CY7B9910-7SCT [CYPRESS]

PLL Based Clock Driver, 7B Series, 8 True Output(s), 0 Inverted Output(s), BICMOS, PDSO24, 0.300 INCH, MO-119, SOIC-24;
CY7B9910-7SCT
型号: CY7B9910-7SCT
厂家: CYPRESS    CYPRESS
描述:

PLL Based Clock Driver, 7B Series, 8 True Output(s), 0 Inverted Output(s), BICMOS, PDSO24, 0.300 INCH, MO-119, SOIC-24

信息通信管理 光电二极管
文件: 总11页 (文件大小:356K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
CY7B9910  
CY7B9920  
Low Skew Clock Buffer  
Features  
Block Diagram Description  
All Outputs Skew <100 ps typical (250 max.)  
15 to 80 MHz Output Operation  
Zero Input to Output Delay  
Phase Frequency Detector and Filter  
The Phase Frequency Detector and Filter blocks accept inputs  
from the reference frequency (REF) input and the feedback (FB)  
input and generate correction information to control the  
frequency of the Voltage Controlled Oscillator (VCO). These  
blocks, along with the VCO, form a Phase Locked Loop (PLL)  
that tracks the incoming REF signal.  
50% Duty Cycle Outputs  
Outputs drive 50Ω terminated lines  
Low Operating Current  
VCO  
24-pin SOIC Package  
The VCO accepts analog control inputs from the PLL filter block  
and generates a frequency. The operational range of the VCO is  
determined by the FS control pin.  
Jitter: <200 ps Peak to Peak, <25 ps RMS  
Functional Description  
The CY7B9910 and CY7B9920 Low Skew Clock Buffers offer  
low skew system clock distribution. These multiple output clock  
drivers optimize the timing of high performance computer  
systems. Each of the eight individual drivers can drive terminated  
transmission lines with impedances as low as 50Ω. They deliver  
minimal and specified output skews and full swing logic levels  
(CY7B9910 TTL or CY7B9920 CMOS).  
The completely integrated PLL enables “zero delay” capability.  
External divide capability, combined with the internal PLL, allows  
distribution of a low frequency clock that is multiplied by virtually  
any factor at the clock destination. This facility minimizes clock  
distribution difficulty while allowing maximum system clock  
speed and flexibility.  
Logic Block Diagram  
TEST  
VOLTAGE  
PHASE  
FB  
FREQ  
DET  
FILTER  
CONTROLLED  
OSCILLATOR  
REF  
FS  
Q0  
Q1  
Q2  
Q3  
Q4  
Q5  
Q6  
Q7  
Cypress Semiconductor Corporation  
Document Number: 38-07135 Rev. *D  
198 Champion Court  
San Jose, CA 95134-1709  
408-943-2600  
Revised September 10, 2009  
[+] Feedback  
CY7B9910  
CY7B9920  
Pinouts  
Figure 1. Pin Configuration – 24-Pin (300-Mil) Molded SOIC S13  
SOIC  
Top View  
REF  
1
24  
23  
22  
21  
GND  
TEST  
NC  
V
CCQ  
2
FS  
NC  
3
4
GND  
V
CCQ  
20  
19  
18  
17  
16  
15  
5
V
CCN  
6
V
CCN  
7B9910  
7B9920  
Q7  
Q6  
GND  
Q5  
Q4  
Q0  
7
Q1  
GND  
Q2  
8
9
10  
11  
12  
14  
13  
Q3  
V
CCN  
V
CCN  
FB  
Table 1. Pin Definition  
Signal Name  
IO  
Description  
REF  
I
Reference frequency input. This input supplies the frequency and timing against which all functional  
variations are measured.  
FB  
I
I
PLL feedback input (typically connected to one of the eight outputs).  
Three level frequency range select.  
Three level select. See TEST MODE.  
Clock outputs.  
FS[1,2,3]  
TEST  
Q[0..7]  
VCCN  
VCCQ  
GND  
I
O
PWR  
PWR  
PWR  
Power supply for output drivers.  
Power supply for internal circuitry.  
Ground.  
Test Mode  
The TEST input is a three level input. In normal system operation, this pin is connected to ground, allowing the CY7B9910 and  
CY7B9920 to operate as described in Block Diagram Description. For testing purposes, any of the three level inputs can have a  
removable jumper to ground or be tied LOW through a 100Ω resistor. This enables an external tester to change the state of these pins.  
If the TEST input is forced to its MID or HIGH state, the device operates with its internal phase locked loop disconnected and input  
levels supplied to REF directly control all outputs. Relative output-to-output functions are the same as in normal mode.  
Notes  
1. For all three state inputs, HIGH indicates a connection to VCC, LOW indicates a connection to GND, and MID indicates an open connection. Internal termination  
circuitry holds an unconnected input to VCC/2.  
2. The level to be set on FS is determined by the “normal” operating frequency (fNOM) of the VCO (see Logic Block Diagram). The frequency appearing at the REF  
and FB inputs are fNOM when the output connected to FB is undivided. The frequency of the REF and FB inputs are fNOM/X when the device is configured for a  
frequency multiplication by using external division in the feedback path of value X.  
3. When the FS pin is selected HIGH, the REF input must not transition upon power up until VCC reached 4.3V.  
Document Number: 38-07135 Rev. *D  
Page 2 of 11  
[+] Feedback  
CY7B9910  
CY7B9920  
Maximum Ratings  
Operating Range  
Exceeding maximum ratings may shorten the useful life of the  
device. User guidelines are not tested.  
Ambient  
Temperature  
Range  
VCC  
Storage Temperature .................................65°C to +150°C  
Ambient Temperature with  
Power Applied ............................................55°C to +125°C  
Commercial  
0°C to +70°C  
–40°C to +85°C  
5V ± 10%  
5V ± 10%  
Industrial  
Supply Voltage to Ground Potential................–0.5V to +7.0V  
DC Input Voltage ............................................–0.5V to +7.0V  
Output Current into Outputs (LOW)............................. 64 mA  
Static Discharge Voltage............................................>2001V  
(MIL-STD-883, Method 3015)  
Latch Up Current .....................................................>200 mA  
Document Number: 38-07135 Rev. *D  
Page 3 of 11  
[+] Feedback  
CY7B9910  
CY7B9920  
Electrical Characteristics  
Over the Operating Range  
CY7B9910  
CY7B9920  
Parameter  
Description  
Test Conditions  
VCC = Min, IOH = –16 mA  
VCC = Min, IOH =–40 mA  
VCC = Min, IOL = 46 mA  
VCC = Min, IOL = 46 mA  
Min  
Max  
Min  
Max  
Unit  
VOH  
Output HIGH Voltage  
2.4  
V
VCC–0.75  
VOL  
Output LOW Voltage  
0.45  
V
0.45  
VCC  
VIH  
VIL  
Input HIGH Voltage  
(REF and FB inputs only)  
2.0  
–0.5  
VCC  
0.8  
VCC  
V
V
1.35  
Input LOW Voltage  
(REF and FB inputs only)  
–0.5  
1.35  
VCC  
VIHH  
VIMM  
VILL  
IIH  
Three Level Input HIGH  
Voltage (Test, FS)[4]  
Min VCC Max  
Min VCC Max  
Min VCC Max  
VCC – 1V  
VCC  
VCC – 1V  
V
Three Level Input MID  
Voltage (Test, FS)[4]  
VCC/2 – VCC/2 +  
500 mV  
VCC/2 –  
500 mV  
VCC/2 +  
500 mV  
V
500 mV  
Three Level Input LOW  
Voltage (Test, FS)[4]  
0.0  
1.0  
0.0  
–500  
–50  
1.0  
V
Input HIGH Leakage Current VCC = Max, VIN = Max  
(REF and FB inputs only)  
10  
10  
μA  
μA  
μA  
μA  
μA  
mA  
mA  
IIL  
Input LOW Leakage Current VCC = Max, VIN = 0.4V  
(REF and FB inputs only)  
–500  
–50  
IIHH  
IIMM  
IILL  
Input HIGH Current  
(Test, FS)  
VIN = VCC  
VIN = VCC/2  
VIN = GND  
200  
50  
200  
50  
Input MID Current  
(Test, FS)  
Input LOW Current  
(Test, FS)  
–200  
–250  
–200  
N/A  
IOS  
Output Short Circuit  
Current[5]  
VCC = Max, VOUT  
= GND (25°C only)  
VCCN = VCCQ = Max All Com’l  
ICCQ  
Operating Current Used by  
Internal Circuitry  
85  
90  
85  
90  
Input  
Selects Open  
Mil/Ind  
ICCN  
Output Buffer Current per  
Output Pair[6]  
VCCN = VCCQ = Max  
14  
19  
mA  
IOUT = 0 mA  
Input Selects Open, fMAX  
PD  
Power Dissipation per  
Output Pair[7]  
VCCN = VCCQ = Max  
78  
104[5]  
mW  
IOUT = 0 mA  
Input Selects Open, fMAX  
Notes  
4. These inputs are normally wired to VCC, GND, or left unconnected (actual threshold voltages vary as a percentage of VCC). Internal termination resistors hold  
unconnected inputs at VCC/2. If these inputs are switched, the function and timing of the outputs may glitch and the PLL may require an additional tLOCK time  
before all datasheet limits are achieved.  
5. Tested one output at a time, output shorted for less than one second, less than 10% duty cycle. Room temperature only. CY7B9920 outputs are not short circuit  
protected.  
6. Total output current per output pair is approximated by the following expression that includes device current plus load current:  
CY7B9910:  
ICCN = [(4 + 0.11F) + [((835 – 3F)/Z) + (.0022FC)]N] x 1.1  
CY7B9920:  
ICCN = [(3.5+.17F) + [((1160 – 2.8F)/Z) + (.0025FC)]N] x 1.1  
Where  
F = frequency in MHz  
C = capacitive load in pF  
Z = line impedance in ohms  
N = number of loaded outputs; 0, 1, or 2  
FC = F < C.  
7. Total power dissipation per output pair is approximated by the following expression that includes device power dissipation plus power dissipation due to the load circuit:  
CY7B9910:  
PD = [(22 + 0.61F) + [((1550 – 2.7F)/Z) + (.0125FC)]N] x 1.1  
CY7B9920:  
PD = [(19.25+ 0.94F) + [((700 + 6F)/Z) + (.017FC)]N] x 1.1.See note 3 for variable definition.  
Document Number: 38-07135 Rev. *D  
Page 4 of 11  
[+] Feedback  
CY7B9910  
CY7B9920  
Capacitance  
Tested initially and after any design or process changes that may affect these parameters.  
Parameter  
CIN  
Description  
Test Conditions  
Max  
Unit  
Input Capacitance  
TA = 25°C, f = 1 MHz, VCC = 5.0V  
10  
pF  
Figure 2. AC Test Loads and Waveforms  
5V  
3.0V  
2.0V  
=1.5V  
0.8V  
2.0V  
=1.5V  
0.8V  
R1=130  
R2=91  
R1  
R2  
V
th  
V
th  
C = 50 pF (C = 30pF for –5 and – 2 devices)  
L
L
0.0V  
C
L
(Includes fixture and probe capacitance)  
1ns  
1ns  
7B9910–3  
7B9910–4  
TTL AC Test Load (CY7B9910)  
TTL Input Test Waveform (Cy7B9910)  
V
CC  
V
CC  
R1=100  
R2=100  
80%  
80%  
R1  
R2  
C = 50 pF (C =30 pF for –5 and – 2devices)  
V
th  
= V /2  
V
th  
= V /2  
L
L
CC  
CC  
(Includes fixture and probe capacitance)  
20%  
0.0V  
20%  
C
L
3ns  
3ns  
7B9910–5  
7B9910–6  
CMOS Input Test Waveform (CY7B9920)  
CMOS AC Test Load (CY7B9920)  
Switching Characteristics  
Over the Operating Range [11]  
CY7B9910–2[8]  
CY7B9920–2[8]  
Parameter  
fNOM  
Description  
Min  
Typ  
Max  
Min  
Typ  
Max  
Unit  
Operating Clock  
FS = LOW[1, 2]  
FS = MID[1, 2]  
15  
25  
30  
50  
80  
15  
25  
30  
MHz  
Frequency in MHz  
50  
80[12]  
FS = HIGH[1, 2, 3]  
40  
40  
tRPWH  
tRPWL  
tSKEW  
tDEV  
REF Pulse Width HIGH  
REF Pulse Width LOW  
5.0  
5.0  
5.0  
5.0  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ms  
ps  
ps  
Zero Output Skew (All Outputs)[13, 14]  
Device-to-Device Skew[14, 15]  
Propagation Delay, REF Rise to FB Rise  
Output Duty Cycle Variation[16]  
Output Rise Time[17, 18]  
0.1  
0.25  
0.75  
+0.25  
+0.65  
1.2  
0.1  
0.25  
0.75  
+0.25  
+0.65  
2.5  
tPD  
–0.25  
–0.65  
0.15  
0.0  
0.0  
1.0  
1.0  
–0.25  
–0.65  
0.5  
0.0  
0.0  
2.0  
2.0  
tODCV  
tORISE  
tOFALL  
tLOCK  
tJR  
Output Fall Time[17, 18]  
PLL Lock Time[19]  
0.15  
1.2  
0.5  
2.5  
0.5  
0.5  
Cycle-to-Cycle Output Jitter Peak to Peak  
RMS  
200  
25  
200  
25  
Document Number: 38-07135 Rev. *D  
Page 5 of 11  
[+] Feedback  
CY7B9910  
CY7B9920  
Switching Characteristics  
Over the Operating Range[11] (continued)  
CY7B9910–5  
Typ  
CY7B9920–5  
Typ  
Parameter  
fNOM  
Description  
Min  
15  
Max  
30  
Min  
15  
Max  
Unit  
Operating Clock  
FS = LOW[1, 2]  
FS = MID[1, 2]  
30  
MHz  
Frequency in MHz  
25  
50  
25  
50  
FS = HIGH[1, 2, 3]  
40  
80  
40  
80[12]  
tRPWH  
tRPWL  
tSKEW  
tDEV  
REF Pulse Width HIGH  
REF Pulse Width LOW  
5.0  
5.0  
5.0  
5.0  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ms  
ps  
ps  
Zero Output Skew (All Outputs)[13, 14]  
Device-to-Device Skew[8, 15]  
Propagation Delay, REF Rise to FB Rise  
Output Duty Cycle Variation[16]  
Output Rise Time[17, 18  
Output Fall Time[17, 18]  
PLL Lock Time[19]  
Cycle-to-Cycle Output Jitter Peak to Peak[8]  
RMS[8]  
0.25  
0.5  
1.0  
0.25  
0.5  
1.0  
tPD  
–0.5  
–1.0  
0.15  
0.15  
0.0  
0.0  
1.0  
1.0  
+0.5  
+1.0  
1.5  
–0.5  
–1.0  
0.5  
0.0  
0.0  
2.0  
2.0  
+0.5  
+1.0  
3.0  
tODCV  
tORISE  
tOFALL  
tLOCK  
tJR  
1.5  
0.5  
3.0  
0.5  
0.5  
200  
25  
200  
25  
Notes  
8. Guaranteed by statistical correlation. Tested initially and after any design or process changes that may affect these parameters.  
9. CMOS output buffer current and power dissipation specified at 50 MHz reference frequency.  
10. Applies to REF and FB inputs only.  
11. Test measurement levels for the CY7B9910 are TTL levels (1.5V to 1.5V). Test measurement levels for the CY7B9920 are CMOS levels (VCC/2 to VCC/2). Test  
conditions assume signal transition times of 2 ns or less and output loading as shown in the AC Test Loads and Waveforms unless otherwise specified.  
12. Except as noted, all CY7B9920–2 and –5 timing parameters are specified to 80 MHz with a 30 pF load.  
13. tSKEW is defined as the time between the earliest and the latest output transition among all outputs when all are loaded with 50 pF and terminated with 50Ω to  
2.06V (CY7B9910) or VCC/2 (CY7B9920).  
14. tSKEW is defined as the skew between outputs.  
15. tDEV is the output-to-output skew between any two outputs on separate devices operating under the same conditions (VCC, ambient temperature, air flow, and  
so on).  
16. tODCV is the deviation of the output from a 50% duty cycle.  
17. Specified with outputs loaded with 30 pF for the CY7B99X0–2 and –5 devices and 50 pF for the CY7B99X0–7 devices. Devices are terminated through 50Ω to  
2.06V (CY7B9910) or VCC/2 (CY7B9920).  
18. tORISE and tOFALL measured between 0.8V and 2.0V for the CY7B9910 or 0.8VCC and 0.2VCC for the CY7B9920.  
19. tLOCK is the time that is required before synchronization is achieved. This specification is valid only after VCC is stable and within normal operating limits. This  
parameter is measured from the application of a new signal or frequency at REF or FB until tPD is within specified limits.  
Document Number: 38-07135 Rev. *D  
Page 6 of 11  
[+] Feedback  
CY7B9910  
CY7B9920  
Switching Characteristics  
Over the Operating Range[11] (continued)  
CY7B9910–7  
Typ  
CY7B9920–7  
Typ  
Parameter  
Description  
Min  
Max  
Min  
Max  
Unit  
fNOM  
Operating Clock  
Frequency in MHz  
FS = LOW[1, 2]  
15  
30  
15  
30  
MHz  
FS = MID[1, 2]  
FS = HIGH1, 2, 3]  
25  
40  
50  
80  
25  
40  
50  
80[12]  
tRPWH  
tRPWL  
tSKEW  
tDEV  
REF Pulse Width HIGH  
REF Pulse Width LOW  
5.0  
5.0  
5.0  
5.0  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ms  
ps  
ps  
Zero Output Skew (All Outputs)[13, 14]  
Device-to-Device Skew[8, 15]  
Propagation Delay, REF Rise to FB Rise  
Output Duty Cycle Variation[16]  
Output Rise Time[17, 18]  
Output Fall Time17, 18]  
PLL Lock Time[19]  
Cycle-to-Cycle Output Peak to Peak[8]  
Jitter  
0.3  
0.75  
1.5  
0.3  
0.75  
1.5  
tPD  
–0.7  
–1.2  
0.15  
0.15  
0.0  
0.0  
1.5  
1.5  
+0.7  
+1.2  
2.5  
–0.7  
–1.2  
0.5  
0.0  
0.0  
3.0  
3.0  
+0.7  
+1.2  
5.0  
tODCV  
tORISE  
tOFALL  
tLOCK  
tJR  
2.5  
0.5  
5.0  
0.5  
0.5  
200  
25  
200  
25  
tJR  
RMS[8]  
Document Number: 38-07135 Rev. *D  
Page 7 of 11  
[+] Feedback  
CY7B9910  
CY7B9920  
AC Timing Diagrams  
Figure 3. AC Timing Diagrams  
t
t
RPWL  
REF  
t
RPWH  
REF  
t
PD  
t
ODCV  
t
ODCV  
FB  
Q
t
JR  
t
SKEW  
t
SKEW  
OTHERQ  
Figure 4. Zero Skew and Zero Delay Clock Driver  
REF  
LOAD  
Z
Z
0
FB  
SYSTEM  
CLOCK  
REF  
FS  
LOAD  
LOAD  
Q0  
Q1  
0
Q2  
Q3  
Q4  
Q5  
Z
0
Q6  
Q7  
LOAD  
TEST  
Z
0
Document Number: 38-07135 Rev. *D  
Page 8 of 11  
[+] Feedback  
CY7B9910  
CY7B9920  
Operational Mode Descriptions  
Figure 4 shows the device configured as a zero skew clock  
buffer. In this mode the 7B9910/9920 is used as the basis for a  
low skew clock distribution tree. The outputs are aligned and may  
each drive a terminated transmission line to an independent  
load. The FB input is tied to any output and the operating  
frequency range is selected with the FS pin. The low skew speci-  
fication, coupled with the ability to drive terminated transmission  
lines (with impedances as low as 50 ohms), enables efficient  
printed circuit board design.  
Figure 3 shows the CY7B9910/9920 connected in series to  
construct a zero skew clock distribution tree between boards.  
Cascaded clock buffers accumulates low frequency jitter  
because of the non-ideal filtering characteristics of the PLL filter.  
Do not connect more than two clock buffers in series.  
Figure 5. Board-to-Board Clock Distribution  
LOAD  
LOAD  
REF  
Z
0
FB  
SYSTEM  
CLOCK  
REF  
FS  
Z
0
Q0  
Q1  
Q2  
Q3  
LOAD  
Q4  
Q5  
Z
0
Q6  
Q7  
FB  
REF  
FS  
TEST  
LOAD  
Q0  
Q1  
Z
0
Q2  
Q3  
Q4  
Q5  
LOAD  
Q6  
Q7  
TEST  
Document Number: 38-07135 Rev. *D  
Page 9 of 11  
[+] Feedback  
CY7B9910  
CY7B9920  
Ordering Information  
Accuracy  
Operating  
Range  
Ordering Code  
Package Type  
24-Pin Small Outline IC  
(ps)  
250  
CY7B9910–2SC[20]  
CY7B9910–2SCT[20]  
CY7B9920–2SC[20]  
CY7B9910–5SC[20]  
CY7B9910–5SCT[20]  
CY7B9910–5SI  
Commercial  
24-Pin Small Outline IC - Tape and Reel  
24-Pin Small Outline IC  
Commercial  
Commercial  
Commercial  
Commercial  
Industrial  
500  
24-Pin Small Outline IC  
24-Pin Small Outline IC - Tape and Reel  
24-Pin Small Outline IC  
CY7B9910–5SIT  
24-Pin Small Outline IC - Tape and Reel  
24-Pin Small Outline IC  
Industrial  
CY7B9920–5SC[20]  
CY7B9920–5SCT[20]  
CY7B9920–5SI[20]  
CY7B9910–7SC[20]  
CY7B9910–7SI[20]  
CY7B9920–7SC[20]  
CY7B9920–7SI[20]  
Commercial  
Commercial  
Industrial  
24-Pin Small Outline IC - Tape and Reel  
24-Pin Small Outline IC  
750  
24-Pin Small Outline IC  
Commercial  
Industrial  
24-Pin Small Outline IC  
24-Pin Small Outline IC  
Commercial  
Industrial  
24-Pin Small Outline IC  
Pb-Free  
250  
CY7B9910–2SXC  
CY7B9910–2SXCT  
CY7B9910–5SXC  
CY7B9910–5SXCT  
CY7B9910–5SXI  
CY7B9910–5SXIT  
CY7B9910–7SXC  
CY7B9910–7SXCT  
24-Pin Small Outline IC  
Commercial  
Commercial  
Commercial  
Commercial  
Industrial  
24-Pin Small Outline IC - Tape and Reel  
24-Pin Small Outline IC  
500  
24-Pin Small Outline IC - Tape and Reel  
24-Pin Small Outline IC  
24-Pin Small Outline IC - Tape and Reel  
24-Pin Small Outline IC  
Industrial  
750  
Commercial  
Commercial  
24-Pin Small Outline IC - Tape and Reel  
Package Diagram  
Figure 6. 24-Pin (300-Mil) Molded SOIC S13  
51-85025-*C  
Note  
20. Not recommended for new design.  
Document Number: 38-07135 Rev. *D  
Page 10 of 11  
[+] Feedback  
CY7B9910  
CY7B9920  
Document History Page  
Document Title: CY7B9910/CY7B9920 Low Skew Clock Buffer  
Document Number: 38-07135  
Orig. of Submission  
Revision  
ECN  
Description of Change  
Change  
Date  
**  
110244  
SZV  
10/28/01  
Change from Specification number: 38-00437 to 38-07135  
*A  
1199925 DPF/AESA  
See ECN Added Pb-free parts in Ordering Information  
Added Note 20: Not recommended for the new design  
*B  
*C  
*D  
1353343  
2750166  
2761988  
AESA  
TSAI  
CXQ  
See ECN Change status to final  
08/10/09  
09/10/09  
Post to external web  
Fixed typo from 100W resistor to 100Ω resistor.  
Added “Not recommended for new designs” note to Pb devices.  
Fixed incorrect instances of auto-replacement of “lead” to “Pb”.  
Sales, Solutions, and Legal Information  
Worldwide Sales and Design Support  
Cypress maintains a worldwide network of offices, solution centers, manufacturer’s representatives, and distributors. To find the office  
closest to you, visit us at cypress.com/sales.  
Products  
PSoC  
psoc.cypress.com  
clocks.cypress.com  
wireless.cypress.com  
memory.cypress.com  
image.cypress.com  
Clocks & Buffers  
Wireless  
Memories  
Image Sensors  
© Cypress Semiconductor Corporation, 2001-2009.The information contained herein is subject to change without notice. Cypress Semiconductor Corporation assumes no responsibility for the use of  
any circuitry other than circuitry embodied in a Cypress product. Nor does it convey or imply any license under patent or other rights. Cypress products are not warranted nor intended to be used for  
medical, life support, life saving, critical control or safety applications, unless pursuant to an express written agreement with Cypress. Furthermore, Cypress does not authorize its products for use as  
critical components in life-support systems where a malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress products in life-support systems  
application implies that the manufacturer assumes all risk of such use and in doing so indemnifies Cypress against all charges.  
Any Source Code (software and/or firmware) is owned by Cypress Semiconductor Corporation (Cypress) and is protected by and subject to worldwide patent protection (United States and foreign),  
United States copyright laws and international treaty provisions. Cypress hereby grants to licensee a personal, non-exclusive, non-transferable license to copy, use, modify, create derivative works of,  
and compile the Cypress Source Code and derivative works for the sole purpose of creating custom software and or firmware in support of licensee product to be used only in conjunction with a Cypress  
integrated circuit as specified in the applicable agreement. Any reproduction, modification, translation, compilation, or representation of this Source Code except as specified above is prohibited without  
the express written permission of Cypress.  
Disclaimer: CYPRESS MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES  
OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. Cypress reserves the right to make changes without further notice to the materials described herein. Cypress does not  
assume any liability arising out of the application or use of any product or circuit described herein. Cypress does not authorize its products for use as critical components in life-support systems where  
a malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress’ product in a life-support systems application implies that the manufacturer  
assumes all risk of such use and in doing so indemnifies Cypress against all charges.  
Use may be limited by and subject to the applicable Cypress software license agreement.  
Document Number: 38-07135 Rev. *D  
Revised September 10, 2009  
Page 11 of 11  
PSoC Designer™, Programmable System-on-Chip™, and PSoC Express™ are trademarks and PSoC® is a registered trademark of Cypress Semiconductor Corp. All other trademarks or registered  
2
trademarks referenced herein are property of the respective corporations. Purchase of I C components from Cypress or one of its sublicensed Associated Companies conveys a license under the  
2
2
2
Philips I C Patent Rights to use these components in an I C system, provided that the system conforms to the I C Standard Specification as defined by Philips. All products and company names  
mentioned in this document may be the trademarks of their respective holders.  
[+] Feedback  

相关型号:

CY7B9910-7SI

Low Skew Clock Buffer
CYPRESS

CY7B9910-7SIT

PLL Based Clock Driver, 7B Series, 8 True Output(s), 0 Inverted Output(s), BICMOS, PDSO24, 0.300 INCH, MO-119, SOIC-24
CYPRESS

CY7B9910-7SI[20]

Low Skew Clock Buffer
CYPRESS

CY7B9910-7SXC

Low Skew Clock Buffer
CYPRESS

CY7B9910-7SXC

7B SERIES, PLL BASED CLOCK DRIVER, 8 TRUE OUTPUT(S), 0 INVERTED OUTPUT(S), PDSO24, 0.300 INCH, LEAD FREE, MO-119, SOIC-24
ROCHESTER

CY7B9910-7SXCT

Low Skew Clock Buffer
CYPRESS

CY7B9910_07

Low Skew Clock Buffer
CYPRESS

CY7B9911

High-Speed Low-Voltage Programmable Skew Clock Buffer LV-PSCB
CYPRESS

CY7B9911-5JC

Programmable Skew Clock Buffer (PSCB)
CYPRESS

CY7B9911-5JCT

Programmable Skew Clock Buffer
CYPRESS

CY7B9911-7JC

Programmable Skew Clock Buffer (PSCB)
CYPRESS

CY7B9911-7JCT

PLL Based Clock Driver, 7B Series, 4 True Output(s), 0 Inverted Output(s), PQCC32, PLASTIC, LCC-32
CYPRESS