.8  
4.0  
0.0  
tCHMH  
0.0  
tCHMDV1  
9.0  
6.5  
8.0  
10  
7.0  
8.5  
11  
7.5  
9.0  
12  
8.0  
13  
8.5  
15  
9.0  
17  
10  
20  
15  
ns  
ns  
tCHMDV2  
tCHMBDV  
tCHMMACS1  
tCHMMACS2  
tMACCHMS1  
tMACCHMS2  
10.0  
11.0  
12.0  
14.0  
16.0 ns  
8.0  
4.0  
4.2  
6.0  
8.5  
4.5  
4.6  
6.5  
9.0  
5.0  
5.0  
7.0  
10.0  
5.5  
11.0  
6.0  
5.8  
8.0  
12.0  
7.0  
6.5  
9.0  
14.0  
8.0  
16.0  
10  
ns  
ns  
ns  
ns  
5.4  
7.6  
9.0  
7.7  
10.0  
13.0  
Synchronous FIFO Data Parameters  
tCHMCLK  
tCHMFS  
4.2  
3.5  
0.0  
6.0  
4.2  
4.2  
4.6  
3.7  
0.0  
6.5  
4.6  
4.6  
5.0  
4.0  
0.0  
7.0  
5.0  
5.0  
5.4  
4.3  
0.0  
7.5  
5.4  
5.4  
5.8  
4.5  
0.0  
8.0  
5.8  
5.8  
6.2  
5.0  
0.0  
9.0  
6.2  
6.2  
7.4  
6.0  
10.6  
7.0  
ns  
ns  
ns  
tCHMFH  
0.0  
0.0  
tCHMFRDV  
tCHMMACS  
tMACCHMS  
10.0  
7.4  
13.0  
10.6  
10.6  
ns  
ns  
7.4  
Synchronous FIFO Flag Parameters  
tCHMFO  
10.0  
8.0  
10.5  
8.5  
11  
9
11.5  
9.5  
12  
10  
13  
11  
15  
13  
20  
17  
10  
ns  
ns  
ns  
tCHMMACF  
tCHMFRS  
4.0  
4.5  
5.0  
5.5  
6.0  
7.0  
8.0  
tCHMFRSR  
tCHMFRSF  
tCHMSKEW1  
tCHMSKEW2  
tCHMSKEW3  
3.2  
9.0  
1.6  
1.6  
4.2  
3.6  
9.5  
1.8  
1.8  
4.6  
4.0  
10.0  
2.0  
4.4  
11.0  
2.2  
4.8  
12.0  
2.4  
5.5  
13.0  
2.6  
6.6  
15.0  
3.2  
8.0  
ns  
18.0 ns  
4.0  
4.0  
ns  
ns  
2.0  
2.2  
2.4  
2.6  
3.2  
5.0  
5.4  
5.8  
6.2  
7.4  
10.6 ns  
Internal Parameters  
tCHMCHAA 6.0  
6.5  
7.0  
7.5  
8.0  
9.0  
10.0  
13.0  
ns  
Document #: 38-03039 Rev. **  
Page 27 of 57  
Delta39KISR™  
CPLD Family  
PRELIMINARY  
Switching Waveforms  
Combinatorial Output  
INPUT  
t
PD  
COMBINATORIAL  
OUTPUT  
Delta39K-1  
Registered Output with Synchronous Clocking (Macrocell)  
INPUT  
t
t
MCH  
MCS  
SYNCHRONOUS  
CLOCK  
REGISTERED  
OUTPUT  
t
MCCO  
Delta39K-2  
Registered Input in I/O Cell  
DATA  
INPUT  
t
IOH  
t
IOS  
INPUT REGISTER  
CLOCK  
t
IOCO  
REGISTERED  
OUTPUT  
Delta39K-3  
Document #: 38-03039 Rev. **  
Page 28 of 57  
Delta39KISR™  
CPLD Family  
PRELIMINARY  
Switching Waveforms (continued)  
Clock to Clock  
INPUT REGISTER  
CLOCK  
t
t
ICS  
SCS  
MACROCELL  
REGISTER CLOCK  
Delta39K-4  
PT Clock to PT Clock  
DATA  
INPUT  
t
t
SCS2PT  
MCSPT  
PT CLOCK  
Delta39K-5  
Asynchronous Reset/Preset  
t
PRW  
RESET/PRESET  
INPUT  
t
PRO  
REGISTERED  
OUTPUT  
t
PRR  
CLOCK  
Delta39K-6  
Output Enable/Disable  
GLOBAL CONTROL  
INPUT  
t
t
EA  
ER  
OUTPUTS  
Delta39K-7  
Document #: 38-03039 Rev. **  
Page 29 of 57  
Delta39KISR™  
CPLD Family  
PRELIMINARY  
Switching Waveforms (continued)  
Cluster Memory Asynchronous Timing  
WRITE  
READ  
READ  
ADDRESS (AT  
THE CLUSTER  
INPUT)  
WRITE ENABLE  
tCLMPWE  
INPUT  
tCLMCLAA  
tCLMCLAA  
OUTPUT  
Delta39K-8  
Cluster Memory Asynchronous Timing 2  
WRITE  
READ  
READ  
ADDRESS (AT THE  
I/O PIN)  
tCLMHA  
tCLMSA  
WRITE ENABLE  
tCLMPWE  
INPUT  
tCLMHD  
tCLMSD  
tCLMAA  
tCLMAA  
OUTPUT  
Delta39K-9  
Document #: 38-03039 Rev. **  
Page 30 of 57  
Delta39KISR™  
CPLD Family  
PRELIMINARY  
Switching Waveforms (continued)  
Cluster Memory Synchronous Flow Through Timing  
READ  
WRITE  
READ  
GLOBAL  
CLOCK  
tCLMCYC1  
tCLMS  
tCLMH  
ADDRESS  
tCLMS  
tCLMH  
tCLMS  
tCLMH  
WRITE  
ENABLE  
REGISTERED  
INPUT  
tCLMDV1  
tCLMDV1  
tCLMDV1  
REGISTERED  
OUTPUT  
Delta39K-10  
Cluster Memory Internal Clocking  
MACROCELL  
INPUT CLOCK  
tMACCLMS1  
tCLMMACS1  
CLUSTER MEMORY  
INPUT CLOCK  
tCLMMACS2  
tMACCLMS2  
CLUSTER MEMORY  
OUTPUT CLOCK  
Delta39K-11  
Document #: 38-03039 Rev. **  
Page 31 of 57  
Delta39KISR™  
CPLD Family  
PRELIMINARY  
Switching Waveforms (continued)  
Cluster Memory Output Register Timing (Asynchronous Inputs)  
ADDRESS  
WRITE  
ENABLE  
INPUT  
tCLMCYC2  
GLOBAL CLOCK  
(OUTPUT REGISTER)  
tCLMDV2  
EGISTERED  
OUTPUT  
Delta39K-12  
Cluster Memory Output Register Timing (Synchronous Inputs)  
ADDRESS  
WRITE  
ENABLE  
INPUT  
tCLMCYC2  
GLOBAL CLOCK  
(INPUT REGISTER)  
tCLMS  
tCLMH  
GLOBAL CLOCK  
(OUTPUT REGISTER)  
tCLMDV2  
REGISTERED  
OUTPUT  
Delta39K-13  
Document #: 38-03039 Rev. **  
Page 32 of 57  
Delta39KISR™  
CPLD Family  
PRELIMINARY  
Switching Waveforms (continued)  
Channel Memory DP Asynchronous Timing  
An+1  
An+2  
ADDRESS  
An-1  
An  
tCHMHA  
tCHMSA  
tCHMPWE  
WRITE  
ENABLE  
tCHMSD  
tCHMHD  
DATA  
INPUT  
Dn  
tCHMAA  
tCHMAA  
Dn-1  
OUTPUT  
Dn+1  
Dn  
Delta39K-14  
Channel Memory Internal Clocking  
MACROCELL INPUT  
CLOCK  
tMACCHMS1  
tCHMMACS1  
CHANNEL MEMORY  
INPUT CLOCK  
tCHMMACS2  
tMACCHMS2  
CHANNEL MEMORY  
OUTPUT CLOCK  
Delta39K-15  
Document #: 38-03039 Rev. **  
Page 33 of 57  
Delta39KISR™  
CPLD Family  
PRELIMINARY  
Switching Waveforms (continued)  
Channel Memory Internal Clocking 2  
MACROCELL INPUT  
CLOCK  
tCHMMACS  
FIFO READ  
CLOCK  
tMACCHMS  
FIFO WRITE  
CLOCK  
tCHMMACF  
FIFO READ OR  
WRITE CLOCK  
Delta39K-16  
Channel Memory DP SRAM Flow Through R/W Timing  
CLOCK  
tCHMCYC1  
tCHMS  
tCHMH  
An+3  
An+2  
An-1  
An  
An+1  
ADDRESS  
WRITE  
ENABLE  
tCHMS  
tCHMH  
DATA  
INPUT  
Dn-1  
Dn+1  
Dn+3  
tCHMDV1  
tCHMDV1  
tCHMDV1  
tCHMDV1  
Dn+1  
Dn-1  
Dn  
Dn+2  
Dn+3  
OUTPUT  
Delta39K-17  
Document #: 38-03039 Rev. **  
Page 34 of 57  
Delta39KISR™  
CPLD Family  
PRELIMINARY  
Switching Waveforms (continued)  
Channel Memory DP SRAM Pipeline R/W Timing  
CLOCK  
tCHMCYC2  
tCHMS  
tCHMH  
An-1  
An  
An+2  
An+1  
An+3  
ADDRESS  
tCHMH  
tCHMS  
WRITE  
ENABLE  
tCHMH  
tCHMS  
DATA  
INPUT  
Dn+3  
Dn-1  
Dn+1  
tCHMDV2  
tCHMDV2  
tCHMDV2  
Dn-1  
Dn  
Dn+1  
OUTPUT  
Dn+2  
Delta38K-18  
Dual-Port Asynchronous Address Match Busy Signal  
Bn  
An  
ADDRESS A  
ADDRESS B  
An-1  
An  
An+1  
tCHMBA  
tCHMBA  
ADDRESS  
MATCH  
Delta39K-19  
Document #: 38-03039 Rev. **  
Page 35 of 57  
Delta39KISR™  
CPLD Family  
PRELIMINARY  
Switching Waveforms (continued)  
Dual-Port Synchronous Address Match Busy Signal  
CLOCK  
An-1  
An  
ADDRESS A  
ADDRESS B  
An  
Bn-1  
Bn+1  
tCHMS  
tCHMS  
ADDRESS  
MATCH  
tCHMBDV  
tCHMBDV  
Delta39K-20  
Document #: 38-03039 Rev. **  
Page 36 of 57  
Delta39KISR™  
CPLD Family  
PRELIMINARY  
Switching Waveforms (continued)  
Channel Memory Synchronous FIFO Empty/Write Timing  
PORT B CLOCK  
tCHMCLK  
tCHMFS  
tCHMFH  
WRITE ENABLE  
REGISTERED  
INPUT  
Dn+1  
EMPTY FLAG  
(active low)  
tCHMSKEW2  
tCHMFO  
tCHMFO  
PORT A CLOCK  
READ ENABLE  
RE  
tCHMFRDV  
REGISTERED  
OUTPUT  
Delta39K-21  
Document #: 38-03039 Rev. **  
Page 37 of 57  
Delta39KISR™  
CPLD Family  
PRELIMINARY  
Switching Waveforms (continued)  
Channel Memory Synchronous FIFO Full/Read Timing  
PORT A CLOCK  
tCHMCLK  
tCHMFS  
tCHMFH  
READ ENABLE  
tCHMFRDV  
REGISTERED  
OUTPUT  
FULL FLAG  
(active low)  
tCHMFO  
tCHMSKEW1 tCHMFO  
PORT B CLOCK  
WRITE ENABLE  
tCHMS  
tCHMH  
REGISTERED  
INPUT  
Delta39K-22  
Document #: 38-03039 Rev. **  
Page 38 of 57  
Delta39KISR™  
CPLD Family  
PRELIMINARY  
Switching Waveforms (continued)  
Channel Memory Synchronous FIFO Programmable Flag Timing  
PORT B CLOCK  
tCHMCLK  
tCHMFH  
tCHMFS  
WRITE ENABLE  
PROGRAMMABLE  
ALMOST-EMPTY FLAG  
(active LOW)  
tCHMSKEW3  
tCHMFO  
tCHMFO  
PORT A CLOCK  
READ ENABLE  
tCHMFH  
tCHMFS  
PORT B CLOCK  
tCHMCLK  
WRITE ENABLE  
tCHMFO  
tCHMFO  
PROGRAMMABLE  
ALMOST-FULL FLAG  
(active LOW)  
tCHMSKEW3  
PORT A CLOCK  
READ ENABLE  
Delta39K-23  
Document #: 38-03039 Rev. **  
Page 39 of 57  
Delta39KISR™  
CPLD Family  
PRELIMINARY  
Switching Waveforms (continued)  
Channel Memory Synchronous FIFO Master Reset Timing  
tCHMFRS  
MASTER  
RESET INPUT  
tCHMFRSR  
READ ENABLE /  
WRITE ENABLE  
tCHMFRSF  
EMPTY/FULL  
PROGRAMMABLE  
ALMOST EMPTY  
FLAGS  
tCHMFRSF  
HALF-FULL/  
PROGRAMMABLE  
ALMOST FULL  
FLAGS  
tCHMFRSF  
REGISTERED  
OUTPUT  
Delta39K-24  
Document #: 38-03039 Rev. **  
Page 40 of 57  
Delta39KISR™  
CPLD Family  
PRELIMINARY  
C Y 3 9 1 0 0 V 6 7 6 - 2 0 0 M B C  
Cypress Semiconductor ID  
Family Type  
39 = Delta39K Family  
Operating Conditions  
Commercial  
Industrial  
0°C to +70°C  
-40°C to +85°C  
Gate Density  
15=15k Usable Gates  
30=30k Usable Gates  
50=50k Usable Gates  
165=165k Usable Gates  
200=200k Usable Gates  
250=250k Usable Gates  
Package Type  
N
= Plastic Quad Flat Pack (PQFP)  
NT = Thermally Enhanced Quad Flat Pack (EQFP)  
BG = Ball Grid Array (BGA)  
BB = Fine-Pitch Ball Grid Array (FBGA)  
1.0-mm Lead Pitch  
MG = Self-Boot Solution - Ball Grid Array  
MB = Self-Boot Solution - Fine Pitch Ball Grid Array  
1.0-mm Lead Pitch  
100=100k Usable Gates 350=350k Usable Gates  
Operating Reference Voltage  
V = 3.3V or 2.5V Supply Voltage  
Z = 1.8V  
Supply Voltage  
Pin Count  
144 = 144 Balls  
208 = 208 Leads  
256 = 256 Balls  
388 = 388 Balls  
484 = 484 Balls  
676 = 676 Balls  
Speed  
250 = 250 MHz 167 = 167 MHz  
222 = 222 MHz 154 = 154 MHz  
200 = 200 MH  
181 = 181 MHz  
125 = 125 MHz  
83 = 83 MHz  
Delta39K Pin Table  
Please refer to document titled Delta39K Pin Tablesfor pinouts of all the packages of all Delta39K family members. You can  
access this document on the internet at: http://www.cypress.com/pld/datasheets.html.  
[16]  
Delta39K Part Numbers  
(Ordering Information)  
Speed  
Device (MHz)  
Package  
Name  
Self-Boot  
Solution  
Operating  
Range  
Ordering Code  
Package Type  
39K15  
250  
CY39015V208-250NTC  
CY39015Z208-250NC  
CY39015V144-250BBC  
CY39015Z144-250BBC  
CY39015V256-250BBC  
CY39015Z256-250BBC  
CY39015V256-250MBC  
CY39015Z256-250MBC  
CY39015V208-125NTC  
CY39015Z208-125NC  
CY39015V144-125BBC  
CY39015Z144-125BBC  
CY39015V256-125BBC  
CY39015Z256-125BBC  
CY39015V256-125MBC  
CY39015Z256-125MBC  
NT208  
N208  
208-Lead Enhanced Quad Flat Pack  
208-Lead Plastic Quad Flat Pack  
144-Lead Fine Pitch Ball Grid Array  
144-Lead Fine Pitch Ball Grid Array  
256-Lead Fine Pitch Ball Grid Array  
256-Lead Fine Pitch Ball Grid Array  
Commercial  
BB144  
BB144  
BB256  
BB256  
MB256 256-Lead Fine Pitch Ball Grid Array  
MB256 256-Lead Fine Pitch Ball Grid Array  
125  
NT208  
N208  
208-Lead Enhanced Quad Flat Pack  
208-Lead Plastic Quad Flat Pack  
144-Lead Fine Pitch Ball Grid Array  
144-Lead Fine Pitch Ball Grid Array  
256-Lead Fine Pitch Ball Grid Array  
256-Lead Fine Pitch Ball Grid Array  
BB144  
BB144  
BB256  
BB256  
MB256 256-Lead Fine Pitch Ball Grid Array  
MB256 256-Lead Fine Pitch Ball Grid Array  
Document #: 38-03039 Rev. **  
Page 41 of 57  
Delta39KISR™  
CPLD Family  
PRELIMINARY  
[16]  
Delta39K Part Numbers  
(Ordering Information) (continued)  
Speed  
Package  
Self-Boot  
Solution  
Operating  
Range  
Device (MHz)  
Ordering Code  
CY39015V208-125NTI  
CY39015Z208-125NI  
CY39015V144-125BBI  
CY39015Z144-125BBI  
CY39015V256-125BBI  
CY39015Z256-125BBI  
CY39015V256-125MBI  
CY39015Z256-125MBI  
CY39015V208-83NTC  
CY39015Z208-83NC  
CY39015V144-83BBC  
CY39015Z144-83BBC  
CY39015V256-83BBC  
CY39015Z256-83BBC  
CY39015V256-83MBC  
CY39015Z256-83MBC  
CY39015V208-83NTI  
CY39015Z208-83NI  
Name  
NT208  
N208  
Package Type  
39K15  
125  
208-Lead Enhanced Quad Flat Pack  
208-Lead Plastic Quad Flat Pack  
144-Lead Fine Pitch Ball Grid Array  
144-Lead Fine Pitch Ball Grid Array  
256-Lead Fine Pitch Ball Grid Array  
256-Lead Fine Pitch Ball Grid Array  
Industrial  
Commercial  
Industrial  
BB144  
BB144  
BB256  
BB256  
MB256 256-Lead Fine Pitch Ball Grid Array  
MB256 256-Lead Fine Pitch Ball Grid Array  
83  
NT208  
N208  
208-Lead Enhanced Quad Flat Pack  
208-Lead Plastic Quad Flat Pack  
144-Lead Fine Pitch Ball Grid Array  
144-Lead Fine Pitch Ball Grid Array  
256-Lead Fine Pitch Ball Grid Array  
256-Lead Fine Pitch Ball Grid Array  
BB144  
BB144  
BB256  
BB256  
MB256 256-Lead Fine Pitch Ball Grid Array  
MB256 256-Lead Fine Pitch Ball Grid Array  
NT208  
N208  
208-Lead Plastic Quad Flat Pack  
208-Lead Enhanced Quad Flat Pack  
144-Lead Fine Pitch Ball Grid Array  
144-Lead Fine Pitch Ball Grid Array  
256-Lead Fine Pitch Ball Grid Array  
256-Lead Fine Pitch Ball Grid Array  
CY39015V144-83BBI  
CY39015Z144-83BBI  
CY39015V256-83BBI  
CY39015Z256-83BBI  
CY39015V256-83MBI  
CY39015Z256-83MBI  
CY39030V208-222NTC  
CY39030Z208-222NC  
CY39030V144-222BBC  
CY39030Z144-222BBC  
CY39030V256-222BBC  
CY39030Z256-222BBC  
CY39030V256-222MBC  
CY39030Z256-222MBC  
CY39030V208-125NTC  
CY39030Z208-125NC  
CY39030V144-125BBC  
CY39030Z144-125BBC  
CY39030V256-125BBC  
CY39030Z256-125BBC  
CY39030V256-125MBC  
CY39030Z256-125MBC  
BB144  
BB144  
BB256  
BB256  
MB256 256-Lead Fine Pitch Ball Grid Array  
MB256 256-Lead Fine Pitch Ball Grid Array  
39K30  
222  
NT208  
N208  
208-Lead Enhanced Quad Flat Pack  
208-Lead Plastic Quad Flat Pack  
144-Lead Fine Pitch Ball Grid Array  
144-Lead Fine Pitch Ball Grid Array  
256-Lead Fine Pitch Ball Grid Array  
256-Lead Fine Pitch Ball Grid Array  
Commercial  
BB144  
BB144  
BB256  
BB256  
MB256 256-Lead Fine Pitch Ball Grid Array  
MB256 256-Lead Fine Pitch Ball Grid Array  
125  
NT208  
N208  
208-Lead Enhanced Quad Flat Pack  
208-Lead Plastic Quad Flat Pack  
144-Lead Fine Pitch Ball Grid Array  
144-Lead Fine Pitch Ball Grid Array  
256-Lead Fine Pitch Ball Grid Array  
256-Lead Fine Pitch Ball Grid Array  
BB144  
BB144  
BB256  
BB256  
MB256 256-Lead Fine Pitch Ball Grid Array  
MB256 256-Lead Fine Pitch Ball Grid Array  
Document #: 38-03039 Rev. **  
Page 42 of 57  
Delta39KISR™  
CPLD Family  
PRELIMINARY  
[16]  
Delta39K Part Numbers  
(Ordering Information) (continued)  
Speed  
Package  
Self-Boot  
Solution  
Operating  
Range  
Device (MHz)  
Ordering Code  
CY39030V208-125NTI  
CY39030Z208-125NI  
CY39030V144-125BBI  
CY39030Z144-125BBI  
CY39030V256-125BBI  
CY39030Z256-125BBI  
CY39030V256-125MBI  
CY39030Z256-125MBI  
CY39030V208-83NTC  
CY39030Z208-83NC  
CY39030V144-83BBC  
CY39030Z144-83BBC  
CY39030V256-83BBC  
CY39030Z256-83BBC  
CY39030V256-83MBC  
CY39030Z256-83MBC  
CY39030V208-83NTI  
CY39030Z208-83NI  
Name  
NT208  
N208  
Package Type  
39K30  
125  
208-Lead Enhanced Quad Flat Pack  
208-Lead Plastic Quad Flat Pack  
144-Lead Fine Pitch Ball Grid Array  
144-Lead Fine Pitch Ball Grid Array  
256-Lead Fine Pitch Ball Grid Array  
256-Lead Fine Pitch Ball Grid Array  
Industrial  
Commercial  
Industrial  
BB144  
BB144  
BB256  
BB256  
MB256 256-Lead Fine Pitch Ball Grid Array  
MB256 256-Lead Fine Pitch Ball Grid Array  
83  
NT208  
N208  
208-Lead Enhanced Quad Flat Pack  
208-Lead Plastic Quad Flat Pack  
144-Lead Fine Pitch Ball Grid Array  
144-Lead Fine Pitch Ball Grid Array  
256-Lead Fine Pitch Ball Grid Array  
256-Lead Fine Pitch Ball Grid Array  
BB144  
BB144  
BB256  
BB256  
MB256 256-Lead Fine Pitch Ball Grid Array  
MB256 256-Lead Fine Pitch Ball Grid Array  
NT208  
N208  
208-Lead Plastic Quad Flat Pack  
208-Lead Enhanced Quad Flat Pack  
144-Lead Fine Pitch Ball Grid Array  
144-Lead Fine Pitch Ball Grid Array  
256-Lead Fine Pitch Ball Grid Array  
256-Lead Fine Pitch Ball Grid Array  
CY39030V144-83BBI  
CY39030Z144-83BBI  
CY39030V256-83BBI  
CY39030Z256-83BBI  
CY39030V256-83MBI  
CY39030Z256-83MBI  
CY39050V208-222NTC  
CY39050Z208-222NC  
CY39050V256-222BBC  
CY39050Z256-222BBC  
CY39050V388-222MGC  
CY39050Z388-222MGC  
CY39050V484-222MBC  
CY39050Z484-222MBC  
CY39050V208-125NTC  
CY39050Z208-125NC  
CY39050V256-125BBC  
CY39050Z256-125BBC  
CY39050V388-125MGC  
CY39050Z388-125MGC  
CY39050V484-125MBC  
CY39050Z484-125MBC  
BB144  
BB144  
BB256  
BB256  
MB256 256-Lead Fine Pitch Ball Grid Array  
MB256 256-Lead Fine Pitch Ball Grid Array  
39K50  
222  
NT208  
N208  
208-Lead Enhanced Quad Flat Pack  
208-Lead Plastic Quad Flat Pack  
256-Lead Fine Pitch Ball Grid Array  
256-Lead Fine Pitch Ball Grid Array  
Commercial  
BB256  
BB256  
MG388 388-Lead Ball Grid Array  
MG388 388-Lead Ball Grid Array  
MB484 484-Lead Fine Pitch Ball Grid Array  
MB484 484-Lead Fine Pitch Ball Grid Array  
125  
NT208  
N208  
208-Lead Enhanced Quad Flat Pack  
208-Lead Plastic Quad Flat Pack  
256-Lead Fine Pitch Ball Grid Array  
256-Lead Fine Pitch Ball Grid Array  
BB256  
BB256  
MG388 388-Lead Pitch Ball Grid Array  
MG388 388-Lead Pitch Ball Grid Array  
MB484 484-Lead Fine Pitch Ball Grid Array  
MB484 484-Lead Fine Pitch Ball Grid Array  
Document #: 38-03039 Rev. **  
Page 43 of 57  
Delta39KISR™  
CPLD Family  
PRELIMINARY  
[16]  
Delta39K Part Numbers  
(Ordering Information) (continued)  
Speed  
Package  
Self-Boot  
Solution  
Operating  
Range  
Device (MHz)  
Ordering Code  
CY39050V208-125NTI  
CY39050Z208-125NI  
CY39050V256-125BBI  
CY39050Z256-125BBI  
CY39050V388-125MBI  
CY39050Z388-125MBI  
CY39050V484-125MBI  
CY39050Z484-125MBI  
CY39050V208-83NTC  
CY39050Z208-83NC  
CY39050V256-83BBC  
CY39050Z256-83BBC  
CY39050V388-83MGC  
CY39050Z388-83MGC  
CY39050V484-83MBC  
CY39050Z484-83MBC  
CY39050V208-83NTI  
CY39050Z208-83NI  
Name  
NT208  
N208  
Package Type  
39K50  
125  
208-Lead Enhanced Quad Flat Pack  
208-Lead Plastic Quad Flat Pack  
256-Lead Fine Pitch Ball Grid Array  
256-Lead Fine Pitch Ball Grid Array  
Industrial  
Commercial  
Industrial  
BB256  
BB256  
MG388 388-Lead Fine Pitch Ball Grid Array  
MG388 388-Lead Fine Pitch Ball Grid Array  
MB484 484-Lead Fine Pitch Ball Grid Array  
MB484 484-Lead Fine Pitch Ball Grid Array  
83  
NT208  
N208  
208-Lead Enhanced Quad Flat Pack  
208-Lead Plastic Quad Flat Pack  
256-Lead Fine Pitch Ball Grid Array  
256-Lead Fine Pitch Ball Grid Array  
BB256  
BB256  
MG388 388-Lead Ball Grid Array  
MG388 388-Lead Ball Grid Array  
MB484 484-Lead Fine Pitch Ball Grid Array  
MB484 484-Lead Fine Pitch Ball Grid Array  
NT208  
N208  
208-Lead Plastic Quad Flat Pack  
208-Lead Enhanced Quad Flat Pack  
256-Lead Fine Pitch Ball Grid Array  
256-Lead Fine Pitch Ball Grid Array  
CY39050V256-83BBI  
CY39050Z256-83BBI  
CY39050V388-83MGI  
CY39050Z388-83MGI  
CY39050V484-83MBI  
CY39050Z484-83MBI  
BB256  
BB256  
MG388 388-Lead Ball Grid Array  
MG388 388-Lead Ball Grid Array  
MB484 484-Lead Fine Pitch Ball Grid Array  
MB484 484-Lead Fine Pitch Ball Grid Array  
Document #: 38-03039 Rev. **  
Page 44 of 57  
Delta39KISR™  
CPLD Family  
PRELIMINARY  
[16]  
Delta39K Part Numbers  
(Ordering Information) (continued)  
Speed  
Package  
Self-Boot  
Solution  
Operating  
Range  
Device (MHz)  
Ordering Code  
Name  
NT208  
BB256  
BB484  
Package Type  
39K100  
200  
CY39100V208-200NTC  
CY39100V256-200BBC  
CY39100V484-200BBC  
CY39100V388-200MGC  
CY39100V676-200MBC  
CY39100V208A-200NTC  
CY39100V256A-200BBC  
CY39100V484A-200BBC  
CY39100V388A-200MGC  
CY39100V676A-200MBC  
CY39100V208B-200NTC  
CY39100Z208B-200NC  
CY39100V256B-200BBC  
CY39100Z256B-200BBC  
CY39100V484B-200BBC  
CY39100Z484B-200BBC  
CY39100V388B-200MGC  
CY39100Z388B-200MGC  
CY39100V676B-200MBC  
CY39100Z676B-200MBC  
208-Lead Enhanced Quad Flat Pack  
256-Lead Fine Pitch Ball Grid Array  
484-Lead Fine Pitch Ball Grid Array  
Commercial  
[17]  
MG388 388-Lead Ball Grid Array  
MB676 676-Lead Fine Pitch Ball Grid Array  
NT208  
BB256  
BB484  
208-Lead Enhanced Quad Flat Pack  
256-Lead Fine Pitch Ball Grid Array  
484-Lead Fine Pitch Ball Grid Array  
MG388 388-Lead Ball Grid Array  
MB676 676-Lead Fine Pitch Ball Grid Array  
NT208  
N208  
208-Lead Enhanced Quad Flat Pack  
208-Lead Plastic Quad Flat Pack  
256-Lead Fine Pitch Ball Grid Array  
256-Lead Fine Pitch Ball Grid Array  
484-Lead Fine Pitch Ball Grid Array  
484-Lead Fine Pitch Ball Grid Array  
BB256  
BB256  
BB484  
BB484  
MG388 388-Lead Ball Grid Array  
MG388 388-Lead Ball Grid Array  
MB676 676-Lead Fine Pitch Ball Grid Array  
MB676 676-Lead Fine Pitch Ball Grid Array  
Document #: 38-03039 Rev. **  
Page 45 of 57  
Delta39KISR™  
CPLD Family  
PRELIMINARY  
[16]  
Delta39K Part Numbers  
(Ordering Information) (continued)  
Speed  
Package  
Self-Boot  
Solution  
Operating  
Range  
Device (MHz)  
Ordering Code  
Name  
NT208  
BB256  
BB484  
Package Type  
39K100  
125  
CY39100V208-125NTC  
CY39100V256-125BBC  
CY39100V484-125BBC  
CY39100V388-125MGC  
CY39100V676-125MBC  
CY39100V208A-125NTC  
CY39100V256A-125BBC  
CY39100V484A-125BBC  
CY39100V388A-125MGC  
CY39100V676A-125MBC  
CY39100V208B-125NTC  
CY39100Z208B-125NC  
CY39100V256B-125BBC  
CY39100Z256B-125BBC  
CY39100V484B-125BBC  
CY39100Z484B-125BBC  
CY39100V388B-125MGC  
CY39100Z388B-125MGC  
CY39100V676B-125MBC  
CY39100Z676B-125MBC  
CY39100V208B-125NTI  
CY39100Z208B-125NI  
CY39100V256B-125BBI  
CY39100Z256B-125BBI  
CY39100V484B-125BBI  
CY39100Z484B-125BBI  
CY39100V388B-125MGI  
CY39100Z388B-125MGI  
CY39100V676B-125MBI  
CY39100Z676B-125MBI  
208-Lead Enhanced Quad Flat Pack  
256-Lead Fine Pitch Ball Grid Array  
484-Lead Fine Pitch Ball Grid Array  
Commercial  
[17]  
MG388 388-Lead Ball Grid Array  
MB676 676-Lead Fine Pitch Ball Grid Array  
NT208  
BB256  
BB484  
208-Lead Enhanced Quad Flat Pack  
256-Lead Fine Pitch Ball Grid Array  
484-Lead Fine Pitch Ball Grid Array  
MG388 388-Lead Ball Grid Array  
MB676 676-Lead Fine Pitch Ball Grid Array  
NT208  
N208  
208-Lead Enhanced Quad Flat Pack  
208-Lead Plastic Quad Flat Pack  
256-Lead Fine Pitch Ball Grid Array  
256-Lead Fine Pitch Ball Grid Array  
484-Lead Fine Pitch Ball Grid Array  
484-Lead Fine Pitch Ball Grid Array  
BB256  
BB256  
BB484  
BB484  
MG388 388-Lead Ball Grid Array  
MG388 388-Lead Ball Grid Array  
MB676 676-Lead Fine Pitch Ball Grid Array  
MB676 676-Lead Fine Pitch Ball Grid Array  
NT208  
N208  
208-Lead Enhanced Quad Flat Pack  
208-Lead Plastic Quad Flat Pack  
256-Lead Fine Pitch Ball Grid Array  
256-Lead Fine Pitch Ball Grid Array  
484-Lead Fine Pitch Ball Grid Array  
484-Lead Fine Pitch Ball Grid Array  
Industrial  
BB256  
BB256  
BB484  
BB484  
MG388 388-Lead Ball Grid Array  
MG388 388-Lead Ball Grid Array  
MB676 676-Lead Fine Pitch Ball Grid Array  
MB676 676-Lead Fine Pitch Ball Grid Array  
Document #: 38-03039 Rev. **  
Page 46 of 57  
Delta39KISR™  
CPLD Family  
PRELIMINARY  
[16]  
Delta39K Part Numbers  
(Ordering Information) (continued)  
Speed  
Package  
Self-Boot  
Solution  
Operating  
Range  
Device (MHz)  
Ordering Code  
Name  
NT208  
BB256  
BB484  
Package Type  
39K100  
83  
CY39100V208-83NTC  
CY39100V256-83BBC  
CY39100V484-83BBC  
CY39100V388-83MGC  
CY39100V676-83MBC  
CY39100V208A-83NTC  
CY39100V256A-83BBC  
CY39100V484A-83BBC  
CY39100V388A-83MGC  
CY39100V676A-83MBC  
CY39100V208B-83NTC  
CY39100Z208B-83NC  
CY39100V256B-83BBC  
CY39100Z256B-83BBC  
CY39100V484B-83BBC  
CY39100Z484B-83BBC  
CY39100V388B-83MGC  
CY39100Z388B-83MGC  
CY39100V676B-83MBC  
CY39100Z676B-83MBC  
CY39100V208B-83NTI  
CY39100Z208B-83NI  
CY39100V256B-83BBI  
CY39100Z256B-83BBI  
CY39100V484B-83BBI  
CY39100Z484B-83BBI  
CY39100V388B-83MGI  
CY39100Z388B-83MGI  
CY39100V676B-83MBI  
CY39100Z676B-83MBI  
208-Lead Enhanced Quad Flat Pack  
256-Lead Fine Pitch Ball Grid Array  
484-Lead Fine Pitch Ball Grid Array  
Commercial  
[17]  
MG388 388-Lead Ball Grid Array  
MB676 676-Lead Fine Pitch Ball Grid Array  
NT208  
BB256  
BB484  
208-Lead Enhanced Quad Flat Pack  
256-Lead Fine Pitch Ball Grid Array  
484-Lead Fine Pitch Ball Grid Array  
MG388 388-Lead Ball Grid Array  
MB676 676-Lead Fine Pitch Ball Grid Array  
NT208  
N208  
208-Lead Enhanced Quad Flat Pack  
208-Lead Plastic Quad Flat Pack  
256-Lead Fine Pitch Ball Grid Array  
256-Lead Fine Pitch Ball Grid Array  
484-Lead Fine Pitch Ball Grid Array  
484-Lead Fine Pitch Ball Grid Array  
BB256  
BB256  
BB484  
BB484  
MG388 388-Lead Ball Grid Array  
MG388 388-Lead Ball Grid Array  
MB676 676-Lead Fine Pitch Ball Grid Array  
MB676 676-Lead Fine Pitch Ball Grid Array  
NT208  
N208  
208-Lead Enhanced Quad Flat Pack  
208-Lead Plastic Quad Flat Pack  
256-Lead Fine Pitch Ball Grid Array  
256-Lead Fine Pitch Ball Grid Array  
484-Lead Fine Pitch Ball Grid Array  
484-Lead Fine Pitch Ball Grid Array  
Industrial  
BB256  
BB256  
BB484  
BB484  
MG388 388-Lead Ball Grid Array  
MG388 388-Lead Ball Grid Array  
MB676 676-Lead Fine Pitch Ball Grid Array  
MB676 676-Lead Fine Pitch Ball Grid Array  
Document #: 38-03039 Rev. **  
Page 47 of 57  
Delta39KISR™  
CPLD Family  
PRELIMINARY  
[16]  
Delta39K Part Numbers  
(Ordering Information) (continued)  
Speed  
Package  
Self-Boot  
Solution  
Operating  
Range  
Device (MHz)  
Ordering Code  
CY39165V208-181NTC  
CY39165Z208-181NC  
CY39165V484-181BBC  
CY39165Z484-181BBC  
CY39165V388-181MGC  
CY39165Z388-181MGC  
CY39165V676-181MBC  
CY39165Z676-181MBC  
CY39165V208-125NTC  
CY39165Z208-125NC  
CY39165V484-125BBC  
CY39165Z484-125BBC  
CY39165V388-125MGC  
CY39165Z388-125MGC  
CY39165V676-125MBC  
CY39165Z676-125MBC  
CY39165V208-125NTI  
CY39165Z208-125NI  
CY39165V484-125BBI  
CY39165Z484-125BBI  
CY39165V388-125MGI  
CY39165Z388-125MGI  
CY39165V676-125MBI  
CY39165Z676-125MBI  
CY39165V208-83NTC  
CY39165Z208-83NC  
CY39165V484-83BBC  
CY39165Z484-83BBC  
CY39165V388-83MGC  
CY39165Z388-83MGC  
CY39165V676-83MBC  
CY39165Z676-83MBC  
CY39165V208-83NTI  
CY39165Z208-83NI  
Name  
NT208  
N208  
Package Type  
39K165  
181  
208-Lead Enhanced Quad Flat Pack  
208-Lead Plastic Quad Flat Pack  
484-Lead Fine Pitch Ball Grid Array  
484-Lead Fine Pitch Ball Grid Array  
Commercial  
Commercial  
Industrial  
BB484  
BB484  
MG388 388-Lead Ball Grid Array  
MG388 388-Lead Ball Grid Array  
MB676 676-Lead Fine Pitch Ball Grid Array  
MB676 676-Lead Fine Pitch Ball Grid Array  
125  
NT208  
N208  
208-Lead Enhanced Quad Flat Pack  
208-Lead Plastic Quad Flat Pack  
484-Lead Fine Pitch Ball Grid Array  
484-Lead Fine Pitch Ball Grid Array  
BB484  
BB484  
MG388 388-Lead Ball Grid Array  
MG388 388-Lead Ball Grid Array  
MB676 676-Lead Fine Pitch Ball Grid Array  
MB676 676-Lead Fine Pitch Ball Grid Array  
NT208  
N208  
208-Lead Enhanced Quad Flat Pack  
208-Lead Plastic Quad Flat Pack  
484-Lead Fine Pitch Ball Grid Array  
484-Lead Fine Pitch Ball Grid Array  
BB484  
BB484  
MG388 388-Lead Ball Grid Array  
MG388 388-Lead Ball Grid Array  
MB676 676-Lead Fine Pitch Ball Grid Array  
MB676 676-Lead Fine Pitch Ball Grid Array  
83  
NT208  
N208  
208-Lead Enhanced Quad Flat Pack  
208-Lead Plastic Quad Flat Pack  
484-Lead Fine Pitch Ball Grid Array  
484-Lead Fine Pitch Ball Grid Array  
Commercial  
BB484  
BB484  
MG388 388-Lead Ball Grid Array  
MG388 388-Lead Ball Grid Array  
MB676 676-Lead Fine Pitch Ball Grid Array  
MB676 676-Lead Fine Pitch Ball Grid Array  
NT208  
N208  
208-Lead Enhanced Quad Flat Pack  
208-Lead Plastic Quad Flat Pack  
484-Lead Fine Pitch Ball Grid Array  
484-Lead Fine Pitch Ball Grid Array  
Industrial  
CY39165V484-83BBI  
CY39165Z484-83BBI  
CY39165V388-83MGI  
CY39165Z388-83MGI  
CY39165V676-83MBI  
CY39165Z676-83MBI  
BB484  
BB484  
MG388 388-Lead Ball Grid Array  
MG388 388-Lead Ball Grid Array  
MB676 676-Lead Fine Pitch Ball Grid Array  
MB676 676-Lead Fine Pitch Ball Grid Array  
Document #: 38-03039 Rev. **  
Page 48 of 57  
Delta39KISR™  
CPLD Family  
PRELIMINARY  
[16]  
Delta39K Part Numbers  
(Ordering Information) (continued)  
Speed  
Package  
Self-Boot  
Solution  
Operating  
Range  
Device (MHz)  
Ordering Code  
CY39200V208-167NTC  
CY39200Z208-167NC  
CY39200V484-167BBC  
CY39200Z484-167BBC  
CY39200V388-167MGC  
CY39200Z388-167MGC  
CY39200V676-167MBC  
CY39200Z676-167MBC  
CY39200V208-125NTC  
CY39200Z208-125NC  
CY39200V484-125BBC  
CY39200Z484-125BBC  
CY39200V388-125MGC  
CY39200Z388-125MGC  
CY39200V676-125MBC  
CY39200Z676-125MBC  
CY39200V208-125NTI  
CY39200Z208-125NI  
CY39200V484-125BBI  
CY39200Z484-125BBI  
CY39200V388-125MGI  
CY39200V388-125MGI  
CY39200V676-125MBI  
CY39200Z676-125MBI  
CY39200V208-83NTC  
CY39200Z208-83NC  
CY39200V484-83BBC  
CY39200Z484-83BBC  
CY39200V388-83MGC  
CY39200Z388-83MGC  
CY39200V676-83MBC  
CY39200Z676-83MBC  
CY39200V208-83NTI  
CY39200Z208-83NI  
Name  
NT208  
N208  
Package Type  
39K200  
167  
208-Lead Enhanced Quad Flat Pack  
208-Lead Plastic Quad Flat Pack  
484-Lead Fine Pitch Ball Grid Array  
484-Lead Fine Pitch Ball Grid Array  
Commercial  
Commercial  
Industrial  
BB484  
BB484  
MG388 388-Lead Ball Grid Array  
MG388 388-Lead Ball Grid Array  
MB676 676-Lead Fine Pitch Ball Grid Array  
MB676 676-Lead Fine Pitch Ball Grid Array  
125  
NT208  
N208  
208-Lead Enhanced Quad Flat Pack  
208-Lead Plastic Quad Flat Pack  
484-Lead Fine Pitch Ball Grid Array  
484-Lead Fine Pitch Ball Grid Array  
BB484  
BB484  
MG388 388-Lead Ball Grid Array  
MG388 388-Lead Ball Grid Array  
MB676 676-Lead Fine Pitch Ball Grid Array  
MB676 676-Lead Fine Pitch Ball Grid Array  
NT208  
N208  
208-Lead Enhanced Quad Flat Pack  
208-Lead Plastic Quad Flat Pack  
484-Lead Fine Pitch Ball Grid Array  
484-Lead Fine Pitch Ball Grid Array  
BB484  
BB484  
MG388 388-Lead Ball Grid Array  
MG388 388-Lead Ball Grid Array  
MB676 676-Lead Fine Pitch Ball Grid Array  
MB676 676-Lead Fine Pitch Ball Grid Array  
83  
NT208  
N208  
208-Lead Enhanced Quad Flat Pack  
208-Lead Plastic Quad Flat Pack  
484-Lead Fine Pitch Ball Grid Array  
484-Lead Fine Pitch Ball Grid Array  
Commercial  
BB484  
BB484  
MG388 388-Lead Ball Grid Array  
MG388 388-Lead Ball Grid Array  
MB676 676-Lead Fine Pitch Ball Grid Array  
MB676 676-Lead Fine Pitch Ball Grid Array  
NT208  
N208  
208-Lead Enhanced Quad Flat Pack  
208-Lead Plastic Quad Flat Pack  
484-Lead Fine Pitch Ball Grid Array  
484-Lead Fine Pitch Ball Grid Array  
Industrial  
CY39200V484-83BBI  
CY39200Z484-83BBI  
CY39200V388-83MGI  
CY39200Z388-83MGI  
CY39200V676-83MBI  
CY39200Z676-83MBI  
BB484  
BB484  
MG388 388-Lead Ball Grid Array  
MG388 388-Lead Ball Grid Array  
MB676 676-Lead Fine Pitch Ball Grid Array  
MB676 676-Lead Fine Pitch Ball Grid Array  
16. For the availability of Delta39KZ devices (1.8V), please contact your local sales office  
17. Refer to the section titled Delta39K100 Revisions/Errataon page 50  
Document #: 38-03039 Rev. **  
Page 49 of 57  
Delta39KISR™  
CPLD Family  
PRELIMINARY  
4. An ESD failure is very unlikely. CDM ESD passes 1000V.  
HBM ESD passes 3300V with all I/O banks VCCIO shorted  
together. If VCCIOs in a bank are tested separately a per-  
centage of parts will fail HBM ESD over 500V.  
Delta39K100 Revisions/Errata  
Three revisions of Delta39K100, in 3.3V version, are currently  
offered which are marked as CY39100Vxxx, CY39100VxxxA  
and CY39100VxxxB. CY39100VxxxB devices operate exactly  
as specified in this datasheet. Following paragraphs explain  
the operation of the CY39100Vxxx and CY39100VxxxA parts  
as different from this datasheet:  
CY39100VxxxA  
1. The part always configures on power-up and will reconfig-  
ure on HIGH to LOW edge of the Reconfig pin. Please refer  
to the application note titled Configuring  
Delta39K/Quantum38Kat http://www.cypress.com for  
more details.  
CY39100Vxxx  
1. The internal regulator takes several seconds to power  
down. Hence, cycling the power supply (within 8 seconds)  
may cause a high standby current (200 mA to 1A) until the  
part is configured.  
2. The Self Config instruction starts reconfiguring the CPLD  
upon execution of the Update-IR state of the JTAG TAP  
controller state machine. In CY39100VxxxB parts, Self  
Config instruction is executed upon execution of Test-Log-  
ic-Reset state of the TAP controller.  
2. The part always configures on power-up and will reconfig-  
ure on HIGH to LOW edge of the Reconfig pin. Please refer  
to the application note titled Configuring  
Delta39K/Quantum38Kat http://www.cypress.com for  
more details.  
3. An ESD failure is very unlikely. CDM ESD passes 1000V.  
HBM ESD passes 3300V with all I/O banks VCCIO shorted  
together. If VCCIOs in a bank are tested separately a per-  
centage of parts will fail HBM ESD over 500V.  
3. The Self Config instruction starts reconfiguring the CPLD  
upon execution of the Update-IR state of the JTAG TAP  
controller state machine. In CY39100VxxxB parts, Self  
Config instruction is executed upon execution of Test-Log-  
ic-Reset state of the TAP controller.  
Document #: 38-03039 Rev. **  
Page 50 of 57  
Delta39KISR™  
CPLD Family  
PRELIMINARY  
[18]  
CPLD Boot EEPROM  
Part Numbers (Ordering Information)  
Speed  
(MHz)  
Package  
Name  
Operating  
Device  
Ordering Code  
CY3LV010-10JC  
CY3LV010-10JI  
CY3LV512-10JC  
CY3LV512-10JI  
Package Type  
Range  
1Mbit  
15  
10  
15  
10  
20J  
20J  
20J  
20J  
20-Lead Plastic Leaded Chip Carrier Commercial  
20-Lead Plastic Leaded Chip Carrier  
Industrial  
512Kbit  
20-Lead Plastic Leaded Chip Carrier Commercial  
20-Lead Plastic Leaded Chip Carrier  
Industrial  
Recommended CPLD Boot EEPROM for corresponding Delta39K CPLDs  
CPLD Device  
39K15  
Recommended boot EEPROM  
CY3LV256  
39K30  
CY3LV512  
39K50  
CY3LV512  
39K100  
39K165  
39K200  
CY3LV010  
CY3LV020  
CY3LV020  
Note:  
18. See the data sheet titled CPLD Boot EEPROMfor detailed architectural and timing information.  
Document #: 38-03039 Rev. **  
Page 51 of 57  
Delta39KISR™  
CPLD Family  
PRELIMINARY  
Package Diagrams  
208-Lead Plastic Quad Flatpack (PQFP) N208  
208-Lead Enhanced Quad Flat Pack (EQFP) NT208  
51-85069-B  
Document #: 38-03039 Rev. **  
Page 52 of 57  
Delta39KISR™  
CPLD Family  
PRELIMINARY  
Package Diagrams (continued)  
388-Lead Ball Grid Array MG388  
51-85103  
Document #: 38-03039 Rev. **  
Page 53 of 57  
Delta39KISR™  
CPLD Family  
PRELIMINARY  
Package Diagrams (continued)  
256-Ball Thin Ball Grid Array (17 x 17 x 1.6 mm) BB256/MB256  
51-85108-A  
Document #: 38-03039 Rev. **  
Page 54 of 57  
Delta39KISR™  
CPLD Family  
PRELIMINARY  
Package Diagrams (continued)  
484-Ball Thin Ball Grid Array (23 x 23 x 1.6 mm) BB484/MB484  
51-85124  
Document #: 38-03039 Rev. **  
Page 55 of 57  
Delta39KISR™  
CPLD Family  
PRELIMINARY  
Package Diagrams (continued)  
676-Ball FBGA (27 x 27 x 1.6 mm) BB676  
51-85125  
Mechanical drawings of 144FBGA will be available soon.  
For package sizes and ball pitch see page 2.  
NoBL, PIM, Spread Aware, Warp, AnyVolt, Self-Boot, In-System Reprogrammable, ISR, and Delta39K are trademarks of  
Cypress Semiconductor Corporation.  
ZBT is a trademark of IDT. QDR is a trademark of Micron, IDT, and Cypress Semiconductor Corporation.  
SpeedWave, and ViewDraw are trademarks of ViewLogic.  
Document #: 38-03039 Rev. **  
Page 56 of 57  
© Cypress Semiconductor Corporation, 2001. The information contained herein is subject to change without notice. Cypress Semiconductor Corporation assumes no responsibility for the use  
of any circuitry other than circuitry embodied in a Cypress Semiconductor product. Nor does it convey or imply any license under patent or other rights. Cypress Semiconductor does not authorize  
its products for use as critical components in life-support systems where a malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress  
Semiconductor products in life-support systems application implies that the manufacturer assumes all risk of such use and in doing so indemnifies Cypress Semiconductor against all charges.  
Delta39KISR™  
CPLD Family  
PRELIMINARY  
Document Title: DELTA39KISRCPLD FAMILY  
Document Number: 38-03039  
Issue  
Date  
Orig. of  
Change  
REV.  
ECN NO.  
Description of Change  
Change from Spec #: 38-00830 to 38-03039  
**  
106503  
05/30/01  
SZV  
Document #: 38-03039 Rev. **  
Page 57 of 57  

相关型号:

CY39200V484-181BBXC

Loadable PLD, 8.5ns, CMOS, PBGA484, 23 X 23 MM, 1.6 MM HEIGHT, 1 MM PITCH, LEAD FREE, FBGA-484
CYPRESS

CY39200V676-125MBXC

Loadable PLD, 10ns, CMOS, PBGA676, 27 X 27 MM, 1.6 MM HEIGHT, 1 MM PITCH, LEAD FREE, FBGA-676
CYPRESS

CY39200V676-167MBC

Loadable PLD, 8.5ns, CMOS, PBGA676, 27 X 27 MM, 1.60 MM HEIGHT, 1 MM PITCH, FBGA-676
CYPRESS

CY39200V676-181MBXC

Loadable PLD, 8.5ns, CMOS, PBGA676, 27 X 27 MM, 1.6 MM HEIGHT, 1 MM PITCH, LEAD FREE, FBGA-676
CYPRESS

CY39200Z208-125BBC

CPLDs at FPGA Densities
CYPRESS

CY39200Z208-125BBI

CPLDs at FPGA Densities
CYPRESS

CY39200Z208-125BGC

CPLDs at FPGA Densities
CYPRESS

CY39200Z208-125BGI

CPLDs at FPGA Densities
CYPRESS

CY39200Z208-125MBC

CPLDs at FPGA Densities
CYPRESS

CY39200Z208-125MBI

CPLDs at FPGA Densities
CYPRESS

CY39200Z208-125MGC

CPLDs at FPGA Densities
CYPRESS

CY39200Z208-125MGI

CPLDs at FPGA Densities
CYPRESS