CY7C024V-20AC [CYPRESS]

Dual-Port SRAM, 4KX16, 20ns, CMOS, PQFP100, PLASTIC, TQFP-100;
CY7C024V-20AC
型号: CY7C024V-20AC
厂家: CYPRESS    CYPRESS
描述:

Dual-Port SRAM, 4KX16, 20ns, CMOS, PQFP100, PLASTIC, TQFP-100

静态存储器
文件: 总19页 (文件大小:248K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
1
CY7C024V/025V/026V  
PRELIMINARY  
CY7C0241V/0251V/036V  
3.3V 4K/8K/16K x 16/18 Dual-Port Static RAM  
• Automatic power-down  
Features  
• Expandable data bus to 32/36 bits or more using Mas-  
ter/Slave chip select when using more than one device  
• On-chip arbitration logic  
• Semaphores included to permit software handshaking  
between ports  
• INT flag for port-to-port communication  
• Separate upper-byte and lower-byte control  
• Pin select for Master or Slave  
• True dual-ported memory cells which allow simulta-  
neous access of the same memory location  
• 4/8/16K x 16 organization (CY7C024V/025V/026V)  
• 4/8K x 18 organization (CY7C0241V/0251V)  
• 16K x 18 organization (CY7C036V)  
• 0.35-micron CMOS for optimum speed/power  
[1]  
• High-speed access: 15 /20/25 ns  
• Low operating power  
• Commercial and industrial temperature ranges  
• Available in 100-pin TQFP  
Active: I = 115 mA (typical)  
CC  
• Pin-compatible and functionally equivalent to  
IDT70V24, 70V25, and 7V0261.  
— Standby: I  
= 10 A (typical)  
µ
SB3  
• Fully asynchronous operation  
Logic Block Diagram  
R/W  
R/W  
UB  
L
R
R
UB  
L
CE  
CE  
LB  
L
R
R
LB  
L
OE  
OE  
R
L
8/9  
8/9  
8/9  
8/9  
[2]  
[2]  
I/O  
–I/O  
I/O  
–I/O  
8/9L  
8/9L  
15/17L  
15/17R  
[3]  
I/O –I/O  
[3]  
I/O  
Control  
I/O  
Control  
I/O –I/O  
0L  
7/8L  
0L  
7/8R  
12/13/14  
12/13/14  
[4]  
[4]  
Address  
Decode  
Address  
Decode  
True Dual-Ported  
A
A
–A  
A
A
–A  
11/12/13R  
0L  
0L  
11/1213L  
0R  
0R  
RAM Array  
12/13/14  
12/13/14  
–A[4]  
–A[4]  
11/12/13R  
11/12/13L  
CE  
CE  
OE  
Interrupt  
Semaphore  
Arbitration  
L
R
R
OE  
L
R/W  
R/W  
SEM  
L
R
R
SEM  
L
[5]  
[5]  
BUSY  
BUSY  
INT  
UB  
L
R
R
R
R
INT  
L
UB  
L
LB  
M/S  
LB  
L
Notes:  
1. Call for availability.  
2. I/O8–I/O15 for x16 devices; I/O9–I/O17 for x18 devices.  
3. I/O0–I/O7 for x16 devices; I/O0–I/O8 for x18 devices.  
4. A0–A11 for 4K devices; A0–A12 for 8K devices; A0–A13 for 16K devices.  
5. BUSY is an output in master mode and an input in slave mode.  
For the most recent information, visit the Cypress web site at www.cypress.com  
Cypress Semiconductor Corporation  
3901 North First Street  
San Jose  
CA 95134  
408-943-2600  
October 18, 1999  
CY7C024V/025V/026V  
CY7C0241V/0251V/036V  
PRELIMINARY  
Each port has independent control pins: chip enable (CE),  
read or write enable (R/W), and output enable (OE). Two flags  
are provided on each port (BUSY and INT). BUSY signals that  
the port is trying to access the same location currently being  
accessed by the other port. The interrupt flag (INT) permits  
communication between ports or systems by means of a mail  
box. The semaphores are used to pass a flag, or token, from  
one port to the other to indicate that a shared resource is in  
use. The semaphore logic is comprised of eight shared latch-  
es. Only one side can control the latch (semaphore) at any  
time. Control of a semaphore indicates that a shared resource  
is in use. An automatic power-down feature is controlled inde-  
pendently on each port by a chip select (CE) pin.  
Functional Description  
The CY7C024V/025V/026V and CY7C0241V/0251V/036V  
are low-power CMOS 4K, 8K, and 16K x16/18 dual-port static  
RAMs. Various arbitration schemes are included on the devic-  
es to handle situations when multiple processors access the  
same piece of data. Two ports are provided, permitting inde-  
pendent, asynchronous access for reads and writes to any  
location in memory. The devices can be utilized as standalone  
16/18-bit dual-port static RAMs or multiple devices can be  
combined in order to function as a 32/36-bit or wider mas-  
ter/slave dual-port static RAM. An M/S pin is provided for im-  
plementing 32/36-bit or wider memory applications without the  
need for separate master and slave devices or additional dis-  
crete logic. Application areas include interprocessor/multipro-  
cessor designs, communications status buffering, and dual-  
port video/graphics memory.  
The CY7C024V/025V/026V and CY7C0241V/0251V/036V  
are available in 100-pin Thin Quad Plastic Flatpacks (TQFP).  
Pin Configurations  
100-Pin TQFP  
Top View  
100 9998 97 96 95 94 93 92 91 90 89 88 87 86 85 84 83 82 81 80 79 78 77 76  
75  
74  
73  
NC  
NC  
NC  
NC  
1
NC  
NC  
NC  
NC  
2
3
4
72  
71  
70  
69  
A
5L  
I/O  
10L  
5
6
7
8
A
4L  
I/O  
11L  
I/O  
12L  
A
A
A
3L  
2L  
1L  
0L  
68  
I/O  
13L  
67  
66  
GND  
9
A
I/O  
I/O  
14L  
15L  
10  
11  
12  
13  
INT  
BUSY  
GND  
M/S  
L
65  
64  
63  
62  
L
V
CC  
CY7C024V (4K x 16)  
CY7C025V (8K x 16)  
GND  
I/O  
0R  
14  
BUSY  
INT  
R
R
61  
60  
59  
I/O  
1R  
I/O  
2R  
15  
16  
17  
A
0R  
A
1R  
V
CC  
58  
I/O  
3R  
18  
19  
20  
21  
57  
56  
55  
54  
53  
A
2R  
A
3R  
I/O  
4R  
I/O  
5R  
I/O  
6R  
A
4R  
NC  
NC  
22  
23  
NC  
NC  
NC  
NC  
NC  
52  
51  
24  
25  
NC  
26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 4748 49 50  
Notes:  
6.  
7.  
A
A
12L on the CY7C025.  
12R on the CY7C025.  
2
CY7C024V/025V/026V  
CY7C0241V/0251V/036V  
PRELIMINARY  
Pin Configurations (continued)  
Top View  
100-Pin TQFP  
100 99 98 97 96 95 94 93 92 91 90 89 88 87 86 85 84 83 82 81 80 79 78 77 76  
75  
74  
73  
NC  
NC  
NC  
NC  
1
NC  
NC  
2
3
4
I/O  
8L  
17L  
11L  
72  
71  
70  
69  
I/O  
I/O  
A
5L  
5
6
7
8
A
4L  
I/O  
12L  
I/O  
13L  
A
A
A
3L  
2L  
1L  
0L  
68  
I/O  
14L  
67  
66  
GND  
9
A
I/O  
I/O  
15L  
16L  
10  
11  
12  
13  
INT  
BUSY  
GND  
M/S  
L
65  
64  
63  
62  
L
V
CC  
CY7C0241V (4K x 18)  
CY7C0251V (8K x 18)  
GND  
I/O  
0R  
14  
BUSY  
INT  
R
61  
60  
59  
R
I/O  
1R  
I/O  
2R  
15  
16  
17  
A
A
A
0R  
1R  
V
CC  
58  
I/O  
3R  
18  
19  
20  
21  
57  
56  
55  
54  
53  
2R  
3R  
I/O  
I/O  
I/O  
I/O  
4R  
A
5R  
A
4R  
6R  
8R  
NC  
22  
23  
NC  
NC  
I/O  
17R  
52  
51  
NC  
NC  
24  
25  
NC  
26 27 28 29 30 31 32 3334 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50  
10099 98 97 96 95 94 93 92 91 90 89 88 87 86 85 84 83 82 81 80 79 78 77 76  
75  
NC  
1
NC  
NC  
NC  
NC  
I/O10L  
I/O11L  
I/O12L  
I/O13L  
GND  
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
74  
73  
72  
71  
70  
69  
68  
67  
66  
65  
64  
63  
62  
61  
60  
59  
58  
57  
56  
55  
54  
53  
52  
51  
NC  
NC  
A6L  
A5L  
A4L  
A3L  
A2L  
A1L  
A0L  
INTL  
BUSYL  
GND  
M/S  
BUSYR  
INTR  
A0R  
A1R  
A2R  
A3R  
A4R  
A5R  
NC  
I/O14L  
I/O15L  
VCC  
GND  
CY7C026V (16K x 16)  
I/O0R  
I/O1R  
I/O2R  
VCC  
I/O3R  
I/O4R  
I/O5R  
I/O6R  
NC  
NC  
NC  
NC  
24  
25  
NC  
NC  
26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50  
Notes:  
8.  
9.  
A
A
12L on the CY7C0251.  
12R on the CY7C0251.  
3
CY7C024V/025V/026V  
CY7C0241V/0251V/036V  
PRELIMINARY  
Pin Configurations (continued)  
100-Pin TQFP  
Top View  
100 9998 97 96 95 94 93 92 91 90 89 88 87 86 85 84 83 82 81 80 79 78 77 76  
75  
74  
73  
NC  
NC  
NC  
1
NC  
NC  
2
3
4
I/O  
8L  
A
13L  
72  
71  
70  
69  
I/O  
17L  
I/O  
11L  
A
A
A
A
A
5L  
4L  
3L  
2L  
1L  
0L  
5
6
7
8
I/O  
I/O  
I/O  
12L  
13L  
14L  
68  
67  
66  
GND  
9
A
I/O  
I/O  
15L  
16L  
10  
11  
12  
13  
INT  
BUSY  
GND  
M/S  
L
65  
64  
63  
62  
L
V
CC  
CY7C036V (16K x 18)  
GND  
I/O  
0R  
14  
BUSY  
INT  
R
61  
60  
59  
58  
R
I/O  
1R  
I/O  
2R  
15  
16  
17  
18  
19  
20  
21  
A
A
A
0R  
1R  
V
CC  
I/O  
3R  
57  
56  
55  
54  
53  
2R  
3R  
I/O  
I/O  
I/O  
I/O  
4R  
A
5R  
A
4R  
A
13R  
6R  
8R  
22  
23  
NC  
NC  
I/O  
17R  
52  
51  
NC  
NC  
24  
25  
NC  
26 27 28 29 30 31 32 3334 35 36 37 38 39 40 41 42 43 44 45 46 4748 49 50  
Selection Guide  
CY7C024V/025V/026V  
CY7C024V/025V/026V  
CY7C024V/025V/026V  
CY7C0241V/0251V/036V CY7C0241V/0251V/036V CY7C0241V/0251V/036V  
[1]  
-15  
-20  
-25  
Maximum Access Time (ns)  
Typical Operating Current (mA)  
15  
20  
25  
125  
35  
120  
35  
115  
30  
Typical Standby Current for I  
(Both ports TTL level)  
(mA)  
SB1  
Typical Standby Current for I  
(Both ports CMOS Level)  
(µA)  
10 µA  
10 µA  
10 µA  
SB3  
Shaded areas contain advance information.  
4
CY7C024V/025V/026V  
CY7C0241V/0251V/036V  
PRELIMINARY  
Pin Definitions  
Left Port  
Right Port  
Description  
CE  
CE  
Chip Enable  
L
R
R/W  
R/W  
Read/Write Enable  
Output Enable  
L
R
OE  
OE  
R
L
A
A  
A
A  
Address (A A for 4K devices; A A for 8K devices; A A for 16K)  
0 11 0 12 0 13  
0L  
13L  
0R  
13R  
I/O I/O  
I/O I/O  
17R  
Data Bus Input/Output  
Semaphore Enable  
0L  
17L  
0R  
SEM  
SEM  
R
L
UB  
UB  
Upper Byte Select (I/O I/O for x16 devices; I/O I/O for x18 devices)  
8 15 9 17  
L
R
LB  
LB  
Lower Byte Select (I/O I/O for x16 devices; I/O I/O for x18 devices)  
0 7 0 8  
L
R
INT  
INT  
Interrupt Flag  
Busy Flag  
L
R
BUSY  
M/S  
BUSY  
R
L
Master or Slave Select  
Power  
V
CC  
GND  
NC  
Ground  
No Connect  
Output Current into Outputs (LOW)............................. 20 mA  
Static Discharge Voltage .......................................... >2001V  
Latch-Up Current.................................................... >200 mA  
Maximum Ratings  
(Above which the useful life may be impaired. For user guide-  
lines, not tested.)  
Storage Temperature .................................65°C to +150°C  
Operating Range  
Ambient Temperature with  
Ambient  
Power Applied.............................................55°C to +125°C  
Range  
Commercial  
Industrial  
Temperature  
0°C to +70°C  
40°C to +85°C  
V
CC  
Supply Voltage to Ground Potential ............... 0.5V to +4.6V  
3.3V ± 300 mV  
3.3V ± 300 mV  
DC Voltage Applied to  
Outputs in High Z State ...........................0.5V to V +0.5V  
CC  
Shaded areas contain advance information.  
[10]  
DC Input Voltage .................................0.5V to V +0.5V  
CC  
Note:  
10. Pulse width < 20 ns.  
5
CY7C024V/025V/026V  
CY7C0241V/0251V/036V  
PRELIMINARY  
Electrical Characteristics Over the Operating Range  
CY7C024V/025V/026V  
CY7C0241V/0251V/036V  
[1]  
-15  
-20  
-25  
Parameter  
Description  
Min. Typ. Max. Min. Typ. Max. Min. Typ. Max. Unit  
V
V
V
V
Output HIGH Voltage (V =3.3V)  
2.4  
2.4  
2.4  
V
OH  
OL  
IH  
CC  
Output LOW Voltage  
Input HIGH Voltage  
Input LOW Voltage  
0.4  
0.8  
0.4  
0.4  
V
2.0  
2.0  
2.0  
V
0.8  
10  
0.8  
10  
V
IL  
I
I
I
Output Leakage Current  
Input Leakage Current  
10  
10  
10 10  
10 10  
10  
10  
µA  
µA  
mA  
mA  
mA  
mA  
mA  
mA  
µA  
µA  
mA  
mA  
OZ  
10  
10  
IX  
Operating Current (V = Max.,  
Coml.  
Indust.  
Coml.  
Indust.  
Coml.  
Indust.  
125 185  
120 175  
140 195  
115 165  
135 185  
CC  
CC  
I
= 0 mA) Outputs Disabled  
OUT  
I
I
I
I
Standby Current (Both Ports TTL  
Level) CE & CE V , f = f  
35  
50  
35  
45  
75  
85  
10  
10  
70  
80  
45  
55  
30  
40  
65  
75  
10  
10  
60  
70  
40  
50  
SB1  
SB2  
SB3  
SB4  
L
R
IH  
MAX  
Standby Current (One Port TTL  
Level) CE | CE V , f = f  
MAX  
80 120  
10 250  
75 105  
110  
120  
250  
250  
95  
95  
L
R
IH  
105  
250  
250  
80  
Standby Current(BothPortsCMOS Coml.  
Level) CE & CE V 0.2V, f = 0  
L
R
CC  
Indust.  
Standby Current (One Port CMOS Coml.  
[11]  
MAX  
Level) CE | CE V , f = f  
L
R
IH  
Indust.  
105  
90  
Shaded areas contain advance information.  
Capacitance[12]  
Parameter  
Description  
Test Conditions  
Max.  
Unit  
C
C
Input Capacitance  
Output Capacitance  
T = 25°C, f = 1 MHz,  
CC  
10  
10  
pF  
pF  
IN  
A
V
= 3.3V  
OUT  
AC Test Loads and Waveforms  
3.3V  
3.3V  
R
TH  
= 250  
R1 = 590  
OUTPUT  
C = 30pF  
OUTPUT  
C = 30 pF  
R1 = 590  
OUTPUT  
R2 = 435  
C = 5 pF  
R2 = 435  
V
TH  
= 1.4V  
(a) Normal Load (Load 1)  
(c)Three-State Delay(Load 2)  
(b) Thévenin Equivalent (Load 1)  
(Used for t , t , t  
, & t  
LZ HZ HZWE  
LZWE  
including scope and jig)  
ALL INPUTPULSES  
3.0V  
GND  
90%  
90%  
10%  
3 ns  
10%  
3 ns  
Notes:  
11. MAX = 1/tRC = All inputs cycling at f = 1/tRC (except output enable). f = 0 means no address or control lines change. This applies only to inputs at CMOS level standby ISB3  
f
.
12. Tested initially and after any design or process changes that may affect these parameters.  
6
CY7C024V/025V/026V  
CY7C0241V/0251V/036V  
PRELIMINARY  
[13]  
Switching Characteristics Over the Operating Range  
CY7C024V/025V/026V  
CY7C0241V/0251V/036V  
[1]  
-15  
-20  
-25  
Parameter  
Description  
Min.  
Max.  
Min.  
20  
Max.  
Min.  
25  
Max.  
Unit  
READ CYCLE  
tRC  
Read Cycle Time  
15  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
t
t
t
t
t
t
t
t
t
t
t
Address to Data Valid  
Output Hold From Address Change  
CE LOW to Data Valid  
OE LOW to Data Valid  
OE Low to Low Z  
15  
20  
25  
AA  
3
3
3
OHA  
[14]  
15  
10  
20  
12  
25  
13  
ACE  
DOE  
LZOE  
[15, 16, 17]  
[15, 16, 17]  
3
3
0
3
3
0
3
3
0
OE HIGH to High Z  
10  
10  
12  
12  
15  
15  
HZOE  
[15, 16, 17]  
CE LOW to Low Z  
LZCE  
[15, 16, 17]  
CE HIGH to High Z  
HZCE  
[17]  
[17]  
CE LOW to Power-Up  
CE HIGH to Power-Down  
Byte Enable Access Time  
PU  
15  
15  
20  
20  
25  
25  
PD  
[14]  
ABE  
WRITE CYCLE  
t
t
t
t
t
t
t
t
t
t
t
t
Write Cycle Time  
15  
12  
12  
0
20  
15  
15  
0
25  
20  
20  
0
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
WC  
[14]  
CE LOW to Write End  
SCE  
Address Valid to Write End  
Address Hold From Write End  
Address Set-Up to Write Start  
Write Pulse Width  
AW  
HA  
[14]  
SA  
0
0
0
12  
10  
0
15  
15  
0
20  
15  
0
PWE  
SD  
Data Set-Up to Write End  
Data Hold From Write End  
R/W LOW to High Z  
HD  
[16, 17]  
10  
12  
15  
HZWE  
[16, 17]  
LZWE  
R/W HIGH to Low Z  
3
3
0
[18]  
Write Pulse to Data Delay  
Write Data Valid to Read Data Valid  
30  
25  
45  
30  
50  
35  
WDD  
[18]  
DDD  
Notes:  
13. Test conditions assume signal transition time of 3 ns or less, timing reference levels of 1.5V, input pulse levels of 0 to 3.0V, and output loading of the specified  
OI/IOH and 30-pF load capacitance.  
14. To access RAM, CE=L, UB=L, SEM=H. To access semaphore, CE=H and SEM=L. Either condition must be valid for the entire tSCE time.  
I
15. At any given temperature and voltage condition for any given device, tHZCE is less than tLZCE and tHZOE is less than tLZOE  
.
16. Test conditions used are Load 3.  
17. This parameter is guaranteed but not tested. For information on port-to-port delay through RAM cells from writing port to reading port, refer to Read Timing  
with Busy waveform.  
18. For information on port-to-port delay through RAM cells from writing port to reading port, refer to Read Timing with Busy waveform.  
7
CY7C024V/025V/026V  
CY7C0241V/0251V/036V  
PRELIMINARY  
[13]  
Switching Characteristics Over the Operating Range (continued)  
CY7C024V/025V/026V  
CY7C0241V/0251V/036V  
[1]  
-15  
-20  
-25  
Parameter  
Description  
Min.  
Max.  
Min.  
Max.  
Min.  
Max.  
Unit  
[19]  
BUSY TIMING  
t
t
t
t
t
t
t
t
BUSY LOW from Address Match  
BUSY HIGH from Address Mismatch  
BUSY LOW from CE LOW  
15  
15  
15  
15  
20  
20  
20  
17  
20  
20  
20  
17  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
BLA  
BHA  
BLC  
BHC  
PS  
BUSY HIGH from CE HIGH  
Port Set-Up for Priority  
5
0
5
0
5
0
R/W HIGH after BUSY (Slave)  
R/W HIGH after BUSY HIGH (Slave)  
WB  
13  
15  
17  
WH  
[20]  
BUSY HIGH to Data Valid  
15  
20  
25  
BDD  
[19]  
INTERRUPT TIMING  
t
t
INT Set Time  
INT Reset Time  
15  
15  
20  
20  
20  
20  
ns  
ns  
INS  
INR  
SEMAPHORE TIMING  
t
t
t
t
SEM Flag Update Pulse (OE or SEM)  
10  
5
10  
5
12  
5
ns  
ns  
ns  
ns  
SOP  
SWRD  
SPS  
SEM Flag Write to Read Time  
SEM Flag Contention Window  
SEM Address Access Time  
5
5
5
15  
20  
25  
SAA  
Data Retention Mode  
Timing  
The CY7C024V/025V/026V and CY7C0241V/0251V/036V  
are designed with battery backup in mind. Data retention volt-  
age and supply current are guaranteed over temperature. The  
following rules ensure data retention:  
Data Retention Mode  
3.0V  
V
CC  
3.0V  
V
CC  
2.0V  
>
t
RC  
1. Chip Enable (CE) must beheldHIGHduringdataretention, with-  
in V to V 0.2V.  
CC  
CC  
V
CC  
to V 0.2V  
CC  
V
IH  
CE  
2. CE must be kept between V 0.2V and 70% of V  
CC  
CC  
during the power-up and power-down transitions.  
3. The RAM can begin operation >t after V reaches the  
minimum operating voltage (3.0 volts).  
RC  
CC  
[21]  
Parameter  
ICC  
Test Conditions  
@ VCC = 2V  
Max.  
Unit  
50  
µA  
DR1  
DR  
Notes:  
19. Test conditions used are Load 2.  
20. BDD is a calculated parameter and is the greater of tWDDtPWE (actual) or tDDDtSD (actual).  
t
21. CE = VCC, Vin = GND to VCC, TA = 25°C. This parameter is guaranteed but not tested.  
8
CY7C024V/025V/026V  
CY7C0241V/0251V/036V  
PRELIMINARY  
Switching Waveforms  
[22, 23, 24]  
Read Cycle No.1 (Either Port Address Access)  
t
RC  
ADDRESS  
t
AA  
t
t
OHA  
OHA  
DATA OUT  
PREVIOUS DATA VALID  
DATA VALID  
[22, 25, 26]  
Read Cycle No.2 (Either Port CE/OE Access)  
t
ACE  
CE and  
LB or UB  
t
HZCE  
t
DOE  
OE  
t
HZOE  
t
LZOE  
DATA VALID  
DATA OUT  
t
LZCE  
t
PU  
t
PD  
I
CC  
CURRENT  
I
SB  
[22, 24, 25, 26]  
Read Cycle No. 3 (Either Port)  
t
RC  
ADDRESS  
t
t
OHA  
AA  
UB or LB  
t
t
HZCE  
t
LZCE  
t
ABE  
CE  
HZCE  
t
ACE  
t
LZCE  
DATA OUT  
Notes:  
22. R/W is HIGH for read cycles.  
23. Device is continuously selected CE = VIL and UB or LB = V . This waveform cannot be used for semaphore reads.  
IL  
24. OE = VIL  
.
25. Address valid prior to or coincident with CE transition LOW.  
26. To access RAM, CE= VIL, UB or LB = V , SEM = VIH. To access semaphore, CE = VIH, SEM = VIL.  
IL  
9
CY7C024V/025V/026V  
CY7C0241V/0251V/036V  
PRELIMINARY  
Switching Waveforms (continued)  
[27, 28, 29, 30]  
Write Cycle No.1: R/W Controlled Timing  
t
WC  
ADDRESS  
OE  
[33]  
t
HZOE  
t
AW  
[31,32]  
CE  
[30]  
PWE  
t
SA  
t
t
HA  
R/W  
DATA OUT  
DATA IN  
[33]  
t
HZWE  
t
LZWE  
NOTE 34  
NOTE 34  
t
t
HD  
SD  
[27, 28, 29, 35]  
Write Cycle No. 2: CE Controlled Timing  
t
WC  
ADDRESS  
t
AW  
[31,32]  
CE  
t
SA  
t
t
HA  
SCE  
R/W  
t
t
HD  
SD  
DATA IN  
Notes:  
27. R/W must be HIGH during all address transitions.  
28. A write occurs during the overlap (tSCE or tPWE) of a LOW CE or SEM and a LOW UB or LB.  
29. tHA is measured from the earlier of CE or R/W or (SEM or R/W) going HIGH at the end of write cycle.  
30. If OEis LOW during a R/W controlled write cycle, the write pulse width must be the larger of tPWE or (tHZWE + tSD) to allow the I/O drivers to turn off and data to be placed on  
the bus for the required tSD. If OE is HIGH during an R/W controlled write cycle, this requirement does not apply and the write pulse can be as short as the specified tPWE  
31. To access RAM, CE= VIL, SEM = VIH  
32. To access upper byte, CE = V , UB = VIL, SEM = VIH  
.
.
.
IL  
To access lower byte, CE = VIL, LB = VIL, SEM = VIH  
.
33. Transition is measured ±500 mV from steady state with a 5-pF load (including scope and jig). This parameter is sampled and not 100% tested.  
34. During this period, the I/O pins are in the output state, and input signals must not be applied.  
35. If the CEor SEM LOW transition occurs simultaneously with or after the R/W LOW transition, the outputs remain in the high-impedance state.  
10  
CY7C024V/025V/026V  
CY7C0241V/0251V/036V  
PRELIMINARY  
Switching Waveforms (continued)  
[36]  
Semaphore Read After Write Timing, Either Side  
t
t
OHA  
SAA  
A
A  
2
VALID ADRESS  
VALID ADRESS  
0
t
AW  
t
ACE  
t
HA  
SEM  
t
t
SOP  
SCE  
t
SD  
I/O  
0
DATA VALID  
DATA  
VALID  
IN  
OUT  
t
HD  
t
SA  
t
PWE  
R/W  
OE  
t
t
DOE  
SWRD  
t
SOP  
WRITE CYCLE  
[37, 38, 39]  
READ CYCLE  
Timing Diagram of Semaphore Contention  
A
0L  
A  
2L  
MATCH  
R/W  
L
SEM  
L
t
SPS  
A
A  
MATCH  
0R  
2R  
R/W  
R
SEM  
R
Notes:  
36. CE = HIGH for the duration of the above timing (both write and read cycle).  
37. I/O0R = I/O0L = LOW (request semaphore); CER = CEL = HIGH.  
38. Semaphores are reset (available to both ports) at cycle start.  
39. If tSPS is violated, the semaphore will definitely be obtained by one side or the other, but which side will get the semaphore is unpredictable.  
11  
CY7C024V/025V/026V  
CY7C0241V/0251V/036V  
PRELIMINARY  
Switching Waveforms (continued)  
[40]  
Timing Diagram of Read with BUSY (M/S=HIGH)  
t
WC  
ADDRESS  
R
MATCH  
t
PWE  
R/W  
R
t
t
HD  
SD  
DATA IN  
VALID  
R
t
PS  
ADDRESS  
L
MATCH  
t
BLA  
t
BHA  
BUSY  
L
t
BDD  
t
DDD  
DATA  
VALID  
OUTL  
t
WDD  
Write Timing with Busy Input (M/S=LOW)  
t
PWE  
R/W  
t
t
WH  
WB  
BUSY  
Note:  
40. CEL = CER = LOW.  
12  
CY7C024V/025V/026V  
CY7C0241V/0251V/036V  
PRELIMINARY  
Switching Waveforms (continued)  
[41]  
Busy Timing Diagram No.1 (CE Arbitration)  
CE Valid First:  
L
ADDRESS  
L,R  
ADDRESS MATCH  
CE  
L
t
PS  
CE  
R
t
t
BHC  
BLC  
BUSY  
R
CE Valid First:  
R
ADDRESS  
L,R  
ADDRESS MATCH  
CE  
R
t
PS  
CE  
L
L
t
t
BHC  
BLC  
BUSY  
[41]  
Busy Timing Diagram No.2 (Address Arbitration)  
Left Address Valid First:  
t
or t  
WC  
RC  
ADDRESS  
L
ADDRESS MATCH  
ADDRESS MISMATCH  
t
PS  
ADDRESS  
R
t
t
BHA  
BLA  
BUSY  
R
Right Address Valid First:  
t
or t  
WC  
RC  
ADDRESS  
R
ADDRESS MATCH  
ADDRESS MISMATCH  
t
PS  
ADDRESS  
L
t
t
BHA  
BLA  
BUSY  
L
Note:  
41. If tPS is violated, the busy signal will be asserted on one side or the other, but there is no guarantee to which side BUSY will be asserted.  
13  
CY7C024V/025V/026V  
CY7C0241V/0251V/036V  
PRELIMINARY  
Switching Waveforms (continued)  
Interrupt Timing Diagrams  
Left Side Sets INT :  
R
t
WC  
ADDRESS  
L
WRITE 1FFF (OR 1/3FFF)  
[42]  
t
HA  
CE  
L
R/W  
INT  
L
R
[43]  
t
INS  
Right Side Clears INT :  
R
t
RC  
READ 7FFF  
(OR 1/3FFF)  
ADDRESS  
R
CE  
R
[43]  
t
INR  
R/W  
R
OE  
R
INT  
R
:
Right SideSets INT  
L
t
WC  
ADDRESS  
R
WRITE 1FFE (OR 1/3FFE)  
[42]  
HA  
t
CE  
R
R
R/W  
INT  
L
[43]  
INS  
t
Left Side Clears INT :  
L
t
RC  
READ 7FFE  
OR 1/3FFE)  
ADDRESS  
R
L
CE  
[43]  
INR  
t
R/W  
L
OE  
INT  
L
L
Notes:  
42.  
tHA depends on which enable pin (CEL or R/WL) is deasserted first.  
43. tINS or tINR depends on which enable pin (CEL or R/WL) is asserted last.  
14  
CY7C024V/025V/026V  
CY7C0241V/0251V/036V  
PRELIMINARY  
and an address match occurs within t of each other, the busy  
Architecture  
PS  
logic will determine which port has access. If t is violated,  
PS  
The CY7C024V/025V/026V and CY7C0241V/0251V/036V  
consist of an array of 4K, 8K, and 16K words of 16 and 18 bits  
each of dual-port RAM cells, I/O and address lines, and control  
signals (CE, OE, R/W). These control pins permit independent  
access for reads or writes to any location in memory. To handle  
simultaneous writes/reads to the same location, a BUSY pin is  
provided on each port. Two Interrupt (INT) pins can be utilized  
for port-to-port communication. Two semaphore (SEM) control  
pins are used for allocating shared resources. With the M/S  
pin, the devices can function as a master (BUSY pins are out-  
puts) or as a slave (BUSY pins are inputs). The devices also  
have an automatic power-down feature controlled by CE. Each  
port is provided with its own output enable control (OE), which  
allows data to be read from the device.  
one port will definitely gain permission to the location, but it is  
not predictable which port will get that permission. BUSY will  
be asserted t  
taken LOW.  
after an address match or t  
after CE is  
BLA  
BLC  
Master/Slave  
A M/S pin is provided in order to expand the word width by  
configuring the device as either a master or a slave. The BUSY  
output of the master is connected to the BUSY input of the  
slave. This will allow the device to interface to a master device  
with no external components. Writing to slave devices must be  
delayed until after the BUSY input has settled (t  
or t  
),  
BLC  
BLA  
otherwise, the slave chip may begin a write cycle during a con-  
tention situation. When tied HIGH, the M/S pin allows the de-  
vice to be used as a master and, therefore, the BUSY line is  
an output. BUSY can then be used to send the arbitration out-  
come to a slave.  
Functional Description  
Write Operation  
Semaphore Operation  
Data must be set up for a duration of t before the rising edge  
SD  
of R/W in order to guarantee a valid write. A write operation is  
controlled by either the R/W pin (see Write Cycle No. 1 wave-  
form) or the CE pin (see Write Cycle No. 2 waveform). Required  
inputs for non-contention operations are summarized in Table 1.  
The CY7C024V/025V/026V and CY7C0241V/0251V/036V  
provide eight semaphore latches, which are separate from the  
dual-port memory locations. Semaphores are used to reserve  
resources that are shared between the two ports. The state of  
the semaphore indicates that a resource is in use. For exam-  
ple, if the left port wants to request a given resource, it sets a  
latch by writing a zero to a semaphore location. The left port  
then verifies its success in setting the latch by reading it. After  
writing to the semaphore, SEM or OE must be deasserted for  
If a location is being written to by one port and the opposite  
port attempts to read that location, a port-to-port flowthrough  
delay must occur before the data is read on the output; other-  
wise the data read is not deterministic. Data will be valid on the  
port t  
after the data is presented on the other port.  
DDD  
t
before attempting to read the semaphore. The sema-  
SOP  
Read Operation  
phore value will be available t  
+ t  
after the rising edge  
SWRD  
DOE  
of the semaphore write. If the left port was successful (reads  
a zero), it assumes control of the shared resource, otherwise  
(reads a one) it assumes the right port has control and contin-  
ues to poll the semaphore. When the right side has relin-  
quished control of the semaphore (by writing a one), the left  
side will succeed in gaining control of the semaphore. If the left  
side no longer requires the semaphore, a one is written to  
cancel its request.  
When reading the device, the user must assert both the OE  
and CE pins. Data will be available t  
after CE or t  
after  
ACE  
DOE  
OE is asserted. If the user wishes to access a semaphore flag,  
then the SEM pin must be asserted instead of the CE pin, and  
OE must also be asserted.  
Interrupts  
The upper two memory locations may be used for message  
passing. The highest memory location (FFF for the  
CY7C024V/41V, 1FFF for the CY7C025V/51V, 3FFF for the  
CY7C026V/36V) is the mailbox for the right port and the sec-  
ond-highest memory location (FFE for the CY7C024V/41V,  
1FFE for the CY7C025V/51V, 3FFE for the CY7C026V/36V) is  
the mailbox for the left port. When one port writes to the other  
ports mailbox, an interrupt is generated to the owner. The in-  
terrupt is reset when the owner reads the contents of the mail-  
box. The message is user defined.  
Semaphores are accessed by asserting SEM LOW. The SEM  
pin functions as a chip select for the semaphore latches (CE  
must remain HIGH during SEM LOW). A  
represents the  
02  
semaphore address. OE and R/W are used in the same man-  
ner as a normal memory access. When writing or reading a  
semaphore, the other address pins have no effect.  
When writing to the semaphore, only I/O is used. If a zero is  
0
written to the left port of an available semaphore, a one will  
appear at the same semaphore address on the right port. That  
semaphore can now only be modified by the side showing zero  
(the left port in this case). If the left port now relinquishes con-  
trol by writing a one to the semaphore, the semaphore will be  
set to one for both sides. However, if the right port had request-  
ed the semaphore (written a zero) while the left port had con-  
trol, the right port would immediately own the semaphore as  
soon as the left port released it. Table 3 shows sample sema-  
phore operations.  
Each port can read the other ports mailbox without resetting  
the interrupt. The active state of the busy signal (to a port)  
prevents the port from setting the interrupt to the winning port.  
Also, an active busy to a port prevents that port from reading  
its own mailbox and, thus, resetting the interrupt to it.  
If an application does not require message passing, do not con-  
nect the interrupt pin to the processors interrupt request input pin.  
The operation of the interrupts and their interaction with Busy  
are summarized in Table 2.  
When reading a semaphore, all sixteen/eighteen data lines  
output the semaphore value. The read value is latched in an  
output register to prevent the semaphore from changing state  
during a write from the other port. If both ports attempt to ac-  
Busy  
The CY7C024V/025V/026V and CY7C0241V/0251V/036V  
provide on-chip arbitration to resolve simultaneous memory  
location access (contention). If both portsCEs are asserted  
cess the semaphore within t  
of each other, the semaphore  
SPS  
will definitely be obtained by one side or the other, but there is  
no guarantee which side will control the semaphore.  
15  
CY7C024V/025V/026V  
CY7C0241V/0251V/036V  
PRELIMINARY  
Table 1. Non-Contending Read/Write  
Inputs  
Outputs  
CE  
H
X
L
R/W  
X
OE  
X
X
X
X
X
L
UB  
X
H
L
LB  
X
H
H
L
SEM  
H
H
H
H
H
H
H
H
X
I/O I/O  
I/O I/O  
8
Operation  
Deselected: Power-Down  
Deselected: Power-Down  
Write to Upper Byte Only  
Write to Lower Byte Only  
Write to Both Bytes  
9
17  
0
High Z  
High Z  
X
High Z  
High Z  
High Z  
L
Data In  
High Z  
L
L
H
L
Data In  
Data In  
High Z  
L
L
L
Data In  
Data Out  
High Z  
L
H
H
H
X
L
H
L
Read Upper Byte Only  
Read Lower Byte Only  
Read Both Bytes  
L
L
H
L
Data Out  
Data Out  
High Z  
L
L
L
Data Out  
High Z  
X
H
X
H
H
L
X
X
H
X
X
X
H
X
Outputs Disabled  
H
H
L
Data Out  
Data Out  
Data In  
Data Out  
Data Out  
Data In  
Read Data in Semaphore Flag  
Read Data in Semaphore Flag  
L
L
X
L
Write D into Semaphore Flag  
IN0  
X
X
H
H
L
Data In  
Data In  
Write D into Semaphore Flag  
IN0  
L
L
X
X
X
X
L
X
L
L
L
Not Allowed  
Not Allowed  
X
[44]  
Table 2. Interrupt Operation Example (assumes BUSY =BUSY =HIGH)  
L
R
Left Port  
Right Port  
Function  
Set Right INT Flag  
R/W  
CE  
L
OE  
X
A
INT  
X
R/W  
X
CE  
X
OE  
X
A
INT  
L
L
L
0L13L  
L
R
R
R
0R13R  
R
[47]  
[46]  
L
X
X
FFF  
X
L
R
[45]  
Reset Right INT Flag  
X
X
X
X
X
X
L
L
FFF (or 1/3FFF)  
H
R
[45]  
Set Left INT Flag  
X
X
L
L
L
X
1FFE (or  
1/3FFE)  
X
X
L
[47]  
[46]  
Reset Left INT Flag  
X
L
L
1FFE  
H
X
X
X
X
L
Table 3. Semaphore Operation Example  
Function I/O I/O Left I/O I/O Right  
Status  
0
17  
0
17  
No action  
1
0
0
1
1
0
1
1
1
0
1
1
Semaphore free  
Left Port has semaphore token  
Left port writes 0 to semaphore  
Right port writes 0 to semaphore  
Left port writes 1 to semaphore  
Left port writes 0 to semaphore  
Right port writes 1 to semaphore  
Left port writes 1 to semaphore  
Right port writes 0 to semaphore  
Right port writes 1 to semaphore  
Left port writes 0 to semaphore  
1
1
0
0
1
1
0
1
1
1
No change. Right side has no write access to semaphore  
Right port obtains semaphore token  
No change. Left port has no write access to semaphore  
Left port obtains semaphore token  
Semaphore free  
Right port has semaphore token  
Semaphore free  
Left port has semaphore token  
Semaphore free  
Left port writes 1 to semaphore  
Notes:  
44. See Functional Description for specific highest memory locations by device.  
45. If BUSYR=L, then no change.  
46. If BUSYL=L, then no change.  
47. See Functional Description for specific addresses by device.  
16  
CY7C024V/025V/026V  
CY7C0241V/0251V/036V  
PRELIMINARY  
Ordering Information  
4K x16 3.3V Asynchronous Dual-Port SRAM  
Speed  
Package  
Name  
Operating  
(ns)  
Ordering Code  
CY7C024V-15AC  
Package Type  
Range  
Commercial  
Commercial  
Industrial  
[1]  
15  
A100  
A100  
A100  
A100  
A100  
100-Pin Thin Quad Flat Pack  
100-Pin Thin Quad Flat Pack  
100-Pin Thin Quad Flat Pack  
100-Pin Thin Quad Flat Pack  
100-Pin Thin Quad Flat Pack  
20  
CY7C024V-20AC  
CY7C024V-20AI  
CY7C024V-25AC  
CY7C024V-25AI  
25  
Commercial  
Industrial  
8K x16 3.3V Asynchronous Dual-Port SRAM  
Speed  
Package  
Name  
Operating  
Range  
(ns)  
Ordering Code  
Package Type  
100-Pin Thin Quad Flat Pack  
100-Pin Thin Quad Flat Pack  
100-Pin Thin Quad Flat Pack  
100-Pin Thin Quad Flat Pack  
100-Pin Thin Quad Flat Pack  
[1]  
15  
CY7C025V-15AC  
A100  
A100  
A100  
A100  
A100  
Commercial  
Commercial  
Industrial  
20  
25  
CY7C025V-20AC  
CY7C025V-20AI  
CY7C025V-25AC  
CY7C025V-25AI  
Commercial  
Industrial  
16K x18 3.3V Asynchronous Dual-Port SRAM  
Speed  
(ns)  
Package  
Operating  
Range  
Ordering Code  
CY7C026V-15AC  
Name  
A100  
A100  
A100  
A100  
A100  
Package Type  
100-Pin Thin Quad Flat Pack  
100-Pin Thin Quad Flat Pack  
100-Pin Thin Quad Flat Pack  
100-Pin Thin Quad Flat Pack  
100-Pin Thin Quad Flat Pack  
[1]  
15  
Commercial  
Commercial  
Industrial  
20  
CY7C026V-20AC  
CY7C026V-20AI  
CY7C026V-25AC  
CY7C026V-25AI  
25  
Commercial  
Industrial  
4K x18 3.3V Asynchronous Dual-Port SRAM  
Speed  
Package  
Name  
Operating  
Range  
(ns)  
Ordering Code  
CY7C0241V-15AC  
CY7C0241V-20AC  
CY7C0241V-20AI  
CY7C0241V-25AC  
CY7C0241V-25AI  
Package Type  
100-Pin Thin Quad Flat Pack  
100-Pin Thin Quad Flat Pack  
100-Pin Thin Quad Flat Pack  
100-Pin Thin Quad Flat Pack  
100-Pin Thin Quad Flat Pack  
[1]  
15  
A100  
A100  
A100  
A100  
A100  
Commercial  
Commercial  
Industrial  
20  
25  
Commercial  
Industrial  
8K x18 3.3V Asynchronous Dual-Port SRAM  
Speed  
Package  
Name  
Operating  
Range  
(ns)  
Ordering Code  
CY7C0251V-15AC  
CY7C0251V-20AC  
CY7C0251V-20AI  
CY7C0251V-25AC  
CY7C0251V-25AI  
Package Type  
100-Pin Thin Quad Flat Pack  
100-Pin Thin Quad Flat Pack  
100-Pin Thin Quad Flat Pack  
100-Pin Thin Quad Flat Pack  
100-Pin Thin Quad Flat Pack  
[1]  
15  
A100  
A100  
A100  
A100  
A100  
Commercial  
Commercial  
Industrial  
20  
25  
Commercial  
Industrial  
Shaded areas contain advance information.  
17  
CY7C024V/025V/026V  
CY7C0241V/0251V/036V  
PRELIMINARY  
Ordering Information (continued)  
16K x18 3.3V Asynchronous Dual-Port SRAM  
Speed  
(ns)  
Package  
Operating  
Ordering Code  
CY7C036V-15AC  
Name  
A100  
A100  
A100  
A100  
A100  
Package Type  
Range  
Commercial  
Commercial  
Industrial  
[1]  
15  
100-Pin Thin Quad Flat Pack  
100-Pin Thin Quad Flat Pack  
100-Pin Thin Quad Flat Pack  
100-Pin Thin Quad Flat Pack  
100-Pin Thin Quad Flat Pack  
20  
CY7C036V-20AC  
CY7C036V-20AI  
CY7C036V-25AC  
CY7C036V-25AI  
25  
Commercial  
Industrial  
Shaded areas contain advance information.  
Document #: 3800678B  
Package Diagram  
100-Pin Thin Plastic Quad Flat Pack (TQFP) A100  
51-85048-B  
18  
CY7C024V/025V/026V  
CY7C0241V/0251V/036V  
PRELIMINARY  
TroubleshootingIf a problem occurs with the part, power  
down the device to ground and then power up again at slower  
ramp rate (greater than 100 ns) in order to confirm that the  
problem might be due to the POR circuit. If the dual-port func-  
tions properly once the ramp rate is slowed to 100 ns or great-  
er, then the POR circuit is at fault.  
CY7C036 Dual Port Design Consideration –  
Data Sheet Addendum  
This design consideration applies to the Internal Power-On-  
Reset (POR) circuit used on the CY7C036 and its derivatives  
listed below.  
Applicable devicesAll speed/package/temperature combi-  
nations of the following:  
Power supply rampThe devices will function properly and  
meet all data sheet specifications if the power supply ramp rate  
is greater than 100 ns. If ramp is less than 100 ns, you may  
see a non-destructive failure in which the device will not re-  
spond to changes in address or clock, but the I/Os will respond  
to the output enable.  
CY7C024V  
CY7C025V  
CY7C026V  
CY7C0241V  
CY7C0251V  
CY7C036V  
Applications considerationIf the power supply ramps in less  
than 100 ns, a small resistor (2050), a large capacitor, or an  
RC network can be connected at the output of the power sup-  
ply to ground. The addition of a resistor will help clean up the  
power lines, while the capacitor will slow down the ramp rate  
without the loss of any power. Contact your local Cypress FAE  
for assistance as needed.  
Cypress design changeCypress design team has identified  
the root cause. A permanent circuit change and die revision  
will be available beginning in October and will be identified by  
the letter Ain the part number.  
© Cypress Semiconductor Corporation, 1999. The information contained herein is subject to change without notice. Cypress Semiconductor Corporation assumes no responsibility for the use  
of any circuitry other than circuitry embodied in a Cypress Semiconductor product. Nor does it convey or imply any license under patent or other rights. Cypress Semiconductor does not authorize  
its products for use as critical components in life-support systems where a malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress  
Semiconductor products in life-support systems application implies that the manufacturer assumes all risk of such use and in doing so indemnifies Cypress Semiconductor against all charges.  

相关型号:

CY7C024V-20AI

Dual-Port SRAM, 4KX16, 20ns, CMOS, PQFP100, PLASTIC, TQFP-100
CYPRESS

CY7C024V-25ACT

Dual-Port SRAM, 4KX16, 25ns, CMOS, PQFP100, PLASTIC, TQFP-100
CYPRESS

CY7C024_0411

4K x 16/18 and 8K x 16/18 Dual-Port Static RAM with SEM, INT, BUSY
CYPRESS

CY7C024_09

4K x 16/18 and 8K x 16/18 Dual-Port Static RAM with SEM, INT, BUSY
CYPRESS

CY7C025

4K x 16/18 and 8K x 16/18 Dual-Port Static RAM with SEM, INT, BUSY
CYPRESS

CY7C025-15AC

4K x 16/18 and 8K x 16/18 Dual-Port Static RAM with SEM, INT, BUSY
CYPRESS

CY7C025-15ACT

8KX16 DUAL-PORT SRAM, 15ns, PQFP100, PLASTIC, TQFP-100
ROCHESTER

CY7C025-15AI

4K x 16/18 and 8K x 16/18 Dual-Port Static RAM with SEM, INT, BUSY
CYPRESS

CY7C025-15AI

8KX16 DUAL-PORT SRAM, 15ns, PQFP100, PLASTIC, TQFP-100
ROCHESTER

CY7C025-15AXC

4K x 16/18 and 8K x 16/18 Dual-Port Static RAM with SEM, INT, BUSY
CYPRESS

CY7C025-15AXC

8KX16 DUAL-PORT SRAM, 15ns, PQFP100, LEAD FREE, PLASTIC, TQFP-100
ROCHESTER

CY7C025-15AXCT

Dual-Port SRAM, 8KX16, 15ns, CMOS, PQFP100, LEAD FREE, PLASTIC, TQFP-100
CYPRESS