CY7C006-25JC [CYPRESS]

16K x 8/9 Dual-Port Static RAM with Sem, Int, Busy; 16K X 8/9双口静态RAM与扫描电镜,诠释,忙
CY7C006-25JC
型号: CY7C006-25JC
厂家: CYPRESS    CYPRESS
描述:

16K x 8/9 Dual-Port Static RAM with Sem, Int, Busy
16K X 8/9双口静态RAM与扫描电镜,诠释,忙

文件: 总16页 (文件大小:322K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
with Sem, In t, Busy  
CY7C006  
CY7C016  
16K x 8/9 Dual-Port Static RAM  
with Sem, Int, Busy  
schemes are included on the CY7C006/016 to handle situa-  
tions when multiple processors access the same piece of data.  
Two ports are provided, permitting independent, asynchro-  
nous access for reads and writes to any location in memory.  
Features  
• True dual-ported memory cells which allow  
simultaneous reads of the same memory location  
The CY7C006/016 can be utilized as  
a standalone  
• 16K x 8 organization (CY7C006)  
• 16K x 9 organization (CY7C016)  
• 0.65-micron CMOS for optimum speed/power  
• High-speed access: 15 ns  
128-/144-Kbit dual-port static RAM or multiple devices can be  
combined in order to function as a 16-/18-bit or wider mas-  
ter/slave dual-port static RAM. An M/S pin is provided for im-  
plementing 16-/18-bit or wider memory applications without  
the need for separate master and slave devices or additional  
discrete logic. Application areas include interprocessor/multi-  
processor designs, communications status buffering, and du-  
al-port video/graphics memory.  
• Low operating power: I = 140 mA (typ.)  
CC  
• Fully asynchronous operation  
• Automatic power-down  
• TTL compatible  
Each port has independent control pins: Chip Enable (CE),  
Read or Write Enable (R/W), and Output Enable (OE). Two  
flags, BUSY and INT, are provided on each port. BUSY signals  
that the port is trying to access the same location currently  
being accessed by the other port. The Interrupt flag (INT) per-  
mits communication between ports or systems by means of a  
mail box. The semaphores are used to pass a flag, or token,  
from one port to the other to indicate that a shared resource is  
in use. The semaphore logic is comprised of eight shared  
latches. Only one side can control the latch (semaphore) at  
any time. Control of a semaphore indicates that a shared re-  
source is in use. An automatic power-down feature is con-  
trolled independently on each port by a Chip Enable (CE) pin  
or SEM pin.  
• Expandable data bus to 16/18 bits or more using  
Master/Slave chip select when using more than one  
device  
• Busy arbitration scheme provided  
• Semaphores included to permit software handshaking  
between ports  
• INT flag for port-to-port communication  
• Available in 68-pin PLCC (7C006), 64-pin (7C006) and  
80-pin (7C016) TQFP  
• Pin compatible and functional equivalent to  
IDT7006/IDT7016  
Functional Description  
The CY7C006 and CY7C016 are available in 68-pin PLCC  
(CY7C006), 64-pin (CY7C006) TQFP, and 80-pin (CY7C016) TQFP.  
The CY7C006 and CY7C016 are high-speed CMOS 16K x 8  
and 16K x 9 dual-port static RAMs. Various arbitration  
R/W  
L
R/W  
R
Logic Block Diagram  
CE  
OE  
CE  
OE  
L
R
R
L
(7C016)I/O  
I/O  
I/O (7C016)  
8R  
8L  
7L  
I/O  
7R  
I/O  
CONTROL  
I/O  
CONTROL  
I/O  
0L  
I/O  
0R  
[1,2]  
BUSY  
R
[1,2]  
L
BUSY  
A
13L  
A
A
13R  
0R  
ADDRESS  
DECODER  
ADDRESS  
DECODER  
MEMORY  
ARRAY  
A
0L  
INTERRUPT  
SEMAPHORE  
ARBITRATION  
CE  
OE  
L
L
L
CE  
R
OE  
R
R/W  
R/W  
R
SEM  
SEM  
R
L
[2]  
C006-1  
[2]  
INT  
R
INT  
L
M/S  
Notes:  
1. BUSY is an output in master mode and an input in slave mode.  
2. Interrupt: push-pull output and requires no pull-up resistor.  
Cypress Semiconductor Corporation  
3901 North First Street  
San Jose  
CA 95134  
408-943-2600  
December 22, 1999  
CY7C006  
CY7C016  
Pin Configurations  
68-Pin PLCC  
Top View  
60  
59  
A
10  
11  
12  
13  
I/O  
5L  
2L  
I/O  
I/O  
A
4L  
3L  
58  
57  
A
3L  
4L  
I/O  
A
5L  
2L  
56  
55  
A
1L  
GND  
14  
15  
A
0L  
I/O  
6L  
54  
INT  
I/O  
7L  
L
16  
17  
53 BUSY  
V
CC  
L
CY7C006  
GND  
M/S  
52  
GND  
18  
19  
20  
21  
I/O  
0R  
51  
50  
I/O  
BUSY  
1R  
R
I/O  
V
INT  
R
49  
48  
2R  
A
0R  
CC  
22  
23  
A
1R  
I/O  
3R  
47  
46  
45  
44  
I/O  
I/O  
24  
25  
26  
4R  
A
2R  
A
5R  
3R  
4R  
I/O6  
A
R
C006-2  
64-Pin TQFP  
Top View  
I/O  
A
4L  
2L  
1
48  
47  
46  
45  
44  
A
A
I/O  
I/O  
2
3
4
5
3L  
4L  
3L  
2L  
A
1L  
A
0L  
I/O  
5L  
GND  
I/O  
6L  
43  
42  
41  
INT  
L
6
7
8
I/O  
7L  
BUSY  
L
GND  
M/S  
CY7C006  
V
CC  
GND  
40  
39  
9
BUSY  
I/O  
0R  
10  
R
I/O  
1R  
38  
37  
36  
INT  
R
11  
12  
13  
I/O  
2R  
A
0R  
A
1R  
A
2R  
A
3R  
V
CC  
I/O  
3R  
35  
34  
14  
15  
16  
I/O  
4R  
I/O  
5R  
33  
A
4R  
C006-3  
Note:  
3. I/O for CY7C016 only.  
2
CY7C006  
CY7C016  
Pin Configurations (continued)  
80-Pin TQFP  
Top View  
NC  
1
2
NC  
60  
59  
I/O  
I/O  
I/O  
I/O  
2L  
A
5L  
A
4L  
3
4
3L  
4L  
5L  
58  
57  
A
A
3L  
2L  
5
6
7
8
56  
55  
54  
53  
A
1L  
A
0L  
GND  
I/O  
6L  
I/O  
7L  
INT  
L
BUSY  
V
L
9
10  
CC  
52  
51  
GND  
M/S  
CY7C016  
NC  
GND  
I/O  
11  
12  
13  
14  
50  
49  
48  
47  
0R  
BUSY  
R
I/O  
1R  
INT  
R
I/O  
2R  
CC  
3R  
4R  
5R  
6R  
A
0R  
A
1R  
A
2R  
A
3R  
V
15  
16  
46  
45  
I/O  
I/O  
I/O  
I/O  
17  
44  
A
4R  
18  
19  
20  
43  
42  
41  
NC  
NC  
NC  
C006-4  
Pin Definitions  
Left Port  
Right Port  
Description  
I/O  
I/O  
Data Bus Input/Output  
Address Lines  
0L7L(8L)  
0L13L  
0R7R(8R)  
A
0R13R  
A
CE  
CE  
Chip Enable  
L
R
OE  
OE  
Output Enable  
L
R
R/W  
R/W  
Read/Write Enable  
L
R
SEM  
SEM  
Semaphore Enable. When asserted LOW, allows access to eight sema-  
phores. The three least significant bits of the address lines will determine  
L
R
which semaphore to write or read. The I/O pin is used when writing to a  
0
semaphore. Semaphores are requested by writing a 0 into the respective  
location.  
INT  
INT  
Interrupt Flag. INT is set when right port writes location 3FFE and is  
L
L
R
cleared when left port reads location 3FFE. INT is set when left port writes  
R
location 3FFF and is cleared when right port reads location 3FFF.  
BUSY  
M/S  
BUSY  
Busy Flag  
L
R
Master or Slave Select  
Power  
V
CC  
GND  
Ground  
3
CY7C006  
CY7C016  
Selection Guide  
7C006-15  
7C016-15  
7C006-25  
7C016-25  
7C006-35  
7C016-35  
7C006-55  
7C016-55  
Maximum Access Time (ns)  
15  
25  
35  
55  
Maximum Operating  
Current (mA)  
260  
220  
210  
200  
Maximum Standby  
70  
60  
50  
40  
Current for I  
(mA)  
SB1  
Output Current into Outputs (LOW)............................. 20 mA  
Maximum Ratings  
Static Discharge Voltage .......................................... >2001V  
(per MIL-STD-883, Method 3015)  
(Above which the useful life may be impaired. For user guide-  
lines, not tested.)  
Latch-Up Current.................................................... >200 mA  
Storage Temperature .................................65°C to +150°C  
Operating Range  
Ambient Temperature with  
Power Applied............................................. 55°C to +125°C  
Ambient  
Range  
Commercial  
Industrial  
Temperature  
0°C to +70°C  
40°C to +85°C  
V
CC  
Supply Voltage to Ground Potential ............... 0.5V to +7.0V  
5V ± 10%  
5V ± 10%  
DC Voltage Applied to Outputs  
in High Z State ............................................... 0.5V to +7.0V  
[4]  
DC Input Voltage ......................................... 0.5V to +7.0V  
Electrical Characteristics Over the Operating Range  
7C006-15  
7C016-15  
7C006-25  
7C016-25  
Parameter  
Description  
Output HIGH Voltage  
Output LOW Voltage  
Test Conditions  
= Min., I = 4.0 mA  
Min. Typ. Max. Min. Typ. Max. Unit  
V
V
V
2.4  
2.4  
V
V
OH  
CC  
CC  
OH  
V
= Min., I = 4.0 mA  
0.4  
0.8  
0.4  
OL  
OL  
V
V
2.2  
2.2  
V
IH  
IL  
Input LOW Voltage  
0.8  
+10  
+10  
V
I
I
I
Input Leakage Current  
GND V V  
CC  
10  
10  
+10 10  
+10 10  
260  
µA  
µA  
IX  
I
Output Leakage Current Outputs Disabled, GND V V  
CC  
OZ  
CC  
O
Operating Current  
V
= Max., I  
= 0 mA  
Coml  
Ind  
170  
50  
160  
160  
40  
40  
90  
90  
3
220 mA  
270  
CC  
OUT  
Outputs Disabled  
I
I
I
Standby Current  
(Both Ports TTL Levels) f = f  
CE and CE V ,  
Coml  
Ind  
70  
170  
15  
60  
75  
mA  
SB1  
SB2  
SB3  
L
R
IH  
[5]  
MAX  
Standby Current  
(One Port TTL Level)  
CE or CE V ,  
Coml  
Ind  
110  
3
130 mA  
150  
L
R
IH  
[5]  
f = f  
MAX  
Standby Current  
(Both Ports CMOS  
Levels)  
Both Ports  
CE and CE V 0.2V,  
Coml  
Ind  
15  
15  
mA  
R
CC  
3
V
V 0.2V  
IN  
CC  
[5]  
or V 0.2V, f = 0  
IN  
I
Standby Current  
(One Port CMOS Level) CE or CE V 0.2V,  
One Port  
Coml  
100  
150  
80  
80  
120 mA  
130  
SB4  
L
R
CC  
Ind  
V
V 0.2V or  
IN  
CC  
V
0.2V, Active  
IN  
[5]  
MAX  
Port Outputs, f = f  
Notes:  
4. Pulse width < 20 ns.  
5.  
fMAX = 1/tRC = All inputs cycling at f = 1/tRC (except output enable). f = 0 means no address or control lines change. This applies only to inputs at CMOS level standby ISB3.  
4
CY7C006  
CY7C016  
Electrical Characteristics (continued)  
7C006-35  
7C016-35  
7C006-55  
7C016-55  
Parameter  
Description  
Output HIGH Voltage  
Output LOW Voltage  
Test Conditions  
= Min., I = 4.0 mA  
Min. Typ. Max. Min. Typ. Max. Unit  
V
V
V
2.4  
2.4  
V
V
OH  
CC  
CC  
OH  
V
= Min., I = 4.0 mA  
0.4  
0.4  
OL  
OL  
V
V
2.2  
2.2  
V
IH  
IL  
Input LOW Voltage  
0.8  
0.8  
+10  
+10  
V
I
I
I
Input Leakage Current  
GND V V  
CC  
10  
10  
+10 10  
µA  
µA  
IX  
I
Output Leakage Current Outputs Disabled, GND V V  
CC  
+10 10  
210  
250  
50  
OZ  
CC  
O
Operating Current  
V
= Max., I  
= 0 mA  
Coml  
Ind  
150  
150  
30  
30  
80  
80  
3
140  
140  
20  
20  
70  
70  
3
200 mA  
240  
CC  
OUT  
Outputs Disabled  
I
I
I
Standby Current  
(Both Ports TTL Levels) f = f  
CE and CE V ,  
Coml  
Ind  
40  
55  
mA  
SB1  
SB2  
SB3  
L
R
IH  
[5]  
MAX  
65  
Standby Current  
(One Port TTL Level)  
CE or CE V ,  
Coml  
Ind  
120  
130  
15  
100 mA  
115  
L
R
IH  
[5]  
f = f  
MAX  
Standby Current  
(Both Ports CMOS  
Levels)  
Both Ports  
CE and CE V 0.2V,  
Coml  
Ind  
15  
15  
mA  
R
CC  
3
15  
3
V
V 0.2V  
IN  
CC  
[5]  
or V 0.2V, f = 0  
IN  
I
Standby Current  
(One Port CMOS Level) CE or CE V 0.2V,  
One Port  
Coml  
70  
70  
100  
110  
60  
60  
90  
95  
mA  
SB4  
L
R
CC  
Ind  
V
V 0.2V or  
IN  
CC  
V
0.2V, Active  
IN  
[5]  
MAX  
Port Outputs, f = f  
Capacitance[6]  
Parameter  
Description  
Test Conditions  
T = 25°C, f = 1 MHz,  
Max.  
10  
Unit  
pF  
C
C
Input Capacitance  
Output Capacitance  
IN  
A
V
= 5.0V  
CC  
10  
pF  
OUT  
AC Test Loads and Waveforms  
5V  
5V  
R1=893  
R2=347  
R1=893  
R2=347  
R
TH  
=250  
OUTPUT  
C = 5 pF  
OUTPUT  
C=30 pF  
OUTPUT  
C = 30 pF  
V
TH  
=1.4V  
(b) ThéveninEquivalent (Load)  
(c) Three-State Delay (Load 3)  
(a) Normal Load (Load 1)  
C006-6  
C006-7  
C006-5  
ALL INPUT PULSES  
OUTPUT  
3.0V  
GND  
90%  
90%  
10%  
3 ns  
10%  
C = 30 pF  
3 ns  
Load (Load 2)  
C006-8  
C006-9  
Note:  
6. Tested initially and after any design or process changes that may affect these parameters.  
5
CY7C006  
CY7C016  
[7]  
Switching Characteristics Over the Operating Range  
7C006-15  
7C016-15  
7C006-25  
7C016-25  
7C006-35  
7C016-35  
7C006-55  
7C016-55  
Parameter  
Description  
Min.  
Max. Min. Max.  
Min.  
Max.  
Min.  
Max.  
Unit  
READ CYCLE  
tRC  
Read Cycle Time  
15  
3
25  
35  
3
55  
3
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
t
t
t
t
t
t
t
t
t
t
Address to Data Valid  
Output Hold From Address Change  
CE LOW to Data Valid  
OE LOW to Data Valid  
OE Low to Low Z  
15  
25  
35  
55  
AA  
3
OHA  
ACE  
DOE  
LZOE  
15  
10  
25  
13  
35  
20  
55  
25  
[8, 9, 10]  
[8, 9, 10]  
3
3
0
3
3
0
3
3
0
3
3
0
OE HIGH to High Z  
10  
10  
15  
15  
15  
25  
15  
15  
35  
25  
25  
55  
HZOE  
[8, 9, 10]  
CE LOW to Low Z  
LZCE  
[8, 9, 10]  
CE HIGH to High Z  
HZCE  
[10]  
[10]  
CE LOW to Power-Up  
CE HIGH to Power-Down  
PU  
PD  
WRITE CYCLE  
t
t
t
t
t
t
t
t
t
t
t
t
Write Cycle Time  
15  
12  
12  
0
25  
20  
20  
0
35  
30  
30  
0
55  
45  
45  
0
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
WC  
SCE  
AW  
HA  
CE LOW to Write End  
Address Set-Up to Write End  
Address Hold From Write End  
Address Set-Up to Write Start  
Write Pulse Width  
0
0
0
0
SA  
12  
10  
0
20  
15  
0
25  
15  
0
40  
25  
0
PWE  
SD  
Data Set-Up to Write End  
Data Hold From Write End  
R/W LOW to High Z  
[11]  
HD  
[9, 10]  
10  
15  
20  
25  
HZWE  
[9, 10]  
R/W HIGH to Low Z  
3
3
3
3
LZWE  
[12]  
WDD  
Write Pulse to Data Delay  
30  
25  
50  
30  
60  
35  
80  
60  
[12]  
Write Data Valid to Read Data Valid  
DDD  
[13]  
BUSY TIMING  
t
t
t
t
t
t
t
t
BUSY LOW from Address Match  
15  
15  
15  
15  
20  
20  
20  
17  
20  
20  
20  
25  
30  
30  
30  
30  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
BLA  
BHA  
BLC  
BHC  
PS  
BUSY HIGH from Address Mismatch  
BUSY LOW from CE LOW  
BUSY HIGH from CE HIGH  
Port Set-Up for Priority  
5
0
5
0
5
0
5
0
R/W LOW after BUSY LOW  
R/W HIGH after BUSY HIGH  
BUSY HIGH to Data Valid  
WB  
13  
17  
25  
30  
WH  
BDD  
[14]  
Note 13  
Note 13  
Note 13  
Note 13  
Notes:  
7. Test conditions assume signal transition time of 3 ns or less, timing reference levels of 1.5V, input pulse levels of 0 to 3.0V, and output loading of the specified  
OI/IOH and 30-pF load capacitance.  
I
8. At any given temperature and voltage condition for any given device, tHZCE is less than tLZCE and tHZOE is less than tLZOE  
.
9. Test conditions used are Load 3.  
10. This parameter is guaranteed but not tested.  
11. Must be met by the device writing to the RAM under all operating conditions.  
12. For information on part-to-part delay through RAM cells from writing port to reading port, refer to Read Timing with Port-to-Port Delay waveform.  
13. Test conditions used are Load 2.  
14. tBDD is a calculated parameter and is the greater of tWDD tPWE (actual) or tDDD tSD (actual).  
6
CY7C006  
CY7C016  
[7]  
Switching Characteristics Over the Operating Range (continued)  
7C006-15  
7C016-15  
7C006-25  
7C016-25  
7C006-35  
7C016-35  
7C006-55  
7C016-55  
Parameter  
Description  
Min.  
Max. Min. Max.  
Min.  
Max.  
Min.  
Max.  
Unit  
[13]  
INTERRUPT TIMING  
t
t
INT Set Time  
15  
15  
25  
25  
25  
25  
30  
30  
ns  
ns  
INS  
INT Reset Time  
INR  
SEMAPHORE TIMING  
t
t
t
SEM Flag Update Pulse (OEor SEM)  
SEM Flag Write to Read Time  
SEM Flag Contention Window  
10  
5
10  
5
15  
5
20  
5
ns  
ns  
ns  
SOP  
SWRD  
SPS  
5
5
5
5
Switching Waveforms  
[15, 16]  
Read Cycle No. 1 (Either Port Address Access)  
t
RC  
ADDRESS  
t
AA  
t
OHA  
DATA OUT  
PREVIOUS DATA VALID  
DATA VALID  
C006-10  
[15, 17, 18]  
Read Cycle No. 2 (Either Port CE/OE Access)  
SEM or CE  
t
HZCE  
t
ACE  
OE  
t
HZOE  
t
DOE  
t
LZOE  
t
LZCE  
DATA VALID  
DATA OUT  
t
PU  
t
PD  
I
CC  
I
SB  
C006-11  
Notes:  
15. R/W is HIGH for read cycle.  
16. Device is continuously selected CE = LOW and OE = LOW. This waveform cannot be used for semaphore reads.  
17. Address valid prior to or coincident with CE transition LOW.  
18. CEL = L, SEM = H when accessing RAM. CE = H, SEM = L when accessing semaphores.  
7
CY7C006  
CY7C016  
Switching Waveforms (continued)  
[19, 20]  
Read Timing with Port-to-Port Delay (M/S=L)  
t
WC  
ADDRESS  
R/W  
R
MATCH  
t
PWE  
R
t
t
SD  
HD  
DATA IN  
VALID  
R
ADDRESS  
L
MATCH  
t
DDD  
DATA  
OUTL  
VALID  
t
WDD  
C006-12  
[21, 22, 23]  
Write Cycle No. 1: OE Three-State Data I/Os (Either Port)  
t
WC  
ADDRESS  
t
SCE  
SEM OR CE  
R/W  
t
t
HA  
AW  
t
PWE  
t
SA  
t
t
HD  
SD  
DATA IN  
OE  
DATA VALID  
t
t
HZOE  
LZOE  
HIGH IMPEDANCE  
DATA OUT  
C006-13  
Notes:  
19. BUSY = HIGH for the writing port.  
20. CEL = CER = LOW.  
21. The internal write time of the memory is defined by the overlap of CEor SEM LOW and R/W LOW. Both signals must be LOW to initiate a write, and either signal can  
terminate a write by going HIGH. The data input set-up and hold timing should be referenced to the rising edge of the signal that terminates the write.  
22. If OEis LOW during a R/W controlled write cycle, the write pulse width must be the larger of tPWE or (tHZWE + tSD) to allow the I/O drivers to turn off and data to be placed on  
the bus for the required tSD. If OE is HIGH during a R/W controlled write cycle (as in this example), this requirement does not apply and the write pulse can be as short as the  
specified tPWE  
.
23. R/W must be HIGH during all address transitions.  
8
CY7C006  
CY7C016  
Switching Waveforms (continued)  
[20, 22, 24]  
Write Cycle No. 2: R/W Three-State Data I/Os (Either Port)  
t
WC  
ADDRESS  
t
t
HA  
SCE  
SEM OR CE  
R/W  
t
AW  
t
SA  
t
PWE  
t
t
SD  
HD  
DATA VALID  
DATA IN  
t
t
LZWE  
HZWE  
HIGH IMPEDANCE  
DATA OUT  
C006-14  
[25]  
Semaphore Read After Write Timing, Either Side  
t
AA  
t
OHA  
A A  
0
VALID ADDRESS  
VALID ADDRESS  
2
t
AW  
t
ACE  
t
HA  
SEM  
t
t
SOP  
SCE  
t
SD  
I/O  
0
DATA VALID  
DATA  
VALID  
IN  
OUT  
t
HD  
t
SA  
t
PWE  
R/W  
OE  
t
t
DOE  
SWRD  
t
SOP  
WRITE CYCLE  
READ CYCLE  
C006-15  
Notes:  
24. Data I/O pins enter high-impedance when OE is held LOW during write.  
25. CE = HIGH for the duration of the above timing (both write and read cycle).  
9
CY7C006  
CY7C016  
Switching Waveforms (continued)  
[26, 27, 28]  
Semaphore Contention  
A
A  
0L 2L  
MATCH  
R/W  
L
SEM  
L
t
SPS  
A
A  
0R 2R  
MATCH  
R/W  
R
SEM  
R
C006-16  
[19]  
Read with BUSY (M/S=HIGH)  
t
WC  
ADDRESS  
R
MATCH  
t
PWE  
R/W  
R
t
t
HD  
SD  
DATA IN  
VALID  
R
t
PS  
ADDRESS  
L
MATCH  
t
BLA  
t
BHA  
BUSY  
DATA  
L
t
BDD  
t
DDD  
VALID  
OUTL  
t
WDD  
C006-17  
Write Timing with Busy Input (M/S=LOW)  
t
PWE  
R/W  
t
t
WH  
WB  
BUSY  
C006-18  
Notes:  
26. I/O0R = I/O0L = LOW (request semaphore); CER = CEL = HIGH.  
27. Semaphores are reset (available to both ports) at cycle start.  
28. If tSPS is violated, the semaphore will definitely be obtained by one side or the other, but there is no guarantee which side will control the semaphore.  
10  
CY7C006  
CY7C016  
Switching Waveforms (continued)  
[29]  
Busy Timing Diagram No. 1 (CE Arbitration)  
CE Valid First:  
L
ADDRESS  
L,R  
ADDRESS MATCH  
CE  
L
t
PS  
CE  
R
t
t
BHC  
BLC  
BUSY  
R
C006-19  
Valid First:  
CE  
R
ADDRESS  
ADDRESS MATCH  
L,R  
CE  
R
t
PS  
CE  
L
t
t
BHC  
BLC  
BUSY  
L
C006-20  
[28]  
Busy Timing Diagram No. 2 (Address Arbitration)  
Left AddressValid First:  
t
or t  
WC  
RC  
ADDRESS  
ADDRESS  
L
ADDRESS MATCH  
ADDRESS MISMATCH  
t
PS  
R
t
t
BHA  
BLA  
BUSY  
R
C006-21  
Right Address Valid First:  
t
or t  
WC  
RC  
ADDRESS  
ADDRESS  
R
ADDRESS MATCH  
ADDRESS MISMATCH  
t
PS  
L
t
t
BHA  
BLA  
BUSY  
L
C006-22  
Notes:  
29. If tPS is violated, the busy signal will be asserted on one side or the other, but there is no guarantee on which side BUSY will be asserted.  
30. HA depends on which enable pin (CEL or R/WL) is deasserted first.  
31. tINS or tINR depends on which enable pin (CEL or R/WL) is asserted last.  
t
11  
CY7C006  
CY7C016  
Switching Waveforms (continued)  
Interrupt Timing Diagrams  
Left Side Sets INT :  
R
t
WC  
ADDRESS  
L
WRITE 3FFF  
[30]  
t
HA  
CE  
L
R/W  
L
INT  
R
[31]  
t
INS  
C006-23  
Right Side Clears INT :  
R
t
RC  
ADDRESS  
R
READ 3FFF  
CE  
R
t
INR  
R/W  
R
OE  
R
INT  
C006-24  
R
Right Side Sets INT :  
L
t
WC  
ADDRESS  
R
WRITE 3FFF  
[30]  
t
HA  
CE  
R
R
R/W  
INT  
L
[30]  
t
INS  
C006-25  
Left Side Clears INT :  
L
t
RC  
ADDRESS  
R
READ 3FFF  
CE  
L
L
t
INR  
R/W  
OE  
L
INT  
L
C006-26  
12  
CY7C006  
CY7C016  
Interrupts  
Architecture  
The interrupt flag (INT) permits communications between ports.  
When the left port writes to location 3FFF(HEX), the right ports inter-  
The CY7C006/016 consists of a an array of 16K words of 8/9  
bits each of dual-port RAM cells, I/O and address lines, and  
control signals (CE, OE, R/W). These control pins permit indepen-  
dent access for reads or writes to any location in memory. To handle  
simultaneous writes/reads to the same location, a BUSY pin is pro-  
vided on each port. Two Interrupt (INT) pins can be utilized for  
port-to-port communication. Two Semaphore (SEM) control pins are  
used for allocating shared resources. With the M/S pin, the  
CY7C006/016 can function as a Master (BUSY pins are outputs) or  
as a slave (BUSY pins are inputs). The CY7C006/016 has an auto-  
matic power-down feature controlled by CE. Each port is provided  
with its own Output Enable control (OE), which allows data to be read  
from the device.  
rupt flag (INT ) is set. This flag is cleared when the right port reads  
R
that same location. Setting the left ports interrupt flag (INT ) is ac-  
L
complished when the right port writes to location 3FFE(HEX). This  
flagisclearedwhentheleft port reads location3FFE(HEX). Themes-  
sage at 3FFE(HEX) and 3FFF(HEX) is user-defined. See Table 2 for  
input requirements for INT. INT and INT are push-pull outputs and  
R
L
do not require pull-up resistors to operate.  
Busy  
The CY7C006/016 provides on-chip arbitration to resolve si-  
multaneous memory location access (contention). If both  
portsCEs are asserted and an address match occurs within t of  
PS  
each other the Busy logic will determine which port has access. If t  
PS  
Functional Description  
is violated, one port will definitely gain permission to the location, but  
it is not guaranteed which one. BUSY will be asserted t after an  
BLA  
Write Operation  
address match or t  
after CE is taken LOW. BUSY and BUSY  
BLC  
L R  
in master mode are push-pull outputs and do not require pull-up re-  
sistors to operate.  
Data must be set up for a duration of t before the rising edge  
SD  
of R/W in order to guarantee a valid write. A write operation is con-  
trolled by either the OE pin (see Write Cycle No.1 waveform) or the  
R/W pin (see Write Cycle No. 2 waveform). Data can be written to the  
Master/Slave  
An M/S pin is provided in order to expand the word width by config-  
uring the device as either a master or a slave. The BUSY output of  
the master is connected to the BUSY input of the slave. This will allow  
the device to interface to a master device with no external compo-  
nents. Writing of slave devices must be delayed until after the BUSY  
device t  
after the OE is deasserted or t  
after the falling  
HZOE  
HZWE  
edge of R/W. Required inputs for non-contention operations are sum-  
marized in Table 1.  
If a location is being written to by one port and the opposite  
port attempts to read that location, a port-to-port flowthrough  
delay must be met before the data is read on the output; oth-  
erwise the data read is not deterministic. Data will be valid on  
input has settled (t  
). Otherwise, the slave chip may begin a write  
BLA  
cycle during a contention situation. When presented a HIGH input,  
the M/S pin allows the device to be used as a master and therefore  
the BUSY line is an output. BUSY can then be used to send the  
arbitration outcome to a slave.  
the port t  
after the data is presented on the other port.  
DDD  
Table 1. Non-Contending Read/Write  
Semaphore Operation  
Inputs  
Outputs  
The CY7C006/016 provides eight semaphore latches which  
are separate from the dual-port memory locations. Sema-  
phores are used to reserve resources that are shared between  
the two ports.The state of the semaphore indicates that a re-  
source is in use. For example, if the left port wants to request  
a given resource, it sets a latch by writing a 0 to a semaphore  
location. The left port then verifies its success in setting the  
latch by reading it. After writing to the semaphore, SEM or OE  
CE R/W OE SEM  
I/O  
Operation  
Power-Down  
07/8  
H
H
X
H
X
L
H
L
High Z  
Data Out  
Read Data in  
Semaphore  
X
H
L
X
H
X
L
X
L
High Z  
I/O Lines Disabled  
Write to Semaphore  
Read  
Data In  
Data Out  
Data In  
must be deasserted for t  
phore. The semaphore value will be available t  
before attempting to read the sema-  
SOP  
H
L
H
H
L
+ t  
after the  
SWRD DOE  
rising edge of the semaphore write. If the left port was successful  
(reads a 0), it assumes control over the shared resource, otherwise  
(reads a 1) it assumes the right port has control and continues to poll  
the semaphore.When the right side has relinquished control of the  
semaphore (by writinga 1), the left sidewill succeedin gainingcontrol  
of the semaphore. If the left side no longer requires the semaphore,  
a 1 is written to cancel its request.  
L
X
X
Write  
L
X
Illegal Condition  
Read Operation  
When reading the device, the user must assert both the OE  
and CE pins. Data will be available t afterCE or t afterOE are  
ACE  
DOE  
asserted. If the user of the CY7C006/016 wishes to access a sema-  
phore flag, then the SEM pin must be asserted instead of the CE pin.  
Table 2. Interrupt Operation Example (assumes BUSY =BUSY =HIGH)  
L
R
Left Port  
Right Port  
Function  
Set Left INT  
R/W  
X
CE  
X
OE  
X
A
INT  
L
R/W  
L
CE  
L
OE  
X
A
INT  
X
0L13L  
0R13R  
X
3FFE  
X
Reset Left INT  
Set Right INT  
Reset Right INT  
X
L
L
3FFE  
3FFF  
X
H
X
L
L
X
L
L
X
X
X
X
X
X
L
X
X
X
X
X
L
L
3FFF  
H
13  
CY7C006  
CY7C016  
Semaphores are accessed by asserting SEM LOW. The SEM  
pin functions as a chip enable for the semaphore latches (CE must  
the right port would immediately own the semaphore as soon as the  
left port released it. Table 3 shows sample semaphore operations.  
remain HIGH during SEM LOW). A  
represents the semaphore  
02  
When reading a semaphore, all eight data lines output the  
semaphore value. The read value is latched in an output reg-  
ister to prevent the semaphore from changing state during a  
write from the other port. If both ports attempt to access the  
address. OE and R/W are used in the same manner as a normal  
memory access.When writing or reading a semaphore, the other ad-  
dress pins have no effect.  
When writing to the semaphore, only I/O is used. If a 0 is written  
semaphore within t  
be obtained by one side or the other, but there is no guarantee which  
side will control the semaphore.  
of each other, the semaphore will definitely  
0
SPS  
to the left port of an unused semaphore, a 1 will appear at the same  
semaphore address on the right port. That semaphore can now only  
be modified by the side showing 0 (the left port in this case). If the left  
port now relinquishes control by writing a 1 to the semaphore, the  
semaphorewill be set to1 for both sides. However, if the right port had  
requested the semaphore (written a 0) while the left port had control,  
Initialization of the semaphore is not automatic and must be  
reset during initialization program at power-up. All Sema-  
phores on both sides should have a one written into them at  
initialization from both sides to assure that they will be free  
when needed.  
Table 3. Semaphore Operation Example  
Function  
I/O  
Left  
I/O  
Right  
Status  
0-7/8  
0-7/8  
No action  
1
1
Semaphore free  
Left port writes semaphore  
0
0
1
1
0
1
1
1
0
1
1
1
0
0
1
1
0
1
1
1
Left port obtains semaphore  
Right port writes 0 to semaphore  
Left port writes 1 to semaphore  
Left port writes 0 to semaphore  
Right port writes 1 to semaphore  
Left port writes 1 to semaphore  
Right port writes 0 to semaphore  
Right port writes 1 to semaphore  
Left port writes 0 to semaphore  
Left port writes 1 to semaphore  
Right side is denied access  
Right port is granted access to semaphore  
No change. Left port is denied access  
Left port obtains semaphore  
No port accessing semaphore address  
Right port obtains semaphore  
No port accessing semaphore  
Left port obtains semaphore  
No port accessing semaphore  
Ordering Information  
16K x8 Dual-Port SRAM  
Speed  
Package  
Name  
Operating  
Range  
(ns)  
Ordering Code  
Package Type  
15  
CY7C006-15AC  
A65  
J81  
A65  
J81  
A65  
J81  
A65  
J81  
A65  
J81  
A65  
J81  
A65  
J81  
64-Lead Thin Quad Flat Package  
68-Lead Plastic Leaded Chip Carrier  
64-Lead Thin Quad Flat Package  
68-Lead Plastic Leaded Chip Carrier  
64-Lead Thin Quad Flat Package  
68-Lead Plastic Leaded Chip Carrier  
64-Lead Thin Quad Flat Package  
68-Lead Plastic Leaded Chip Carrier  
64-Lead Thin Quad Flat Package  
68-Lead Plastic Leaded Chip Carrier  
64-Lead Thin Quad Flat Package  
68-Lead Plastic Leaded Chip Carrier  
64-Lead Thin Quad Flat Package  
68-Lead Plastic Leaded Chip Carrier  
Commercial  
CY7C006-15JC  
CY7C006-25AC  
CY7C006-25JC  
CY7C006-25AI  
CY7C006-25JI  
CY7C006-35AC  
CY7C006-35JC  
CY7C006-35AI  
CY7C006-35JI  
CY7C006-55AC  
CY7C006-55JC  
CY7C006-55AI  
CY7C006-55JI  
25  
35  
55  
Commercial  
Industrial  
Commercial  
Industrial  
Commercial  
Industrial  
14  
CY7C006  
CY7C016  
Ordering Information (continued)  
16K x9 Dual-Port SRAM  
Speed  
Package  
Name  
Operating  
Range  
(ns)  
Ordering Code  
Package Type  
80-Lead Thin Quad Flat Package  
80-Lead Thin Quad Flat Package  
80-Lead Thin Quad Flat Package  
80-Lead Thin Quad Flat Package  
80-Lead Thin Quad Flat Package  
80-Lead Thin Quad Flat Package  
80-Lead Thin Quad Flat Package  
15  
CY7C016-15AC  
A80  
A80  
A80  
A80  
A80  
A80  
A80  
Commercial  
Commercial  
Industrial  
25  
CY7C016-25AC  
CY7C016-25AI  
CY7C016-35AC  
CY7C016-35AI  
CY7C016-55AC  
CY7C016-55AI  
35  
55  
Commercial  
Industrial  
Commercial  
Industrial  
Document #: 38-00416-B  
Package Diagrams  
64-Lead Thin Plastic Quad Flat Pack (14 x 14 x 1.4 mm) A65  
51-85046-B  
15  
CY7C006  
CY7C016  
Package Diagrams (continued)  
80-Pin Thin Plastic Quad Flat Pack A80  
51-85065-B  
68-Lead Plastic Leaded Chip Carrier J81  
51-85005-A  
© Cypress Semiconductor Corporation, 1999. The information contained herein is subject to change without notice. Cypress Semiconductor Corporation assumes no responsibility for the use  
of any circuitry other than circuitry embodied in a Cypress Semiconductor product. Nor does it convey or imply any license under patent or other rights. Cypress Semiconductor does not authorize  
its products for use as critical components in life-support systems where a malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress  
Semiconductor products in life-support systems application implies that the manufacturer assumes all risk of such use and in doing so indemnifies Cypress Semiconductor against all charges.  

相关型号:

CY7C006-25JI

16K x 8/9 Dual-Port Static RAM with Sem, Int, Busy
CYPRESS

CY7C006-25JIT

暂无描述
CYPRESS

CY7C006-35AC

16K x 8/9 Dual-Port Static RAM with Sem, Int, Busy
CYPRESS

CY7C006-35AI

16K x 8/9 Dual-Port Static RAM with Sem, Int, Busy
CYPRESS

CY7C006-35JC

16K x 8/9 Dual-Port Static RAM with Sem, Int, Busy
CYPRESS

CY7C006-35JI

16K x 8/9 Dual-Port Static RAM with Sem, Int, Busy
CYPRESS

CY7C006-55AC

16K x 8/9 Dual-Port Static RAM with Sem, Int, Busy
CYPRESS

CY7C006-55AI

16K x 8/9 Dual-Port Static RAM with Sem, Int, Busy
CYPRESS

CY7C006-55JC

16K x 8/9 Dual-Port Static RAM with Sem, Int, Busy
CYPRESS

CY7C006-55JCR

暂无描述
CYPRESS

CY7C006-55JCT

Dual-Port SRAM, 16KX8, 55ns, CMOS, PQCC68, PLASTIC, LCC-68
CYPRESS

CY7C006-55JI

16K x 8/9 Dual-Port Static RAM with Sem, Int, Busy
CYPRESS