CY7B995_07 [CYPRESS]

2.5/3.3V 200-MHz High-Speed Multi-Phase PLL Clock Buffer; 2.5 / 3.3V 200MHz的高速多相位锁相环时钟缓冲器
CY7B995_07
型号: CY7B995_07
厂家: CYPRESS    CYPRESS
描述:

2.5/3.3V 200-MHz High-Speed Multi-Phase PLL Clock Buffer
2.5 / 3.3V 200MHz的高速多相位锁相环时钟缓冲器

多相元件 时钟
文件: 总13页 (文件大小:383K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
RoboClock®, CY7B995  
2.5/3.3V 200-MHz High-Speed  
Multi-Phase PLL Clock Buffer  
Features  
Description  
2.5V or 3.3V operation  
The CY7B995 RoboClock® is a low voltage, low power,  
eight-output, 200 MHz clock driver. It features output phase  
programmability which is necessary to optimize the timing of high  
performance computer and communication systems.  
Split output bank power supplies  
Output frequency range: 6 MHz to 200 MHz  
45 ps typical cycle-cycle jitter  
The user can program both the frequency and the phase of the  
output banks through nF[0:1] and DS[0:1] pins. The adjustable  
phase feature allows the user to skew the outputs to lead or lag  
the reference clock. Any one of the outputs can be connected to  
feedback to achieve different reference frequency multiplication,  
and divide ratios and zero input-output delay.  
± 2% max output duty cycle  
Selectable output drive strength  
Selectable positive or negative edge synchronization  
Eight LVTTL outputs driving 50 Ω terminated lines  
LVCMOS/LVTTL over-voltage tolerant reference input  
The device also features split output bank power supplies, which  
enable the user to run two banks (1Qn and 2Qn) at a power  
supply level, different from that of the other two banks (3Qn and  
4Qn). The three-level PE/HD pin also controls the synchroni-  
zation of the output signals to either the rising, or the falling edge  
of the reference clock and selects the drive strength of the output  
buffers. The high drive option (PE/HD = MID) increases the  
output current from ± 12 mA to ± 24 mA.  
Selectable phase-locked loop (PLL) frequency range and lock  
indicator  
Phase adjustments in 625/1250 ps steps up to ± 7.5 ns  
(1-6, 8, 10, 12) x multiply and (1/2,1/4)x divide ratios  
Spread-Spectrum compatible  
Power down mode  
Selectable reference divider  
Industrial temperature range: –40°C to +85°C  
44-pin TQFP package  
Logic Block Diagram  
TEST PE/HD FS VDDQ1  
3
PD#/DIV  
REF  
3
3
3
/R  
/N  
LOCK  
PLL  
FB  
3
3
DS1:0  
1Q0  
1Q1  
3
Phase  
Select  
1F1:0  
3
2Q0  
2Q1  
3
3
Phase  
Select  
2F1:0  
3F1:0  
4F1:0  
3Q0  
3
3
Phase  
Select  
and /K  
3Q1  
VDDQ3  
4Q0  
3
3
Phase  
Select  
and /M  
4Q1  
sOE#  
VDDQ4  
Cypress Semiconductor Corporation  
Document #: 38-07337 Rev. *D  
198 Champion Court  
San Jose, CA 95134-1709  
408-943-2600  
Revised September 27, 2007  
[+] Feedback  
RoboClock®, CY7B995  
Pinouts  
Figure 1. Pin Diagram - 44 Pin TQFP Package Top view  
44 43 42 41 40 39 38 37 36 35 34  
33 1F0  
4F1  
sOE#  
1
32  
31  
30  
29  
DS1  
2
DS0  
PD#/DIV  
PE/HD  
VDDQ4  
3
LOCK  
4
5
VDDQ1  
CY7B995  
6
28 VDDQ1  
VDDQ4  
4Q1  
7
27  
26  
25  
24  
23  
1Q0  
1Q1  
VSS  
VSS  
VSS  
8
4Q0  
VSS  
VSS  
VSS  
9
10  
11  
12 13 14 15 16 17 18 19 20 21 22  
Document #: 38-07337 Rev. *D  
Page 2 of 13  
[+] Feedback  
RoboClock®, CY7B995  
Table 1. Pin Definitions - 44 Pin TQFP Package  
Pin  
Name  
REF  
IO[1]  
Type  
Description  
39  
17  
37  
I
I
I
LVTTL/LVCMOS Reference Clock Input.  
FB  
LVTTL  
Feedback Input.  
TEST  
3-Level  
When MID or HIGH, disables PLL[3]. REF goes to all outputs. Set LOW  
for normal operation.  
2
sOE#  
I, PD LVTTL  
Synchronous Output Enable. When HIGH, it stops clock outputs  
(except 2Q0 and 2Q1) in a LOW state (for PE/HD = H or M) – 2Q0, and  
2Q1 may be used as the feedback signal to maintain phase lock. When  
TEST is held at MID level and sOE# is HIGH, the nF[1:0] pins act as output  
disable controls for individual banks when nF[1:0] = LL. Set sOE# LOW  
for normal operation.  
4
PE/HD  
I, PU 3-Level  
Selects Positive or Negative Edge Control, and High or Low output  
Drive Strength. When LOW/HIGH, the outputs are synchronized with the  
negative/positive edge of the reference clock respectively. When at MID  
level, the output drive strength is increased and the outputs synchronize  
with the positive edge of the reference clock. See Table 10 on page 5.  
34, 33, 36, 35, nF[1:0]  
43, 42, 1, 44  
I
3-Level  
Selects Frequency and Phase of the Outputs. See Table 4, Table 5,  
Table 6, Table 8, and Table 9 on page 4.  
41  
FS  
I
3-Level  
LVTTL  
Selects VCO Operating Frequency Range. See Table 7 on page 4.  
26,27,20,21, nQ[1:0]  
13,14,7,8  
O
Four banks of two outputs. See Table 6 on page 4 for frequency  
settings.  
32, 31  
3
DS[1:0]  
I
3-Level  
Selects Feedback Divider. See Table 3 on page 4.  
PD#/DIV I, PU 3-Level  
Power down and Reference Divider Control. When LOW, shuts off  
entire chip. When at MID level, enables the reference divider. See Table 2  
for settings.  
30  
LOCK  
O
LVTTL  
PLL Lock Indication Signal. HIGH indicates lock, LOW indicates the  
PLL is not locked, and outputs may not be synchronized to the input.  
5,6  
V
DDQ4[2] PWR Power  
Power supply for Bank 4 Output Buffers. See Table 11 on page 5 for  
supply level constraints.  
15,16  
19,28,29  
18,40  
V
V
DDQ3 [2] PWR Power  
Power supply for Bank 3 Output Buffers. See Table 11 on page 5 for  
supply level constraints.  
DDQ1[2] PWR Power  
Power supply for Bank 1 and Bank 2 Output Buffers. See Table 11 on  
page 5 for supply level constraints.  
[2]  
VDD  
PWR Power  
PWR Power  
Power supply for the Internal Circuitry. See Table 11 on page 5 for  
supply level constraints.  
9-12, 22-25, 38 VSS  
Ground  
Table 2. Reference Divider Settings  
Device Configuration  
PD#/DIV  
R–Reference Divider  
The outputs of the CY7B995 can be configured to run at  
frequencies ranging from 6 MHz to 200 MHz. The feedback input  
divider is controlled by the 3-level DS[0:1] pins as indicated in  
Table 3 on page 4, and the reference input divider is controlled  
by the 3-level PD#/DIV pin as indicated in Table 2.  
H
M
L[4]  
1
2
N/A  
Notes  
1. PD indicates an internal pull down and ‘PU’ indicates an internal pull up.  
2. A bypass capacitor (0.1μF) must be placed as close as possible to each positive power pin (< 0.2”). If these bypass capacitors are not close to the pins, their high  
frequency filtering characteristic is cancelled by the lead inductance of the traces.  
3. When TEST = MID and sOE# = HIGH, PLL remains active with nF[1:0] = LL functioning as an output disable control for individual output banks. Skew selections  
remain in effect unless nF[1:0] = LL.  
4. When PD#/DIV = LOW, the device enters power down mode.  
Document #: 38-07337 Rev. *D  
Page 3 of 13  
[+] Feedback  
RoboClock®, CY7B995  
Table 3. Feedback Divider Settings  
Configuration  
Output Frequency  
FB Input  
Connected to  
1Q[0:1] and  
[6]  
3Q[0:1]  
4Q[0:1]  
N-Feedback Input Permitted Output Divider  
DS[1:0]  
2Q[0:1]  
Divider  
Connected to FB  
4Qn  
(N / R) x M x (N / R) x (M / (N / R) x FREF  
FREF K) x FREF  
LL  
LM  
LH  
2
3
1 or 2  
1
4
1,2 or 4  
1 or 2  
1,2 or 4  
1 or 2  
1 or 2  
1
The 3-level FS control pin setting determines the nominal  
operating frequency range of the divide-by-one outputs of the  
device. The CY7B995 PLL operating frequency range that corre-  
sponds to each FS level is given in Table 7.  
ML  
MM  
MH  
HL  
5
1
6
Table 7. Frequency Range Select  
8
FS  
L
PLL Frequency Range  
24 to 50 MHz  
HM  
HH  
10  
12  
1
M
H
48 to 100 MHz  
96 to 200 MHz  
In addition to the reference and feedback dividers, the CY7B995  
includes output dividers on Bank3 and Bank4, which are  
controlled by 3F[1:0] and 4F[1:0] as indicated in Table 4 and  
Table 5, respectively.  
Selectable output skew is in discrete increments of time units  
(tU).The value of tU is determined by the FS setting and the  
maximum nominal frequency. The equation used to determine  
the tU value is: tU = 1 / (fNOM x MF)  
Table 4. Output Divider Settings – Bank 3  
3F[1:0]  
LL  
K - Bank3 Output Divider  
where MF is a multiplication factor which is determined by the FS  
setting as indicated in Table 8.  
2
4
1
Table 8. MF Calculation  
HH  
Other[5]  
FS  
L
MF  
32  
16  
8
fNOM at which tU is 1.0 ns (MHz)  
31.25  
62.5  
125  
Table 5. Output Divider Settings – Bank 4  
M
H
4F[1:0]  
LL  
Other[5]  
M- Bank4 Output Divider  
2
1
Table 9. Output Skew Settings  
The divider settings and the FB input to any output connection  
needed to produce various output frequencies are summarized  
in Table 6.  
Skew  
nF[1:0]  
Skew  
Skew  
(1Q[0:1],2Q[0:1])  
(3Q[0:1])  
(4Q[0:1])  
LL[7]  
LM  
LH  
–4tU  
–3tU  
Divide By 2  
–6tU  
Divide By 2  
–6tU  
Table 6. Output Frequency Settings.  
Configuration  
Output Frequency  
–2tU  
–4tU  
–4tU  
FB Input  
1Q[0:1] and  
[6]  
3Q[0:1]  
4Q[0:1]  
ML  
MM  
MH  
HL  
–1tU  
–2tU  
–2tU  
Connected to  
2Q[0:1]  
Zero Skew  
+1tU  
Zero Skew  
+2tU  
Zero Skew  
+2tU  
1Qn or 2Qn  
3Qn  
(N / R) x FREF (N / R) x (1 / (N / R) x (1 /  
K) x FREF M) x FREF  
+2tU  
+4tU  
+4tU  
(N / R) x K x (N / R) x FREF (N / R) x (K /  
FREF M) x FREF  
HM  
HH  
+3tU  
+6tU  
+6tU  
Inverted[8]  
+4tU  
Divide By 4  
Notes  
5. These states are used to program the phase of the respective banks. See Table 8 and Table 9.  
6. These outputs are undivided copies of the VCO clock. The formulas in this column can be used to calculate the VCO operating frequency (FNOM) at a given  
reference frequency (FREF), and divider and feedback configuration. The user must select a configuration and a reference frequency that generates a VCO  
frequency, and is within the range specified by FS pin. See Table 7.  
Document #: 38-07337 Rev. *D  
Page 4 of 13  
[+] Feedback  
RoboClock®, CY7B995  
In addition to determining whether the outputs synchronize to the  
rising or the falling edge of the reference signal, the 3-level  
PE/HD pin controls the output buffer drive strength as indicated  
in Table 10 on page 5. Refer to the AC Timing Definitions section  
for a description of input-to-output and output-to-output phase  
relationships.  
Table 11. Power Supply Constraints  
VDD  
3.3V  
2.5V  
VDDQ1[10]  
3.3V or 2.5V 3.3V or 2.5V 3.3V or 2.5V  
2.5V 2.5V 2.5V  
VDDQ3[10]  
VDDQ4[10]  
Table 10. PE/HD Settings  
Governing Agencies  
PE/HD  
Synchronization  
Negative  
Output Drive Strength[9]  
Low Drive  
The following agencies provide specifications that apply to the  
CY7B995. The agency name and relevant specification is listed  
below.  
L
M
H
Positive  
High Drive  
Positive  
Low Drive  
Table 12. Governing Agencies and Specifications  
Agency Name  
Specification  
JESD 51 (Theta JA)  
JESD 65 (Skew, Jitter)  
1596.3 (Jiter Specs)  
94 (Moisture Grading)  
The CY7B995 features split power supply buses for Banks 1 and  
2, Bank 3 and Bank 4, which enables the user to obtain both 3.3V  
and 2.5V output signals from one device. The core power supply  
(VDD) must be set at a level that is equal to or higher than any of  
the output power supplies.  
JEDEC  
IEEE  
UL-194_V0  
MIL  
883E Method 1012.1  
(Therma Theta JC)  
Absolute Maximum Conditions  
Parameter  
VDD  
Description  
Operating Voltage  
Condition  
Functional @ 2.5V ± 5%  
Functional @ 3.3V ± 10%  
Relative to VSS  
Min  
2.25  
Max  
2.75  
3.63  
Unit  
V
V
VDD  
Operating Voltage  
Input Voltage  
2.97  
VIN(MIN)  
VIN(MAX)  
VSS – 0.3  
V
Input Voltage  
Relative to VDD  
VDD + 0.3  
5.5  
V
VREF(MAX) Reference Input Voltage  
VREF(MAX) Reference Input Voltage  
VDD = 3.3V  
V
VDD = 2.5V  
4.6  
V
TS  
Temperature, Storage  
Non Functional  
–65  
–40  
+150  
+85  
155  
42  
°C  
°C  
°C  
°C/W  
°C/W  
V
TA  
Temperature, Operating Ambient  
Temperature, Junction  
Functional  
TJ  
Functional  
ØJC  
ØJA  
ESDHBM  
UL-94  
MSL  
FIT  
Dissipation, Junction to Case  
Dissipation, Junction to Ambient  
Mil-Spec 883E Method 1012.1  
JEDEC (JESD 51)  
74  
ESD Protection (Human Body Model) MIL-STD-883, Method 3015  
2000  
Flammability Rating  
Moisture Sensitivity Level  
Failure in Time  
@1/8 in.  
V–0  
1
Manufacturing Testing  
10  
ppm  
Notes  
7. LL disables outputs if TEST = MID and sOE# = HIGH.  
8. When 4Q[0:1] are set to run inverted (HH mode), sOE# disables these outputs HIGH when PE/HD = HIGH or MID, sOE# disables them LOW when PE/HD = LOW.  
9. Please refer to “DC Parameters” section for I /I specifications.  
OH OL  
10. V Q1/3/4 must not be set at a level higher than that of V . They can be set at different levels from each other, e.g., V = 3.3V, V Q1 = 3.3V, V Q3 = 2.5V  
DD  
DD  
DD  
DD  
DD  
and V Q4 = 2.5V.  
DD  
Document #: 38-07337 Rev. *D  
Page 5 of 13  
[+] Feedback  
RoboClock®, CY7B995  
.
DC Specifications at 2.5V  
Parameter  
Description  
2.5 Operating Voltage  
Input LOW Voltage  
Input HIGH Voltage  
Input HIGH Voltage  
Condition  
Min  
Max  
Unit  
V
VDD  
VIL  
2.5V ± 5%  
2.375 2.625  
REF, FB, and sOE# Inputs  
1.7  
0.7  
V
VIH  
V
[11]  
VIHH  
3-Level Inputs, (TEST, FS, nF[1:0], DS[1:0], PD#/DIV,  
PE/HD). (These pins are normally wired to VDD, GND, or  
unconnected)  
VDD  
V
–0.4  
[11]  
VIMM  
Input MID Voltage  
VDD/2 VDD/2  
V
– 0.2  
+ 0.2  
0.4  
5
[11]  
VILL  
Input LOW Voltage  
V
IIL  
I3  
Input Leakage Current  
VIN = VDD/GND,VDD = Max; (REF and FB Inputs)  
–5  
μA  
μA  
μA  
μA  
3-Level Input DC Current HIGH, VIN = VDD  
MID, VIN = VDD/2  
3-Level Inputs  
(TEST, FS, nF[1:0],  
DS[1:0], PD#/DIV,  
PE/HD)  
200  
50  
–50  
–200  
–25  
LOW, VIN = VSS  
IPU  
IPD  
VOL  
Input Pull-Up Current  
VIN = VSS, VDD = Max  
μA  
μA  
V
Input Pull-Down Current VIN = VDD, VDD = Max, (sOE#)  
100  
0.4  
0.4  
0.4  
Output LOW Voltage  
Output HIGH Voltage  
IOL = 12 mA (PE/HD = L/H), (nQ[0:1])  
I
OL = 20 mA (PE/HD = MID),(nQ[0:1])  
OL = 2 mA (LOCK)  
V
I
V
VOH  
IOH = –12 mA (PE/HD = L/H),(nQ[0:1])  
2.0  
2.0  
2.0  
V
I
OH = –20 mA (PE/HD = MID),(nQ[0:1])  
OH = –2 mA (LOCK)  
V
I
V
IDDQ  
Quiescent Supply Current VDD = Max, TEST = MID, REF = LOW, sOE# = LOW,  
Outputs Not Loaded  
2
mA  
IDDPD  
Power down Current  
PD#/DIV, sOE# = LOW  
Test,nF[1:0],DS[1:0] = HIGH; VDD = Max  
10(typ.)  
25  
μA  
IDD  
CIN  
Dynamic Supply Current At 100 MHz  
Input Pin Capacitance  
150  
mA  
pF  
4
Document #: 38-07337 Rev. *D  
Page 6 of 13  
[+] Feedback  
RoboClock®, CY7B995  
DC Specifications at 3.3V  
Parameter  
Description  
3.3 Operating Voltage  
Input LOW Voltage  
Input HIGH Voltage  
Input HIGH Voltage  
Condition  
Min  
2.97  
Max  
3.63  
0.8  
Unit  
V
VDD  
VIL  
3.3V ± 10%  
REF, FB and sOE# Inputs  
V
VIH  
2.0  
V
[11]  
VIHH  
3-Level Inputs  
VDD  
V
(TEST, FS, nF[1:0], DS[1:0],PD#/DIV, PE/HD); (These pins –0.6  
are normally wired to VDD,GND or unconected  
[11]  
VIMM  
Input MID Voltage  
VDD/2VDD/2+  
V
0.3  
0.3  
0.6  
5
[11]  
VILL  
Input LOW Voltage  
V
IIL  
Input Leakage Current  
VIN = VDD/GND,VDD = Max  
(REF and FB inputs)  
–5  
μA  
I3  
3-Level Input DC Current HIGH, VIN = VDD  
MID, VIN = VDD/2  
3-Level Inputs,  
(TEST, FS, nF[1:0],  
DS[1:0], PD#/DIV,  
PE/HD)  
200  
50  
μA  
μA  
μA  
–50  
–200  
LOW, VIN = VSS  
IPU  
IPD  
VOL  
Input Pull Up Current  
VIN = VSS, VDD = Max  
–25  
100  
0.4  
0.4  
0.4  
μA  
μA  
V
Input Pull Down Current VIN = VDD, VDD = Max, (sOE#)  
Output LOW Voltage  
Output HIGH Voltage  
IOL = 12 mA (PE/HD = L/H), (nQ[0:1])  
IOL = 24 mA (PE/HD = MID),(nQ[0:1])  
V
I
OL = 2 mA (LOCK)  
V
VOH  
IOH = –12 mA (PE/HD = L/H),(nQ[0:1])  
IOH = –24 mA (PE/HD = MID),(nQ[0:1])  
2.4  
2.4  
2.4  
V
V
I
OH = –2 mA (LOCK)  
V
IDDQ  
Quiescent Supply Current VDD = Max, TEST = MID,  
REF = LOW, sOE# = LOW,  
2
mA  
Outputs Not Loaded  
IDDPD  
Power Down Current  
PD#/DIV, sOE# = LOW, Test,nF[1:0],DS[1:0] = HIGH,  
DD = Max  
10(typ.)  
25  
μA  
V
IDD  
CIN  
Dynamic Supply Current At 100 MHz  
Input Pin Capacitance  
230  
mA  
pF  
4
AC Input Specifications  
Parameter  
TR,TF  
Description  
Input Rise/Fall Time  
Input Clock Pulse  
Input Duty Cycle  
Condition  
Min  
Max  
10  
Unit  
ns/V  
ns  
0.8V – 2.0V  
TPWC  
HIGH or LOW  
2
TDCIN  
10  
2
90  
%
FREF  
Reference Input  
Frequency[12]  
FS = LOW  
FS = MID  
FS = HIGH  
50  
MHz  
4
100  
200  
8
Document #: 38-07337 Rev. *D  
Page 7 of 13  
[+] Feedback  
RoboClock®, CY7B995  
Switching Characteristics  
Parameter  
FOR  
Description  
Output frequency range  
VCO Lock Range  
Condition  
Min  
6
Type  
Max  
200  
400  
3.5  
Unit  
MHz  
MHz  
MHz  
ps  
VCOLR  
200  
0.25  
VCOLBW  
tSKEWPR  
VCO Loop Bandwidth  
Matched-Pair Skew[13]  
Skew between the earliest and the latest output  
transitions within the same bank.  
100  
tSKEW0  
tSKEW1  
Output-Output Skew[13]  
Skew between the earliest and the latest output  
transitions among all outputs at 0tU.  
200  
200  
ps  
ps  
Skew between the earliest and the latest output  
transitions among all outputs for which the same  
phase delay has been selected.  
tSKEW2  
tSKEW3  
tSKEW4  
tSKEW5  
tPART  
Skew between the nominal output rising edge to the  
inverted output falling edge.  
500  
500  
500  
650  
750  
ps  
ps  
ps  
ps  
ps  
Skew between non-inverted outputs running at  
different frequencies.  
Output-Output Skew[13]  
Part-Part Skew  
Skew between nominal to inverted outputs running at  
different frequencies.  
Skew between nominal outputs at different power  
supply levels.  
Skew between the outputs of any two devices under  
identical settings and conditions (VDDQ, VDD, temp,  
air flow, frequency, etc.).  
tPD0  
Ref to FB Propagation  
Delay[14]  
–250  
+250  
ps  
%
tODCV  
Output Duty Cycle  
Fout < 100 MHz, Measured at VDD/2.  
Fout > 100 MHz, Measured at VDD/2.  
48  
45  
52  
55  
tPWH  
tPWL  
tR/tF  
Output High Time  
Deviation from 50%  
Measured at 2.0V for VDD = 3.3V and at 1.7V for VDD  
= 2.5V.  
1.5  
ns  
ns  
ns  
Output Low Time  
Deviation from 50%  
Measured at 0.8V for VDD = 3.3V and at 0.7V for VDD  
= 2.5V.  
2.0  
1.5  
Output Rise/Fall Time  
Measured at 0.8V–2.0V for VDD = 3.3V and  
0.7V–1.7V for VDD = 2.5V.  
0.15  
tLOCK  
tCCJ  
PLL Lock Time[15,16]  
Cycle-Cycle Jitter  
0.5  
ms  
ps  
Divide by one output frequency, FS = L, FB = divide  
by any.  
45  
100  
Divide by one output frequency, FS = M/H, FB = divide  
by any.  
55  
150  
ps  
Notes  
11. These Inputs are normally wired to VDD, GND or unconnected. Internal termination resistors bias unconnected inputs to V /2.  
DD  
12. IF PD#/DIV is in HIGH level (R-reference divider = 1). Reference Input Frequency = F  
IF PD#/DIV is in MID level (R-reference divider = 2). Reference Input  
REF.  
Frequency = F  
x2.  
REF  
13. Test Load = 20 pF, terminated to V /2. All outputs are equally loaded.  
CC  
14. t is measured at 1.5V for V = 3.3V and at 1.25V for V = 2.5V with REF rise/fall times of 0.5 ns between 0.8V–2.0V.  
PD  
DD  
DD  
15. t  
is the time that is required before outputs synchronize to REF. This specification is valid with stable power supplies which are within normal operating limits.  
LOCK  
16. Lock detector circuit may be unreliable for input frequencies lower than 4 MHz, or for input signals which contain significant jitter.  
Document #: 38-07337 Rev. *D  
Page 8 of 13  
[+] Feedback  
RoboClock®, CY7B995  
AC Timing Definitions  
Figure 2. Timing Definition  
tREF  
tPWL  
tPWH  
REF  
tPD  
t0DCV  
t0DCV  
FB  
tCCJ1-12  
Q
tSKEWPR  
tSKEWPR  
tSKEW0,1  
tSKEW0,1  
OTHER Q  
tSKEW1  
tSKEW1  
INVERTED Q  
tSKEW3  
tSKEW3  
tSKEW3  
DIVIDE BY 2 OUTPUT  
DIVIDE BY 4 OUTPUT  
tSKEW1,3,4  
tSKEW1,3,4  
With PE HIGH (LOW), the REF rising (falling) edges are aligned  
to the FB rising (falling) edges. Also, when PE is HIGH (LOW),  
all divided outputs’ rising (falling) edges are aligned to the rising  
(falling) edges of the undivided, non-inverted outputs.  
Regardless of PE setting, divide-by-4 outputs’, rising edges align  
to the divide-by-2 outputs’ rising edges.  
In cases where a non-divided output is connected to the FB input  
pin, the divided output rising edges can be either 0 or 180  
degrees phase aligned to the REF input rising edges (as set  
randomly at power-up). If the divided outputs are required as  
rising-edge (falling-edge) aligned to the REF input’s rising  
(falling) edge, set the PE pin HIGH (LOW) and connect the  
lowest frequency divided output to the FB input pin. This setup  
provides a consistent input-output and output-output phase  
relationship.  
Document #: 38-07337 Rev. *D  
Page 9 of 13  
[+] Feedback  
RoboClock®, CY7B995  
AC Test Loads and Waveforms  
Figure 3. For Lock Output and all other Outputs  
VDDQ  
Output  
150Ω  
20pF  
Output  
20pF  
150Ω  
For Lock Output  
For All Other Outputs  
Figure 4. 3.3V LVTTL and 2.5V LVTTL Output Waveforms  
tORISE  
tOFALL  
tORISE  
tOFALL  
tPWH  
tPWH  
1.7V  
2.0V  
VTH =1.25V  
VTH =1.5V  
tPWL  
tPWL  
0.7V  
0.8V  
2.5V LVTTL OUTPUT WAVEFORM  
3.3V LVTTL OUTPUT WAVEFORM  
Figure 5. 3.3V LVTTL and 2.5V LVTTL Input Test Waveforms  
1ns  
1ns  
1ns  
1ns  
2.5V  
3.0V  
1.7V  
2.0V  
VTH =1.25V  
VTH =1.5V  
0.7V  
0V  
0.8V  
0V  
2.5V LVTTL INPUT TEST WAVEFORM  
3.3V LVTTL INPUT TEST WAVEFORM  
Document #: 38-07337 Rev. *D  
Page 10 of 13  
[+] Feedback  
RoboClock®, CY7B995  
Ordering Information  
Part Number  
CY7B995AC  
CY7B995ACT  
CY7B995AI  
Package Type  
44 TQFP  
Product Flow  
Commercial, 0° to 70°C  
Commercial, 0° to 70°C  
Industrial, –40° to 85°C  
Industrial, –40° to 85°C  
Status  
Obsolete  
44 TQFP – Tape and Reel  
44 TQFP  
Obsolete  
Not for new design  
Obsolete  
CY7B995AIT  
Pb-free  
44 TQFP – Tape and Reel  
CY7B995AXC  
CY7B995AXCT  
CY7B995AXI  
CY7B995AXIT  
44 TQFP  
Commercial, 0° to 70°C  
Commercial, 0° to 70°C  
Industrial, –40° to 85°C  
Industrial, –40° to 85°C  
Active  
Active  
Active  
Active  
44 TQFP – Tape and Reel  
44 TQFP  
44 TQFP – Tape and Reel  
Document #: 38-07337 Rev. *D  
Page 11 of 13  
[+] Feedback  
RoboClock®, CY7B995  
Package Drawing and Dimension  
Figure 6. 44-Pb Thin Plastic Quad Flat Pack (10 x 10 x 1.0 mm) A44SB  
51-85155*A  
Document #: 38-07337 Rev. *D  
Page 12 of 13  
[+] Feedback  
RoboClock®, CY7B995  
Document History Page  
Document Title: CY7B995 Roboclock® 2.5/3.3V 200-MHz High-speed Multi-phase PLL Clock Buffer  
Document Number: 38-07337  
Orig. of  
Change  
REV.  
ECN No. Issue Date  
Description of Change  
**  
122626  
205743  
01/10/03  
See ECN  
RGL  
New Data Sheet  
*A  
RGL  
Changed Pin 5 from VDD to VDDQ4, Pin 16 from VDD to VDDQ3 and Pin  
29 from VDD to VDDQ1  
Added pin 1 indicator in the Pin Configuration Drawing  
*B  
362760  
See ECN  
RGL  
RGL  
Added description on the AC Timing Waveforms  
Added typical value for cycle-to-cycle jitter  
*C  
*D  
389237  
See ECN  
See ECN  
Added Lead-free devices  
1562063  
PYG/AESA Added Status column to Ordering Information table  
© Cypress Semiconductor Corporation, 2003-2007. The information contained herein is subject to change without notice. Cypress Semiconductor Corporation assumes no responsibility for the use of  
any circuitry other than circuitry embodied in a Cypress product. Nor does it convey or imply any license under patent or other rights. Cypress products are not warranted nor intended to be used for  
medical, life support, life saving, critical control or safety applications, unless pursuant to an express written agreement with Cypress. Furthermore, Cypress does not authorize its products for use as  
critical components in life-support systems where a malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress products in life-support systems  
application implies that the manufacturer assumes all risk of such use and in doing so indemnifies Cypress against all charges.  
Any Source Code (software and/or firmware) is owned by Cypress Semiconductor Corporation (Cypress) and is protected by and subject to worldwide patent protection (United States and foreign),  
United States copyright laws and international treaty provisions. Cypress hereby grants to licensee a personal, non-exclusive, non-transferable license to copy, use, modify, create derivative works of,  
and compile the Cypress Source Code and derivative works for the sole purpose of creating custom software and or firmware in support of licensee product to be used only in conjunction with a Cypress  
integrated circuit as specified in the applicable agreement. Any reproduction, modification, translation, compilation, or representation of this Source Code except as specified above is prohibited without  
the express written permission of Cypress.  
Disclaimer: CYPRESS MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES  
OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. Cypress reserves the right to make changes without further notice to the materials described herein. Cypress does not  
assume any liability arising out of the application or use of any product or circuit described herein. Cypress does not authorize its products for use as critical components in life-support systems where  
a malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress’ product in a life-support systems application implies that the manufacturer  
assumes all risk of such use and in doing so indemnifies Cypress against all charges.  
Use may be limited by and subject to the applicable Cypress software license agreement.  
Document #: 38-07337 Rev. *D  
Revised September 27, 2007  
Page 13 of 13  
RoboClock is a registered trademark of Cypress Semiconductor. All product and company names mentioned in this document are the trademarks of their respective holders.  
[+] Feedback  

相关型号:

CY7B995_11

2.5/3.3 V 200-MHz High-Speed Multi-Phase PLL Clock Buffer
CYPRESS

CY7B9973V

High-Speed Multi-Output PLL Clock Buffer
CYPRESS

CY7B9973V-AC

High-Speed Multi-Output PLL Clock Buffer
CYPRESS

CY7B9973V-AXCT

PLL Based Clock Driver, 7B Series, 12 True Output(s), 0 Inverted Output(s), PQFP52, TQFP-52
CYPRESS

CY7BO1

Industrial Control IC
ETC

CY7BO2

Industrial Control IC
ETC

CY7BO3

Industrial Control IC
ETC

CY7BO4

Industrial Control IC
ETC

CY7BP

Quartz Crystal Leaded HC49 Crystal
CRYSTEKMICROW

CY7C006

16K x 8/9 Dual-Port Static RAM with Sem, Int, Busy
CYPRESS

CY7C006-15AC

16K x 8/9 Dual-Port Static RAM with Sem, Int, Busy
CYPRESS

CY7C006-15JC

16K x 8/9 Dual-Port Static RAM with Sem, Int, Busy
CYPRESS