CY7C057V-12ACT [CYPRESS]

Dual-Port SRAM, 32KX36, 12ns, CMOS, PQFP144, 20 X 20 MM, 1.40 MM HEIGHT, PLASTIC, TQFP-144;
CY7C057V-12ACT
型号: CY7C057V-12ACT
厂家: CYPRESS    CYPRESS
描述:

Dual-Port SRAM, 32KX36, 12ns, CMOS, PQFP144, 20 X 20 MM, 1.40 MM HEIGHT, PLASTIC, TQFP-144

静态存储器
文件: 总23页 (文件大小:773K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
CY7C056V CY7C057V CY7C037V CY7C038V3.3V 16K/32K  
FLEx36™ Asynchronous Dual-Port Static RAM  
x 36  
CY7C056V  
CY7C057V  
3.3V 16K/32K x 36  
FLEx36™ Asynchronous Dual-Port Static  
• On-Chip arbitration logic  
Features  
• Semaphores included to permit software handshaking  
between ports  
• True dual-ported memory cells that allow simultaneous  
access of the same memory location  
• INT flag for port-to-port communication  
• Byte Select on Left Port  
• 16K x 36 organization (CY7C056V)  
• 32K x 36 organization (CY7C057V)  
• 0.25-micron CMOS for optimum speed/power  
• High-speed access: 12/15/20 ns  
• Low operating power  
• Bus Matching on Right Port  
• Depth Expansion via dual chip enables  
• Pin select for Master or Slave  
• Commercial and Industrial Temperature Ranges  
• Available in 144-Pin TQFP or 172-Ball BGA  
• Pb-Free packages available  
— Active: ICC = 250 mA (typical)  
— Standby: ISB3 = 10 µA (typical)  
• Fully asynchronous operation  
• Automatic power-down  
• Compact packages:  
— 144-Pin TQFP (20 x 20 x 1.4 mm)  
172-Ball BGA (1.0-mm pitch) (15 x 15 x.51 mm)  
• Expandable data bus to 72 bits or more using  
Master/Slave Chip Select when using more than one  
device  
Logic Block Diagram  
R/WL  
R/WR  
B0–B3  
CE0L  
CE1L  
Left  
Port  
Control  
Logic  
Right  
CE0R  
CE1R  
Port  
Control  
Logic  
CEL  
CER  
OEL  
OER  
BA  
WA  
9
9
9
9
9
9
9
9
I/O0L–I/O8L  
9/18/36  
I/O9L–I/O17L  
I/O18L–I/O26L  
I/O27L–I/O35L  
Bus  
Match  
I/O  
Control  
I/O  
Control  
I/OR  
BM  
SIZE  
14/15  
14/15  
Address  
Decode  
Address  
Decode  
True Dual-Ported  
[1]  
[1]  
A0L–A13/14L  
A0R–A13/14R  
RAM Array  
14/15  
14/15  
Interrupt  
Semaphore  
Arbitration  
SEML  
SEMR  
[2]  
[2]  
BUSYL  
INTL  
BUSYR  
INTR  
M/S  
Notes:  
1. A –A for 16K; A –A for 32K devices.  
0
13  
0
14  
2. BUSY is an output in Master mode and an input in Slave mode.  
Cypress Semiconductor Corporation  
Document #: 38-06055 Rev. *B  
198 Champion Court  
San Jose, CA 95134-1709  
408-943-2600  
Revised September 6, 2005  
[+] Feedback  
CY7C056V  
CY7C057V  
Each port has independent control pins: Chip Enable (CE)[3]  
,
Functional Description  
Read or Write Enable (R/W), and Output Enable (OE). Two  
flags are provided on each port (BUSY and INT). BUSY  
signals that the port is trying to access the same location  
currently being accessed by the other port. TheInterrupt Flag  
(INT) permits communication between ports or systems by  
means of a mail box. The semaphores are used to pass a flag,  
or token, from one port to the other to indicate that a shared  
resource is in use. The semaphore logic is comprised of eight  
shared latches. Only one side can control the latch  
(semaphore) at any time. Control of a semaphore indicates  
that a shared resource is in use. An automatic Power-Down  
feature is controlled independently on each port by Chip Select  
(CE0 and CE1) pins.  
The CY7C056V and CY7C057V are low-power CMOS 16K  
and 32K x 36 dual-port static RAMs. Various arbitration  
schemes are included on the devices to handle situations  
when multiple processors access the same piece of data. Two  
ports are provided, permitting independent, asynchronous  
access for reads and writes to any location in memory. The  
devices can be utilized as standalone 36-bit dual-port static  
RAMs or multiple devices can be combined in order to function  
as a 72-bit or wider master/slave dual-port static RAM. An M/S  
pin is provided for implementing 72-bit or wider memory appli-  
cations without the need for separate master and slave  
devices or additional discrete logic. Application areas include  
interprocessor/multiprocessor designs, communications  
status buffering, and dual-port video/graphics memory.  
The CY7C056V and CY7C057V are available in 144-Pin Thin  
Quad Plastic Flatpack (TQFP) and 172-Ball Ball Grid Array  
(BGA) packages.  
Note:  
3. CE is LOW when CE V and CE V .  
0
IL  
1
IH  
Document #: 38-06055 Rev. *B  
Page 2 of 23  
[+] Feedback  
CY7C056V  
CY7C057V  
Pin Configurations  
144-Pin Thin Quad Flatpack (TQFP)  
Top View  
I/O33L  
I/O34L  
1
2
108  
I/O33R  
I/O34R  
107  
106  
I/O35L  
A0L  
I/O35R  
A0R  
3
4
105  
104  
103  
102  
A1L  
5
6
7
A1R  
A2R  
A2L  
A3R  
A4R  
A5R  
A6R  
A7R  
A3L  
A4L  
8
101  
100  
A5L  
A6L  
A7L  
9
10  
99  
98  
97  
11  
12  
BM  
SIZE  
B0  
B1  
13  
14  
15  
96  
95  
94  
WA  
B2  
B3  
BA  
16  
17  
18  
19  
93  
92  
91  
90  
OER  
R/WR  
OEL  
R/WL  
VDD  
VSS  
VDD  
VSS  
CY7C056V (16K x 36)  
CY7C057V (32K x 36)  
VDD  
VSS  
20  
21  
89  
88  
CE0L  
CE1L  
M/S  
CE0R  
CE1R  
VDD  
22  
23  
24  
25  
87  
86  
85  
84  
83  
82  
SEML  
INTL  
SEMR  
INTR  
BUSYR  
BUSYL  
A8L  
26  
27  
A8R  
A9R  
A10R  
28  
29  
30  
31  
A9L  
81  
80  
A10L  
79  
78  
77  
A11R  
A12R  
A13R  
A11L  
A12L  
A13L  
[4]  
NC  
I/O26L  
I/O25L  
I/O24L  
32  
33  
[5]  
NC  
76  
75  
34  
35  
36  
I/O26R  
74  
73  
I/O25R  
I/O24R  
Notes:  
4. This pin is A14L for CY7C057V.  
5. This pin is A14R for CY7C057V.  
Document #: 38-06055 Rev. *B  
Page 3 of 23  
[+] Feedback  
CY7C056V  
CY7C057V  
Pin Configurations (continued)  
172-Ball Ball Grid Array (BGA)  
Top View  
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
I/O32L I/O30L  
NC  
VSS  
I/O13L VDD I/O11L I/O11R VDD I/O13R  
VSS  
NC  
I/O30R I/O32R  
A
B
C
D
E
F
A0L  
NC  
I/O33L  
A1L  
I/O29  
I/O17L I/O14L I/O12L I/O9L I/O9R I/O12R I/O14R I/O17R I/O29R I/O33R  
A0R  
NC  
I/O31L I/O27L  
NC  
I/O15L I/O10L I/O10R I/O15R  
NC  
I/O27R I/O31R A1R  
A2L  
A3L  
I/O35L I/O34L I/O28L I/O16L  
VSS  
VSS I/O16R I/O28R I/O34R I/O35R A3R  
A2R  
A4R  
VDD  
OER  
VSS  
A9R  
A11R  
A4L  
A5L  
NC  
A7L  
B3L  
A8L  
VSS  
NC  
B0L  
B1L  
NC  
NC  
NC  
NC  
NC  
NC  
BM  
NC  
A7R  
BA  
A5R  
A6R  
VDD  
OEL  
VSS  
A9L  
A6L  
SIZE  
B2L  
CE0L  
CE1L  
M/S  
CE0R  
CE1R  
VDD  
WA  
G
H
J
R/WL  
A10L  
A12L  
A13L  
A8R  
VDD  
NC  
R/WR  
A10R  
A12R  
NC  
NC  
NC  
NC  
A11L  
BUSYL  
SEML  
NC  
NC  
SEMR  
K
INTL  
I/O26L I/O25L I/O19L  
VSS  
VSS I/O19R I/O25R I/O26R INTR  
A13R BUSYR  
L
M
N
P
[4]  
[5]  
NC  
NC  
I/O22L I/O18L  
NC  
I/O7L  
I/O3L  
VDD  
I/O2L I/O2R I/O7R  
NC  
I/O18R I/O22R NC  
NC  
I/O24L I/O20L  
I/O23L I/O21L  
I/O8L  
NC  
I/O6L  
VSS  
I/O5L  
I/O4L  
I/O0L I/O0R I/O3R I/O5R  
I/O6R  
VSS  
I/O8R I/O20R I/O24R  
I/O1L I/O1R  
VDD  
I/O4R  
NC  
I/O21R I/O23R  
Selection Guide  
CY7C056V  
CY7C057V  
-12  
CY7C056V  
CY7C057V  
-15  
CY7C056V  
CY7C057V  
-20  
Unit  
ns  
Maximum Access Time  
12  
250  
55  
15  
240  
50  
20  
230  
45  
Typical Operating Current  
Typical Standby Current for ISB1 (Both Ports TTL Level)  
Typical Standby Current for ISB3 (Both Ports CMOS Level)  
mA  
mA  
µA  
10 µA  
10 µA  
10 µA  
Document #: 38-06055 Rev. *B  
Page 4 of 23  
[+] Feedback  
CY7C056V  
CY7C057V  
Pin Definitions  
Left Port  
A0L–A13/14L  
SEML  
Right Port  
A0R–A13/14R  
Description  
Address (A0–A13 for 16K; A0–A14 for 32K devices)  
Semaphore Enable  
SEMR  
CE0L, CE1L  
INTL  
CE0R, CE1R  
INTR  
Chip Enable (CE is LOW when CE0 VIL and CE1 VIH)  
Interrupt Flag  
BUSYL  
BUSYR  
I/O0R–I/O35R  
OER  
Busy Flag  
I/O0L–I/O35L  
OEL  
Data Bus Input/Output  
Output Enable  
Read/Write Enable  
R/WL  
R/WR  
B0–B3  
Byte Select Inputs. Asserting these signals enables read and write opera-  
tions to the corresponding bytes of the memory array.  
BM, SIZE  
WA, BA  
See Bus Matching for details.  
See Bus Matching for details.  
Master or Slave Select  
Ground  
M/S  
VSS  
VDD  
Power  
Maximum Ratings[6]  
Output Current into Outputs (LOW)............................. 20 mA  
Static Discharge Voltage........................................... >2001V  
(Above which the useful life may be impaired. For user guide-  
lines, not tested.)  
Latch-Up Current.................................................... >200 mA  
Storage Temperature .................................–65°C to +150°C  
Operating Range  
Ambient Temperature with  
Ambient  
Power Applied.............................................–55°C to +125°C  
Range  
Commercial  
Industrial  
Temperature  
0°C to +70°C  
–40°C to +85°C  
VDD  
Supply Voltage to Ground Potential............... –0.5V to +4.6V  
3.3V ± 165 mV  
3.3V ± 165 mV  
DC Voltage Applied to  
Outputs in High Z State............................–0.5V to VDD+0.5V  
DC Input Voltage.................................. –0.5V to VDD+0.5V[7]  
Shaded areas contain advance information.  
Notes:  
6. The voltage on any input or I/O pin can not exceed the power pin during power-up.  
7. Pulse width < 20 ns.  
Document #: 38-06055 Rev. *B  
Page 5 of 23  
[+] Feedback  
CY7C056V  
CY7C057V  
Electrical Characteristics Over the Operating Range[8, 9]  
CY7C056V  
CY7C057V  
-12  
-15  
-20  
Parameter  
Description  
Output HIGH Voltage  
VOH  
(VDD = Min., IOH = –4.0 mA)  
2.4  
2.4  
2.4  
V
VOL  
Output LOW Voltage  
(VDD = Min., IOL = +4.0 mA)  
0.4  
0.8  
0.4  
0.8  
0.4  
0.8  
V
V
V
VIH  
VIL  
IOZ  
ICC  
Input HIGH Voltage  
Input LOW Voltage  
2.0  
2.0  
2.0  
Output Leakage Current  
–10  
10 –10  
10 –10  
240 360  
265 385  
10 µA  
230 340 mA  
mA  
Operating Current (VDD = Max.,  
IOUT = 0 mA) Outputs Disabled  
Commercial  
Industrial  
250 385  
55 75  
ISB1  
Standby Current (Both Ports TTL  
Level and Deselected)  
f = fMAX  
Commercial  
Industrial  
50  
70  
45  
65 mA  
65  
95  
mA  
ISB2  
Standby Current (One Port TTL  
Level and Deselected)  
f = fMAX  
Commercial  
Industrial  
180 240  
175 230  
190 255  
165 210 mA  
mA  
ISB3  
Standby Current (Both Ports CMOS  
Level and Deselected) f =0  
Commercial  
Industrial  
0.01  
1
0.01  
0.01  
1
1
0.01  
1
mA  
mA  
ISB4  
Standby Current (One Port CMOS  
Level and Deselected) f = fMAX  
Commercial  
Industrial  
160 210  
155 200  
170 215  
145 180 mA  
mA  
[10]  
Capacitance[11]  
Parameter  
Description  
Input Capacitance  
Output Capacitance  
Test Conditions  
TA = 25°C, f = 1 MHz,  
DD = 3.3V  
Max.  
10  
Unit  
pF  
CIN  
V
COUT  
10  
pF  
Notes:  
8. Cross Levels are V – 0.2V< V < 0.2V.  
DD  
Z
9. Deselection for a port occurs if CE is HIGH or if CE is LOW.  
0
1
10. f  
= 1/t = All inputs cycling at f = 1/t (except Output Enable). f = 0 means no address or control lines change. This applies only to inputs at CMOS level  
MAX  
RC RC  
standby I  
.
SB3  
11. Tested initially and after any design or process changes that may affect these parameters.  
Document #: 38-06055 Rev. *B  
Page 6 of 23  
[+] Feedback  
CY7C056V  
CY7C057V  
AC Test Load and Waveforms  
3.3V  
Z0 = 50Ω  
R = 50Ω  
OUTPUT  
R1 = 590Ω  
[12]  
C
OUTPUT  
V
TH  
= 1.5V  
C = 5 pF  
R2 = 435Ω  
(b) Three-State Delay (Load 2)  
(a) Normal Load (Load 1)  
3.0V  
VSS  
90%  
10%  
90%  
10%  
3 ns  
ALL INPUT PULSES  
3 ns  
7
6
5
4
3
2
1
20[13]  
30 60 80 100  
200  
Capacitance (pF)  
(b) Load Derating Curve  
Notes:  
12. External AC Test Load Capacitance = 10 pF.  
13. (Internal I/O pad Capacitance = 10 pF) + AC Test Load.  
Document #: 38-06055 Rev. *B  
Page 7 of 23  
[+] Feedback  
CY7C056V  
CY7C057V  
Switching Characteristics Over the Operating Range[14]  
CY7C056V  
CY7C057V  
-12  
-15  
-20  
Parameter  
Description  
Min.  
12  
Max.  
Min.  
Max.  
Min.  
20  
Max.  
Unit  
Read Cycle  
tRC  
Read Cycle Time  
15  
3
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
tAA  
Address to Data Valid  
Output Hold From Address Change  
CE LOW to Data Valid  
OE LOW to Data Valid  
OE Low to Low Z  
12  
15  
20  
tOHA  
tACE  
tDOE  
3
3
[3, 15]  
12  
8
15  
10  
20  
12  
[3, 16, 17, 18]  
tLZOE  
0
3
3
0
0
3
3
0
0
3
3
0
[3, 16, 17, 18]  
tHZOE  
OE HIGH to High Z  
10  
10  
10  
10  
10  
10  
12  
12  
12  
[3, 14, 17, 18]  
tLZCE  
CE LOW to Low Z  
[3, 16, 17, 18]  
tHZCE  
tLZBE  
tHZBE  
CE HIGH to High Z  
Byte Enable to Low Z  
Byte Enable to High Z  
CE LOW to Power-Up  
CE HIGH to Power-Down  
Byte Enable Access Time  
[3, 18]  
tPU  
[3, 18]  
[15]  
tPD  
12  
12  
15  
15  
20  
20  
tABE  
Write Cycle  
tWC  
Write Cycle Time  
12  
10  
10  
0
15  
12  
12  
0
20  
15  
15  
0
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
[3, 15]  
tSCE  
CE LOW to Write End  
tAW  
tHA  
Address Valid to Write End  
Address Hold From Write End  
Address Set-Up to Write Start  
Write Pulse Width  
[15]  
tSA  
0
0
0
tPWE  
tSD  
10  
10  
0
12  
10  
0
15  
15  
0
Data Set-Up to Write End  
Data Hold From Write End  
R/W LOW to High Z  
tHD  
[17, 18]  
tHZWE  
10  
10  
12  
[17, 18]  
tLZWE  
R/W HIGH to Low Z  
3
3
3
[19]  
tWDD  
Write Pulse to Data Delay  
25  
20  
30  
25  
45  
30  
[19]  
tDDD  
Write Data Valid to Read Data Valid  
Busy Timing[20]  
tBLA  
tBHA  
BUSY LOW from Address Match  
BUSY HIGH from Address Mismatch  
BUSY LOW from CE LOW  
12  
12  
12  
15  
15  
15  
20  
20  
20  
ns  
ns  
ns  
tBLC  
Notes:  
14. Test conditions assume signal transition time of 3 ns or less, timing reference levels of 1.5V, input pulse levels of 0 to 3.0V, and output loading of the specified  
I
/I and 10-pF load capacitance.  
OI OH  
15. To access RAM, CE = L and SEM = H. To access semaphore, CE = H and SEM = L. Either condition must be valid for the entire t  
time.  
SCE  
16. At any given temperature and voltage condition for any given device, t  
17. Test conditions used are Load 2.  
is less than t  
and t  
is less than t  
.
HZCE  
LZCE  
HZOE  
LZOE  
18. This parameter is guaranteed by design, but it is not production tested. For information on port-to-port delay through RAM cells from writing port to reading port,  
refer to Read Timing with Busy waveform.  
19. For information on port-to-port delay through RAM cells from writing port to reading port, refer to Read Timing with Busy waveform.  
20. Test conditions used are Load 1.  
Document #: 38-06055 Rev. *B  
Page 8 of 23  
[+] Feedback  
CY7C056V  
CY7C057V  
Switching Characteristics Over the Operating Range[14] (continued)  
CY7C056V  
CY7C057V  
-12  
-15  
-20  
Parameter  
Description  
Min.  
Max.  
Min.  
Max.  
Min.  
Max.  
Unit  
Busy Timing[20]  
tBHC  
tPS  
tWB  
tWH  
BUSY HIGH from CE HIGH  
Port Set-Up for Priority  
12  
15  
20  
ns  
ns  
ns  
ns  
ns  
5
0
5
0
5
0
R/W LOW after BUSY (Slave)  
R/W HIGH after BUSY HIGH (Slave)  
BUSY HIGH to Data Valid  
11  
13  
15  
[21]  
tBDD  
12  
15  
20  
Interrupt Timing[20]  
tINS  
INT Set Time  
12  
12  
15  
15  
20  
20  
ns  
ns  
tINR  
INT Reset Time  
Semaphore Timing  
tSOP  
tSWRD  
tSPS  
SEM Flag Update Pulse (OE or SEM)  
SEM Flag Write to Read Time  
SEM Flag Contention Window  
SEM Address Access Time  
10  
5
10  
5
10  
5
ns  
ns  
ns  
ns  
5
5
5
tSAA  
12  
15  
20  
Data Retention Mode  
Timing  
The CY7C056V and CY7C057V are designed with battery  
backup in mind. Data retention voltage and supply current are  
guaranteed over temperature. The following rules ensure data  
retention:  
Data Retention Mode  
3.15V  
V
CC  
3.15V  
V
CC  
> 2.0V  
t
RC  
1. Chip Enable (CE)[3] must be held HIGH during data  
retention, within VDD to VDD – 0.2V.  
V
CC  
to V – 0.2V  
CC  
V
IH  
CE  
2. CE must be kept between VDD – 0.2V and 70% of VDD  
during the power-up and power-down transitions.  
3. The RAM can begin operation >tRC after VDD reaches the  
minimum operating voltage (3.15 volts).  
Parameter  
ICCDR1  
Test Conditions[22]  
Max.  
Unit  
µA  
@ VDDDR = 2V  
50  
Notes:  
21. t  
is a calculated parameter and is the greater of t  
–t  
(actual) or t  
–t (actual).  
DDD SD  
BDD  
WDD PWE  
22. CE = V , V = V to V , T = 25°C. This parameter is guaranteed but not tested.  
DD  
in  
SS  
DD  
A
Document #: 38-06055 Rev. *B  
Page 9 of 23  
[+] Feedback  
CY7C056V  
CY7C057V  
Switching Waveforms  
Read Cycle No. 1 (Either Port Address Access)[23, 24, 25]  
t
RC  
ADDRESS  
DATA OUT  
t
AA  
t
t
OHA  
OHA  
PREVIOUS DATAVALID  
DATA VALID  
Read Cycle No. 2 (Either Port CE/OE Access)[23, 26, 27]  
t
ACE  
CE0, CE1, B0,B1,  
B2, B3, WA, BA  
SELECT VALID  
t
HZCE  
t
DOE  
OE  
t
HZOE  
t
LZOE  
DATA VALID  
DATA OUT  
t
LZCE  
t
PU  
t
PD  
ICC  
CURRENT  
ISB  
Read Cycle No. 3 (Either Port)[23, 25, 26, 27]  
t
RC  
ADDRESS  
t
AA  
t
OHA  
B0, B1, B2,  
B3, WA, BA  
BYTE SELECT VALID  
t
HZCE  
t
t
LZCE  
LZCE  
t
ABE  
CE0, CE1  
CHIP SELECT VALID  
t
ACE  
t
HZCE  
DATA OUT  
Notes:  
23. R/W is HIGH for read cycles.  
24. Device is continuously selected. CE = V , CE =V , and B , B , B , B , WA, BA are valid. This waveform cannot be used for semaphore reads.  
0
IL  
1
IH  
0
1
2
3
25. OE = V  
.
IL  
26. Address valid prior to or coinciding with CE transition LOW and CE transition HIGH.  
0
1
27. To access RAM, CE = V , CE =V , B , B , B , B , WA, BA are valid, and SEM = V . To access semaphore, CE = V , CE =V and SEM = V or CE  
0
IL  
1
IH  
0
1
2
3
IH  
0
IH  
1
IL  
IL  
0
and SEM=V , and CE = B = B = B = B , =V .  
IH  
IL  
1
0
1
2
3
Document #: 38-06055 Rev. *B  
Page 10 of 23  
[+] Feedback  
CY7C056V  
CY7C057V  
Switching Waveforms (continued)  
Write Cycle No. 1: R/W Controlled Timing[28, 29, 30, 31]  
t
WC  
ADDRESS  
OE  
[34]  
t
HZOE  
t
AW  
[32, 33]  
CE0, CE1  
CHIP SELECT VALID  
[31]  
t
t
t
HA  
SA  
PWE  
R/W  
[34]  
HZWE  
t
t
LZWE  
NOTE 35  
NOTE 35  
DATAOUT  
DATA IN  
t
t
HD  
SD  
Write Cycle No. 2: CE Controlled Timing[28, 29, 30, 36]  
t
WC  
ADDRESS  
t
AW  
[32, 33]  
CHIP SELECT VALID  
CE0, CE1  
t
t
t
HA  
SA  
SCE  
R/W  
t
t
HD  
SD  
DATA IN  
Notes:  
28. R/W must be HIGH during all address transitions.  
29. A write occurs during the overlap (t or t ) of CE =V and CE =V or SEM=V and B LOW.  
0–3  
SCE  
PWE  
0
IL  
1
IH  
IL  
30. t is measured from the earlier of CE /CE or R/W or (SEM or R/W) going HIGH at the end of Write Cycle.  
HA  
0
1
31. If OE is LOW during a R/W controlled write cycle, the write pulse width must be the larger of t  
or (t  
+ t ) to allow the I/O drivers to turn off and data  
PWE  
HZWE SD  
to be placed on the bus for the required t . If OE is HIGH during an R/W controlled write cycle, this requirement does not apply and the write pulse can be  
SD  
as short as the specified t  
.
PWE  
32. To access RAM, CE = V , CE =SEM = V .  
0
IL  
1
IH  
33. To access byte B , CE = V , B = V , CE =SEM = V  
.
.
.
.
0
0
IL  
0
IL  
1
IH  
IH  
IH  
IH  
To access byte B , CE = V , B = V , CE =SEM = V  
1
2
0
0
IL  
IL  
1
2
IL  
IL  
1
1
To access byte B , CE = V , B = V , CE =SEM = V  
To access byte B , CE = V , B = V , CE =SEM = V  
3
0
IL  
3
IL  
1
34. Transition is measured ±150 mV from steady state with a 5-pF load (including scope and jig). This parameter is sampled and not 100% tested.  
35. During this period, the I/O pins are in the output state, and input signals must not be applied.  
36. If the CE LOW and CE HIGH or SEM LOW transition occurs simultaneously with or after the R/W LOW transition, the outputs remain in the high-impedance  
0
1
state.  
Document #: 38-06055 Rev. *B  
Page 11 of 23  
[+] Feedback  
CY7C056V  
CY7C057V  
Switching Waveforms (continued)  
Semaphore Read After Write Timing, Either Side[37]  
t
t
OHA  
SAA  
A0–A2  
VALID ADRESS  
VALID ADRESS  
t
AW  
t
ACE  
t
HA  
SEM  
t
t
SOP  
SCE  
t
SD  
I/O0  
DATA VALID  
DATA  
VALID  
IN  
OUT  
t
HD  
t
t
PWE  
SA  
R/W  
OE  
t
t
DOE  
SWRD  
t
SOP  
WRITE CYCLE  
READ CYCLE  
Timing Diagram of Semaphore Contention[38, 39, 40]  
A0L–A2L  
MATCH  
R/WL  
SEM L  
t
SPS  
A0R–A2R  
MATCH  
R/WR  
SEMR  
Notes:  
37. CE = HIGH and CE = LOW for the duration of the above timing (both write and read cycle).  
0
1
38. I/O = I/O = LOW (request semaphore); CE = CE = HIGH and CE = CE =LOW.  
0R  
0L  
0R  
0L  
1R  
1L  
39. Semaphores are reset (available to both ports) at cycle start.  
40. If t is violated, the semaphore will definitely be obtained by one side or the other, but which side will get the semaphore is unpredictable.  
SPS  
Document #: 38-06055 Rev. *B  
Page 12 of 23  
[+] Feedback  
CY7C056V  
CY7C057V  
Switching Waveforms (continued)  
Timing Diagram of Write with BUSY (M/S = HIGH)[41]  
t
WC  
ADDRESSR  
R/WR  
MATCH  
t
PWE  
t
t
HD  
SD  
DATA IN R  
VALID  
t
PS  
ADDRESSL  
MATCH  
t
BLA  
t
BHA  
BUSYL  
t
BDD  
t
DDD  
DATAOUTL  
VALID  
t
WDD  
Write Timing with Busy Input (M/S = LOW)  
t
PWE  
R/W  
t
t
WH  
WB  
BUSY  
Note:  
41. CE = CE = LOW; CE = CE = HIGH.  
0L  
0R  
1L  
1R  
Document #: 38-06055 Rev. *B  
Page 13 of 23  
[+] Feedback  
CY7C056V  
CY7C057V  
Switching Waveforms (continued)  
Busy Timing Diagram No. 1 (CE Arbitration)[42]  
CEL Valid First:  
ADDRESSL,R  
CE0L, CE1L  
ADDRESS MATCH  
CHIP SELECT VALID  
t
PS  
CE0R, CE1R  
CHIP SELECT VALID  
t
t
BHC  
BLC  
BUSYR  
CER Valid First:  
ADDRESS  
ADDRESS MATCH  
L,R  
CE0L, CE1L  
CHIP SELECT VALID  
t
PS  
CE0R, CE1R  
BUSYL  
CHIP SELECT VALID  
t
t
BHC  
BLC  
Busy Timing Diagram No. 2 (Address Arbitration)[42]  
Left Address Valid First:  
t
or t  
WC  
RC  
ADDRESSL  
ADDRESS MATCH  
ADDRESS MISMATCH  
t
PS  
ADDRESSR  
BUSYR  
t
t
BHA  
BLA  
Right Address Valid First:  
t
or t  
WC  
RC  
ADDRESSR  
ADDRESS MATCH  
ADDRESS MISMATCH  
t
PS  
ADDRESSL  
BUSR  
t
t
BHA  
BLA  
Note:  
42. If t is violated, the busy signal will be asserted on one side or the other, but there is no guarantee to which side BUSY will be asserted.  
PS  
Document #: 38-06055 Rev. *B  
Page 14 of 23  
[+] Feedback  
CY7C056V  
CY7C057V  
Switching Waveforms (continued)  
Interrupt Timing Diagrams  
Left Side Sets INTR:  
t
WC  
ADDRESSL  
WRITE 3FFF (7FFF for CY7C057V)  
[43]  
t
HA  
CE0L, CE1L  
R/WL  
CHIP SELECT VALID  
INTR  
[44]  
INS  
t
Right Side Clears INTR:  
t
RC  
READ 3FFF  
(7FFF for CY7C057V)  
ADDRESSR  
CE0R, CE1R  
CHIP SELECT VALID  
[44]  
t
INR  
R/W  
R
OER  
INTR  
Right Side Sets INTL:  
t
WC  
ADDRESSR  
WRITE 3FFE (7FFE for CY7C057V)  
[43]  
t
HA  
CE0R, CE1R  
R/WR  
CHIP SELECT VALID  
INTR  
[44]  
INS  
t
Left Side Clears INTL:  
t
RC  
READ 3FFE  
(7FFF for CY7C057V)  
ADDRESSL  
CE0L, CE1L  
R/WL  
CHIP SELECT VALID  
[44]  
t
INR  
OEL  
INTL  
Notes:  
43. t depends on which enable pin (CE /CE or R/W ) is deasserted first.  
HA  
0L  
1L  
L
44. t  
or t  
depends on which enable pin (CE /CE or R/W ) is asserted last.  
INS  
INR 0L 1L L  
Document #: 38-06055 Rev. *B  
Page 15 of 23  
[+] Feedback  
CY7C056V  
CY7C057V  
both ports’ Chip Enables[3] are asserted and an address match  
occurs within tPS of each other, the busy logic will determine  
which port has access. If tPS is violated, one port will definitely  
gain permission to the location, but it is not predictable which  
port will get that permission. BUSY will be asserted tBLA after  
an address match or tBLC after CE is taken LOW.  
Architecture  
The CY7C056V and CY7C057V consist of an array of 16K and  
32K words of 36 bits each of dual-port RAM cells, I/O and  
address lines, and control signals (CE0/CE1, OE, R/W). These  
control pins permit independent access for reads or writes to  
any location in memory. To handle simultaneous writes/reads  
to the same location, a BUSY pin is provided on each port. Two  
Interrupt (INT) pins can be utilized for port-to-port communi-  
cation. Two Semaphore (SEM) control pins are used for  
allocating shared resources. With the M/S pin, the devices can  
function as a master (BUSY pins are outputs) or as a slave  
(BUSY pins are inputs). The devices also have an automatic  
power-down feature controlled by CE0/CE1. Each port is  
provided with its own Output Enable control (OE), which allows  
data to be read from the device.  
Master/Slave  
A M/S pin is provided in order to expand the word width by  
configuring the device as either a master or a slave. The BUSY  
output of the master is connected to the BUSY input of the  
slave. This will allow the device to interface to a master device  
with no external components. Writing to slave devices must be  
delayed until after the BUSY input has settled (tBLC or tBLA),  
otherwise, the slave chip may begin a write cycle during a  
contention situation. When tied HIGH, the M/S pin allows the  
device to be used as a master and, therefore, the BUSY line  
is an output. BUSY can then be used to send the arbitration  
outcome to a slave.  
Functional Description  
Write Operation  
Semaphore Operation  
Data must be set up for a duration of tSD before the rising edge  
of R/W in order to guarantee a valid write. A write operation is  
controlled by either the R/W pin (see Write Cycle No. 1  
waveform) or the CE0 and CE1 pins (see Write Cycle No. 2  
waveform). Required inputs for non-contention operations are  
summarized in Table 1.  
The CY7C056V and CY7C057V provide eight semaphore  
latches, which are separate from the dual-port memory  
locations. Semaphores are used to reserve resources that are  
shared between the two ports. The state of the semaphore  
indicates that a resource is in use. For example, if the left port  
wants to request a given resource, it sets a latch by writing a  
zero to a semaphore location. The left port then verifies its  
success in setting the latch by reading it. After writing to the  
semaphore, SEM or OE must be deasserted for tSOP before  
attempting to read the semaphore. The semaphore value will  
be available tSWRD + tDOE after the rising edge of the  
semaphore write. If the left port was successful (reads a 0), it  
assumes control of the shared resource, otherwise (reads a 1)  
it assumes the right port has control and continues to poll the  
semaphore. When the right side has relinquished control of the  
semaphore (by writing a 1), the left side will succeed in gaining  
control of the semaphore. If the left side no longer requires the  
semaphore, a one is written to cancel its request.  
If a location is being written to by one port and the opposite  
port attempts to read that location, a port-to-port flowthrough  
delay must occur before the data is read on the output;  
otherwise the data read is not deterministic. Data will be valid  
on the port tDDD after the data is presented on the other port.  
Read Operation  
When reading the device, the user must assert both the OE  
and CE[3] pins. Data will be available tACE after CE or tDOE  
after OE is asserted. If the user wishes to access a semaphore  
flag, then the SEM pin must be asserted instead of the CE[3]  
pin, and OE must also be asserted.  
Interrupts  
Semaphores are accessed by asserting SEM LOW. The SEM  
pin functions as a chip select for the semaphore latches. For  
normal semaphore access, CE[3] must remain HIGH during  
SEM LOW. A CE active semaphore access is also available.  
The semaphore may be accessed through the right port with  
CE0R/CE1R active by asserting the Bus Match Select (BM) pin  
LOW and asserting the Bus Size Select (SIZE) pin HIGH. The  
semaphore may be accessed through the left port with  
CE0L/CE1L active by asserting all B0–3 Byte Select pins HIGH.  
A0–2 represents the semaphore address. OE and R/W are  
used in the same manner as a normal memory access. When  
writing or reading a semaphore, the other address pins have  
no effect.  
The upper two memory locations may be used for message  
passing. The highest memory location (3FFF for the  
CY7C056V, 7FFF for the CY7C057V) is the mailbox for the  
right port and the second-highest memory location (3FFE for  
the CY7C056V, 7FFE for the CY7C057V) is the mailbox for the  
left port. When one port writes to the other port’s mailbox, an  
interrupt is generated to the owner. The interrupt is reset when  
the owner reads the contents of the mailbox. The message is  
user defined.  
Each port can read the other port’s mailbox without resetting  
the interrupt. The active state of the busy signal (to a port)  
prevents the port from setting the interrupt to the winning port.  
Also, an active busy to a port prevents that port from reading  
its own mailbox and, thus, resetting the interrupt to it.  
When writing to the semaphore, only I/O0 is used. If a zero is  
written to the left port of an available semaphore, a 1 will  
appear at the same semaphore address on the right port. That  
semaphore can now only be modified by the port showing 0  
(the left port in this case). If the left port now relinquishes  
control by writing a 1 to the semaphore, the semaphore will be  
set to 1 for both ports. However, if the right port had requested  
the semaphore (written a 0) while the left port had control, the  
right port would immediately own the semaphore as soon as  
the left port released it. Table 3 shows sample semaphore  
operations.  
If an application does not require message passing, do not  
connect the interrupt pin to the processor’s interrupt request  
input pin.  
The operation of the interrupts and their interaction with Busy  
are summarized in Table 2.  
Busy  
The CY7C056V and CY7C057V provide on-chip arbitration to  
resolve simultaneous memory location access (contention). If  
Document #: 38-06055 Rev. *B  
Page 16 of 23  
[+] Feedback  
CY7C056V  
CY7C057V  
Table 1. Non-Contending Read/Write[3]  
Inputs  
Outputs  
I/O0I/O35  
High Z  
CE  
H
X
L
R/W  
X
OE  
X
X
X
X
L
B0, B1, B2, B3  
SEM  
H
Operation  
X
All H  
H/L  
All L  
H/L  
All L  
X
Deselected: Power-Down  
Deselected: Power-Down  
Write to Selected Bytes Only  
Write to All Bytes  
X
H
High Z  
L
H
Data In and High Z  
Data In  
L
L
H
L
H
H
Data Out and High Z  
Data Out  
Read Selected Bytes Only  
Read All Bytes  
L
H
L
H
X
H
X
H
X
H
L
X
High Z  
Outputs Disabled  
H
X
L
Data Out  
Read Data in Semaphore Flag  
Read Data in Semaphore Flag  
Write DIN0 into Semaphore Flag  
H
L
All H  
X
L
Data Out  
X
L
Data In  
X
L
X
X
All H  
L
L
Data In  
Write DIN0 into Semaphore Flag  
Not Allowed  
X
Any L  
Table 2. Interrupt Operation Example (assumes BUSYL = BUSYR = HIGH)[3, 45]  
Left Port  
Right Port  
Function  
R/WL CEL  
OEL  
X
A0L–13L  
3FFF  
X
INTL R/WR CER  
OER  
X
A0R–13R  
X
INTR  
L[47]  
H[46]  
X
Set Right INTR Flag  
Reset Right INTR Flag  
Set Left INTL Flag  
Reset Left INTL Flag  
L
X
X
X
L
X
X
L
X
X
X
X
L
X
L
L
X
X
L
3FFF  
3FFE  
X
X
X
L[46]  
H[47]  
X
L
3FFE  
X
X
X
Table 3. Semaphore Operation Example  
Function I/O0I/O8 Left I/O0I/O8 Right  
Status  
No Action  
1
0
0
1
1
1
Semaphore Free  
Left Port Has Semaphore Token  
Left Port Writes 0 to Semaphore  
Right Port Writes 0 to  
Semaphore  
No Change. Right Side Has No Write Access to  
Semaphore  
Left Port Writes 1 to Semaphore  
Left Port Writes 0 to Semaphore  
1
1
0
0
0
1
Right Port Obtains Semaphore Token  
No Change. Left Port Has No Write Access to Semaphore  
Left Port Obtains Semaphore Token  
Right Port Writes 1 to  
Semaphore  
Left Port Writes 1 to Semaphore  
1
1
1
0
Semaphore Free  
Right Port Writes 0 to  
Semaphore  
Right Port Has Semaphore Token  
Right Port Writes 1 to  
Semaphore  
1
1
Semaphore Free  
Left Port Writes 0 to Semaphore  
0
1
1
1
Left Port Has Semaphore Token  
Semaphore Free  
Left Port Writes 1 to Semaphore  
Notes:  
45. A  
and A  
, 7FFF/7FFE for the CY7C057V.  
0R–14R  
0L–14L  
46. If BUSY =L, then no change.  
R
47. If BUSY =L, then no change.  
L
Document #: 38-06055 Rev. *B  
Page 17 of 23  
[+] Feedback  
CY7C056V  
CY7C057V  
Right Port Configuration[48, 49, 50]  
BM  
0
SIZE  
Configuration  
I/O Pins Used  
0
1
0
1
x36 (Standard)  
I/O0–35  
I/O0–35  
I/O0–17  
I/O0–8  
0
x36 (CE Active SEM Mode)  
1
x18  
x9  
1
Right Port Operation  
Configuration  
WA  
X
0
BA  
X
X
X
0
Data Accessed[51]  
DQ0–35  
I/O Pins Used  
I/O0–35  
I/O0–17  
I/O0–17  
I/O0–8  
x36  
x18  
x18  
x9  
DQ0–17  
1
DQ18–35  
DQ0–8  
0
x9  
0
1
DQ9–17  
I/O0–8  
x9  
1
0
DQ18–26  
DQ27–35  
I/O0–8  
x9  
1
1
I/O0–8  
Left Port Operation  
Control Pin  
Effect  
B0  
B1  
B2  
B3  
I/O0–8 Byte Control  
I/O9–17 Byte Control  
I/O18–26 Byte Control  
I/O27–35 Byte Control  
When reading a semaphore, data lines 0 through 8 output the  
semaphore value. The read value is latched in an output  
register to prevent the semaphore from changing state during  
a write from the other port. If both ports attempt to access the  
semaphore within tSPS of each other, the semaphore will definitely  
be obtained by one side or the other, but there is no guarantee  
which side will control the semaphore.  
Bus Match Operation  
The right port of the CY7C057V 32Kx36 dual-port SRAM can  
be configured in a 36-bit long-word, 18-bit word, or 9-bit byte  
format for data I/O. The data lines are divided into four lanes,  
each consisting of 9 bits (byte-size data lines).  
BA WA  
When reading a semaphore, data lines 0 through 8 output the  
semaphore value. The read value is latched in an output  
register to prevent the semaphore from changing state during  
a write from the other port. If both ports attempt to access the  
semaphore within tSPS of each other, the semaphore will definitely  
be obtained by one side or the other, but there is no guarantee  
which side will control the semaphore.  
9
/
9
/
9
/
CY7C056V  
CY7C057V  
16K/32Kx36  
Dual Port  
x36  
/
x9, x18, x36  
/
9
/
When reading a semaphore, data lines 0 through 8 output the  
semaphore value. The read value is latched in an output  
register to prevent the semaphore from changing state during  
a write from the other port. If both ports attempt to access the  
semaphore within tSPS of each other, the semaphore will definitely  
be obtained by one side or the other, but there is no guarantee  
which side will control the semaphore.  
BM SIZE  
The Bus Match Select (BM) pin works with Bus Size Select  
(SIZE) to select bus width (long-word, word, or byte) for the  
right port of the dual-port device. The data sequencing  
arrangement is selected using the Word Address (WA) and  
Byte Address (BA) input pins. A logic “0” applied to both the  
Bus Match Select (BM) pin and to the Bus Size Select (SIZE)  
Notes:  
48. BM and SIZE must be configured one clock cycle before operation is guaranteed.  
49. In x36 mode WA and BA pins are “Don’t Care.”  
50. In x18 mode BA pin is a “Don’t Care.”  
51. DQ represents data output of the chip.  
Document #: 38-06055 Rev. *B  
Page 18 of 23  
[+] Feedback  
CY7C056V  
CY7C057V  
pin will select long-word (36-bit) operation. A logic “1” level  
applied to the Bus Match Select (BM) pin will enable either  
byte or word bus width operation on the right port I/Os  
depending on the logic level applied to the SIZE pin. The level  
of Bus Match Select (BM) must be static throughout device  
operation.  
Word (18-bit) Operation  
Word (18-bit) bus sizing operation is enabled when Bus Match  
Select (BM) is set to a logic “1” and the Bus SIze Select (SIZE)  
pin is set to a logic “0.” In this mode, 18 bits of data are ported  
through I/O0R–17R. The level applied to the Word Address  
(WA) pin during word bus size operation determines whether  
the most-significant or least-significant data bits are ported  
through the I/O0R–17R pins in an Upper Word/Lower Word  
select fashion (note that when the right port is configured for  
word size operation, the Byte Address pin has no application  
and its input is “Don’t Care”[52]).  
Normally, the Bus Size Select (SIZE) pin would have no  
standard-cycle application when BM = LOW and the device is  
in long-word (36-bit) operation. A “special” mode has been  
added however to disable ALL right port I/Os while the chip is  
active. This I/O disable mode is implemented when SIZE is  
forced to a logic “1” while BM is at a logic “0”. It allows the  
bus-matched port to support a chip enable “Don’t Care”  
semaphore read/write access similar to that provided on the  
left port of the device when all Byte Select (B0–3) control inputs  
are deselected.  
Device operation is accomplished by treating the WA pin as an  
additional address input and using standard cycle address and  
data setup/hold times. When transferring data in word (18-bit)  
bus match format, the unused I/O18R–35R pins are  
three-stated.  
The Bus Size Select (SIZE) pin selects either a byte or word  
data arrangement on the right port when the Bus Match Select  
(BM) pin is HIGH. A logic “1” on the SIZE pin when the BM pin  
is HIGH selects a byte bus (9-bit) data arrangement). A logic  
“0” on the SIZE pin when the BM pin is HIGH selects a word  
bus (18-bit) data arrangement. The level of the Bus Size Select  
(SIZE) must also be static throughout normal device operation.  
Byte (9-bit) Operation  
Byte (9-bit) bus sizing operation is enabled when Bus Match  
Select (BM) is set to a logic “1” and the Bus Size Select (SIZE)  
pin is set to a logic “1.” In this mode, data is ported through  
I/O0R–8R in four groups of 9-bit bytes. A particular 9-bit byte  
group is selected according to the levels applied to the Word  
Address (WA) and Byte Address (BA) input pins.  
Long-Word (36-bit) Operation  
Bus Match Select (BM) and Bus Size Select (SIZE) set to a  
logic “0” will enable standard cycle long-word (36-bit)  
operation. In this mode, the right port’s I/O operates essentially  
in an identical fashion as does the left port of the dual-port  
SRAM. However no Byte Select control is available. All 36 bits  
of the long-word are shifted into and out of the right port’s I/O  
buffer stages. All read and write timing parameters may be  
identical with respect to the two data ports. When the right port  
is configured for a long-word size, Word Address (WA), and  
Byte Address (BA) pins have no application and their inputs  
are “Don’t Care”[52] for the external user.  
I/Os  
Rank  
WA  
1
BA  
1
I/O27R–35R  
I/O18R–26R  
I/O9R–17R  
I/O0R–8R  
Upper-MSB  
Lower-MSB  
Upper-MSB  
Lower-MSB  
1
0
0
1
0
0
Device operation is accomplished by treating the Word  
Address (WA) pin and the Byte Address (BA) pins as  
additional address inputs having standard cycle address and  
data set-up/hold times. When transferring data in byte (9-bit)  
bus match format, the unused I/O9R–35R pins are three-stated.  
Note:  
52. Even though a logic level applied to a “Don’t Care” input will not change the logical operation of the dual-port, inputs that are temporarily a “Don’t Care” (along  
with unused inputs) must not be allowed to float. They must be forced either HIGH or LOW.  
Document #: 38-06055 Rev. *B  
Page 19 of 23  
[+] Feedback  
CY7C056V  
CY7C057V  
Ordering Information  
Speed  
Package  
Name  
Operating  
Range  
(ns)  
Ordering Code  
Package Type  
144-Pin Thin Quad Flat Pack  
144-Pin Pb-Free Thin Quad Flat Pack  
172-Ball Ball Grid Array (BGA)  
144-Pin Thin Quad Flat Pack  
144-Pin Pb-Free Thin Quad Flat Pack  
172-Ball Ball Grid Array (BGA)  
144-Pin Thin Quad Flat Pack  
172-Ball Ball Grid Array (BGA)  
12  
CY7C056V-12AC  
CY7C056V-12AXC  
CY7C056V-12BBC  
CY7C056V-15AC  
CY7C056V-15AXC  
CY7C056V-15BBC  
CY7C056V-20AC  
CY7C056V-20BBC  
A144  
A144  
Commercial  
Commercial  
Commercial  
BB172  
A144  
15  
20  
A144  
BB172  
A144  
BB172  
Speed  
(ns)  
Package  
Name  
Operating  
Range  
Ordering Code  
CY7C057V-12AC  
CY7C057V-12AXC  
CY7C057V-12BBC  
CY7C057V-15AC  
CY7C057V-15AXC  
CY7C057V-15AI  
Package Type  
144-Pin Thin Quad Flat Pack  
144-Pin Pb-Free Thin Quad Flat Pack  
172-Ball Ball Grid Array (BGA)  
144-Pin Thin Quad Flat Pack  
144-Pin Pb-Free Thin Quad Flat Pack  
144-Pin Thin Quad Flat Pack  
144-Pin Pb-Free Thin Quad Flat Pack  
172-Ball Ball Grid Array (BGA)  
172-Ball Ball Grid Array (BGA)  
144-Pin Thin Quad Flat Pack  
172-Ball Ball Grid Array (BGA)  
12  
A144  
A144  
Commercial  
BB172  
A144  
15  
Commercial  
Industrial  
A144  
A144  
CY7C057V-15AXI  
CY7C057V-15BBC  
CY7C057V-15BBI  
CY7C057V-20AC  
CY7C057V-20BBC  
A144  
BB172  
BB172  
A144  
Commercial  
Industrial  
20  
Commercial  
BB172  
Document #: 38-06055 Rev. *B  
Page 20 of 23  
[+] Feedback  
CY7C056V  
CY7C057V  
Package Diagrams  
144-Pin Plastic Thin Quad Flat Pack (TQFP) A144  
144-Pin Pb-Free Plastic Thin Quad Flat Pack (TQFP) A144  
51-85047-*A  
Document #: 38-06055 Rev. *B  
Page 21 of 23  
[+] Feedback  
CY7C056V  
CY7C057V  
Package Diagrams (continued)  
172-Ball FBGA (15 x 15 x 1.25 mm) BB172  
51-85114-*B  
FLEx36 is a trademark of Cypress Semiconductor Corporation. All products and company names mentioned in this document  
may be the trademarks of their respective holders.  
Document #: 38-06055 Rev. *B  
Page 22 of 23  
© Cypress Semiconductor Corporation, 2005. The information contained herein is subject to change without notice. Cypress Semiconductor Corporation assumes no responsibility for the use  
of any circuitry other than circuitry embodied in a Cypress product. Nor does it convey or imply any license under patent or other rights. Cypress products are not warranted nor intended to be  
used for medical, life support, life saving, critical control or safety applications, unless pursuant to an express written agreement with Cypress. Furthermore, Cypress does not authorize its  
products for use as critical components in life-support systems where a malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress  
products in life-support systems application implies that the manufacturer assumes all risk of such use and in doing so indemnifies Cypress against all charges.  
[+] Feedback  
CY7C056V  
CY7C057V  
Document History Page  
Document Title: CY7C056V/CY7C057V 3.3V 16K/32K x 36 FLEx36™ Asynchronous Dual-Port Static RAM  
Document Number: 38-06055  
Issue  
Date  
Orig. of  
REV.  
**  
ECN NO.  
110214  
122305  
393770  
Change Description of Change  
12/16/01  
12/27/02  
See ECN  
SZV  
RBI  
YIM  
Change from Spec number: 38-00742 to 38-06055  
*A  
Power up requirements added to Maximum Ratings Information  
*B  
Added Pb-Free Logo  
Added Pb-Free parts to ordering information:  
CY7C056V-12AXC, CY7C056V-15AXC, CY7C057V-12AXC,  
CY7C057V-15AXC, CY7CO57V-15AXI  
Document #: 38-06055 Rev. *B  
Page 23 of 23  
[+] Feedback  

相关型号:

CY7C057V-12AXC

3.3V 16K/32K x 36 FLEx36⑩ Asynchronous Dual-Port Static
CYPRESS

CY7C057V-12AXCT

Dual-Port SRAM, 32KX36, 12ns, CMOS, PQFP144, 20 X 20 MM, 1.40 MM HEIGHT, LEAD FREE, PLASTIC, TQFP-144
CYPRESS

CY7C057V-12BBC

3.3V 16K/32K x 36 FLEx36 Asynchronous Dual-Port Static RAM
CYPRESS

CY7C057V-15AC

3.3V 16K/32K x 36 FLEx36 Asynchronous Dual-Port Static RAM
CYPRESS

CY7C057V-15ACT

Dual-Port SRAM, 32KX36, 15ns, CMOS, PQFP144, 20 X 20 MM, 1.40 MM HEIGHT, PLASTIC, TQFP-144
CYPRESS

CY7C057V-15AI

3.3V 16K/32K x 36 FLEx36 Asynchronous Dual-Port Static RAM
CYPRESS

CY7C057V-15AXC

3.3V 16K/32K x 36 FLEx36⑩ Asynchronous Dual-Port Static
CYPRESS

CY7C057V-15AXCT

Multi-Port SRAM, 32KX36, 15ns, CMOS, PQFP144, 20 X 20 MM, 1.40 MM HEIGHT, ROHS COMPLIANT, PLASTIC, TQFP-144
CYPRESS

CY7C057V-15AXI

3.3V 16K/32K x 36 FLEx36⑩ Asynchronous Dual-Port Static
CYPRESS

CY7C057V-15BAC

Dual-Port SRAM, 32KX36, 15ns, CMOS, PBGA172, 15 X 15 MM, 0.51 MM HEIGHT, 1 MM PITCH, BGA-172
CYPRESS

CY7C057V-15BAI

Dual-Port SRAM, 32KX36, 15ns, CMOS, PBGA172, 15 X 15 MM, 0.51 MM HEIGHT, 1 MM PITCH, BGA-172
CYPRESS

CY7C057V-15BBC

3.3V 16K/32K x 36 FLEx36 Asynchronous Dual-Port Static RAM
CYPRESS